当前位置:文档之家› 数学小知识

数学小知识

数学小知识
数学小知识

数学小知识

阿拉伯数字在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。那么你知道这些数字是谁发明的吗?

这些数字符号原来是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做“阿拉伯数字”,因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。

现在,阿拉伯数字已成了全世界通用的数字符号。

九九歌

九九歌就是我们现在使用的乘法口诀。

远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。在当时的许多著作中,都有关于九九歌的记载。最初的九九歌是从“九九八十一”起到“二二如四”止,共36句。因为是从“九九八十一”开始,所以取名九九歌。大约在公元五至十世纪间,九九歌才扩充到“一一如一”。大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从“一一如一”起到“九九八十一”止。

现在我国使用的乘法口诀有两种,一种是45句的,通常

称为“小九九”;还有一种是81句的,通常称为“大九九”。

音乐与数学

动人的音乐常给人以美妙的感受。古人云:余音绕梁,三日不绝,这说的是唱得好,也有的人五音不全,唱不成调,这就是唱得不好了。同样是唱歌,甚至是唱同样的歌,给人的感觉却是迥然不同。其重要原因在于歌唱者发声振动频率不同。

人类很早就在实践中对声音是否和谐有了感受,但对谐和音的比较深入的了解只是在弦乐器出现以后,这是因为弦振动频率和弦的长度存在着简单的比例关系。近代数学已经得出弦振动的频率公式是W = ,这里,P是弦的材料的线密度;T是弦的张力,也就是张紧程度;L是弦长;W是频率,通常以每秒一次即赫兹为单位。

那么,决定音乐和谐的因素又是什么呢?人类经过长期的研究,发现它决定于两音的频率之比。两音频率之比越简单,两音的感觉效果越纯净、愉快与和谐。

首先,最简单之比是2:1。例如,一个音的频率是160、7赫兹,那么,与它相邻的协和音的频率应该是2×260、7赫兹,这就是高八度音。而与频率为2×260、7赫兹的音和谐的次一个音是4×260、7赫兹。这样推导下去,我们可以得到下面一列和谐的音乐:

260、7,2×260、7,22×260、7……

我们把它简记为C0,C1,C2,……,称为音名。

由于我们讨论的是音的比较,可暂时不管音的绝对高度(频率),因此又可将音乐简写为:

C0C1C2C3……

20212223……

需要说明的是,在上面的音列中,不仅相邻的音是和谐的,而且C与C2,C与C3等等也都是和谐的。一般说来这些协和音频率之比是2M。(其中M是自然数)

等号与不等号Ec

等号与不等号的发明权属于英国人。

1557年,数学家雷科德在他的《智慧的激励》一书中,首先把“=”作为等号,他说:“最相像的两件东西是两条平行线,所以这两条线应该用来表示相等。”他的书《智慧的激励》也因此引起了人们极大的兴趣。

在数学中,等号“=”既可表示两个数相等,也可以表示两个式子相等,但无论何种相等,它们都遵循以下规则:(1)若a=b,那么对于任何数c,有a±c=b±c;

(2)若a=b,那么b=a;

(3)若a=b,b=c,那么a=c;

(4)若a=b,那么对于任何数c,有ac=bc。

人们起初用“”和“”。表示大于和小于,英国人乌特勒首次在他的《数学入门》一书中使用了它们。另一英国数

学家哈里奥特引入了现在的两个符号:>、<。他在自己的书中明确地写道:“a>b表示a量大于b量,a<b表示a量小于b量。”

不等号在数学中有着普遍应用,在使用它们时,应遵循如下原则(a、b为实数)

(1)若a>b,则b<a

(2)若a>b,那么对于任何实数c,有a±c>b±c;

(3)若a>b,c为大于零的实数,那么ac>bc;

(4)若a>b,c为小于零的实数,那么ac<bc;

(5)若a>b,b>c,那么a>c。

加减乘除的来历

加减乘除(+、-、×(?)、÷(∶))等数学符号是我们每一个人最熟悉的符号,因为不光在数学学习中离不开它们,几乎每天的日常的生活也离不开它们。别看它们这么简单,直到17世纪中叶才全部形成。

法国数学家许凯在1484年写成的《算术三篇》中,使用了一些编写符号,如用D表示加法,用M表示减法。这两个符号最早出现在德国数学家维德曼写的《商业速算法》中,他用“+”表示超过,用“─”表示不足。到1514年,荷兰的赫克首次用“+”表示加法,用“─”表示减法。1544年,德国数学家施蒂费尔在《整数算术》中正式用“+”和“─”表示加减,这两个符号逐渐被公认为真正的算术符号,广泛

采用。

以符号“×”代表乘是英国数学家奥特雷德首创的。他于1631年出版的《数学之钥》中引入这种记法。据说是由加法符号+变动而来,因为乘法运算是从相同数的连加运算发展而来的。后来,莱布尼兹认为“×”容易与“X”相混淆,建议用“?”表示乘号,这样,“?”也得到了承认。

除法符号“÷”是英国的瓦里斯最初使用的,后来在英国得到了推广。除的本意是分,符号“÷”的中间的横线把上、下两部分分开,形象地表示了“分”。至此,四则运算符号齐备了,当时还远未达到被各国普遍采用的程度。

零的历史

数学史家把0称作“哥伦布鸡蛋”,这不仅是因为0的形状像鸡蛋,其中还含有深刻的哲理。凡事都是开创时困难,有人开了端,仿效是很容易的。0的出现就是一个典型的例子,在发明之前,谁都想不到,一旦有了它,人人都会用简单的方法来记数。

我们知道,零不仅表示一无所有,它还有以下的一些意义;在位值制记数法中,零表示“空位”,同时起到指示数码所在位置的作用,如304中的0表示十位上没有数;零本身还是一个数,可以同其他的数一起参与运算;零是标度的起点或分界,如每天的时间从0时开始。

在古代巴比伦,楔形文字的零号已起到现今位值制中0

号的作用,它一方面表示零位,另一方面也指明数码的位置。然而他们还没有把零看作一个数,也没有将它和“一无所有”这一概念联系起来。

印度人对零的最大贡献是承认它是一个数,而不仅仅是空位或一无所有。婆罗摩笈多对零的运算有较完整的叙述:“负数减去零是负数,正数减去零是正数,零减去零什么也没有;零乘负数、正数或零都是零。……零除以零是空无一物,正数或负数除以零是一个以零为分母的分数”。每一个学过除法的人都知道,零不可以作除数,因为如果a≠0而b=0,那就不可能存在一个C使得bc=a。这个道理尽人皆知,但在得到正确结论之前,却经历了漫长的历史。

我国自古以来就用算筹来记数,早就用算筹来记数,用的是10进位值制。巴比伦知道位值制,但用的是60进制。印度到公元595年才在碑文上有明确的10进位值制的记数法。位值制必须有表示零的办法。起初,中国使用空格来表示零,后来以○表示零,后来印度的0就传入了中国。在我们眼里,零的存在是那么自然、简洁,但就是这么一个简单的零,却也有这么一段颇不简单的历史。

数学中的符号

我们知道,数学起源于结绳记数和土地测量。最初,并没有标准数学符号,符号是后来的实践中逐渐产生并进一步完善的。但是,数学符号一旦产生,就能简化数学研究工作,

促进数学的发展。所以,学习数学,要从数学符号开始。阿拉伯数字1、2、3、…9、0就是最简单,常用的符号,也就是它们引起了数学上的一场革命。

数学家韦达第一个把符号引入数学,他用元音字母表示未知量,用辅音字母表示已知量(方程的正系数)。此前,所有的已知数都是用具体数字表达的,从而限制数学的应用范围。现在的符号体系是笛卡尔创立的。他提出,用英文字母中前面的字母a、b、c表示已知数,最后的字母x、y、z表示未知数。

符号的使用推动了数学本身的发展。符号一经形成,便成为表述概念,说明方法和叙述定理必不可少的工具。建立较好的符号系统,便于总结运算法则,揭示数量关系利于推理。一句话,符号是数学前进,发展,运用的工具。

数学符号一般有以下几种:

(1)数量符号:如,, ,i,2+i,a,x,,自然对数底e,圆周率。

(2)运算符号:如加号(+),减号(-),乘号(×或?),除号(÷或/),两个集合的并集(∪),交集(∩),根号(),对数(log,lg,ln),比(∶),微分(d),积分(∫)等。

(3)关系符号:如“=”是等号,“≈”或“”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“”表示变量

变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是正比例符号,“∈”是属于符号等。

(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—”B

(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖"

(6)省略符号:如三角形(△),正弦(sin),X的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从N个元素中每次取出R个元素所有不同的组合数(C ),幂(aM),阶乘(!)等。

数学符号的应用,是学习数学、研究数学的重要途径,愿同学们在数学中学好符号,用好符号。

为什么时间和角度的单位用六十进位制时间的单位是小时,角度的单位是度,从表面上看,它们完全没有关系。可是,为什么它们都分成分、秒等名称相同的小单位呢?为什么又都用六十进位制呢?

我们仔细研究一下,就知道这两种量是紧密联系着的。原来,古代人由于生产劳动的需要,要研究天文和历法,就牵涉到时间和角度了。譬如研究昼夜的变化,就要观察地球的自转,这里自转的角度和时间是紧密地联系在一起的。因为历法需要的精确度较高,时间的单位"小时"、角度的单位"度"都嫌太大,必须进一步研究它们的小数。时间和角度都要求它们的小数单位具有这样的性质:使1/2、1/3、1/4、1/5、

1/6等都能成为它的整数倍。以1/60作为单位,就正好具有这个性质。譬如:1/2等于30个1/60,1/3等于20个1/60,1/4等于15个1/60……

数学上习惯把这个1/60的单位叫做"分",用符号"′"来表示;把1分的1/60的单位叫做"秒",用符号"″"来表示。时间和角度都用分、秒作小数单位。

这个小数的进位制在表示有些数字时很方便。例如常遇到的1/3,在十进位制里要变成无限小数,但在这种进位制中就是一个整数。

这种六十进位制(严格地说是六十退位制)的小数记数法,在天文历法方面已长久地为全世界的科学家们所习惯,所以也就一直沿用到今天。

"0"是我国最早创造的

我们知道阿拉伯数字1、2、3、4、5、6、7、8、9原是印度人发明的,13世纪后期传入中国,人们误认为0也是印度人发明的。其实印度起先发明时没有“0”,他们把“204”,写成“24”,中间空着,把2004,写成“24”,怎么区别中间有几个零呢?为了避免看不清,就用点“·”来表示,204写成“2·4”,那不和小数混淆了?直到公元876年才把“0”确定下来。

我国却在1240年前就已创造了“0”,我国的零,当时是“○”,它是根据写字时缺字用“□”来表示缺字,“0”表示这个数

没有,或这个数位上没有,用“○”表示,随着人们长期不断地记数,慢慢发展演变,最后确定为今天的“0”。因此以“0”作为零是我国古代数学家的一项杰出贡献。

米的诞生

在公元1790年之前世界各国的长度单位几乎各不相同,给不同国家的人们之间相互交流带来了很大的麻烦。这时,法国的一位科学家他雷兰提出了制定一个世界各国通用单位的建议。

法国的学者取得世界各国的同意,把地球子午线上从北极到赤道的长度的一千万分之一作为长度的单位,叫做1米。

当时的科学技术还很不发达。测量了整整七年,实际还只是仅仅测量了西班牙的巴赛罗纳和法国的敦刻尔克之间的距离。通过计算得到了最初的1米。

后来1960年的国际会议规定。一米为氪(K8)原子在真空中发射的橙色光波波长的1650763.73倍。

圆周率

圆的周长与直径的比。圆周率是一个常数,通常用希腊字母π表示。如果设圆的直径为1,并把圆内接正六边形的周长(P6=3)看作是圆周长的近似值,那么圆周率的近似值就为3。这是我国古代最早所用的圆周率“径一周三(即取π≈3)”的来历,后人称为古率。把圆内接正六边形的边数加倍,可

以得到圆内接正十二边形,再加倍,可以得到圆内接正二十四边形,……。这一些圆内接正多边形,当边数成倍增长时,它们的周长Pn也不断增大,越来越接近于圆的周长,因此,Pn与直径的比值也越来越接近于圆周率准确值。这种求圆周率的方法称为“割圆术”。三国时魏人刘徽用割圆术求得3.141024<π<3.1412704。南北朝的祖冲之进一步算得比西方达到这一结果要早1100多年。圆周率π是一个无理数,即是一个无限不循环小数。

圆的历史

古代人最早是从太阳,从阴历十五的月亮得到圆的概念的,那么是什么人作出第一个圆的呢?

18000年前的山顶洞人用一种尖状的石器来钻孔,一面钻不透,再从另一面钻。石器的尖是圆心,它的宽度的一半就是半径,这样以同一个半径和圆心一圈圈地转就可以钻出一个圆的孔。

到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。

6000年前,半坡人就已经会造圆形的房顶了。

古代人还发现圆的木头滚着走比较省劲。后来他们在搬运重物时,就把几段圆木垫在重物的下面滚着走,这样就比扛着走省劲得多。

大约在6000年前,美索不达米亚人,做出了世界上第

一个轮子——圆的木轮。约在4000年前,人们将圆的木轮固定在木架上,这就成了最初的车子。

会作圆并且真正了解圆的性质,却是在2000多年前,是由我国的墨子给出圆的概念的:“一中同长也。”意思是说,圆有一个圆心,圆心到圆周的长都相等。这个定义比希腊数学家欧几里得给团下定义要早100年。

奇妙的圆形

圆形,是一个看来简单,实际上是很奇妙的圆形。

古代人最早是从太阳,从阴历十五的月亮得到圆的概念的。一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很圆。

以后到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。

当人们开始纺线,又制出了圆形的石纺缍或陶纺缍。

古代人还发现圆的木头滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着走省劲得多。

大约在6000年前,美索不达米亚人,做出了世界上第一个轮子--圆的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。

会作圆,但不一定就懂得圆的性质。古代埃及人就认为:圆,是神赐给人的神圣图形。一直到两千多年前我国的墨子

(约公元前468-前376年)才给圆下了一个定义:"一中同长也"。意思是说:圆有一个圆心,圆心到圆周的长都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。

圆周率,也就是圆周与直径的比值,是一个非常奇特的数。

《周髀算经》上说"径一周三",把圆周率看成3,这只是一个近似值。美索不达来亚人在作第一个轮子的时候,也只知道圆周率是3。

魏晋时期的刘徽于公元263年给《九章算术》作注。他发现"径一周三"只是圆内接正六边形周长和直径的比值。他创立了割圆术,认为圆内接正多连形边数无限增加时,周长就越逼近圆周长。他算到圆内接正3072边形的圆周率,π= 3927/1250。刘徽已经把极限的概念运用于解决实际的数学问题之中,这在世界数学史上也是一项重大的成就。

祖冲之(公元429-500年)在前人的计算基础上继续推算,求出圆周率在3.1415926与3.1415927之间,是世界上最早的七位小数精确值,他还用两个分数值来表示圆周率:22/7称为约率,355/113称为密率。

在欧洲,直到1000年后的十六世纪,德国人鄂图(公元1573年)和安托尼兹才得到这个数值。

现在有了电子计算机,圆周率已经算到了小数点后一千万以上了。

天文与数学

有这么一张画,下面是一只小船,上面是三个太阳。这是什么意思呢?这表示,坐了三天船。太阳升落一次,就是一天,所以一天又叫一日。日,是人们认识时间的基础。向上,将日积累为月、年、世纪;向下,将日分为时、分、秒。为了记载日数,原始人曾经用刀在树上刻记号,过一天刻上一道。

我国古代很早就发展了畜牧业和农业,因此很重视历法,天文学非常发达。而天文学只有借助于数学才能发展,因此,很早就开始了数学的研究。我国最早的一部数学著作《周髀算经》,是两千多年前成书的。它既是一部数学著作,也是一部天文学著作。它总结了古代劳动人民天文学和数学的成就。

我国古代曾经用干支记日。十干就是:甲、乙、丙、丁、戍、已、庚、辛、壬、癸。十二支即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥。将十干和十二支依次循环组合,就得甲子、乙丑、丙寅、丁卯……直到任戌、癸亥等六十个数(现在称六十甲子)。一个数代表一天,从甲子到癸亥,一共六十天,再从甲子开始,周而复始。例如公元前632年4月4日,爆发了著名的“城濮大战”,在《左传》上记载的是:“夏月己已。”

干支不仅可以记时和日,也可以用来记月和年。月,是从月亮来的。月亮,每晚有变化。不但月出月落时间上有变

化,月亮形状也有变化;圆了又缺,缺了又圆。这是古代人观察得到的。从新月在天上出现,一天天过去了,月亮圆了又缺了,不见了,到下次新月又在天上出现,古代人根据刻的日子计算得到,一个月29天半。(现在知道:一个朔望月有29日12小时44分3秒,或29.53日)为了使一个月的日子是整数,以后又规定大月30天,小月29天。

《诗经》上说:“十月之交,朔日辛卯,日有食之,亦孔之丑。”根据我国天文学史家推算:公元前776年10月1日早上7-9点发生过日食,这天正是辛卯日。这里的“朔”字是我国第一次使用的,意思是整晚见不到月亮。

计年的方法比记月的多。如果开始计算的时候是收获季节,过了12个多月,地球绕太阳走了一圈,果子、谷物又成熟了,那就叫做一年。我国古代黄河流域的人和古代斯拉夫人都是这么计算的。埃及的尼罗河每年7月开始泛滥,古代埃及人就将两次泛滥之间的日子称为一年。美洲印第安人计算年以初雪为标志,澳洲人则根据雨季计算。我国黑龙江一带的居民,以吃大马哈鱼作为一年的标准。因为大马哈鱼定年定时由海里进入黑龙江。这些计算年的方法当然都是很原始,很不精确的。我们现在都知道,地球绕太阳一周,也就是一个太阳年,等于365天5小时48分46秒或365.242194天。如果根据月亮来算,一年12个月却只有354天或355天,平均差了10天21小时。一年差10天多,如

果过上两三年就不得了,这对游牧民族和农业民族定季节就大大不利。于是每过两三年就增加一个月,叫做闰月,有闰月的年叫闰年。闰年一年就有384或385天。

我国早在四千年前的夏朝就开始制定历法,所以叫做夏历。在三千年前,就有十三月的名称了。到两千多年前,人们知道了一年等于12又7/19阴历的月,就采用“19年7闰”的方法设置闰月。夏历既是根据月亮(太阳),也根据太阳,所以是阴阳历的一种,两千多年前秦始皇的时候(公元前246年)就测得了一年平均是365又1/4天。它比阴历优越,只是平年和闰年,日数相差太大了。

现在世界通用的公历(阳历)也经过一个长期演变的过程。我们先看,公历每个月的日数是固定的:“七前单大,八后双大”。也就是说,一、三、五、七、八、十、腊月(十二月)是31天,四、六、九、十一月是30天,只有二月,平年28天,闰年29天。

二月平年为什么只有28天?原来,我们今天用的公历是从儒略历变来的。在公元前46年,罗马的统帅叫儒略·恺撒。据说他的生日在7月,为了表示他的伟大,于是他决定:将7月叫“儒略月”,连同所有单月都定为31天,双日定为30天,只有2月平年29天,闰年30天。因为2月是行刑的月份,所以减少一天。恺撒的继承人叫奥古斯都,他的生日在8月。伟大人物生日的那个月只有30天那怎么行?他

决定将8月叫“奥古斯都月”,并且将8月、10月、12月都改为31天,9月、11月都改为30天。这一来不就多了一天吗?于是又从2月里拿出一天来。从此2月平年就只有28天,闰年只有29天了。

闰年为什么要多一天呢?前面我们说过,地球绕太阳一周要365天5小时48分46秒。为了方便,一年算365天。那么,多出的5小时多怎么办呢?人们想,每隔4年,就差不多可以凑上一天了,于是四年一闰,在闰年2月加一天,现在,公历年数,凡是能被4整除的,如1984、1988、1992、1996年都定为闰年的。可是,问题还没有完,因为四年实际上只多了23小时15分4秒,还差44分56秒。这个差数积累400年,又少了3天。也就是说,每隔400年要少设三个闰年才行。于是又规定,整百年的数必须能被400整除才算闰年,否则不算。例如1600、2000、2400才算闰年。1700、1800、1900年都不算闰年。这样,每400年差的三天就扣出来了。当然,还有一点点差距,但是那只要3000年以后再调整就行了。

“数学”这一名称的由来

古希腊人在数学中引进了名称,概念和自我思考,他们很早就开始猜测数学是如何产生的。虽然他们的猜测仅是匆匆记下,但他们几乎先占有了猜想这一思考领域。古希腊人随意记下的东西在19世纪变成了大堆文章,而在20世纪却变

成了令人讨厌的陈辞滥调。

在现存的资料中,希罗多德(Herodotus,公元前484--425年)是第一个开始猜想的人。他只谈论了几何学,他对一般的数学概念也许不熟悉,但对土地测量的准确意思很敏感。作为一个人类学家和一个社会历史学家,希罗多德指出,古希腊的几何来自古埃及,在古埃及,由于一年一度的洪水淹没土地,为了租税的目的,人们经常需要重新丈量土地;他还说:希腊人从巴比伦人那里学会了日晷仪的使用,以及将一天分成12个时辰。希罗多德的这一发现,受到了肯定和赞扬。认为普通几何学有一个辉煌开端的推测是肤浅的。

柏拉图关心数学的各个方面,在他那充满奇妙幻想的神话故事《费德洛斯篇》中,他说:

故事发生在古埃及的洛克拉丁(区域),在那里住着一位老神仙,他的名字叫赛斯(Theuth),对于赛斯来说,朱鹭是神鸟,他在朱鹭的帮助下发明了数,计算、几何学和天文学,还有棋类游戏等。

柏拉图常常充满了奇怪的幻想,原因是他不知道自己是否正亚里士多德最后终于用完全概念化的语言谈论数学了,即谈论统一的、有着自己发展目的的数学。在他的《形而上学》(Meta-physics)第1卷第1章中,亚里士多德说:数学科学或数学艺术源于古埃及,因为在古埃及

有一批祭司有空闲自觉地致力于数学研究。亚里士多德所说的是否是事实还值得怀疑,但这并不影响亚里士多德聪慧和敏锐的观察力。在亚里士多德的书中,提到古埃及仅仅只是为了解决关于以下问题的争论:1.存在为知识服务的知识,纯数学就是一个最佳的例子:2.知识的发展不是由于消费者购物和奢华的需要而产生的。亚里士多德这种“天真”的观点也许会遭到反对;但却驳不倒它,因为没有更令人信服的观点.

就整体来说,古希腊人企图创造两种“科学”的方法论,一种是实体论,而另一种是他们的数学。亚里士多德的逻辑方法大约是介于二者之间的,而亚里士多德自己认为,在一般的意义上讲他的方法无论如何只能是一种辅助方法。古希腊的实体论带有明显的巴门尼德的“存在”特征,也受到赫拉克利特“理性”的轻微影响,实体论的特征仅在以后的斯多葛派和其它希腊作品的翻译中才表现出来。数学作为一种有效的方法论远远地超越了实体论,但不知什么原因,数学的名字本身并不如“存在”和“理性”那样响亮和受到肯定。然而,数学名称的产生和出现,却反映了古希腊人某些富于创造的特性。下面我们将说明数学这一名词的来源。

“数学”一词是来自希腊语,它意味着某种‘已学会或被理解的东西’或“已获得的知识”,甚至意味着“可获的东西”,“可学会的东西”,即“通过学习可获得的知识”,数学名称的这些

意思似乎和梵文中的同根词意思相同。甚至伟大的辞典编辑人利特雷(E.Littre也是当时杰出的古典学者),在他编辑的法语字典(1877年)中也收入了“数学”一词。牛津英语字典没有参照梵文。公元10世纪的拜占庭希腊字典“Suidas”中,引出了“物理学”、“几何学”和“算术”的词条,但没有直接列出“数学”—词。

“数学”一词从表示一般的知识到专门表示数学专业,经历一个较长的过程,仅在亚里士多德时代,而不是在柏拉图时代,这一过程才完成。数学名称的专有化不仅在于其意义深远,而在于当时古希腊只有“诗歌”一词的专有化才能与数学名称的专有化相媲美。“诗歌”原来的意思是“已经制造或完成的某些东西”,“诗歌”一词的专有化在柏拉图时代就完成了。而不知是什么原因辞典编辑或涉及名词专有化的知识问题从来没有提到诗歌,也没有提到诗歌与数学名称专有化之间奇特的相似性。但数学名称的专有化确实受到人们的注意。

首先,亚里士多德提出,“数学”一词的专门化使用是源于毕达哥拉斯的想法,但没有任何资料表明对于起源于爱奥尼亚的自然哲学有类似的思考。其次在爱奥尼亚人中,只有泰勒斯(公元前640?--546年)在“纯”数学方面的成就是可信的,因为除了第欧根尼·拉尔修(DiogenesLaertius)简短提到外,这一可信性还有一

数学方法论

1方法论,就是人们认识世界、改造世界的一般方法,是人们用什么样的方式、方法来观察事物和处理问题。概括地说,世界观主要解决世界“是什么”的问题,方法论主要解决“怎么办”的问题。 2方法是人们在认识和改造客观世界中所采用的方式、手段的总称 3数学方法论是研究数学的发展规律,数学的思想方法以及数学中的发现发明,与创新法则的一门学问。 4数学方法论的研究意义:一有利于培养数学能力与改革数学教育二,有利于充分发挥数学的功能三有利于深刻认识数学本质与全面把握数学发展规律 5合情推理:归纳法,类比法,演绎推理;非逻辑推理:数学美学法,直觉法;数学问题的来源:(外)哥尼斯堡七桥问题,(内)哥德巴赫猜想,一笔画问题 6波利亚怎样解题表:理解题目,拟定方案,执行方案,检查回顾 7数学典型方法:模型法,公理法(布尔巴基),构造法(直觉),化归法 8数学解题的四种模式:双轨迹模式,笛卡尔模式,递归模式,叠加模式 数学问题在数学发展以及数学教育的意义 (一)数学问题的形成、来源及其在数学历史进程中的重要作用 数学是研究客观世界的数量关系和空间形式的科学,正如恩格斯所说:“纯数学的对象是现实世界的空间形式和数量关系,所以是非常现实的材料。”当人们与客观世界产生接触,从数量关系或空间形式的角度反映出认识与客观世界的矛盾时,就形成了问题。以数学为内容,或者虽不以数学为内容,但必须运用数学概念、理论或方法才能解决的问题称为数学问题。希尔伯特在1900年巴黎国际数学家代表大会上以“数学问题”为题发表演讲时说:“只要一门科学分支能提出大量的问题,它就充满着生命力;而问题缺乏则预示着独立发展的衰亡或中止。正如人类的每项事业都追求着确定的目标一样,数学研究也需要自己的问题。正是通过这些问题的解决,研究者锻炼其钢铁意志,发现新方法和新观点,达到更为广阔和自由的境界。” 由于数学问题包含着有关数学的疑问因素和未知方面,所以,在数学的学习和研究中,对已有的数学概念或结论产生疑问,或者对数学的未知领域进行探索时,都会提出一些不同问题。但是,教学中所要解决的并不是那些尚未解决的数学问题,而是前人已有的数学知识的再发现。只有提出问题,让学生明了产生问题的情境,才能引起学生有目的的思考。正是由于学生把特定的数学问题确定为自己努力攻克的方向,才能使思维活动以一定的方法、在一定的范围内进行,才能激发学生的创造热情,不断冲击头脑中旧有的认知结构,不断构建新的认知结构。 数学问题来源于人类的生产、生活实践,来源于人们了解自然、认识自然的科技活动。古代巴比伦人在观测天文、丈量土地和进行贸易中形成了位值观念和六十进制数系,并发现了大量数表、计算方法以及包括解一元二次方程在内的许多数学问题。早在公元前5世纪,古希腊人就已经形成后来被称为几何三大作图问题的倍立方问题、三等分任意角问题和化圆为方问题。成书于公元1世纪前后的《九章算术》,集古代数学问题之大成,记载了我国古代劳动人民在生产、生活和社会活动中形成的各种数学问题246个。《九章算术》是我国古代传统数学中具有最深远影响的一部著作,它反映出我国古代数学是怎样从实际生活中分析出数量关系,建立数学模型,又怎样从研究具体的数学问题入手,通过抽象与归纳而得到解决问题的数学方法的。

数学物理方法综合试题及答案

复变函数与积分变换 综合试题(一) 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设cos z i =,则( ) A . Im 0z = B .Re z π= C .0z = D .argz π= 2.复数3(cos ,sin )55z i ππ =--的三角表示式为( ) A .443(cos ,sin )55i ππ- B .443(cos ,sin )55i ππ- C .44 3(cos ,sin )55i ππ D .44 3(cos ,sin )55 i ππ-- 3.设C 为正向圆周|z|=1,则积分 ?c z dz ||等于( ) A .0 B .2πi C .2π D .-2π 4.设函数()0 z f z e d ζζζ= ? ,则()f z 等于( ) A .1++z z e ze B .1-+z z e ze C .1-+-z z e ze D .1+-z z e ze 解答: 5.1z =-是函数 4 1) (z z cot +π的( ) A . 3阶极点 B .4阶极点 C .5阶极点 D .6阶极点 6.下列映射中,把角形域0arg 4 z π << 保角映射成单位圆内部|w|<1的为( ) A .4411z w z +=- B .44-11z w z =+ C .44z i w z i -=+ D .44z i w z i +=- 7. 线性变换[]i i z z i z a e z i z i z a θω---= =-++- ( ) A.将上半平面Im z >0映射为上半平面Im ω>0 B.将上半平面Im z >0映射为单位圆|ω|<1 C.将单位圆|z|<1映射为上半平面Im ω>0 D.将单位圆|z|<1映射为单位圆|ω|<1 8.若()(,)(,)f z u x y iv x y =+在Z 平面上解析,(,)(cos sin )x v x y e y y x y =+,则(,)u x y = ( ) A.(cos sin )y e y y x y -) B.(cos sin )x e x y x y -

(完整版)初中数学全等三角形的知识点梳理

《全等三角形》 一、结构梳理 二、知识梳理 (一)概念梳理 1.全等图形 定义:两个能够完全重合的图形称为全等图形,全等图形的形状和大小都相同.例如图1中的两个图形形状相同,但大小不同,不能重合在一起,因此不是全等图形,图2中的两个图形面积相同,但形状不同,也不是全等图形. 2.全等三角形 这是学好全等三角形的基础.根据全等形定义:能够完全重合的两个三角形叫全等三角形.完全重合有两层含义:(1)图形的形状相同;(2)图形的大小相等.符号“≌”也形象、直观地反映了这一点.“∽”表示图形形状相同,“=”表示图形大小相等. (二)性质与判定梳理 1.全等图形性质:全等多边形的对应边、对应角分别相等. 全等三角形的对应边、对应角分别相等. 2.全等三角形的判定 这是学好全等三角形的关键.只给定一个条件或两个条件画三角形时,都不能保证所画出的三角形全等,只要有三个条件对应相等就可以,于是判定两个三角形全等的方法有: (1)三边对应相等的两个三角形全等,简记为:SSS ; (2)两角和它们的夹边对应相等的两个三角形全等,简记为:ASA; (3)两角和其中一角的对边对应相等的两个三角形全等,简记为:AAS; (4)两边和它们的夹角对应相等的两个三角形全等,简记为:SAS. 若是直角三角形,则还有斜边、直角边公理(HL)。由此可以看出,判断三角形全等,无论用哪一条件,都要有三个元素对应相等,且其中至少要有一对应边相等. (5)注意判定三角形全等的基本思路 从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有 图 2

三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边(角)去迅速准确地确定要补充的边(角),不致盲目地而能有目标地完善三角形全等的条件.从而得到判定两个三角形全等的思路有: ?? ???→→SSS SAS 找另一边找夹角 ??? ?????????→→→→→SAS AAS ASA AAS 找该角的另一边找这条边上的对角找这条边上的另一角边就是角的一条边 找任一角边为角的对边 ???→→AAS ASA 找任一边找两角的夹边 (6)学会辨认全等三角形的对应元素 辨认全等三角形的对应元素最有效的方法是,先找出全等三角形的对应顶点,再确定对应角和对应边,如已知△ABC ≌EFD ,这种记法意味着A 与E 、B 与F 、C 与D 对应,则三角形的边AB 与EF 、BC 与FD 、AC 与ED 对应,对应边所夹的角就是对应角,此外,还有如下规律:(1)全等三角形的公共边是对应边,公共角是对应角,对顶角是对应角;(2)全等三角形的两个对应角所夹的边是对应边,两条对应边所夹的角是对应角. (三)基本图形梳理 注意组成全等三角形的基本图形,全等图形都是由图形的平移、旋转、轴对称等图形变换而得到的,所以全等三角形的基本图形大致有以下几种: 1.平移型 如图3,下面几种图形属于平移型: 它们可看成有对应边在一直线上移动所构成的,故该对应边 的相等关系一般可由同一直线上的线段和或差而得到. 2 .对称型 如图 4,下面几种图形属于对称型: 它们的特征是可沿某一直线对折,直线两旁的部分能完全重合(轴对称图形),重合的顶点就是全等三角形的对应顶点. 3.旋转型 如图5,下面几种图形属于旋转型: 它们可看成是以三角形的某一顶点为中心旋转 所构成的,故一般有一对相等的角隐含在 对顶角、某些角的和 或差中. 三、易混、易错点剖析 1.探索两个三角形全等时,要注意两个特例 (1两个三角形不一定全等;如图6(1已知两边 已知一边一角 已知两角 图3 图4 图6(1)

注重数学阅读 彰显教学魅力

注重数学阅读彰显教学魅力 盐城市冈中小学王亮 【摘要】有效的数学阅读能够激发学生兴趣,丰富学生的数学素养;能够使学生掌握数学阅读方法,提高数学阅读能力;能够培养学生获取信息和处理信息的能力,发展学生的思维,使他们逐渐成为一个会学习的人。因此,我们应提供一切可能的机会以科学的方法指导学生学会数学阅读,使数学阅读之花芬芳灿烂、奇香四溢!本文从激发兴趣——播撒阅读之种、掌握方法——催生阅读之根、多元开放——怒放阅读之花、体验成功——结满阅读之果四个方面入手展开阐述。 【关键词】数学阅读激发兴趣掌握方法体验成功 数学阅读是指学生个体凭借已有的知识经验和生活积累,调动潜在的思维灵性,通过阅读数学教材、教师呈现的文字信息和图片音像资料、学生积累的素材及课外数学读物等相关材料,用数学的方法和观点来认知、理解、汲取知识和感受数学文化的学习活动。有效的数学阅读可以快速提高学生的表达能力,数学分析、推理能力和自主学习能力。那么,如何在数学教学中,培养学生的数学阅读能力呢?笔者作了如下的尝试: 一、激发兴趣——播撒阅读之种 学问必须合乎自己的兴趣,方才可以得益。——莎士比亚兴趣是获取知识和发展能力的最大动力。心理学家希尔博士说过:“人与人之间有很少的差距,那就是对事物有无兴趣,这种很小的差距所形成的结果却是非常大的,那就是兴趣可能使你通向成功,无兴趣可能使你通向失败。”但是,在教学中学生对于阅读数学文本很少感到有兴趣,我们经常可看到或听到一下的现象。 “孩子,作业做完了,看点课外书吧!”“好吧!我现在看《安徒生童话》”;“孩子,快来做奥数题”“不,我要看电视”“唉,我的孩子一放学就玩游戏,真是管不住” 为什么学生喜欢看《安徒生童话》?喜欢看电视、玩游戏?而不喜欢看数学课外书?这是因为与看电视相比,电视、电脑游戏能够给人们带来丰富多彩、引人入胜的互动娱乐体验。与文学故事相比,数学文本没有艺术作品那样富于动人的情节或鲜艳的色彩,儿童一般不会自发地对事物背后抽象的数学属性产生兴趣。尽管数学没有吸引儿童兴趣的外在特征,我们也要想方设法引导学生参与到数学学习上来,让学生在学习中真正体验到数学内在的魅力,产生成对数学本身的内在的兴趣。那么如何让学生对数学阅读感兴趣呢? 1、营建氛围,促进阅读 浓厚阅读氛围的营建,是学生产生数学阅读兴趣的基础。 如在教室里张贴几条古今名言和名画:高尔基的“热爱书吧——这里是知识的源泉”,笛卡儿的“读一切好书,就是和许多高尚的人谈话”……寥寥数语,既营造出浓浓的书香氛围,又能使学生充分认识到课外阅读的重要性。 再如,把教室的一角装饰成“数学墙报”,鼓励学生积极撰写数学稿子,撰写的内容有学生阅读文本后的反思及数学小故事、趣味数学题、数学信箱、学习经验交流等等。数学墙报每两个星期更换一次,到期中或期末时评比一下哪些学生发表的稿子最多、最有质

数学方法论

chap1 数学方法论主要是研究和讨论数学的发展规律,数学的思想方法以及数学中的发现,发明与创新等法则的一门学问。 chap2 1.数学问题的来源 (1)外部世界的需求 哥尼斯堡七桥问题 四色问题 (2)数学内部产生的问题 几何三大难题 高次代数方程可解性问题 哥德巴赫猜想

第五公设问题 2.波利亚的数学解题表, 怎样解题表: 理解题目,拟定方案,执行方案,检验回顾。 3.解题模式 双轨迹模式 笛卡儿模式,将所有的问题都转化为代数解方程递归模式 叠加模式

chap3合情推理 1.类比推理是根据两个对象有部分属性相同或相似,从而推出它们的其它属性也相同或相似的推理,它是由特殊到特殊的思维过程 举一例 作用: (1)数与式的类比 (2)类比在求解问题中也有着广泛的应用 (3)类比可用于猜测进行检验 2.归纳法 归纳是指通过对特殊的观察和综合去发现一般规律。它是由特殊到一般的推理形式 归纳法的类型及特点 完全归纳法,是研究了某类事物中的每一个对象,然后概括出这类事物的一般性结论。 特点:1.对科学作用不大 2.有助于问题的证明或解答 不完全归纳法,是通过对某类事物中部分对象的研究,概括关于该类事物的一般结论。 作用,1有助于数学发现 2归纳推理具有或然性

3.数学归纳法 数学归纳法不属于合情推理,为演绎推理。 合情推理:前提是真,结论不一定为真 数学归纳法,前提是真,结论一定为真 常见的形式 第一数学归纳法 第二数学归纳法 反向归纳法 二重归纳法 4.数学合情推理在数学教育中的意义 (即归纳,类比,观察,实验) chap4 数学中的典型方法,包括数学公理化方法,数学模型方法,数学结构方法,数学构造方法 1.所谓公理化方法就是尽可能少的不加定义的原始概念和不加证明的原始命题(公里,公设)出发,按照逻辑规则推导出其他命题,建立起一个演绎系统的方法 公理化方法的现实原型,欧几里得的《几何原本》 数学公理化方法的特点与基本问题 特点:公理系统是一个有序的整体 公理系统是纯粹的演绎系统 公理系统是形式化的 $希尔伯特公理体系(数学公理化方法的产生与发展)

数学物理方法期末考试规范标准答案

天津工业大学(2009—2010学年第一学期) 《数学物理方法》(A)试卷解答2009.12 理学院) 特别提示:请考生在密封线左侧的指定位置按照要求填写个人信息,若写在其它处视为作弊。本试卷共有四道大题,请认真核对后做答,若有疑问请与监考教师联系。 一 填空题(每题3分,共10小题) 1. 复数 i e +1 的指数式为:i ee ; 三角形式为:)1sin 1(cos i e + . 2. 以复数 0z 为圆心,以任意小正实数ε 为半径作一圆,则圆内所有点的集合称为0z 点的 邻域 . 3. 函数在一点可导与解析是 不等价的 (什么关系?). 4. 给出矢量场旋度的散度值,即=????f ? 0 . 5. 一般说来,在区域内,只要有一个简单的闭合曲线其内有不属 ------------------------------- 密封线 ---------------------------------------- 密封线 ---------------------------------------- 密封线--------------------------------------- 学院 专业班 学号 姓名 装订线 装订线 装订线

于该区域的点,这样的区域称为 复通区域 . 6. 若函数)(z f 在某点0z 不可导,而在0z 的任意小邻域内除0z 外处处可导,则称0z 为)(z f 的 孤立奇点 . 7. δ函数的挑选性为 ? ∞ ∞ -=-)()()(00t f d t f ττδτ. 8. 在数学上,定解条件是指 边界条件 和 初始条件 . 9. 常见的三种类型的数学物理方程分别为 波动方程 、 输运方程 和 稳定场方程 . 10. 写出l 阶勒让德方程: 0)1(2)1(222 =Θ++Θ -Θ-l l dx d x dx d x . 二 计算题(每小题7分,共6小题) 1. )(z 的实部xy y x y x u +-=22),(,求该解析函数

常见初中数学小知识

1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

小学生数学阅读内容与方法指导

小学生数学阅读内容与方法指导 在数学教学或解题过程中,我们经常会发现许多学生在理解数学内容或解题错误是缘于没有精读、深读而出现了偏差,如若我们教师能在数学阅读时注重指导,及时改变阅读习惯,明确阅读方法,那么会收到意想不到的效果。 苏联教育家苏霍姆林斯基曾经把阅读、书写、计算、观察和表达形象地称之为“学习技能的五把刀子”.要使学生学习前人创造出来的经验,更加主动、持久地学习,离不开阅读. 一、对农村小学生不良阅读习惯的反思 数学是一门科学,也是一种文化,更是一种语言。新的课程标准指出,由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。阅读作为人类社会生活的一项重要活动,是人类汲取知识的主要手段和认识世界的重要途径。 我曾经在我们农村学校多次作过这样的实验:一学期学习结束后,我把班里的一部分学生叫到面前问他们刚刚学过的数学教材一共有多少章?每章有多少节?结果绝大多数的学生都回答不出来,这个事实说明了目前学生在数学学习中对阅读数学教材是不够重视的。许多学生只是把数学课本当作习题集,只是在做作业的时候才将课本打开,平时基本上没有阅读数学教材的习惯。 二、如何从阅读内容入手指导学生阅读 新课程改革的核心是以学生的发展为本,主动参与,合作交流,注重思维,探索创新。而语言是沟通与理解的载体,人们借助语言,对事物进行抽象、概括,又借助语言对人们的思维进行调节,使思维逐步完善。数学学习活动基本上是数学思维活动,所以掌握数学语言是顺利地、有成效地进行数学学习活动的重要基础之一。我们应当把培养学生的数学语言和数学知识的学习紧密地结合起来,将它看成是数学学习的重要组成部分。这样才能更好地锻炼学生思维的条理性、逻辑性和准确性。 阅读教学是教学的重要组成部分,其主要任务是培养学生的阅读能力和良好的阅读习惯,教给学生阅读的方法,激发学生阅读的兴趣。 数学阅读是通过阅读数学材料建构数学意义和方法的学习活动,是学生主动获取信息,汲取知识,发展数学思维,学习数学语言的重要途径。 然而提起阅读,我们自然而然会想到,如语文的课文阅读,短文阅读,词语阅读等方面。同样,数学教育教学原理,数学学科特点等,教师必须注意指导学生认真阅读,认真阅读书中所提出的每一个过程与细节。 1.阅读数学概念。 概念是解题的基本依据,我们要在认真阅读中理解数学概念.如有的学生作业中存在着这样的一个现象,概念明明背得非常的熟,但在选择、判断等概念的运用中,错误率非常的高,这是为什么呢?追其根源,在数学教学中,数学概念都是教师直接给出或由几道例题引出,这个过程通常是以教师为中心,学生被动接受的过程。要想使学生从本质上真正领会,除了需要学生自主地参与,还需要在概念形成之后,认真地阅读,读出概念真正的含义,读出概念中关键词中的注意点,读出可能会出现的错误。 例如:“垂直”在日常语言中最基本的含义可能是指与水平或地面垂直,于是有的学生以为在数学中也应该这样理解“垂直”的含义,这显然没有抓住“垂直”作为科学概念时的内涵。小学生对这些概念中关键词的掌握必须是准确的,并且达到自动化的水平,只有这样才能顺利地解决问题。

初中常用数学方法

初中数学常用方法第1讲 一、配方法: 在数学上特指将代数式通过凑配等手段得到完全平方、完全立方等形式,从而再利用诸如完全平方项非负等性质,达到解决数学问题的目的。配方法主要用在多元代数式求值、无理式的证明或化简求值等方面。 例1、当为何值时,方程 有实根。 例2、已知,求有理式的值。 例3、试确定方程组的所有实数解。 例4、化简

例5、若均为正数,且满足 ,求证:以为边 的四边形是菱形。 作业: 1、求满足条件的实数; 2、已知为非零实数,且 , 求证; 3、解方程: 4、思考题:已知且求证: 初中数学常用方法第2讲 二、换元法:数学中的“元”是指未知数,用新的未知数去替换原条件中的未知数、数字、代数式从而使复杂的式子结构简化。其实质是一种化繁为简、化难为易的

数学转化思想的具体体现。 例6、已知,试比较的大小; 例7、已知一个六位数,若将此数乘以,所得新数恰好为,求此数; 例8、若都是实数,且,求 的最小值; 例9、分解因式(1);(2) ;

例10、解方程组 作业: 1、分解因式:; 2、解方程:; 3、设实数,求证:; 初中数学常用方法第3讲 三、待定系数法: 根据多项式恒等式性质,先判断所求结果的结构具有某种确定的形式,其中含有若干待确定的系数,而最后根据题设条件通过比较等式两边的对应项,列出若干关于待定系数的方程(组),最后解该方程(组),得到各

待定系数的值或找到他们之间的某种关系。例11、已知能被整除,求。 方法1:=利用待定系数法得。 方法2:利用辗转相除法可得。 例12、已知方程有两根为1和2,解这个方程。 解:待定系数法 例13、若求、A、B的值。 例14、求满足及的不同的整数对的个数。 例15、已知直线经过点,与轴的负半轴和轴的正半轴分别交于点A、B,且直角的内切圆面积为,求直线的函数解析

数学物理方法第二次作业答案解析

第七章 数学物理定解问题 1.研究均匀杆的纵振动。已知0=x 端是自由的,则该端的边界条件为 __。 2.研究细杆的热传导,若细杆的0=x 端保持绝热,则该端的边界条件为 。 3.弹性杆原长为l ,一端固定,另一端被拉离平衡位置b 而静止,放手任其振动,将其平衡位置选在x 轴上,则其边界条件为 00,0x x l u u ==== 。 4.一根长为l 的均匀弦,两端0x =和x l =固定,弦中力为0T 。在x h =点,以横向力0F 拉弦,达到稳定后放手任其振动,该定解问题的边界条件为___ f (0)=0,f (l )=0; _____。 5、下列方程是波动方程的是 D 。 A 2tt xx u a u f =+; B 2 t xx u a u f =+; C 2t xx u a u =; D 2tt x u a u =。 6、泛定方程20tt xx u a u -=要构成定解问题,则应有的初始条件个数为 B 。 A 1个; B 2个; C 3个; D 4个。 7.“一根长为l 两端固定的弦,用手把它的中 点朝横向拨开距离h ,(如图〈1〉所示)然后放 手任其振动。”该物理问题的初始条件为( D )。 A .?????∈-∈==] ,2[),(2]2,0[,2l l x x l l h l x x l h u o t B .???? ?====00 t t t u h u C .h u t ==0 D .???????=???? ?∈-∈===0 ],2[),(2]2,0[,200t t t u l l x x l l h l x x l h u 8.“线密度为ρ,长为l 的均匀弦,两端固定,开始时静止,后由于在点)0(00l x x <<受谐变 u x h 2 /l 0 u 图〈1〉

初中数学知识点口诀

初中数学知识点归纳. 有理数的加法运算 同号两数来相加,绝对值加不变号。异号相加大减小,大数决定和符号。互为相反数求和,结果是零须记好。【注】“大”减“小”是指绝对值的大小。有理数的减法运算 减正等于加负,减负等于加正。 有理数的乘法运算符号法则 同号得正异号负,一项为零积是零。合并同类项 说起合并同类项,法则千万不能忘。只求系数代数和,字母指数留原样。去、添括号法则 去括号或添括号,关键要看连接号。扩号前面是正号,去添括号不变号。括号前面是负号,去添括号都变号。解方程 已知未知闹分离,分离要靠移完成。移加变减减变加,移乘变除除变乘。平方差公式 两数和乘两数差,等于两数平方差。积化和差变两项,完全平方不是它。完全平方公式 二数和或差平方,展开式它共三项。首平方与末平方,首末二倍中间放。和的平方加联结,先减后加差平方。完全平方公式 首平方又末平方,二倍首末在中央。和的平方加再加,先减后加差平方。解一元一次方程 先去分母再括号,移项变号要记牢。同类各项去合并,系数化“1”还没好。求得未知须检验,回代值等才算了。解一元一次方程 先去分母再括号,移项合并同类项。系数化1还没好,准确无误不白忙。因式分解与乘法 和差化积是乘法,乘法本身是运算。积化和差是分解,因式分解非运算。因式分解 两式平方符号异,因式分解你别怕。两底和乘两底差,分解结果就是它。

两式平方符号同,底积2倍坐中央。 因式分解能与否,符号上面有文章。 同和异差先平方,还要加上正负号。 同正则正负就负,异则需添幂符号。 因式分解 一提二套三分组,十字相乘也上数。 四种方法都不行,拆项添项去重组。 重组无望试求根,换元或者算余数。 多种方法灵活选,连乘结果是基础。 同式相乘若出现,乘方表示要记住。【注】一提(提公因式)二套(套公式)因式分解 一提二套三分组,叉乘求根也上数。 五种方法都不行,拆项添项去重组。 对症下药稳又准,连乘结果是基础。 二次三项式的因式分解 先想完全平方式,十字相乘是其次。 两种方法行不通,求根分解去尝试。 比和比例 两数相除也叫比,两比相等叫比例。 外项积等内项积,等积可化八比例。 分别交换内外项,统统都要叫更比。 同时交换内外项,便要称其为反比。 前后项和比后项,比值不变叫合比。 前后项差比后项,组成比例是分比。 两项和比两项差,比值相等合分比。 前项和比后项和,比值不变叫等比。 解比例 外项积等内项积,列出方程并解之。 求比值 由已知去求比值,多种途径可利用。 活用比例七性质,变量替换也走红。 消元也是好办法,殊途同归会变通。 正比例与反比例 商定变量成正比,积定变量成反比。 正比例与反比例 变化过程商一定,两个变量成正比。 变化过程积一定,两个变量成反比。 判断四数成比例 四数是否成比例,递增递减先排序。 两端积等中间积,四数一定成比例。 判断四式成比例 四式是否成比例,生或降幂先排序。 两端积等中间积,四式便可成比例。

巧用数学方法解决生活问题范文

巧用数学方法解决生活问题 一、以题引思——每一道数学题都可能是一个有趣的生活问题。 案例——有一次,我解了这样一道题:妈妈要买5kg大米,但没有秤,她只有能装12kg和7kg的两个桶,你有什么办法?如果要买10kg可以怎么买?用12kg和7kg的桶可以买多少不同斤两的米呢? 我的解答——第一问:12-7=5(kg),答(略) 第二问:(12-7)*2=10(kg),答(略) 第三问:除了可以买5kg、10kg的米,还可以买12kg,12+7=19(kg),12*2=24(kg)或12*3=36(kg)……,7*2=14(kg)或7*3=21(kg)……,(12+7)*2=38(kg)或(12+7)*3=57(kg)……,(12-7)*3=15(kg)…… 我的发现:没有用秤称,照样能够量出米的很多不同重量,妈妈启发:“学数学就是为了解决生活中的问题,你身边有很多东西可以拿来解决数学问题的”。我欣喜的说:“是的,我们可以用尺子测量桌子,还可以用绳子、手、铅笔盒、图本好多东西来测量桌子的。”于是我和妈妈讨论,找到了不少可以解决数学问题的东西,有体积标注的密封盒,标有ml的饮料瓶…… 二、借题推思——每一个生活问题都能变成是一个有趣的数学游戏。 因为还没有学过体积的知识,我和妈妈就拿出我夏天玩水用的不同ml标注的饮料瓶、罐,这些瓶瓶罐罐有500ml的,有250ml的,有220ml的,有300ml 的,有120ml的,还有100ml的,那么多的不同的ml种类,不是也可以用来解决许多关于生活当中液体刻度问题吗?于是我们各自给对方出题,用这些饮料瓶、罐来做起了解题游戏: 文:我要称200ml的水,只有500ml和100ml的容器,可以怎么做? 妈:500-100*3=200(ml),答(略)。 妈:我要称80ml的油,可以用上面的哪两个饮料瓶帮忙? 文:300-220=80(ml),答(略)。 文:我要称30ml的有,可以用上面哪两个饮料瓶帮忙? 妈:250-220=30(ml),答(略)。 妈:用250ml,220ml,100ml可以称出哪些不同容量的饮料呢? 文:250ml,220ml,100ml,250+220+100=570(ml),

数学方法论

数学方法论 1研究数学方法论的意义和目的 什么叫方法论?方法论(methodology)就是把某种共同的发展规律和研究方法作为对象的一门学问。如所知,各门科学都有方法论,数学当然也有它自已的方法论。 数学方法论主要是研究和讨论数学的发展、数学的思想方法以及数学中的发现、发明与创新等法则的一门学问。 数这是一门工具性很强的科学,它和别的科学比较起业还具有较高的抽象性特征,为了有效地发展它、改进它、应用它或者把它很好地传授给学生们,就需要对这门科学的发展规律、研究方法、发现与发明等法则有所掌握。因此,数学研究工作者、数学业教师、科技工作者,以及高年级大学生、研究生等都需要知道一些数学方法论。 由于数学领域的许多概念与理论题材都是通过人脑的抽象思维形式表现出来的,这里不仅包含有思维对象(数学本体)的辩证法,而且还有着思维运动过程(认识与反映过程)的辩证法,所以数学方法论还给哲学家、自然辩证法研究工作者以及心理学家们提供了值得分析研究的素材。凡是看过恩格斯《自然

辩证法》的读者都知道,即使在初等数学里也充满着辨证法。 我们又知道,数学方法论中的许多方法和原理是从数学发展史中总结归纳出来的,所以数学工作者还必须学习一点数学史。 从近代数发展史中,我们看到有许多杰出的数学家曾转绕着数学基础问题展开了一系列争论,以致形成了各个著名的流派,如逻辑主义派、直觉主义派、形式主义派与柏拉图主义派等。直到现今,这些流派的观点主张对数学体系的内在发展,还产生着不同程度的影响。 各个数学流派对数学基础问题的研究,各有其方法论主张。事实上,他们各有所偏,各有所见。只有运用科学的反映论,才能从他们的观点主张中分析总结出较为正确的数学方法论观点。因此,对于今日的数学工作者来说,无论为了掌握、运用或者去发展数学方法论,都必须自觉地采取科学的反映观点(即辩证法的反映观点)去考察问题和分析问题。 2宏观方法论与微观的方法论 数学科学的发展规律可以从数学发展史的丰富材料中归纳分析出来。由于数学史是人类社会科学技术发展史的一个组成部分,数学发展的巨大动力源泉

数学物理方法习题解答(完整版)

数学物理方法习题解答 一、复变函数部分习题解答 第一章习题解答 1、证明Re z 在z 平面上处处不可导。 证明:令Re z u iv =+。Re z x =,,0u x v ∴==。 1u x ?=?,0v y ?=?, u v x y ??≠??。 于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。 2、试证()2 f z z = 仅在原点有导数。 证明:令()f z u iv =+。()2 2222,0f z z x y u x y v ==+ ∴ =+=。 2,2u u x y x y ??= =??。v v x y ?? ==0 ??。 所以除原点以外,,u v 不满足C -R 条件。而 ,,u u v v x y x y ???? , ????在原点连续,且满足C -R 条件,所以()f z 在原点可微。 ()00 00x x y y u v v u f i i x x y y ====???????? '=+=-= ? ?????????。 或:()()()2 * 00 0lim lim lim 0z z x y z f z x i y z ?→?→?=?=?'==?=?-?=?。 2 2 ***0* 00lim lim lim()0z z z z z z z zz z z z z z z z z =?→?→?→+?+?+??==+??→???。 【当0,i z z re θ≠?=,*2i z e z θ-?=?与趋向有关,则上式中**1z z z z ??==??】

3、设333322 ()z 0 ()z=0 0x y i x y f z x y ?+++≠? =+??? ,证明()z f 在原点满足C -R 条件,但不可微。 证明:令()()(),,f z u x y iv x y =+,则 ()332222 22 ,=0 0x y x y u x y x y x y ?-+≠? =+?+??, 332222 22 (,)=0 0x y x y v x y x y x y ?++≠? =+?+?? 。 3 300(,0)(0,0)(0,0)lim lim 1x x x u x u x u x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x u y u y u y y →→--===-; 3300(,0)(0,0)(0,0)lim lim 1x x x v x v x v x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x v y v y v y y →→-===。 (0,0)(0,0),(0,0)(0,0)x y y x u v u v ∴ = =- ()f z ∴ 在原点上满足C -R 条件。 但33332200()(0)() lim lim ()()z z f z f x y i x y z x y x iy →→--++=++。 令y 沿y kx =趋于0,则 333333434322222 0()1(1)1(1) lim ()()(1)(1)(1)z x y i x y k i k k k k i k k k x y x iy k ik k →-++-++-++++-+==+++++ 依赖于k ,()f z ∴在原点不可导。 4、若复变函数()z f 在区域D 上解析并满足下列条件之一,证明其在区域D 上

史上最全的初中数学知识点大全

精选教育类文档,如果您需要使用本文档,请点击下载,祝您生活愉快,工作顺利,万事如意! 马上就要中考了,祝大家中考都考上一个理想的高中!欢迎同学们下载,希望能帮助到你们! 史上最全的初中数学知识点大全 第一章:实数 重要复习的知识点: 一、实数的分类: ?????? ???????????????????????????????????????无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成q p 的形式,

其中p 、q 是互质的整数,这是有理数的重要特征。 2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如 1.101001000100001……;特定意义的数,如π、45sin °等。 3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。 二、实数中的几个概念 1、相反数:只有符号不同的两个数叫做互为相反数。 (1)实数a 的相反数是 -a ; (2)a 和b 互为相反数?a+b=0 2、倒数: (1)实数a (a ≠0)的倒数是a 1;(2)a 和b 互为倒数?1=ab ;(3)注意0没有倒数 3、绝对值: (1)一个数a 的绝对值有以下三种情况: ?????-==0,0, 00, a a a a a a

(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。 (3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。 4、n次方根 (1)平方根,算术平方根:设a≥0,称a 叫a的平方根,a叫a的算术平方根。 (2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。 (3)立方根:3a叫实数a的立方根。 (4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。 三、实数与数轴 1、数轴:规定了原点、正方向、单位长度的直线称为数轴。原点、正方向、单位长度是数轴的三要素。 2、数轴上的点和实数的对应关系:数轴上的每一个

如何培养中学生的数学阅读能力

如何培养中学生的数学阅读能力-中学数学论文 如何培养中学生的数学阅读能力 明巧冰 广东省云浮市郁南县都城镇都城初级中学527100 【摘要】数学阅读不同于其他阅读,有其特殊性,不可跳阅式、浏览式阅读,需要“咬文嚼字”、“逐字推敲”,融阅读、思考、操作为一体,做好关键字、词的记录。数学阅读将作为一种教学方法走进课堂,教师应该激发中学生对数学阅读的兴趣,培养学生数学阅读能力。 关键词数学;阅读;重要性;特殊性 1数学阅读的重要性 前苏联数学教育家斯托利亚尔说:“数学教学也就是数学语言的教学。”而语言的学习离不开阅读,所以数学的学习不能离开阅读。 数学本身是一种简约的科学语言。对数学教育而言,语言活动是一项主要的数学活动。 谈到阅读,人们往往联想到的是语文阅读。然而,随着社会的发展、科学的进步及“社会的数学化”,仅具有语文阅读能力的人已明显地显露出能力的不足,现代及将来社会要求人们具有的阅读能力已不再只是语文阅读能力,而是一种以语文阅读能力为基础,包括外语阅读能力、数学阅读能力、科技阅读能力在内的综合阅读能力,数学阅读能力对数学的教学和数学的学习也是十分重要的。 2数学阅读的特殊性及数学阅读方法 数学阅读过程与其他阅读过程有着本质的区别。数学阅读要有对数学语言、符号(文字、数学符号、术语、公式、图表等)的感知和认读,新概念的同化和顺应及

对阅读材料的理解和记忆。 2.1在数学阅读中要精力集中,不可跳阅式阅读和浏览式阅读。 在数学的教学和数学的学习中,数学的预习过程实际上就是数学阅读过程,布置数学预习就是训练学生完成数学阅读。在阅读中由于数学语言的高度抽象性和精确性,数学阅读也需要较强的逻辑思维能力。从感知阅读材料中有关的数学术语、符号,理解每个术语和符号出发,阅读理解一段数学材料或一个概念、定理或其证明,必须了解其中出现的每个数学术语和每个数学符号的精确含义,不能忽视或略去任何一个不理解的词汇。因此,要求在数学阅读中一定要精力集中,专心致志,采取“咬文嚼字”与“逐字推敲的方法”。由于数学教材编写具有严谨性、逻辑性强的特点,要求学生在阅读时对每个句子、每个名词术语、每个图表都应细致地阅读分析,领会其内容含义,对新出现的数学定义、定理要反复仔细阅读,并进行认真分析直至弄懂含义(不能忽视或忽略任何一个不理解的词汇),因此,阅读中不要贪多,应当求精,要循序渐进,慢中求快。 数学教科书是专家在充分考虑学生的生理、心理特征、教学原理、数学学科特点等诸多因素的基础上精心编写的,目前大多数数学教师上课仍然是耐心细致地讲解,讲完之后学生翻开课本和练习本做相应的练习,最后,总结布置作业。仅把教科书当成习题集,这正是老师讲得津津有味,学生学习成绩差的原因。新的课程理念强调,教师要合理地用数学教材而不是教教材,要把教科书作为学生学习的工具材料,必须重视数学教科书的阅读。 2.2在阅读中思考,在思考中阅读。 教师在指导学生阅读数学教材时,要求学生深入思考,课本是怎样提出问题的?怎样分析问题和解决问题?它们之中隐含着什么样的数学思想和方法?比如:学生

经济数学方法

經濟數學方法 壹、 矩陣與行列式 ◎定義: m n ?-階矩陣為一包括n 列和m 行的數字的方形排列,若以A 代表 此矩陣,則 m n a a a a a a a a a a A ij nm n n m m ?=???? ? ?? ?????=)(21222 21 11211Λ M ΛM M ΛK 例: ??????--=? ???????????---=11133111,531 321213102B A 分別為43?和24?矩陣 ◎定義: 若m n ij m n ij b B a A ??==)(,)( 則 m n ij m n ij ij C b a B A ??=+=+)()( =C m n ij a A ?=)(αα 例: ????? ?????--=??????????=3152 12,112312B A 則???? ? ?????-=??????????-++++-=+227520311152231122B A ???? ? ?????=??????????----+??????????=-+=-84513412315212551015510)1(55B A B A

A A A 21123122224624112312112312=???? ? ?????=??????????=??????????+??????????=+ ◎ 定義:若A=()ij a 為m n ?矩陣,B=()ij b 為k m ?矩陣,則A 和B 的 乘積AB 為k n ?矩陣C 例: ??????????-=??????=130112001,102210B A 求AB 及BA ???? ??????-? ? ? ???=130112*********AB =? ?? ???+-?+++++??+-?+++++1.1)1(00.23.11.00.20.12.01212)1(10.03.21.10.00.22.11.0 =??? ???132172 BA 無法計算 33?Θ 32? ◎ 行列式: Cramer's Rule 已知 1212111b X a X a =+ 2222121b X a X a =+ ? 2112221112222122 211211222121* 1a a a a a b a b a a a a a b a b X --== 211222111 2121122 2112112211 11 *2 a a a a b a b a a a a a b a b a X --== 例:解下列聯立方程式: ?? ?? ? ?????=????????????????????--025312121111321X X X

相关主题
文本预览
相关文档 最新文档