当前位置:文档之家› 综述,植物产品饲料添加剂

综述,植物产品饲料添加剂

综述,植物产品饲料添加剂
综述,植物产品饲料添加剂

W. Windisch, K. Schedle, C. Plitzner and A. Kroismayr Use of phytogenic products as feed additives for swine and poultry

doi: 10.2527/jas.2007-0459 originally published online Dec 11, 2007;

2008.86:E140-E148.

J Anim Sci

https://www.doczj.com/doc/178200068.html,/cgi/content/full/86/14_suppl/E140the World Wide Web at:

The online version of this article, along with updated information and services, is located on

https://www.doczj.com/doc/178200068.html,

Use of phytogenic products as feed additives for swine and poultry 1

W.Windisch,2K.Schedle,C.Plitzner,and A.Kroismayr

Department of Food Science and Technology,Division of Animal Food and Nutrition,University of Natural Resources and Applied Life Sciences,Vienna,1180Vienna,Austria

ABSTRACT:This article summarizes the experi-mental knowledge on ef?cacy,possible modes of action,and aspects of application of phytogenic products as feed additives for swine and poultry.Phytogenic feed additives comprise a wide variety of herbs,spices,and products derived thereof,and are mainly essential oils.The assumption that phytogenic compounds might im-prove the palatability of feed has not yet been con?rmed by choice-feeding studies.Although numerous studies have demonstrated antioxidative and antimicrobial ef-?cacy in vitro,respective experimental in vivo evidence is still quite limited.The same applies to the supposi-tion that phytogenic compounds may speci?cally en-hance activities of digestive enzymes and nutrient ab-sorption.Nevertheless,a limited number of experimen-tal comparisons of phytogenic feed additives with antibiotics and organic acids have suggested similar Key words:antimicrobial,botanical,essential oil,herb,phytogenic,swine

?2008American Society of Animal Science.All rights reserved.

J.Anim.Sci.2008.86(E.Suppl.):E140–E148

doi:10.2527/jas.2007-0459

INTRODUCTION

Phytogenic feed additives are plant-derived products used in animal feeding to improve the performance of agricultural livestock.This class of feed additives has recently gained increasing interest,especially for use in swine and poultry,as can be derived from a signi?cant increase in the number of scienti?c publications since 2000.This appears to be strongly driven by the ban on most of the antibiotic feed additives within the Euro-pean Union in 1999,a complete ban enforced in 2006,and ongoing discussions to restrict their use outside the European Union because of speculated risk for gen-erating antibiotic resistance in pathogenic microbiota.In this context,phytogenic feed additives are discussed

1

Presented at the Nonruminant Nutrition symposium at the an-nual meeting of the American Society of Animal Science,San Antonio,TX,July 8to 12,2007.2

Corresponding author:wilhelm.windisch@boku.ac.at Received July 25,2007.

Accepted November 20,2007.

E140

effects on the gut,such as reduced bacterial colony counts,fewer fermentation products (including ammo-nia and biogenic amines),less activity of the gut-associ-ated lymphatic system,and a greater prececal nutrient digestion,probably re?ecting an overall improved gut equilibrium.In addition,some phytogenic compounds seem to promote intestinal mucus production.Such ef-fects may explain a considerable number of practical studies with swine and poultry reporting improved pro-duction performance after providing phytogenic feed additives.In total,available evidence indicates that phytogenic feed additives may add to the set of nonanti-biotic growth promoters for use in livestock,such as organic acids and probiotics.However,a systematic ap-proach toward the ef?cacy and safety of phytogenic com-pounds used as feed additives for swine and poultry is still missing.

possibly to add to the set of nonantibiotic growth pro-moters,such as organic acids and probiotics,which are already well established in animal nutrition.Phytogen-ics,however,are a relatively new class of feed additives and our knowledge is still rather limited regarding their modes of action and aspects of their application.Fur-ther complications arise because phytogenic feed addi-tives may vary widely with respect to botanical origin,processing,and composition.Most studies investigate blends of various active compounds and report the ef-fects on production performance rather than the physio-logical impacts.In this context,the following provides an overview of recent knowledge on the use of phyto-genic feed additives in piglet and poultry diets,possible modes of action,and safety implications.

GENERAL ASPECTS OF PHYTOGENIC

FEED ADDITIVES

Phytogenic feed additives (often also called phytobio-tics or botanicals)are commonly de?ned as plant-de-rived compounds incorporated into diets to improve the productivity of livestock through amelioration of feed

Phytogenic feed additives for piglets and poultry E141

properties,promotion of the animals’production perfor-mance,and improving the quality of food derived from those animals.Although this de?nition is driven by the purpose of use,other terms are commonly used to classify the vast variety of phytogenic compounds, mainly with respect to origin and processing,such as herbs(?owering,nonwoody,and nonpersistent plants), spices(herbs with an intensive smell or taste commonly added to human food),essential oils(volatile lipophilic compounds derived by cold expression or by steam or alcohol distillation),or oleoresins(extracts derived by nonaqueous solvents).Within phytogenic feed addi-tives,the content of active substances in products may vary widely,depending on the plant part used(e.g., seeds,leaf,root,or bark),harvesting season,and geo-graphical origin.The technique for processing(e.g.,cold expression,steam distillation,extraction with non-aqueous solvents,etc.)modi?es the active substances and associated compounds within the?nal product. The use of feed additives is usually subject to restric-tive regulations.In general,they are considered as products applied by the farmer to healthy animals for a nutritional purpose on a permanent basis(i.e.,during the entire production period of the respective species and category),in contrast to veterinary drugs(applied for prophylaxis and therapy of diagnosed health prob-lems under veterinarian control for a limited time pe-riod,partially associated with a waiting period).In the European Union,for example,feed additives need to demonstrate the identity and traceability of the entire commercial product,the ef?cacy of the claimed nutri-tional effects,including the absence of possible interac-tions with other feed additives,and the safety to the animal(e.g.,tolerance),to the user(e.g.,farmer,worker in feed mills),to the consumer of animal-derived prod-ucts,and to the environment(for further details,refer to European Commission,2003).Problems with feed additive legacy may therefore arise especially with phy-togenic feed additives addressed to explicit health claims or in the case of plant-derived substances sus-pected to modulate metabolism(e.g.,through a phyto-hormonal mode of action).For these reasons,the follow-ing discussion focuses on the use of phytogenic com-pounds as feed additives in swine and poultry diets in terms of claimed antioxidative and antimicrobial ac-tions,bene?cial effects on palatability and gut func-tions,and growth-promoting ef?cacy.

ANTIOXIDATIVE ACTION

OF PHYTOGENIC FEED ADDITIVES

Antioxidative properties are well described for herbs and spices(e.g.,Cuppett and Hall,1998;Craig,1999; Nakatani,2000;Wei and Shibamoto,2007).Among a variety of plants bearing antioxidative constituents,the volatile oils from the Labiatae family(mint plants)have been attracting the greatest interest,especially prod-ucts from rosemary.Their antioxidative activity arises from phenolic terpenes,such as rosmarinic acid and rosmarol(Cuppett and Hall,1998).Other Labiatae spe-cies with signi?cant antioxidative properties are thyme and oregano,which contain large amounts of the monot-erpenes thymol and carvacrol(Cuppett and Hall,1998). Plant species from the families of Zingiberaceae(e.g., ginger and curcuma)and Umbelliferae(e.g.,anise and coriander),as well as plants rich in?avonoids(e.g., green tea)and anthocyans(e.g.,many fruits),are also described as exerting antioxidative properties(Naka-tani,2000;Wei and Shibamoto,2007).Furthermore, pepper(Piper nigrum),red pepper(Capsicum annuum L.),and chili(Capsicum frutescene)contain antioxida-tive components(Nakatani,1994).In many of these plants,parts of the active substances are highly odorous or may taste hot or pungent,which may restrict their use for animal feeding purposes.

The antioxidant property of many phytogenic com-pounds may be assumed to contribute to protection of feed lipids from oxidative damage,such as the antioxi-dants usually added to diets(e.g.,α-tocopheryl acetate or butylated hydroxytoluene).Although this aspect has not been explicitly investigated for piglet and poultry feeds,there is a wide practice of successfully using es-sential oils,especially those from the Labiatae plant family,as natural antioxidants in human food(Cuppett and Hall,1998),as well as in the feed of companion animals.

The principal potential of feed additives from the Labiatae plant family containing herbal phenolic com-pounds to improve the oxidative stability of animal-derived products has been demonstrated for poultry meat(Botsoglou et al.,2002,2003a,b;Papageorgiou et al.,2003;Young et al.,2003;Basmacioglu et al.,2004; Govaris et al.,2004;Giannenas et al.,2005;Florou-Paneri et al.,2006),pork(Janz et al.,2007),rabbit meat (Botsoglou et al.,2004b),and eggs(Botsoglou et al., 2005).Oxidative stability was also shown to be im-proved with other herbal products(Botsoglou et al., 2004a;Schiavone et al.,2007).Nevertheless,it remains unclear whether these phytogenic antioxidants are able to replace the antioxidants usually added to the feeds (e.g.,α-tocopherols)to a quantitatively relevant extent under conditions of common feeding practice.

SPECIFIC IMPACT ON DIETARY PALATABILITY AND GUT FUNCTIONS

Phytogenic feed additives are often claimed to im-prove the?avor and palatability of feed,thus enhancing production performance.However,the number of stud-ies having tested the speci?c effect of phytogenic prod-ucts on palatability by applying a choice-feeding design is quite limited.They show dose-related depressions of palatability in pigs fed essential oils from fennel and caraway,as well as from the herbs thyme and oregano (Jugl-Chizzola et al.,2006;Scho¨ne et al.,2006).On the other hand,there are numerous reports on improved feed intake through phytogenic feed additives in swine (see the subsequent section on growth-promoting ef?-

Windisch et al. E142

cacy).However,an increase in feed intake in swine is a common result of the use of growth-promoting feed additives,such as antibiotics,organic acids,and probi-otics,and,in the?rst instance,it may be considered to re?ect the higher consumption capacity of animals grown larger compared with untreated controls(Frei-tag et al.,1998).Therefore,the assumption that herbs, spices,and their extracts improve the palatability of feed does not seem to be justi?ed in general.

A wide range of spices,herbs,and their extracts are known from medicine to exert bene?cial actions within the digestive tract,such as laxative and spasmolytic effects,as well as prevention from?atulence(Chru-basik et al.,2005).Furthermore,stimulation of diges-tive secretions(e.g.,saliva),bile,and mucus,and en-hanced enzyme activity are proposed to be a core mode of nutritional action(Platel and Srinivasan,2004).In vitro activities of rat pancreatic lipase and amylase were shown to be signi?cantly enhanced when brought into contact with various spices and spice extracts(Rao et al.,2003).The same group of researchers found greater enzyme activities in pancreatic homogenates and a pronounced bile acid?ow in rats fed those sub-stances(Platel and Srinivasan,2000a,b).Similarly,es-sential oils used as feed additives for broilers were shown to enhance the activities of trypsin and amylase (Lee et al.,2003;Jang et al.,2004).Glucose absorption from the small intestine was accelerated in rats fed anise oil(Kreydiyyeh et al.,2003).Furthermore,Man-zanilla et al.(2004)fed a combination of essential oils and capsaicin to swine and observed that gastric empty-ing was slowed down by these additives.Phytogenic feed additives were also reported to stimulate intestinal secretion of mucus in broilers,an effect that was as-sumed to impair adhesion of pathogens and thus to contribute to stabilizing the microbial eubiosis in the gut of the animals(Jamroz et al.,2006).These observa-tions support the hypothesis that phytogenic feed addi-tives may favorably affect gut functions,but the number of in vivo studies with swine and poultry is still quite limited.

Saponins(e.g.,from Yucca schidigera)are proposed to reduce intestinal ammonia formation,and thus ae-rial pollution of housing environment,which is consid-ered an important health stress,especially for young animals(Francis et al.,2002).Studies with rats con-?rmed the existence of active components in Y.schidi-gera extracts that lower intestinal urease activity and enzymes involved in the metabolic urea cycle(Killeen et al.,1998;Duffy et al.,2001).Reduced intestinal and fecal urease activities were also found in broilers fed such extracts(Nazeer et al.,2002).However,yucca ex-tracts were reported to contain subfractions with par-tially antagonistic properties on intestinal urease activ-ity and ammonia formation(Killeen et al.,1998).Thus, further research seems to be required to clarify the potential of saponins as feed additives for swine and poultry diets.

Another claim often made of phytogenic feed addi-tives is stimulation of immune functions;however,the speci?c experimental veri?cation in monogastric ag-ricultural livestock is rather limited.For example,the use of Echinacea purpurea in pig feeding revealed an enhanced immune stimulation after vaccination with Swine erysipelas,followed by a slight improvement in the feed conversion ratio(F:G,which is the reciprocal of the ef?ciency of gain or G:F),but it signi?cantly depressed feed intake in broilers and layers(Maass et al.,2005;Roth-Maier et al.,2005).

ANTIMICROBIAL ACTIONS

Herbs and spices are well known to exert antimicro-bial actions in vitro against important pathogens,in-cluding fungi(Adam et al.,1998;Smith-Palmer et al., 1998;Hammer et al.,1999;Dorman and Deans,2000; Burt,2004;Si et al.,2006;O¨zer et al.,2007).The active substances are largely the same as mentioned pre-viously for antioxidative properties,with phenolic com-pounds being the principal active components(Burt, 2004).Again,the plant family of Labiatae has received the greatest interest,with thyme,oregano,and sage as the most popular representatives(Burt,2004).The antimicrobial mode of action is considered to arise mainly from the potential of the hydrophobic essential oils to intrude into the bacterial cell membrane,disinte-grate membrane structures,and cause ion leakage. High antibacterial activities are also reported from a variety of nonphenolic substances,for example,limo-nene and compounds from Sanguinaria canadensis (Newton et al.,2002;Burt,2004).

Microbiological analysis of minimum inhibitory con-centrations(MIC)of plant extracts from spices and herbs,as well as of pure active substances,revealed levels that considerably exceeded the dietary doses when used as phytogenic feed additives(Burt,2004). This may indicate that the antimicrobial action of phy-togenics should not contribute signi?cantly to the over-all ef?cacy of this class of feed additives.On the other hand,some studies with broilers demonstrated in vivo antimicrobial ef?cacy of essential oils against Esche-richia coli and Clostridium perfringens(Jamroz et al., 2003,2005;Mitsch et al.,2004).In swine,however,the few studies available thus far have failed to demon-strate the ef?cacy of phytogenic compounds on shedding of speci?c pathogens(Jugl-Chizzola et al.,2005;Hag-mu¨ller et al.,2006).In total,the available literature suggests that,at least for broilers,an overall antimicro-bial potential of phytogenic compounds in vivo cannot generally be ruled out.Furthermore,some phytogenic feed additives have been shown to act against Eimeria species after experimental challenge(Giannenas et al., 2003,2004;Hume et al.,2006;Oviedo-Rondon et al., 2006).

Another implication of the antimicrobial action of phytogenic feed additives may in be improving the mi-crobial hygiene of carcasses.Indeed,there are isolated

Phytogenic feed additives for piglets and poultry E143

reports on the bene?cial effects of essential oils from oregano on the microbial load of total viable bacteria, as well as of speci?c pathogens(e.g.,Salmonella)on broiler carcasses(e.g.,Aksit et al.,2006).However, available data are still too limited to allow reliable con-clusions on the possible ef?cacy of certain phytogenic feed additives to improve carcass hygiene.

GROWTH-PROMOTING EFFICACY

In recent years,phytogenic feed additives have at-tracted increasing interest as an alternative feeding strategy to replace antibiotic growth promoters.This has occurred especially in the European Union,where antibiotics have been banned completely from use as additives in livestock feed since2006because of a sus-pected risk of generating microbiota with increased re-sistance to the antibiotics used for therapy in humans and animals.

The primary mode of action of growth-promoting feed additives arises from stabilizing feed hygiene(e.g., through organic acids),and even more from bene?cially affecting the ecosystem of gastrointestinal microbiota through controlling potential pathogens(e.g.,Roth and Kirchgessner1998).This applies especially to critical phases of an animal’s production cycle characterized by high susceptibility to digestive disorders,such as the weaning phase of piglets or early in the life of poultry. Because of a more stabilized intestinal health,animals are less exposed to microbial toxins and other undesired microbial metabolites,such as ammonia and biogenic amines(e.g.,Eckel et al.,1992).Consequently,growth-promoting feed additives relieve the host animals from immune defense stress during critical situations and increase the intestinal availability of essential nutri-ents for absorption,thereby helping animals to grow better within the framework of their genetic potential. Literature on the biological ef?cacy of phytogenic feed additives presents a scattered picture.Data on swine reviewed by Rodehutscord and Kluth(2002)varied widely from depressions in production performance to improvements similar to those observed with common growth promoters,such as antibiotics,organic acids, and probiotics.The same applies to more recent investi-gations(e.g.,Manzanilla et al,.2004,2006;Namkung et al.,2004;Straub et al.,2005;Hagmu¨ller et al.,2006; Nofrarias et al.,2006;Scho¨ne et al.,2006;Kroismayr et al.,2007;Lien et al.,2007).For poultry,the data appear to be clearer.As shown in Table1,the majority of experimental results indicate reduced feed intake at largely unchanged BW gain or?nal BW,leading to an improved F:G when feeding phytogenic compounds.Of course,the wide variation in biological effects induced by phytogenics re?ects the experimental approaches used to test the suitability of these substances as growth-promoting feed additives to swine and poultry and also includes failures in selecting the proper plants, active components,and ef?cacious dietary doses.How-ever,numerous examples of positive experimental re-sults among the studies mentioned above indicate that phytogenic feed additives,in general,may actually ex-ert growth-promoting activity in swine and poultry. Nevertheless,the limited data available at present do not allow a systematic assessment of this potential in view of botanical origin and active principles,the more so because the available literature mainly presents data on commercial products containing blends of different compounds.

Recent studies with swine and poultry indicated sta-bilizing effects of phytogenic feed additives on the eco-system of gastrointestinal microbiota.Kroismayr et al. (2007)compared a blend of essential oils from oregano, anise,and citrus peels with an antibiotic growth promo-tant and reported a decrease in microbial activity in the terminal ileum,cecum,and colon for both feed addi-tives,as was obvious from reduced bacterial colony counts and reduced chyme contents of VFA as well as of biogenic https://www.doczj.com/doc/178200068.html,parable observations for herbal essential oils and oleoresins on the activity of intestinal microbiota were also found in other studies with pigs and broilers(Jamroz et al.,2003,2005;Manzanilla et al.,2004;Mitsch et al.,2004;Namkung et al.,2004; Castillo et al.,2006).These effects are also typical for organic acids,which are known to exert a major part of their biological ef?cacy mainly through stabilizing the microbial eubiosis in the gastrointestinal tract(for a review,see Gabert and Sauer,1994;Roth and Kirchg-essner,1998),including suppressed formation of bio-genic amines(Eckel et al.,1992).

Relief from microbial activity and related by-products is of high relevance,especially in the small intestine, because production of VFA counteracts stabilization of the intestinal pH required for optimum activity of diges-tive enzymes.In addition,intestinal formation of bio-genic amines by microbiota is undesirable not only be-cause of toxicity,but also because of the fact that bio-genic amines are produced mainly by decarboxylation of limiting essential AA(e.g.,cadaverine from Lys,scatol from Trp).Consequently,relief from microbial fermen-tation in the small intestine may improve the supply status of limiting essential nutrients(e.g.,Roth et al.,1998).

Morphological changes in gastrointestinal tissues caused by phytogenic feed additives may provide fur-ther information on possible bene?ts to the digestive tract;however,the available literature does not provide a consistent picture.Available reports have shown in-creased,unchanged,and reduced villi length and crypt depth in the jejunum and colon for broilers and pigs treated with phytogenic feed additives(Namkung et al.,2004;Demir et al.,2005;Jamroz et al.,2006;Nofrar-ias et al.,2006;Oetting et al.,2006).These results do not allow for conclusions to be drawn on the relevance of changes in intestinal morphology in view of a growth-promoting potential of phytogenic feed additives,espe-cially because in some studies,the phytogenic formula-tions contained pungent principles(e.g.,capsaicin)and

Windisch et al.

E144

Table1.Effect of phytobiotic feed additives on production performance in poultry

Treatment effect,%difference

from untreated control

Dietary

Phytobiotic dose Feed Feed conversion

feed additive(g/kg)intake BW ADG ratio Reference

Broilers

Plant extracts

Oregano0.15?6?2?4Basmacioglu et al.,2004

Oregano0.3?3+1?2Basmacioglu et al.,2004

Rosemary0.150?1?1Basmacioglu et al.,2004

Rosemary0.3?2+1?4Basmacioglu et al.,2004

Thymol0.1+1+1?1Lee et al.,2003

Cinnamaldehyde0.1?2?30Lee et al.,2003

Thymol0.2?5?3?3Lee et al.,2003

Carvacol0.2+2+2?1Lee et al.,2003

Yucca extract 2.0?1+1?6Yeo and Kim,1997

Essential oil blend0.024?4?0?4Cabuk et al.,2006

Essential oil blend0.048?50?6Cabuk et al.,2006

Plant extracts10.2?20?2Hernandez et al.,2004

Plant extracts1 5.0+2+3?4Hernandez et al.,2004

Plant extracts10.50?2?2+2Botsoglou et al.,2004a

Plant extracts1 1.0+2?10+2Botsoglou et al.,2004a

Essential oil blend0.075?7?3?4Basmacioglu et al.,2004b

Essential oil blend0.15?7?1?1Basmacioglu et al.,2004b

Essential oil blend0.036+3?8?5Alcicek et al.,2004

Essential oil blend0.048+2?8?4Alcicek et al.,2004

Plant extracts10.1+1+10Lee et al.,2003

Essential oil blend0.024?20?2Alcicek et al.,2003

Essential oil blend0.0480+14?12Alcicek et al.,2003

Essential oil blend0.072?2+8?9Alcicek et al.,2003

Herbs and spices

Oregano 5.0+5+7?2Florou-Paneri et al.,2006

Thyme 1.0+1+2?1Sarica et al.,2005

Garlic 1.0?5?50Sarica et al.,2005

Herb mix0.250+2?2Guo et al.,2004

Herb mix0.5+5+2+3Guo et al.,2004

Herb mix 1.0+2+1+1Guo et al.,2004

Herb mix 2.0+1+10Guo et al.,2004 Turkeys

Herbs and spices

Oregano 1.25?5+2Bampidis et al.,2005

Oregano 2.5?6+1Bampidis et al.,2005

Oregano 3.75?9+1Bampidis et al.,2005 Quail

Essential oils

Thyme0.060+6Denli et al.,2004

Black seed0.06+1+2Denli et al.,2004

Herbs and spices

Coriander 5.0+3+1+1Gu¨ler et al.,2005

Coriander10.0+3+5?1Gu¨ler et al.,2005

Coriander20.0+4+8?4Cu¨ler et al.,2005

Coriander40.0+5+4+1Gu¨ler et al.,2005

1Entire product.

signi?cantly increased intestinal mucus production(Ja-mroz et al.,2006).

Manzanilla et al.(2006)and Nofrarias et al.(2006) observed a diminished number of intraepithelial lym-phocytes in the jejunum of pigs treated with antibiotics or phytogenic feed additives.

Improved digestive capacity in the small intestine may be considered an indirect side effect of feed addi-tives stabilizing the microbial eubiosis in the gut.Such an effect has been shown in young pigs with antibiotic feed additives(Roth et al.,1999)and in broilers and swine with plant extracts(Jamroz et al.,2003;Hernan-dez et al.,2004).An improved prececal digestive capac-ity reduces the?ux of fermentable matter into the hind-gut,and thus lessens the postileal microbial growth and the excretion of bacterial matter in feces,respectively. Because bacterial protein is the dominant fraction of total fecal protein,an improved prececal digestive ca-

Phytogenic feed additives for piglets and poultry E145

pacity may result indirectly in an increased apparent digestibility of dietary protein(calculated as the disap-pearance rate from intake until fecal excretion).Such an effect has been demonstrated for antibiotics and organic acids(e.g.,Kirchgessner et al.,1995;Roth et al.,1998,1999)as well as for phytogenic feed additives in pigs(Cho et al.,2006,Oetting et al.,2006;Stoni et al.2006),broilers(Hernandez et al.,2004),and turkeys (Seskeviciene et al.,2005).These observations give fur-ther support to the hypothesis that phytogenic feed additives may stabilize digestive functions.

FURTHER CONSIDERATIONS ON THE USE OF PHYTOGENIC FEED ADDITIVES

Besides ef?cacy,application of phytogenic feed addi-tives to livestock also has to be safe to the animal, the user,the consumer of the animal product,and the environment.Regarding exposed animals,adverse health effects cannot generally be excluded in the case of an accidental overdose.For the user(e.g.,feed manu-facturer,farmer),the handling of pure formulations of such feed additives usually requires protective mea-sures because they are potentially irritating and can cause allergic contact dermatitis(Burt,2004).With re-spect to consumer safety,the phytogenic feed additives cannot be relieved from determination of possible unde-sired residues in products derived from animals fed those products.For example,Stoni et al.(2006)reported almost complete absorption of carvacrol and thymol in swine fed these essential oils and detected their glucu-ronic and sulfate metabolites in blood plasma and kid-ney.Similarly,a study in humans demonstrated rapid absorption and subsequent urinary excretion of glucu-ronic and sulfate metabolites of rosmarinic essential oils(Baba et al.,2005).However,metabolic activity (e.g.,absorption,potential to accumulate in edible tis-sues)differs widely among phytogenic compounds,and thus safety needs to be assessed separately for each individual phytogenic feed additive.

Another consideration when using phytogenic feed additives is possible interactions with other feed addi-tives.Many of the feeding trials investigating the ef?-cacy of phytogenic feed additives included other growth promoters(e.g.,antibiotics,organic acids,and probiot-ics),as well as combinations with them,without show-ing antagonistic interaction among these feed additives. On the other hand,studies on interactions of phytogenic feed additives with enzyme preparations(e.g.,phytase, enzymes degrading nonstarch polysaccharides,etc.)are very limited.For example,Sarica et al.(2005)reported a lack of or negative interactions of garlic and thyme with nonstarch polysaccharide-degrading enzymes in broilers.Phytogenic feed additives containing compo-nents with astringent properties,however,were re-ported to interact negatively with proteinaceous feed additives through partial denaturation(Anadon et al.,2005).

In conclusion,phytogenic feed additives are claimed to exert antioxidative,antimicrobial,and growth-pro-moting effects in livestock,actions that are partially associated with enhanced feed consumption,suppos-edly because of improved palatability of the diet. Whereas available results do not support a speci?c ame-lioration of palatability,the antioxidative ef?cacy of some phytogenic compounds to protect the quality of feed,as well as that of food derived from animals fed those substances,cannot be ruled out.With respect to antimicrobial action,some observations in vivo support the assumption that the general potential of phytogenic feed additives is to contribute to a?nal reduction of intestinal pathogen pressure.When compared with an-timicrobial feed additives and organic acids,the phyto-genic substances currently used in practice similarly seem to modulate relevant gastrointestinal variables, such as microbial colony counts,fermentation products (including undesirable or toxic substances),digestibil-ity of nutrients,gut tissue morphology,and reactions of the gut-associated lymphatic system.Furthermore, some isolated observations seem to support the claimed enhancements of digestive enzyme activity and absorp-tion capacity through phytogenic compounds.In addi-tion,phytogenic products may stimulate intestinal mu-cus production,which may further contribute to relief from pathogen pressure through inhibition of adher-ence to the mucosa.Unfortunately,respective experi-mental results are available only from commercial prod-ucts containing blends of phytogenic substances.There-fore,there is still a need for a systematic approach to explain the ef?cacy and mode of action for each of type and dose of active compound,as well as its possible interactions with other feed ingredients.Nevertheless, the current experience in feeding such compounds to swine and poultry seems to justify the assumption that phytogenic feed additives may have the potential to promote production performance and productivity,and thus add to the set of nonantibiotic growth promoters, such as organic acids and probiotics.

LITERATURE CITED

Adam,K.,A.Sivropoulou,S.Kokkini,https://www.doczj.com/doc/178200068.html,naras,and M.Arsenakis.

1998.Antifungal activities of Origanum vulgare subsp.hirtum, Mentha spicata,Lavandula angustifolia,and Salvia fruticosa essential oils against human pathogenic fungi.J.Agric.Food Chem.46:1739–1745.

Aksit,M.,E.Goksoy,F.Kok,D.Ozdemir,and M.Ozdogan.2006.

The impacts of organic acid and essential oil supplementations to diets on the microbiological quality of chicken carcasses.Arch.

Ge?ugelkd.70:168–173.

Alcicek,A.,M.Bozkurt,and M.Cabuk.2003.The effect of an essential oil combination derived from selected herbs growing wild in Turkey on broiler performance.S.Afr.J.Anim.Sci.33:89–94. Alcicek,A.,M.Bozkurt,and M.Cabuk.2004.The effect of a mixture of herbal essential oils,an organic acid or a probiotic on broiler performance.S.Afr.J.Anim.Sci.34:217–222.

Anadon,A.,M.Abroix Arzo,G.Bories,P.Brantom,J.Brufau de Barbera,A.Chesson,P.S.Concconcelli,J.de Knecht,N.Dierick,

G.Flachowsky,A.Franklin,J.Gropp,A.K.Haldorsen,I.Halle,

A.Mantovani,K.Peltonen,G.Rychen,P.Sanders,A.Soares,

Windisch et al. E146

P.Wester,and W.Windisch.2005.Opinion of the FEEDAP Panel on the safety and ef?cacy of the product Farmatan for rabbits and piglets.The EFSA Journal222:1–20.

Baba,S.,N.Osakabe,M.Natsume,A.Yasuda,Y.Muto,K.Hiyoshi,

H.Takano,T.Yoshikawa,and J.Terao.2005.Absorption,metab-

olism,degradation and urinary excretion of rosmarinic acid after intake of Perilla frutescens extract in humans.Eur.J.Nutr.

44:1–9.

Bampidis,V.A.,V.Christodoulou,P.Florou-Paneri,E.Christaki,P.

S.Chatzopoulou,T.Tsiligianni,and A.B.Spais.2005.Effect of dietary dried oregano leaves on growth performance,carcase characteristics and serum cholesterol of female early maturing turkeys.Br.Poult.Sci.46:595–601.

Basmacioglu,H.,O.Tokusoglu,and M.Ergul.2004.The effect of oregano and rosemary essential oils or alpha-tocopheryl acetate on performance and lipid oxidation of meat enriched with n-3 PUFAs in broilers.S.Afr.J.Anim.Sci.34:197–210. Botsoglou,N.A.,E.Christaki,P.Florou-Paneri,I.Giannenas,G.

Papageorgiou,and A.B.Spais.2004a.The effect of a mixture of herbal essential oils or alpha-tocopheryl acetate on performance parameters and oxidation of body lipid in broilers.S.Afr.J.

Anim.Sci.34:52–61.

Botsoglou,N.A.,P.Florou-Paneri,E.Botsoglou,V.Dotas,I.Gian-nenas,A.Koidis,and P.Mitrakos.2005.The effect of feeding rosemary,oregano,saffron and alpha-tocopheryl acetate on hen performance and oxidative stability of eggs.S.Afr.J.Anim.Sci.

35:143–151.

Botsoglou,N.A.,P.Florou-Paneri,E.Christaki,D.J.Fletouris,and

A.B.Spais.2002.Effect of dietary oregano essential oil on perfor-

mance of chickens and on iron-induced lipid oxidation of breast, thigh and abdominal fat tissues.Br.Poult.Sci.43:223–230. Botsoglou,N.A.,P.Florou-Paneri,E.Christaki,I.Giannenas,and

A.B.Spais.2004b.Performance of rabbits and oxidative stability

of muscle tissues as affected by dietary supplementation with oregano essential oil.Arch.Anim.Nutr.58:209–218. Botsoglou,N.A.,https://www.doczj.com/doc/178200068.html,aris,E.Botsoglou,S.H.Grigoropoulou,and

G.Papageorgiou.2003a.Antioxidant activity of dietary oregano

essential oil and alpha-tocopheryl acetate supplementation in long-term frozen stored turkey meat.J.Agric.Food Chem.

51:2930–2936.

Botsoglou,N.A.,S.H.Grigoropoulou,E.Botsoglou,https://www.doczj.com/doc/178200068.html,aris,and

G.Papageorgiou.2003b.The effects of dietary oregano essential

oil and alpha-tocopheryl acetate on lipid oxidation in raw and cooked turkey during refrigerated storage.Meat Sci.65:1193–1200.

Burt,S.2004.Essential oils:Their antibacterial properties and poten-tial applications in food—A review.Int.J.Food Microbiol.

94:223–253.

Cabuk,M.,M.Bozkurt,A.Alcicek,Y.Akbas,and K.Ku¨cu¨kyilmaz.

2006.Effect of a herbal essential oil mixture on growth and internal organ weight of broilers from young and old breeder ?ocks.S.Afr.J.Anim.Sci.36:135–141.

Castillo,M.,S.M.Martin-Orue,M.Roca,E.G.Manzanilla,I.Badiola, J.F.Perez,and J.Gasa.2006.The response of gastrointestinal microbiota to avilamycin,butyrate,and plant extracts in early-weaned pigs.J.Anim.Sci.84:2725–2734.

Cho,J.H.,Y.J.Chen,B.J.Min,H.J.Kim,O.S.Kwon,K.S.Shon,

I.H.Kim,S.Kim,and A.Asamer.2006.Effects of essential oils

supplementation on growth performance,IgG concentration and fecal noxious gas concentration of weaned https://www.doczj.com/doc/178200068.html,n-australas.

J.Anim.Sci.19:80–85.

Chrubasik,S.,M.H.Pittler,and B.D.Roufogalis.2005.Zingiberis rhizome:A comprehensive review on the ginger effect and ef?-cacy pro?les.Phytomedicine12:684–701.

Craig,W.J.1999.Health promoting properties of common herbs.

Am.J.Clin.Nutr.70(Suppl.):491S–499S.

Cuppett,S.L.,and C.A.Hall.1998.Antioxidant activity of Labiatae.

Adv.Food Nutr.Res.42:245–271.

Demir,E.,S.Sarica,M.A.O¨zcan,and M.Suicmez.2005.The use of natural feed additives as alternative to an antibiotic growth promoter in boiler diets.Arch.Ge?ugelkd.69:110–116.Denli,M.,F.Okan,and A.N.Uluocak.2004.Effect of dietary supple-mentation of herb essential oils on the growth performance, carcass and intestinal characteristics of quail(Coturnix coturnix japonica).S.Afr.J.Anim.Sci.34:174–179.

Dorman,H.J.D.,and S.G.Deans.2000.Antimicrobial agents from plants:Antibacterial activity of plant volatile oils.J.Appl.Micro-biol.88:308–316.

Duffy,C.F.,G.F.Killeen,C.D.Connolly,and R.F.Power.2001.

Effects of dietary supplementation with Yucca schidigera Roezl ex Ortgies and its saponin and non-saponin fractions on rat metabolism.J.Agric.Food Chem.49:3408–3413.

Eckel,B.,F.X.Roth,M.Kirchgessner,and U.Eidelsburger.1992.

Zum Ein?u?von Ameisensa¨ure auf die Konzentration an Ammo-niak und biogenen Aminen im Gastrointestinaltrakt.4.Mittei-lung:Untersuchungen zur nutritiven Wirksamkeit von or-ganischen Sa¨uren in der Ferkelaufzucht.J.Anim.Physiol.Anim.

Nutr.(Berl.)67:198–205.

European Commission.2003.Regulation(EC)No.1831/2003of the European Parliament and of the council of22September2003 on additives for use in animal nutrition.Off.J.Eur.Union L 268:29–43.

Florou-Paneri,P.,I.Giannenas,E.Christaki,https://www.doczj.com/doc/178200068.html,aris,and N.A.

Botsoglou.2006.Performance of chickens and oxidative stability of the produced meat as affected by feed supplementation with oregano,vitamin C,vitamin E and their combinations.Arch.

Ge?ugelkd.70:232–240.

Francis,G.,Z.Kerem,H.P.S.Makkar,and K.Becker.2002.The biological action of saponins in animal systems:A review.Br.

J.Nutr.88:587–605.

Freitag,M.,H.U.Hensche,H.Schulte-Sienbeck,and B.Reichelt.

1998.Kritische Betrachtung des Einsatzes von Leistungsfo¨rder-ern in der Tiererna¨hrung.Forschungsbericht des Fachbereichs Agrarwirtschaft Soest.Universita¨t-Gesamthochschule,Pader-born,Germany.

Gabert,V.M.,and W.C.Sauer.1994.The effect of supplementing diets for weanling pigs with organic acids.J.Anim.Feed Sci.

3:73–87.

Giannenas,I.A.,P.Florou-Paneri,N.A.Botsoglou,E.Christaki, and A.B.Spais.2005.Effect of supplementing feed with oregano and(or)alpha-tocopheryl acetate on growth of broiler chickens and oxidative stability of meat.J.Anim.Feed Sci.14:521–535. Giannenas,I.A.,P.Florou-Paneri,M.Papazahariadou,N.A.Botsog-lou,E.Christaki,and A.B.Spais.2004.Effect of diet supplemen-tation with ground oregano on performance of broiler chickens challenged with Eimeria tenella.Arch.Ge?ugelkd.68:247–252. Giannenas,I.A.,P.Florou-Paneri,M.Papazahariadou,E.Christaki, N.A.Botsoglou,and A.B.Spais.2003.Effect of dietary supple-mentation with oregano essential oil on performance of broilers after experimental infection with Eimeria tenella.Arch.Anim.

Nutr.57:99–106.

Govaris,A.,N.Botsoglou,G.Papageorgiou,E.Botsoglou,and I.Am-brosiadis.2004.Dietary versus post-mortem use of oregano oil and(or)alpha-tocopherol in turkeys to inhibit development of lipid oxidation in meat during refrigerated storage.Int.J.Food Sci.Nutr.55:115–123.

Gu¨ler,T.,O.N.Erta?,M.Ciftci,and B.Dalk?l?c.2005.The effect of coriander seed(Coriandrum sativum L.)as diet ingredient on the performance of Japanese quail.S.Afr.J.Anim.Sci.35:261–267. Guo,F.C.,R.P.Kwakkel,J.Soede,B.A.Williams,and M.W.A.

Verstegen.2004.Effect of a Chinese herb medicine formulation, as an alternative for antibiotics,on performance of broilers.Br.

Poult.Sci.45:793–797.

Hagmu¨ller,W.,M.Jugl-Chizzola,K.Zitterl-Eglseer,C.Gabler,J.

Spergser,R.Chizzola,and C.Franz.2006.The use of Thymi herba as feed additive(0.1%,0.5%,1.0%)in weanling piglets with assessment of the shedding of haemolysing E.coli and the detection of thymol in the blood plasma.Berl.Munch.Tiararztl.

Wochenschr.119:50–54.

Hammer,K.A.,C.F.Carson,and T.V.Riley.1999.Antimicrobial activity of essential oils and other plant extracts.J.Appl.Micro-biol.86:985–990.

Phytogenic feed additives for piglets and poultry E147

Hernandez,F.,J.Madrid,V.Garcia,J.Orengo,and M.D.Megias.

2004.In?uence of two plant extracts on broilers performance, digestibility,and digestive organ size.Poult.Sci.83:169–174. Hume,M.E.,S.Clemente-Hernandez,and E.O.Oviedo-Rondont.

2006.Effects of feed additives and mixed Eimeria species infec-tion on intestinal microbial ecology of broilers.Poult.Sci.

85:2106–2111.

Jamroz,D.,I.Orda,C.Kamel,A.Wiliczkiewicz,T.Wertelecki,and

I.Skorupinska.2003.The in?uence of phytogenic extracts on

performance,nutrient digestibility,carcass characteristics,and gut microbial status in broiler chickens.J.Anim.Feed Sci.

12:583–596.

Jamroz,D.,T.Wertelecki,M.Houszka,and C.Kamel.2006.In?uence of diet type on the inclusion of plant origin active substances on morphological and histochemical characteristics of the stomach and jejunum walls in chicken.J.Anim.Physiol.Anim.Nutr.

(Berl.)90:255–268.

Jang,I.S.,Y.H.Ko,H.Y.Yang,J.S.Ha,J.Y.Kim,S.Y.Kang,D.

H.Yoo,D.S.Nam,D.H.Kim,and C.Y.Lee.2004.In?uence

of essential oil components on growth performance and the func-tional activity of the pancreas and small intestine in broiler https://www.doczj.com/doc/178200068.html,n-australas.J.Anim.Sci.17:394–400.

Janz,J.A.M.,P.C.H.Morel,B.H.P.Wilkinson,and R.W.Purchas.

2007.Preliminary investigation of the effects of low-level dietary inclusion of fragrant essential oils and oleoresins on pig perfor-mance and pork quality.Meat Sci.75:350–355.

Jugl-Chizzola,M.,J.Spergser,F.Schilcher,J.Novak,A.Bucher,C.

Gabler,W.Hagmuller,and K.Zitterl-Eglseer.2005.Effects of Thymus vulgaris L.as feed additive in piglets and against haemolytic E.coli in vitro.Berl.Munch.Tierarztl.Wochenschr.

118:495–501.

Jugl-Chizzola,M.,E.Ungerhofer,C.Gabler,W.Hagmuller,R.Chiz-zola,K.Zitterl-Eglseer,and C.Franz.2006.Testing of the palat-ability of Thymus vulgaris L.and Origanum vulgare L.as?a-vouring feed additive for weaner pigs on the basis of a choice experiment.Berl.Munch.Tierarztl.Wochenschr.119:238–243. Killeen,G.F.,C.R.Connolly,G.A.Walsh,C.F.Duffy,D.R.Headon, and R.F.Power.1998.The effects of dietary supplementation with Yucca schidigera extract or fractions thereof on nitrogen metabolism and gastrointestinal fermentation processes in the rat.J.Sci.Food Agric.76:91–99.

Kirchgessner,M.,W.Windisch,and F.X.Roth.1995.Zum Ein?uss von Avilamycin und Tylosin auf die Umsetzbare Energie in der Anfangs-und Endmast von Schweinen.Arch.Anim.Nutr.

48:63–70.

Kreydiyyeh,S.I.,https://www.doczj.com/doc/178200068.html,ta,K.Knio,S.Markossian,and S.Dagher.

2003.Aniseed oil increases glucose absorption and reduces urine output in the rat.Life Sci.74:663–673.

Kroismayr,A.,J.Sehm,M.Pfaf?,C.Plitzner,H.Foissy,T.Ettle,H.

Mayer,M.Schreiner,and W.Windisch.2007.Effects of essential oils or Avilamycin on gut microbiology and blood parameters of weaned https://www.doczj.com/doc/178200068.html,nd Manage.,Food Environ.

Lee,K.W.,H.Everts,H.J.Kappert,M.Frehner,R.Losa,and A.

C.Beynen.2003.Effects of dietary essential oil components on

growth performance,digestive enzymes and lipid metabolism in female broiler chickens.Br.Poult.Sci.44:450–457.

Lien,T.F.,Y.M.Horng,and C.P.Wu.2007.Feasibility of replacing antibiotic feed promoters with the Chinese traditional herbal medicine Bazhen in weaned piglets.Livest.Prod.Sci.107:92–102.

Maass,N.,J.Bauer,B.R.Paulicks,B.M.Bohmer,and D.A.Roth-Maier.2005.Ef?ciency of Echinacea purpurea on performance and immune status in pigs.J.Anim.Physiol.Anim.Nutr.(Berl.) 89:244–252.

Manzanilla,E.G.,M.Nofrarias,M.Anguita,M.Castillo,J.F.Perez, S.M.Martin-Orue,C.Kamel,and J.Gasa.2006.Effects of butyrate,avilamycin,and a plant extract combination on the intestinal equilibrium of early-weaned pigs.J.Anim.Sci.

84:2743–2751.

Manzanilla,E.G.,J.F.Perez,M.Martin,C.Kamel,F.Baucells,and J.Gasa.2004.Effect of plant extracts and formic acid on the

intestinal equilibrium of early-weaned pigs.J.Anim.Sci.

82:3210–3218.

Mitsch,P.,K.Zitterl-Eglseer,B.Kohler,C.Gabler,R.Losa,and I.

Zimpernik.2004.The effect of two different blends of essential oil components on the proliferation of Clostridium perfringens in the intestines of broiler chickens.Poult.Sci.83:669–675. Nakatani,N.1994.Antioxidants from spices and herbs.In Food Phytochemicals for Cancer Prevention II:Teas,Spices and Herbs.ACS Symposium Series547.C.-T.Ho,T.Osawa,M.-T.

Huang,and R.T.Rosen,ed.Am.Chem.Soc.,Washington,DC. Nakatani,N.2000.Phenolic antioxidants from herbs and spices.

Biofactors13:141–146.

Namkung,H.,M.Li,J.Gong,H.Yu,M.Cottrill,and C.F.M.de Lange.2004.Impact of feeding blends of organic acids and herbal extracts on growth performance,gut microbiota and digestive function in newly weaned pigs.Can.J.Anim.Sci.84:697–704. Nazeer,M.S.,T.N.Pasha,S.Abbas,and Z.Ali.2002.Effect of yucca saponin on urease activity and development of ascites in broiler chicken.Int.J.Poult.Sci.1:174–178.

Newton,S.M.,https://www.doczj.com/doc/178200068.html,u,S.S.Gurcha,G.S.Besra,and C.W.Wright.

2002.The evaluation of forty-three plant species for in vitro antimycobacterial activities:Isolation of active constituents from Psoralea corylifolia and Sanguinaria canadensis.J.Ethno-pharmacol.79:57–67.

Nofrarias,M.,E.G.Manzanilla,J.Pujols,X.Gilbert,N.Majo,J.

Segales,and J.Gasa.2006.Effects of spray-dried porcine plasma and plant extracts on intestinal morphology and on leukocyte cell subsets of weaning pigs.J.Anim.Sci.84:2735–2742. Oetting,L.L.,C.E.Utiyama,P.A.Giani,U.D.Ruiz,and V.S.

Miyada.2006.Effects of herbal extracts and antimicrobials on apparent digestibility,performance,organs morphometry and intestinal histology of weanling pigs.Braz.J.Anim.Sci.

35:1389–1397.

Oviedo-Rondon,E.O.,M.E.Hume,C.Hernandez,and S.Clemente-Hernandez.2006.Intestinal microbial ecology of broilers vacci-nated and challenged with mixed Eimeria species,and supple-mented with essential oil blends.Poult.Sci.85:854–860.

O¨zer,H.,M.So¨kmen,M.Gu¨llu¨ce,A.Adigu¨zel,F.Sahin,A.So¨kmen,

H.Kilic,and O¨.Baris.2007.Chemical composition and antimi-

crobial and antioxidant activities of the essential oil and metha-nol extract of Hippomarathum microcarpum(Bieb.)from Tur-key.J.Agric.Food Chem.55:937–942.

Papageorgiou,G.,N.A.Botsoglou,https://www.doczj.com/doc/178200068.html,aris,I.Giannenas,S.Iliadis, and E.Botsoglou.2003.Effect of dietary oregano oil and alpha-tocopheryl acetate supplementation on iron-induced lipid oxida-tion of turkey breast,thigh,liver and heart tissues.J.Anim.

Physiol.Anim.Nutr.(Berl.)87:324–335.

Platel,K.,and K.Srinivasan.2000a.In?uence of dietary spices and their active principles on pancreatic digestive enzymes in albino rats.Nahrung44:41–46.

Platel,K.,and K.Srinivasan.2000b.Stimulatory in?uence of select spices on bile secretion in rats.Nutr.Res.20:1493–1503. Platel,K.,and K.Srinivasan.2004.Digestive stimulant action of spices:A myth or reality?Indian J.Med.Res.119:167–179. Rao,R.R.,K.Platel,and K.Srinivasan.2003.In vitro in?uence of spices and spice-active principles on digestive enzymes of rat pancreas and small intestine.Nahrung47:408–412. Rodehutscord,M.,and H.Kluth.2002.Tierfu¨tterung ohne antibio-tisch wirkende Leistungsfo¨rderer.Zuchtungskunde74:445–452. Roth,F.X.,G.G.Gotterbarm,W.Windisch,and M.Kirchgessner.

1999.Whole-body protein turnover and nitrogen balance in growing pigs supplied with antibiotic feed additive(Avilamycin).

J.Anim.Physiol.Anim.Nutr.(Berl.)82:88–93.

Roth,F.X.,and https://www.doczj.com/doc/178200068.html,anic acids as feed addi-tives for young pigs:Nutritional and gastrointestinal effects.J.

Anim.Feed Sci.8:25–33.

Roth,F.X.,W.Windisch,and M.Kirchgessner.1998.Effect of pot-assium diformiate(Formi?LHS)on nitrogen metabolism and nutrient digestibility in piglets at graded dietary lysine supply.

Agribiol.Res.51:167–175.

Windisch et al. E148

Roth-Maier,D.A.,B.M.Bohmer,N.Maass,K.Damme,and B.R.

Paulicks.2005.Ef?ciency of Echinacea purpurea on performance of broilers and layers.Arch.Ge?ugelkd.69:123–127.

Sarica,S.,A.Ciftci,E.Demir,K.Kilinc,and https://www.doczj.com/doc/178200068.html,e of an antibiotic growth promoter and two herbal natural feed additives with and without exogenous enzymes in wheat based broiler diets.S.Afr.J.Anim.Sci.35:61–72.

Schiavone,A.,F.Righi,A.Quarantelli,R.Bruni,P.Serventi,and

https://www.doczj.com/doc/178200068.html,e of Sibyllum marianum fruit extract in

broiler chicken nutrition:In?uence on performance and meat quality.J.Anim.Physiol.Anim.Nutr.(Berl.)91:256–267. Scho¨ne,F.,A.Vetter,H.Hartung,H.Bergmann,A.Biertumpfel,G.

Richter,S.Mu¨ller,and G.Breitschuh.2006.Effects of essential oils from fennel(Foeniculi aetheroleum)and caraway(Carvi aetheroleum)in pigs.J.Anim.Physiol.Anim.Nutr.(Berl.) 90:500–510.

Seskeviciene,J.,J.Jankowski,and K.Kozlowski.2005.Effect of probiotic preparation and phytogeneous feed additive on digest-ibility of nutrients,metabolizability of gross energy and content of metabolizable energy of a practical feed ration for fattening turkeys.Arch.Ge?ugelkd.69:107–109.

Si,W.,J.Gong,R.Tsao,T.Zhou,H.Yu,C.Poppe,R.Johnson, and Z.Du.2006.Antimicrobial activity of essential oils and structurally related synthetic food additives towards selected

pathogenic and bene?cial gut bacteria.J.Appl.Microbiol.

100:296–305.

Smith-Palmer,A.,J.Stewart,and L.Fyfe.1998.Antimicrobial prop-erties of plant essential oils and essences against?ve important food-borne pathogens.Lett.Appl.Microbiol.26:118–122. Stoni,A.,K.Zitterl-Egelseer,A.Kroismayr,W.Wetscherek,and W.

Windisch.2006.Tissue recovery of essential oils used as feed additive in piglet feeding and impact on nutrient digestibility.

Proc.Soc.Nutr.Physiol.15:60.

Straub,R.,S.Gebert,C.Wenk,and M.Wanner.2005.Growth perfor-mance,energy,and nitrogen balance of weanling pigs fed a ce-real-based diet supplemented with Chinese rhubarb.Livest.

Prod.Sci.92:261–269.

Wei,A.,and T.Shibamoto.2007.Antioxidant activities and volatile constituents of various essential oils.J.Agric.Food Chem.

55:1737–1742.

Yeo,J.,and K.I.Kim.1997.Effect of feeding diets containing an antibiotic,a probiotic,or yucca extract on growth and intestinal urease activity in broiler chicks.Poult.Sci.76:381–385. Young,J.F.,J.Stagsted,S.K.Jensen,A.H.Karlsson,and P.Henckel.

2003.Ascorbic acid,alpha-tocopherol,and oregano supplements reduce stress-induced deterioration of chicken meat quality.

Poult.Sci.82:1343–1351.

References

This article cites 83 articles, 11 of which you can access for free at:

https://www.doczj.com/doc/178200068.html,/cgi/content/full/86/14_suppl/E140#BIBL

This article has been cited by 2 HighWire-hosted articles: Citations

https://www.doczj.com/doc/178200068.html,/cgi/content/full/86/14_suppl/E140#otherarticles

2018版-植物生物技术

《植物生物技术》课程教学大纲 一、课程基本情况 课程名称(中文):植物生物技术 课程名称(英文):Plant Biotechnology 课程代码: 学分:2 总学时:40 理论学时:32 实验学时;8 课程性质:学科专业课 适用专业:园艺 适用对象:本科 先修课程:植物学、植物生理学、生物化学、花卉学 考核方式:考查、闭卷平时成绩30% ,期终考试70% 教学环境:课堂、多媒体,实验室 开课学院:生态技术与工程学院 二、课程简介(任务与目的)(300字左右) 通过本课程的学习,要求学生掌握植物组织培养植物基因工程的基础知识、基本理论和基本技术。重点是植物的快速繁殖技术和组培苗工厂化生产技术。 三、课程内容及教学要求1 (一)植物组织培养 1、植物组织培养的基本条件和一般技术 2、植物离体快繁技术 3、植物组织培养苗的工厂化生产技术 4、园林观赏植物的组织培养技术 要求掌握植物组织培养的实验室设置及基本操作;重点是植物的快速繁殖技术和组培苗工厂化生产技术。 (二)植物细胞工程 1、原生质体培养 2、原生质体融合 3、胚性愈伤组织的获得及植株分化 掌握体细胞杂交的原理及基本操作 1主要描述课程体系结构、知识点、重点难点及学生应掌握的程度等。

(三)植物基因工程 1、植物基因的克隆 2、植物表达载体的构建 3、植物基因转移技术 4、转基因植物的检测 5、转基因植物的遗传 6、转基因植物的安全性评价 掌握基因工程的基本原理及基本操作 四、教学课时安排 五、课内实验 六、教材与参考资料 《植物生物技术》张献龙、唐克轩主编,科学出版社,2004 《植物生物技术》许智宏主编,上海科学出版社, 1997 《植物组织培养教程》李浚明编译,中国农业大学出版社,2002. 《植物细胞组织培养》刘庆昌等主编,中国农业大学出版社,2003 . 《观赏植物组织培养技术》谭文澄等主编,中国林业出版,1991.

上海市饲料添加剂买卖合同范本标准版

编号:MM-202103690 上海市饲料添加剂买卖合同范本标准 版 The content of this contract is only a reference for the parties. The specific terms of the contract may be added or deleted according to the actual situation. Do not apply them directly. 甲方:_______________________ 乙方:_______________________ 签约地点:____________________ 签约时间:_____年____月_____日

上海市饲料添加剂买卖合同 合同编号_________________ 上海市饲料添加剂买卖合同 (xx版) 卖方(甲方)______________________ 买方(乙方)______________________ 根据《中华人民共和国合同法》、《饲料和饲料添加剂管理条例》及其他有关法律法规的规定,甲乙双方在平等、自愿、公平、诚实信用的基础上,就饲料添加剂买卖的有关事宜达成如下协议。 第一条饲料添加剂基本情况 种类 产品许可情况 产品 名称 商标 包装 规格

数量 计量 单位 单价 (元) 金额 (元) 生产 许可 证号 批准 文号 执行 标准 号 合计人民币金额(大写): (可另附表。) 第二条质量要求 1.饲料添加剂产品不得使假、掺杂,符合产品标签的质量指标和《饲料卫生标准》等安全卫生要求,绝不含有违禁添加物质。 2.其他质量要求_______________________________。 第三条交付方式

敌鼠钠盐的特点及应用关键技术(一)

敌鼠钠盐的特点及应用关键技术(一) 作者:林玉娟李树香叶朝雄 摘要敌鼠钠盐是目前使用最普遍的高效、低毒、安全的抗凝血慢性杀鼠剂。该药的典型毒理作用,在人畜使用上主要破坏血凝机能和损坏微小血管引起皮下、内脏、五官等全身性致命性出血,导致中毒死亡。因此,在防治鼠害上达到慢性高效安全的目的,从而实现无鼠害标准。通过总结敌鼠钠盐的特点,强调了其使用技术中的关键。 关键词敌鼠钠盐;毒理作用;特点;技术关键 敌鼠钠盐是目前使用最广的高效、低毒、安全的抗凝血慢性杀鼠剂。常用的工业产品含量为80%以上,为淡黄色粉末,稍有一点气味,熔点146~147℃,能溶于乙醇及丙酮,100℃沸水的溶解度为5%,有不溶于热水的红油状杂质1]。性质稳定,无腐蚀性。该药的典型毒理作用,在人畜使用上主要是破坏血凝机能和损坏微小血管,引起皮下、内脏、五官等全身性致命性出血,从而中毒死亡。 1敌鼠钠盐的三大特点 1.l有明显的急慢性毒力差 急性毒力(一次取食)远比慢性毒力(多次取食)低。如对黄胸鼠的毒力,以1mg/kg体重的致死中量计算,1次给药为49.33mg/kg,3次给药仅为0.871mg/kg,两者相差约为56倍。 1.2适口性好,再遇不拒食 该药没有臭味,通常使用的浓度又很低,适口性很好,故老鼠喜欢取食,摄食系数可超过1.0以上2]。同时中毒是慢性出血过程,鼠类服毒后没有什么不适感反应,所以再遇也不拒食;若老鼠中毒出血频死,也常继续取食毒饵。此外,老鼠是一种习惯群体活动的小兽,由于中毒鼠没有不适感,又是慢性死亡(最快2d,最慢10多天,死亡高峰是第5~6天)。因此,在群体中不会引起任何恐惧反应,全部同伴都能大胆取食毒饵,达到高效灭鼠的效果。 1.3毒效高,安全性好 一般急性杀鼠剂如磷化锌,单剂量(1次)有效,急性死亡,毒效快,可以取得较好的心理效果1]。但是,可以说几乎所有急性杀鼠剂都不安全,毒效不高,在国外已逐步被淘汰。由于急性杀鼠剂作用快,鼠类取食后很快就出现中毒反应,不适感强烈,不少个体可能取食至亚致死量时,由于鼠类敏感的摄食行为而警惕终止取食,这种个体多产生再遇拒食反应,再遇同种毒饵即使饿死也拒不取食。此外,鼠类还有群体行为,如果遇到先取食的同伴产生强烈的不适感反应或者大量同类突然中毒死亡,其他个体则警惕不再上当。因此,一般急性毒鼠剂只能达到60%~70%的毒杀率。鼠类是一种繁殖力很强的小兽,1只成年母鼠,1年可以繁殖1500只,如果临界种群数量低时,灭效只能维持3个月,只使灭鼠率达90%,如果恢复率在4%以上,6个月内种群数量可达到灭鼠前的30%,9个月后鼠密度又可逐步恢复至原来水平,故单用急性杀鼠剂不易把鼠类长期控制在不足为害的水平,实现无鼠害标准。 慢性杀鼠剂则没有上述缺点,其最大特点是鼠类服毒后为慢性出血中毒过程,适口性好,没有不适感,也不产生再遇拒食反应和引起种群的恐惧,同时第1代的慢性抗凝血杀鼠剂都是一次取食毒力低,多次取食毒力较大,这些特性符合鼠类取食行为,可达到高效灭鼠的目的。自20世纪50年代抗凝血慢性杀鼠剂问世后,人们认为全球性化学灭鼠工作进入了一个划时代的崭新历史阶段。美国最早推广这一类杀鼠药后,农田鼠害减少了75%,近年国内不断出现无鼠害的城市、农村,都是正确应用了慢性杀鼠剂灭鼠的结果。 正确发挥敌鼠钠盐的灭鼠效果,关键在于投药量。鼠类对敌鼠钠盐一次取食毒力低,一般常用浓度的毒饵,如果投放量只满足鼠类一晚取食,就等于请老鼠吃饭。近年来各地都在推广“饱和投药法”。这种投药技术要求做到“3个饱和”3],即空间、时间和药量饱和。要达到空间饱和,一定要做到“四不漏”,不漏村、不漏户、不漏间、不漏田块;时间饱和,即每天检查消耗并补充,直至无消耗为止,一般要连续7~9d以上;药量饱和,即毒饵消耗的加倍补充,坚持多吃多补、少

林业生物技术复习资料

《林业生物技术》复习重点 一、概念与名词 1、植物离体快速繁殖 ——又称微快繁,简称微繁, 应用植物细胞的“全能性”理论,在无菌条件下,把离体的植物器官(如根、茎、叶、花、果实、种子等)、组织(如花药、胚珠、形成层、皮层、胚乳等),放在人工控制的环境中,使其分化、繁殖,在短时间内产生大量遗传性一致的完整新植株的技术。是利用植物组织培养技术进行的一种营养繁殖方法,是常规营养繁殖方法的一种扩展与延伸。 2、试管外生根技术 ——试管外生根技术是指将组织培养茎芽的生根诱导与驯化培养结合在一起,直接将茎芽扦插到试管外有菌环境中,边诱导生根边驯化培养。该方法舍弃了组织培养苗在试管内生根这一环节,不仅避开了瓶内生根难的问题,同时也大大缩短了育苗周期和节省了育苗成本。 3、林业生物技术 ——应用自然科学及工程学原理,依靠森林植物、动物、微生物作为反应器将物料加工转化,规模化生产和提供人们所需的生态环境、生物质产品和公益性服务的科学技术。(P8) 4、细胞全能性 ——是指植物细胞具有发育成一个完整植株的全部遗传信息,在适当条件下能够形成完整植株。(P26)5、组织培养 ——组织培养是指将植物的形成层组织、分生组织、表皮组织、薄壁组织和各种器官组织以及愈伤组织进行离体培养的技术。 6、胚珠培养 ——胚珠培养是将授粉的子房在无菌条件下解剖后,取胚珠置于培养基中培养的过程。有时也把胚珠连同胎座一起取下来培养。 7、离体叶的培养 ——在自然界,很多植物的叶具有强大的再生能力,能从叶片产生不定芽的植物,离体叶培养指包括叶原基、叶柄、叶鞘、叶片、子叶在内的叶组织的无菌培养。它大多经脱分化形成愈伤组织,再由愈伤组织分化出茎和根。其中叶片培养是一个典型的代表。 8、植物细胞工程 ——植物细胞工程是植物生物技术的一个重要组成部分,是在离体培养条件下,在细胞水平上对植物材料进行遗传操作的技术,即对植物体的任何一个部分(器官、组织、细胞、原生质体)进行离体诱导使其称为完整植株的技术。 9、外植体 ——外植体指植物组织培养中用来进行无菌培养的离体材料,可以是器官、组织、细胞和原生质体等。 10、细胞悬浮培养 ——细胞悬浮培养是将游离的植物细胞按一定的细胞密度,悬浮在液体培养基中进行培养增殖的技术。 11、花粉培养 ——花粉培养也叫小孢子培养,是从花药中分离出花粉粒,使之成为分散的或游离的状态,通过培养使花粉粒脱分化,进而发育成完整植株的过程。 12、原生质体 ——原生质体是指植物细胞中除去细胞壁具有细胞全能性的裸露部分。 13、转基因林木 ——转基因林木是指利用基因工程技术改变基因组构成,用于林业生产或者林产品加工的森林植物。

产品目录及报价表

序号产品名称型号价格(元) 主要规格 包装目镜物镜 1单目生物显微镜XSP-105B510H5X,H10X,H16X10X,40X S+M+Z 2单目生物显微镜XSZ-104700H5X,H10X,H16X10X,40X,100X S+M+Z 3双目生物显微镜XSP-103B1650WF10X,P16X4X,10X,40X,100X S+M+Z 4单目生物显微镜XSP-103C790WF10X,P16X4X,10X,40X S+M+Z 5单目生物显微镜XSP-103C1110WF10X,P16X4X,10X,40X,100X S+M+Z 6单目生物显微镜XSZ-109A1380WF10X,P16X4X,10X,40X,100X S+M+Z 7单目生物显微镜XSZ-109B1480WF10X,P16X4X,10X,40X,100X S+M+Z 8双目生物显微镜XSZ-2091920WF10X,P16X4X,10X,40X,100X S+M+Z 9单目生物显微镜N-100A1150WF10X,P16X4X,10X,40X S+Z 10双目生物显微镜N-100B1780WF10X,P16X4X,10X,40X,100X S+Z 11单目生物显微镜N-100C1220WF10X,P16X4X,10X,40X,100X S+Z 12单目生物显微镜N-101A1450WF10X,P16X4X,10X,40X,100X S+Z 13双目生物显微镜N-101B1980WF10X,P16X4X,10X,40X,100X S+Z 14单目生物显微镜N-101C1480WF10X,P16X4X,10X,40X,100X S+Z 15单目生物显微镜XSZ-N1061820WF10X,P16X4X,10X,40X,100X S+Z 16双目生物显微镜XSZ-N1072400WF10X,P16X4X,10X,40X,100X S+Z 17双目生物显微镜XSZ-N107SP2990WF10X,P16X SP4X,10X,40X,100X S+Z 18双目生物显微镜XSZ-N107P3550WF10X,P16X P4X,10X,40X,100X S+Z 19双目生物显微镜XSZ-N2072450WF10X,P16X4X,10X,40X,100X S+Z 20三目摄影生物显微镜XSZ-N107E4690WF10X,P16X4X,10X,40X,100X S+Z 21三目摄像生物显微镜XSZ-N107CCD2750WF10X,P16X4X,10X,40X,100X S+Z 22双目生物显微镜N-200M4380WF10X,P16X CF4X,10X,40X,100X S+Z 23双目生物显微镜N-200M5280WF10X,P16X P4X,10X,40X,100X S+Z 24双目系统生物显微镜XS-21004180WF10X,P16X CF4X,10X,40X,100X S+Z 25双目系统生物显微镜XS-21004960WF10X,P16X P4X,10X,40X,100X S+Z 26三目系统生物显微镜XS-2100E4500WF10X,P16X CF4X,10X,40X,100X S+Z 备注:包装:S为塑泡,L为铝箱,Z为纸箱,M为木箱,SP为半平场物镜,P为平场物镜,CF为高反差物镜。 联系电话: , 传真:公司网址: E-mail

常用林业灭鼠药剂及使用方法

常用林业灭鼠药剂及使用方法 1、溴敌隆 溴敌隆属高毒杀鼠剂,原药大鼠急性经口雄性LD50为1.75毫克/公斤,雌性LD50为1.125毫克/公斤,兔急性经皮LD50为9.4毫克/公斤,大鼠吸入LC50为200毫克/m3,对眼睛有中度刺激作用,对皮肤无明显剌激作用。在试验剂量内对动物无致畸、致突变、致癌作用。三代繁殖试验和神经毒性试验中,未见异常。两年喂养试验无作用剂量大鼠为10微克/公斤/天,狗为5~10微克/公斤/天。 原药是黄色粉末,有效成分含量为98%,熔点为200~210℃,70℃时蒸气压为1.4×10-7毫米汞柱,20℃时溶解度,水中为19毫克/升,乙醇中8.2克/升,醋酸乙脂中25克/升,二甲基甲酰胺中730克/升。常温下贮存稳定在两年以上。 溴敌隆对鱼类、水生昆虫等水产生物有中等毒性,如对鲇鱼LC50(48小时)溶度为 0.0003%,对鸟类低毒,野鸭LD50为1000毫克/公斤。动物取食中毒死亡的老鼠后,有时会引起二次中毒。 溴敌隆被称之为第二代抗凝血杀鼠剂,是一种适口性好、毒性大、靶谱广的高效杀鼠剂。它不但具备敌鼠纳盐、杀鼠迷等第一代抗凝血剂作用缓慢、不易引起鼠类惊觉、容易全歼害鼠的特点,而且具有急性毒性强的突出优点,单剂量使用对各种鼠都能有效防除。同时,它还可有效杀灭对第一代抗凝血剂产生抗性的害鼠。 该药剂的毒理机制主要是拮抗维生素K的活性,阻碍凝血酶原的合成,导致致命的出血。死亡高峰一般在取食后的4~6天。 使用方法:防治地下害鼠,毒饵有效成分用量可适当提高,一般采取一次性投放的方式。防治高原鼢鼠,毒饵有效成分含量可提高至0.02%,按洞投放,每洞10克;防治高原鼠兔可使用0.01%的毒饵,每洞2克;防治长爪沙鼠可使用0.01%的毒饵,每洞1克,也可以使用常规的0.005%毒饵,每洞2克;防治达乌尔黄鼠使用0.005%毒饵,每洞20克,也可采用0.0075%毒饵,每洞15克。防治地上害鼠可参照毒饵保护器投放毒饵的方法。 注意事项:药剂要避免与眼睛、鼻、口或皮肤等接触。投放毒饵时,不可饮食或抽烟;施药完毕后,施药者应彻底清洗。如发生误服中毒,不要给中毒者服用任何东西,不要使中毒者呕吐,应立即求医治疗。 2、杀鼠醚 杀鼠醚为高毒杀鼠剂,原药大鼠急性经口LD50为5~25毫克/公斤,急性经皮LD50为25~50毫克/公斤,大鼠亚急性经口无作用剂量为1.5毫克/公斤,该药是一种慢性杀鼠剂,在低剂量下多次用药会使老鼠中毒死亡。对猫、犬和鸟类无二次中毒危害,对益虫无害。 杀鼠醚纯化合物为白色粉末,熔点172~176℃。溶解度(20℃)水中4毫克/升,二氯甲烷中50~100克/升。原药为黄色结晶体,无味,熔点166~173℃,20℃时蒸气压为1×10-10毫克汞柱,20℃时每100毫升溶剂中的溶解度水为1毫克,环已酮1~5克,甲苯0.5~1克。贮藏适宜可保存18个月以上不变质。150℃高温下无变化。杀鼠醚在水中不水解,但在阳光下有效成分迅速分解。 杀鼠醚是一种慢性、广谱、高效适口性好的杀鼠剂,无二次中毒的危险。杀鼠醚的有效成分能破坏凝血机能,损害微血管,引起内出血。鼠类服药后出现皮下、内脏出血、毛疏松、肌色苍白、动作迟钝、衰弱无力等症,3~6天后衰竭而死。中毒症状与其他抗凝血药剂相似,类似于大隆、溴敌隆等。 使用方法:0.75%杀鼠醚主要用于配制毒饵;亦可直接撒在鼠洞,使鼠经过时粘上药粉,当鼠用舌头清除身上粘附的药粉时引起中毒。毒饵一般采用粘附法或者混合法配制。防治林业害鼠可采用一次性投饵,沿林间小路、水渠等距投饵,每隔5米一堆,每堆5~10克毒

常用杀虫剂及使用技术

常用杀虫剂及使用技术 杀鼠剂概述 1.杀鼠剂及简介 人类在消灭鼠害的过程中,摸索出了许多的防治方法。有机械捕鼠的物理方法,有用细菌、病毒使鼠类患病致死的生物方法,有用化学药物杀死,趋避或使其失去繁殖能力的化学方法。在多种方法中,化学灭鼠法使用简便,效果显著,成本低,见效快。能够杀死鼠类的药物很多,但真正能用作杀鼠剂的药物很少。作为理想杀鼠剂,还应具备以下条件: (1)有效成分配成的毒饵,在各种条件下都有良好的稳定性,无臭无味,鼠类不拒食。(2)对鼠类毒力强,其他非靶动物吃了死鼠后无二次中毒危险。 (3)具有选择性毒力,对非靶动物毒性小,对人畜安全。 (4)药效作用时间适当,使鼠在药力发作前吃下足够的致死剂量。 (5)中毒症状轻,其他鼠不致惊觉,切鼠死于易发现的地方 (6)不易产生抗药性 (7)无积累毒性,并有特效解毒剂或治疗方法。 2.杀鼠剂分类及主要品种介绍 一般来讲,杀鼠剂可分为“急性鼠药”和“慢性鼠药”,又可依其服药次数的多少分为单剂量和多剂量鼠剂。 急性灭鼠剂:经口作用的鼠药,作用快,只需服用一次或在短时间里连吃几次即可中毒乃至死亡的,称之为急性灭鼠剂。“急性鼠药”有毒,易引发死亡,人畜误食手很难抢救,国家明文规定禁用。 慢性灭鼠剂:鼠类食用后,不会立刻致死,一般情况下需二次或多次食用才能中毒乃至死亡的,称之为慢性灭鼠剂,多数情况下为多剂量灭鼠剂。“慢性鼠药”不会一次致死,切有解药,国家认可并提倡使用。 (1)急性杀鼠剂 急性药物的特点是毒性发作快,潜伏期一般不超过一天,快者只有几分钟。鼠类取食一次毒饵即可致死,为单剂量杀鼠剂。由于鼠类的新物反映,如果鼠药的作用速度过于快,会使还没有吃到致死量就出现症状的鼠类终止摄食,而逃过死亡。形成耐药或拒食的个体。另外,由于鼠类的社会行为,先吃到急性鼠药的个体突然死亡,会使其它没有吃到鼠药的老鼠警觉,而不再上当,同样逃过死亡。所以急性杀鼠剂即使采用前饵技术,也很难达到80%的灭鼠率。再者,急性杀鼠剂对人和畜禽剧毒,大多数没有特效解毒剂,有点甚至有二次或三次中毒的危险性。因而有些品种已经淘汰,直至禁用,所以,我们不提倡使用急性灭鼠剂。 (2)国家明令禁用的急性杀鼠剂 国家禁用的剧毒急性杀鼠剂有:氟乙酸钠,毒鼠强、毒鼠硅、氟乙酰胺。其特性为毒性极强、选择性差,并存在二次或多次中毒,极易造成人、畜伤亡。为此,我国早已禁止生产、销售、使用这类杀鼠药药剂,并为此采取了严厉的管理措施。 国家禁用强毒急性鼠药的原因有三条:一是保障人、畜安全,二是避免环境污染,三是保证灭鼠效果。同时规定鼠药经营实行定点专营,并且必须取得《农药经营许可证》。 (3)慢性杀鼠剂 目前的慢性杀鼠剂均为抗凝血类化合物。这类药物破坏鼠类凝血机能和损坏毛细血管管壁,增加其通透性,造成的内脏缓慢出血而且血流不止,最后死于大出血,所以又称抗凝血灭鼠剂。 慢性鼠药的特点是:多次小剂量给药比一次大剂量给药毒力大,作用缓慢。这些特点很符合

植物生物技术复习题

第一章绪论 复习与思考 1. 现代生物技术的概念及其涵盖的内容。 2. 植物生物技术主要包括哪几个研究领域。 3. 植物生物技术的发展历程。 第二章植物组织培养的原理与技术基础 复习与思考 1. 植物组织培养实验室一般包括哪些功能区,各自主要用途如何? 2. 植物组织培养实验室需要哪些主要仪器设备? 3. 培养基的营养成分包含哪几大类?大量元素和微量元素是如何划分的? 4. 为什么要配制培养基的母液? 5. 配制激素母液时应注意那些事项? 6. 植物培养基的配制流程如何。 7.如何选择外植体? 8. 外植体的消毒和无菌操作的常规操作方法。 第三章植物离体培养的形态建成 复习与思考 1. 如何理解植物细胞的全能性。 2. 愈伤组织的诱导可分为哪几个过程?培养实验室需要哪些主要仪器设备? 3. 离体培养再生植株有哪些途径? 4. 如何选择和调控愈伤组织诱导、芽诱导和根诱导的植物激素组合? 5. 人工种子的基本结构。 第四章植物离体快速繁殖与脱毒苗培养 复习与思考 1. 植物离体快繁的概念、特点及主要程序。 2. 植物离体快繁中芽增殖的途径有哪些? 3. 植物离体繁殖的形态发生途径。

4. 外植体褐变的主要原因与防止措施。 5. 植物脱病毒有哪些途径? 6. 茎尖脱毒培养的原理与基本流程。 7. 脱毒效果的鉴定方法有哪些? 第五章花药和花粉培养 复习与思考 1. 花药培养的一般程序。 2. 分离花粉的方法有哪些? 3. 花粉植株的诱导发生途径。 4. 花粉培养的方法有哪些? 5. 比较花药培养和花粉培养的异同。 6. 如何进行多倍体植株的加倍? 第六章植物细胞培养技术及其应用 复习与思考 1. 植物单细胞的分离方法和培养方法有哪些? 2. 如何建立植物细胞悬浮培养体系? 3. 植物细胞悬浮培养的方法有哪些? 4. 如何调控植物细胞的同步化? 5. 什么是次生代谢物质,试列举一些主要类别。 6. 植物细胞大规模培养生产次生代谢物质的优点与存在问题。 第七章植物原生质体培养和体细胞杂交 复习与思考 1. 植物原生质体的分离和纯化方法有哪些? 2. 植物原生质体的培养方法有哪些? 3. 原生质体培养再生植株的途径。 4. 什么是体细胞杂交,有何意义。 5. 诱导原生质体融合的方法有哪些? 6. 简述PEG法和电诱导融合法的技术过程。 7. 杂种细胞的筛选和鉴定方法。 8. 融合原生质体再生植株的技术流程。

十种中草药饲料添加剂分类

中草药饲料添加剂分类 中草药饲料添加剂配方千变万化,目前尚无统一的分类。现根据动物生产特点、饲料工业体系和中草药性能,将中草药饲料添加剂作如下分类。以提高和促进机体非特异性免疫功能为主, (1)免疫增强剂 增强动物机体免疫力和抗病力。现已确定黄芪、刺五加、党参、商陆、马兜铃、甜瓜蒂、当归、淫羊藿、穿心莲、大蒜、茯苓、水牛角、猪苓等可作为免疫增强剂。 (2)激素样作用剂 能对机体起到激素类似的调节作用。现已发现香附子、当归、甘草、补骨脂、蛇床子等具雌激素样作用,淫羊藿、人参、虫草等具雄激素样作用,细辛、香附子、吴茱萸、高良姜、五味子等具肾上腺素样作用,水牛角、穿心莲、秦艽、雷公藤等具促肾上腺皮质激素样作用,酸枣仁、枸杞子、大蒜等具胆碱样作用。具有缓和和防治应激综合征的功能。 (3)抗应激剂 如刺五加、人参、延胡索等可提高机体抵抗力,黄芪、党参等可阻止应激反应警戒期的肾上腺增生、胸腺萎缩以及阻止应激反应抵抗期、衰竭期出现的异常变化,起到抗应激的作用,柴胡、黄芩、鸭跖草、水牛角、地龙等具有抗热激原的作用。 (4)抗微生物剂 主要作用是杀灭或抑制病原微生物,增进机体健康。现已发现金银花、连翘、大青叶、蒲公英等具广谱抗菌作用,射干、大青叶、板蓝根、金银花等具抗病毒作用,苦参、土槿皮、白鲜皮等具抗真菌作用,土茯苓、青蒿、虎杖、黄柏等具抗螺旋体作用。 (5)驱虫剂 具有增强机体抗寄生虫侵害能力和驱除体内寄生虫的作用。如槟榔、贯众、使君子、百部、南瓜子、硫磺、乌梅等对绦虫、蛔虫、姜片虫、蛲虫等寄生虫有驱除作用。 (6)增食剂 具有理气消食、益脾健胃的功能,可改善饲料适口性,增进动物食欲,提高饲料消化利用率以及动物产品质量。如建曲、麦芽、山楂、陈皮、青皮、枳实、苍术、茅香、鼠尾草、甜叶菊、五味子、马齿苋、松针、绿绒蒿等。 (7)促生殖剂 具有促进动物卵子生成和排出,提高繁殖率的作用。如淫羊藿、水牛角、沙苑蒺藜等。

饲料添加剂指标

饲料、饲料添加剂卫生指标 序号卫生指标项 目 产品名称指标试验 方法 备注 1 砷(以总砷 计)的允许量 (每千克产 品中),mg 石粉 ≤2.0 GB/T 13079 不包括国家主管部门批准使 用的有机砷制剂中的砷含量硫酸亚铁、硫酸镁 磷酸盐≤20 沸石粉、膨润土、麦饭石≤10 硫酸铜、硫酸锰、硫酸锌、碘化 钾、碘酸钙、氯化钴 ≤5.0 氧化锌≤10.0 鱼粉、肉粉、肉骨粉≤10.0 家禽、猪配合饲料≤2.0 牛、羊精料补充料 ≤10.0 猪、家禽浓缩饲料 以在配合饲料中20%的添加 量计 猪、家禽添加剂预混合饲料 以在配合饲料中1%的添加量 计 2铅(以Pb计) 的允许量(每 千克产品 中),mg 生长鸭、产蛋鸭、肉鸭配合饲料 ≤5 GB/T 13080 鸡配合饲料、猪配合饲料 奶牛、肉牛精料补充料≤8 产蛋鸡、肉用仔鸡浓缩饲料 ≤13 以在配合饲料中20%的添加 量计 仔猪、生长肥育猪浓缩饲料 骨粉、肉骨粉、鱼粉、石粉≤10 磷酸盐≤30 产蛋鸡、肉用仔鸡复合预混合饲 料 ≤40 以在配合饲料中1%的添加量 计 仔猪、生长肥育猪复合预混合饲 料 3氟(以F计) 的允许量(每 千克产品 中),mg 鱼粉≤500GB/T 13083 高氟饲料用HG2636–1994中 4.4条 石粉≤2000 磷酸盐≤1800HG 2636 肉用仔鸡、生长鸡配合饲料≤250 GB/T 13083 产蛋鸡配合饲料≤350 猪配合饲料≤100 骨粉、肉骨粉≤1800 生长鸭、肉鸭配合饲料≤200 产蛋鸭配合饲料≤250 牛(奶牛、肉牛)精料补充料≤50 猪、禽添加剂预混合饲料≤1000GB/T 以在配合饲料中1%的添加量

植物生物技术

绪论 一、植物生物技术的概念 广义植物生物技术:提高和改良植物产量和品质的所有技术。它主要包括植物组织培养(植物细胞工程)、植物基因工程和分子标记及其辅助育种三大部分。 狭义的植物生物技术:利用植物器官、组织、细胞以及分子水平上的操作,促进植物繁殖、有用物质生产和品种遗传改良的技术。 3、基因工程改良的目标 投入特征 主要是指帮助植物降低成本、提高产量或减少使用防治病虫害以及杂草的各种费用。 研究内容:抗各种虫害的危害;抗各种除草剂;抗病毒、细菌、真菌等各种病害; 忍耐高温、低温、涝害以及高盐胁迫等各种环境胁迫。 产出特征主要是指帮助植物提高品质和增加产量。 附加特征 五、细胞工程的应用 细胞工程的应用(1)——快速繁殖 细胞工程的应用(2) ——脱毒苗的生产 细胞工程的应用(3)——胚培养 细胞工程的应用(4)——单倍体和多倍体的培养 细胞工程在育种上的应用(5)——原生质体培养与体细胞杂交 细胞工程的应用(6)——种质资源的离体保存 细胞工程的应用(7)——次生代谢物的生产 细胞工程的应用(8)——人工种子的生产 第一章植物组织培养实验室的建设和离体操作技术 一.植物组织培养的概述 (一)植物组织培养的几个基本概念 植物组织培养(Plant tissue culture)

通过无菌操作,把植物体的器官、组织、细胞甚至原生质体,接种于人工配制的培养基上,在人工控制的环境条件下进行培养,使之生长、繁殖或长出完整植株的技术和方法。用来培养的材料即外植体通常是离体的,所以又叫植物离体培养(plant in vitro culture)。 外植体 ( Explant ) 从活体上切取下来用于培养的那部分组织、器官或细胞。 植物细胞全能性(totipotency):一个生活细胞具有的产生完整生物个体的潜在能力称之为细胞的全能性(植物组织培养的理论基础) 脱分化(dedifferentiation) :一个成熟细胞转变为分生状态的过程。 去分化(redifferentiation) :离体培养的植物组织和细胞形成的处于脱分化状态的细胞(愈伤组织),再度分化成另一种或几种类型的细胞、组织、器官,甚至最终再生成完整植株的过程。 (二)植物组织培养的分类 培养方式 1 . 根据培养方式 固体培养(Solid culture ) 液体培养(Liquid culture ) 液体培养又有液体悬浮培养与静置培养之分。 固液培养(Solid- liquid culture ) 看护培养( Nurse culture ) 饲喂层培养 (Feeder layer culture) 微室培养 (Microchamber culture) 最常用的是固体培养和液体培养,它们相比,各自的优缺点表现为: 固体培养 优点:通气性较好,若有污染,只污染局部 缺点:使培养材料与培养基接触不充分,有毒物质易积累。 液体培养

饲料和饲料添加剂生产许可管理办法

农业部关于公开征求《饲料和饲料添加剂生产许可管理办法(征求意见稿)》《新饲料和新饲料添加剂管理办法(修订草案征求意见稿)》意见的通知 发布日期:2012-02-09 为保障饲料、饲料添加剂质量安全,贯彻落实新修订的《饲料和饲料添加剂管理条例》,农业部对原《饲料生产企业审查办法》、《饲料添加剂和添加剂预混合饲料生产许可证管理办法》、《新饲料和新饲料添加剂管理办法》进行了修订,形成了《饲料和饲料添加剂生产许可管理办法(征求意见稿)》和《新饲料和新饲料添加剂管理办法(修订草案征求意见稿)》,现公开向社会征求意见。 一、《饲料和饲料添加剂生产许可管理办法(征求意见稿)》共五章 25条,主要规定了以下内容: 一是明确规定生产饲料和饲料添加剂应当依法取得生产许可证。饲料添加剂和添加剂预混合饲料生产许可证由农业部核发;单一饲料、浓缩饲料、配合饲料和精料补充料生产许可证由省级人民政府饲料管理部门核发。 二是统一规定了饲料生产企业和饲料添加剂生产企业办理生产许可证的条件和程序。申请设立饲料添加剂、添加剂预混合饲料生产企业,由省级饲料管理部门受理、审查和现场审核,并将审查、审核意见上报农业部。农业部根据饲料和饲料添加剂生产许可证专家审核委员会的评审结果作出是 否核发生产许可证的决定。申请设立其它饲料生产企业,由省级饲料管理部

门受理并做出核发生产许可证的决定。 三是对委托生产饲料、饲料添加剂作了规范,规定饲料添加剂生产企业委托其他饲料、饲料添加剂企业生产的,应当符合规定的条件,并向各自所在地省级饲料管理部门备案。受托方应当按照产品标准组织生产,委托方应当对生产全过程进行指导和监督。委托生产的产品标签应当同时标明委托企业和受托企业的名称、注册地址、许可证编号和批准文号。 四是加强了对企业取得生产许可证后的监督管理。规定饲料、饲料添加剂企业应当按照许可条件组织生产,生产条件发生变化可能影响产品质量安全的,应当报告发证机关。饲料、饲料添加剂企业应当在每年1月底前填写备案表,将上一年度的生产经营情况报企业所在地省级饲料管理部门备案。 二、《新饲料和新饲料添加剂管理办法(修订草案征求意见稿)》共23条,主要规定了以下内容: 一是明确新饲料、新饲料添加剂是指我国境内研制的单一饲料和饲料添加剂,包括三类:境内外均未批准在饲料生产中使用的、境外已批准但境内未批准在饲料生产中使用的、境内已批准的饲料添加剂生产工艺发生重大变化的。 二是规定新饲料、新饲料添加剂投入生产前,研制者或者生产企业应当向农业部提出新产品审定申请,并按照本办法的要求提交新饲料、新饲料添加剂的申请资料和样品。

十种中草药饲料添加剂分类

十种中草药饲料添加剂分类:免疫增强剂、激素样作用剂等 中草药饲料添加剂分类 中草药饲料添加剂配方千变万化,目前尚无统一的分类。现根据动物生产特点、饲料工业体系和中草药性能,将中草药饲料添加剂作如下分类。以提高和促进机体非特异性免疫功能为主, (1)免疫增强剂 增强动物机体免疫力和抗病力。现已确定黄芪、刺五加、党参、商陆、马兜铃、甜瓜蒂、当归、淫羊藿、穿心莲、大蒜、茯苓、水牛角、猪苓等可作为免疫增强剂。 (2)激素样作用剂 能对机体起到激素类似的调节作用。现已发现香附子、当归、甘草、补骨脂、蛇床子等具雌激素样作用,淫羊藿、人参、虫草等具雄激素样作用,细辛、香附子、吴茱萸、高良姜、五味子等具肾上腺素样作用,水牛角、穿心莲、秦艽、雷公藤等具促肾上腺皮质激素样作用,酸枣仁、枸杞子、大蒜等具胆碱样作用。具有缓和和防治应激综合征的功能。 (3)抗应激剂 如刺五加、人参、延胡索等可提高机体抵抗力,黄芪、党参等可阻止应激反应警戒期的肾上腺增生、胸腺萎缩以及阻止应激反应抵抗期、衰竭期出现的异常变化,起到抗应激的作用,柴胡、黄芩、鸭跖草、水牛角、地龙等具有抗热激原的作用。 (4)抗微生物剂 主要作用是杀灭或抑制病原微生物,增进机体健康。现已发现金银花、连翘、大青叶、蒲公英等具广谱抗菌作用,射干、大青叶、板蓝根、金银花等具抗病毒作用,苦参、土槿皮、白鲜皮等具抗真菌作用,土茯苓、青蒿、虎杖、黄柏等具抗螺旋体作用。 (5)驱虫剂 具有增强机体抗寄生虫侵害能力和驱除体内寄生虫的作用。如槟榔、贯众、使君子、百部、南瓜子、硫磺、乌梅等对绦虫、蛔虫、姜片虫、蛲虫等寄生虫有驱除作用。 (6)增食剂

具有理气消食、益脾健胃的功能,可改善饲料适口性,增进动物食欲,提高饲料消化利用率以及动物产品质量。如建曲、麦芽、山楂、陈皮、青皮、枳实、苍术、茅香、鼠尾草、甜叶菊、五味子、马齿苋、松针、绿绒蒿等。 (7)促生殖剂 具有促进动物卵子生成和排出,提高繁殖率的作用。如淫羊藿、水牛角、沙苑蒺藜等。(8)催肥剂 具有促进和加速动物增重和肥育的作用。如远志、柏子仁、山药、鸡冠花、松针粉、五味子、酸枣仁、山楂、钩吻(断肠草)、石菖蒲等。 (9)催乳剂 具有促进乳腺发育和乳汁合成分泌,增加产奶量的作用。如王不留行、四叶参、通草、马鞭草、鸡血藤、刺蒺藜等。 (10)疾病防治剂 可防治动物疾病、恢复机体健康。如百部、苏子、胡颓子、桑白皮、蛇床子、仙鹤草、大蒜、石榴皮、杏仁等,具有润肺化痰、止咳平喘功能,如当归、鸡血藤、益母草、红花、五加皮、白茅、夏枯草、月季花等。具有活血化淤、扶正祛邪功能。 (11)饲料保藏剂 能使饲料在储存期中不变质、不腐败,延长储存时间。可防腐的有土槿皮、白鲜皮、花椒等,抗氧化的有红辣椒、儿茶等。

国家标准《饲料添加剂丙酸》

国家标准《饲料添加剂丙酸》 送审稿 编制说明

一、标准制定的背景及任务来源 丙酸(propionic acid)是一种有腐蚀性、挥发性的有机酸。其分子式为CH3CH2COOH, 结构式:,分子量为74.08,外观为无色或淡黄色透明液体,有特异性气味,极易溶于水,易溶于乙醇、乙醚、三氯甲烷中。是重要的防腐剂,饲料中最广泛应用的防腐剂之一。 1、丙酸的防腐机理 丙酸发挥防腐防霉作用的有效成分均为丙酸分子。一般认为,丙酸通过以下途径发挥防腐防霉作用:1)非解离的丙酸活性分子在霉菌或细菌等细胞外形成高渗透压,使霉菌细胞内脱水而失去繁殖能力;2)丙酸活性分子可以穿透霉菌等的细胞壁,抑制细胞内的酶活性,进而阻止霉菌的繁殖。 2、丙酸在饲料中的应用 作为一种挥发性液体,丙酸在饲料贮存过程中不断挥发产生的丙酸蒸汽与饲料表面充分接触,起到均匀、广泛、高效的抑菌作用。研究表明,丙酸对黄曲霉、某些好气性芽孢杆菌、沙门氏菌以及酵母菌均有较好的抑制作用(Kwon和Panda,1999)。根据农业部658号公告,丙酸是允许使用的饲料添加剂。 丙酸作为防霉剂的使用方法;1)直接喷洒在饲料表面。2)和载体预先混合后再掺入到饲料中。3)经液氨缓冲,形成缓冲丙酸(二丙酸铵),再与载体混合后掺入到饲料中。4)与其他防腐剂混合使用。 3、丙酸的生产工艺是以乙烯、一氧化碳和氢为原料,在催化作用下产生丙醛。 H2C=CH2+CO/H2→H3C-CH2-CHO 然后在单独的反应系统中把丙醛用氧气氧化成丙酸。 H3C-CH2-CHO+1/2O2→→H3C-CH2-COOH 根据全国饲料工业标准化技术委员会下达的全饲标[2015]01 号文件,中国农业科学院农业质量标准与检测技术研究所[国家饲料质量监督检验中心(北京)]承担了《饲料添加剂丙酸)》国家标准修订工作(国家标准项目计划编号:20141771-Q-469),协作单位有:扬子石化-巴斯夫有限责任公司,北京桑普生物化学技术有限公司。该标准由全国饲料工业标准化技术委员会归口。 二、主要工作过程 国家标准GB/T 22145-2008《饲料添加剂丙酸》已发布实施8年以上,为生产企业控

苏州知名灭鼠公司

相信朗佳——相信专业的力量! 苏州知名灭鼠公司 介绍商场如何防治鼠害在日常工作当中,我们都在为商场的鼠害防治而发愁,因为商场环境复杂,结构繁杂;那在日常工作当中,我们应该怎么去做商场老鼠防治工作呢?今天苏州灭鼠公司和大家来聊聊这个话题,让我们在日常工作生活当中不会盲目去处理这些事情。 老鼠是一种非常聪明的动物,据遗传科学家测定,老鼠的基因和人类99%是相同的,这也是老鼠为什么非常难以灭治的原因,用一般的方法是很难取得良好的效果。老鼠不仅是人畜共患病的传染源,而且对会对门店带来商品损耗、线路破坏、卫生下降等危害,给门店造成很大的经济损失。 人们都知道,老鼠对卖场的危害很大,那么,门店老鼠防治工程应遵循怎样的原则呢? 一、首先是不让老鼠进,其次是不让老鼠住,然后是不让老鼠吃。即:1 1、严禁老鼠栖息。如果老鼠已经进入,那么就想办法清除老鼠栖息的环境。 铲除老鼠在卖场的栖息地主要从库房、操作间、卖场死角、货架加高层上的纸箱、针织被褥等要作为经常检查的重点。 在门店每期的盘点中,要重点翻动那些库存、不动销、货架加高层上的商品和清理卖场死角;工程人员要在中央空调通风管道加装隔离钢板网,使老鼠不能在那些地方生存和繁衍,因为这些地方往往是员工容易疏忽,老鼠认为最安全之地。 2、尽量断绝老鼠在卖场的食物链。在零售业卖场内对老鼠而言可选择的食品实在是太多了,因此须尽量断绝其食物链。 加强卖场卫生管理,经常清理卖场卫生死角和垃圾(菜叶果皮及报损食品)。同时,把食物及残渣清理干净。 在卖场营业结束前应对食品能加盖的尽量加盖,能封存的尽量封存。这样,老鼠一没有住处,二没有食物,自然危害也会降到最低。 3、封堵一切老鼠可能进出的通道。 门店出入通道、安全通道、库房、操作间、配菜房的夹板、门缝,特别是一切有利于老鼠进出的环境,都要作为切断、堵塞的重点。

植物生物学复习要点

22㈠植物细胞 掌握植物细胞的基本结构、细胞器的形态、结构和功能、植物细胞的繁殖方式,了 解植物细胞的生长和分化。 1.1 植物细胞的基本概念: 细胞是生物有机体构造和生命活动的基本单位。构成植物体的各种类型的细胞,既是相互联系、相互配合、协调一致,体现植物的整体性,又能相互独立,各有其特点。 植物细胞和动物细胞的基本特征是一致的,但是,植物细胞具有细胞壁和特殊的细胞器一质体和液泡。 绝大多数细胞很微小,要用显微镜才能看到,它们的直径大多数在20~50μm之间。也有少数巨大的细胞,用肉眼就可以看见,如西瓜的果肉细胞,直径可达1mm,棉花种子上的表皮毛最长可达75mm。 1.2 植物细胞的基本结构: 细胞的形状和大小虽然不相同,但它们的基本构造是一样的,都是由细胞壁、细胞膜、细胞质和细胞核四部分所组成。 1.2.1 细胞壁 细胞壁是植物细胞的外壳,本身是无生命的物质,为细胞质和细胞核活动的产物,对细胞质及其内含物起保护作用。细胞壁也是植物细胞所特有的结构。细胞壁构成支撑植物体的骨架。细胞壁具有吸水力和弹性,在一定限度内细胞壁可以伸缩的。 相邻两细胞之间有中层,称为胞间层,它主要的成分是果胶质。中层将许多细胞连在一起,形成一个整体的植物体,同时又能缓冲细胞之间的挤压。 细胞壁是由原生质所分泌的物质形成的。随着细胞的生长,由原生质体分泌纤维素和少量果胶质,增加在中层的两侧形成初生壁。初生壁可以随着细胞的生长而延伸,有分裂能力的细胞只有初生壁。植物体内有一部分细胞,在停止生长以后,原生质体继续分泌纤维素沉积在初生壁内方,这添加的部分,叫次生壁。 在细胞壁上还通过一些很细的原生质丝,称为胞间连丝,穿过纹孔和细胞壁上微小的孔使细胞间的各种生理活动密切地联系起来,使植物体成为一个有机的整体。 1.2.2 细胞膜 细胞膜又称质膜,由于很薄,往往紧贴细胞壁,所以,在光学显微镜下不易看清。在电子显微镜下观察,可以看到质膜显示出具有明显的黑-白-黑三层结构,在电镜下显示出具有这样三层结构的膜称为单位膜。 质膜有许多重要的生理功能。质膜具有选择透性,能有选择地允许物质出入细胞,能控制细胞与外界环境之间的物质交换,维持细胞内环境的相对稳定;质膜又具胞饮作用、吞噬作用和胞吐作用;此外,质膜还具有主动运输,接受和传递胞外信息,细胞间的相互识别以及抵御病菌感染等功能。因此,质膜对细胞的生命活动有重要作用。 1.2.3 细胞质及细胞器 细胞膜(质膜)以内,细胞核以外的部分称为细胞质。又分为细胞器和胞基质两部分。

1饲料添加剂的种类

饲料添加剂的种类 一、饲料添加剂的种类 1.补充和平衡营养类:包括氨基酸、维生素、微量矿物元素和非蛋白氮化物等。 2.保健和促生长剂类:单独具有或兼有抑菌防病、驱虫、促进饲料养分利用,促进动物生长、产蛋、产奶等作用的饲料添加剂。包括:抗生素、合成抗菌药物、驱虫剂。 3.生理代谢调节剂类:①抗应激类:氯丙嗪、维生素C等。②中草药类。 4.增进食欲助消化类:包括酸化剂、甜味剂、鲜味剂、香料、生菌剂(益生素)、酶制剂和缓冲剂等。 5.饲料加工及保存剂类:包括防霉剂、抗氧化剂、粘结剂、抗结块剂、乳化剂、青贮保存剂等。 6.其它类:包括着色剂、饲料色素、活性炭、沸石、麦饭石、膨润土、硝酸稀土等。 二、饲料添加剂的正确使用 1.明确使用的目的。是需要营养型饲料添加剂还是非营养型饲料添加剂。 2.要有比较地选择品种。当前饲料添加剂生产厂家众多,品种繁杂,首先,要选择比较有知名度的生产厂家,到信誉较高的经营企业购买;其次,要有比较地选择使用,不但要比价格,更要比效果。 3.合理、规范使用。饲料添加剂除一些专门用于饮水的品种外,如速溶多维素等,绝大多数只能混于干料中饲喂,添加于湿料或水中饲喂会大大降低使用效果,因此,不能随便改变使用方式。使用时要严格按比例配比,搅拌均匀;多品种应用注意配伍禁忌,还要细心观察畜禽,一旦发现异常现象,立即停饲。 三、饲料添加剂的使用误区 1.认为价格越贵越好。一般价格贵的添加剂质量和效果确实较好,但也不能一味盲从价格,选择的关键还应看饲喂效果的好坏。 2.认为添加的量越多越好。其实,如果添加量过多,既造成浪费,还影响畜禽的生产性能,严重的还可造成中毒。因此,添加剂的添加量一定要适度。 3.整个饲养期只使用一种添加剂。动物生长的不同阶段所需营养不同,需不同类型添加剂,如蛋鸡用添加剂分为育雏期、育成期、产蛋期等;生猪用添加剂分为仔猪及育肥猪等。如在整个饲养期只使用一种添加剂,则达不到预期效果。 4.盲目混用多种添加剂。盲目的多品种混合使用添加剂不但会使得一些营养素重复添加,造成严重超标和过量,而且由于营养素间的拮抗作用,一些营养素会遭到破坏,如铁离子可迅速破坏维生素D和维生素K。因此,在使用饲料添加剂时要合理搭配,不能盲目滥用。 5.不使用添加剂。饲料添加剂的使用目的是为了平衡饲料中各种营养素水平,只有各类营养素平衡的全价饲料才能获得最大限度的利用率。

相关主题
文本预览
相关文档 最新文档