当前位置:文档之家› 知识讲解_高考总复习:计数原理、排列组合(基础)

知识讲解_高考总复习:计数原理、排列组合(基础)

知识讲解_高考总复习:计数原理、排列组合(基础)
知识讲解_高考总复习:计数原理、排列组合(基础)

高考总复习:计数原理、排列组合

【考纲要求】

1.理解分类加法计数原理和分步乘法计数原理;会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.

2.理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式;能解决简单的实际问题.

【知识网络】

【考点梳理】

要点一、分类加法计数原理与分步乘法计数原理

1.分类加法计数原理

完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2方案中有n种不同的方法。那么完成这件事共有N=m+n种不同的方法。

要点诠释:

如果完成一件事有n类办法,这n类办法彼此之间是相互独立的,无论哪一类办法中哪一种方法都能完成这件事,求完成这件事的方法种数,就用分类加法计数原理;在解题时,应首先分清楚怎样才算完成这件事,有些题目在解决时需要进行分类讨论,分类时要适当地确定分类的标准,按照分类的原则进行,做到不重不漏。

2.分步乘法计数原理

完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法。

要点诠释:

如果完成一件事需要分成n个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,计算完成这件事的方法种数就用分步乘法计数原理。解题时,关键是分清楚完成这件事是分类还分步,在应用分步乘法计数原理时,各个步骤都完成,才算完成这件事,步骤之间互不影响,即前一步用什么方法,不影响后一步采取什么方法,运用分步乘法计数原理,要确定好次序,还要注意元素是否可以重复选取。

3.两个计数原理的综合应用

(1)在解决实际问题的过程中,并不一定是单一的分类或分步,而是可能同应用计数原理,即分类时,每类的方法可能要运用分步完成的,而分步时,每步的方法数可能会采取分类的思想求。另外,具体问题是先分类后分步,还是先分步后分类,应视问题的特点而定。解题时经常是两个原理交叉在一起使用,分类的关键在于要做到“不重不漏”,分类的关键在于要正确设计分步的程序,即合理分类,准确分步。

(2)对于复杂问题,只用分类加法计数原理或分步乘法计数原理不能解决时,可以综合应用两个原理,可以先分类,在某一类中再分步,也可先分步,在某步中再分类。

要点二、排列与组合基础知识

1.定义、公式

排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析 一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -=+---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10 =n C 规定: 组合数性质: .2 n n n n n m n m n m n m n n m n C C C C C C C C 21011 =+++=+=+--…… ,, ①;②;③;④ 111 12111212211 r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-++++ +=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

高中排列组合基础题

排列、组合问题基本题型及解法 同学们在学习排列、组合的过程中,总觉得抽象,解法灵活,不容易掌握.然而排列、组合问题又是历年高考必考的题目.本文将总结常见的类型及相应的解法. 一、相邻问题“捆绑法” 将必须相邻的元素“捆绑”在一起,当作一个元素进行排列. 例1 甲、乙、丙、丁四人并排站成一排,如果甲、乙必须站在一起,不同的排法共有几种? 分析:先把甲、乙当作一个人,相当于三个人全排列,有33A =6种,然后再将甲、乙二人全排列有22A =2种,所以共有6×2=12种排法. 二、不相邻问题“插空法” 该问题可先把无位置要求的元素全排列,再把规定不相邻的元素插入已排列好的元素形成的空位中(注意两端). 例2 7个同学并排站成一排,其中只有A 、B 是女同学,如果要求A 、B 不相邻,且不站在两端,不同的排法有多少种?. 分析:先将其余5个同学先全排列,排列故是55A =120.再把A 、B 插入五个人组成的四个空位(不包括两端)中,(如图0×0×0×0×0“×”表示空位,“0”表示5个同学)有24A =2 种方法.则共有52 54A A =440种排法. 三、定位问题“优先法” 指定某些元素必须排(或不排)在某位置,可优先排这个元素,后排其他元素. 例3 6个好友其中只有一个女的,为了照像留念,若女的不站在两端,则不同的排法有 种. 分析:优先排女的(元素优先).在中间四个位置上选一个,有14A 种排法.然后将其余5个 排在余下的5个位置上,有55A 种方法.则共15 45A A =480种排法.还可以优先排两端 (位置优先). 四、同元问题“隔板法” 例4 10本完全相同的书,分给4个同学,每个同学至少要有一本书,共有多少种分法? 分析:在排列成一列的10本书之间,有九个空位插入三块“隔板”.如图: ×× × ××× ×××× 一种插法对应于一种分法,则共有39C =84种分法. 五、先分组后排列 对于元素较多,情形较复杂的问题,可根据结果要求,先分为不同类型的几组,然后对每一组分别进行排列,最后求和. 例5 由数字0,1,2,3,4,5组成无重复数字的六位数,其中个位数字小于十位数字的共有( ) (A )210个 (B )300个 (C )464个 (D )600个 分析:由题意知,个位数字只能是0,1,2,3,4共5种类型,每一种类型分别有55A 个、113433A A A 个、113333A A A 个、113233A A A 个、13 33A A 个,合计300个,所以选B 例6 用0,1,2,3,…,9这十个数字组成五位数,其中含有三个奇数数字与两个偶数数字的五位数有多少个? 【解法1】考虑0的特殊要求,如果对0不加限制,应有325555C C A 种, 其中0居首位的有314 544C C A 种,故符合条件的五位数共有325314 555544C C A C C A =11040个. 【解法2】按元素分类:奇数字有1,3,5,7,9;偶数字有0,2,4,6,8. 把从五个偶数中任取两个的组合分成两类:①不含0的;②含0的. ①不含0的:由三个奇数字和两个偶数字组成的五位数有325 545C C A 个; ②含0的,这时0只能排在除首位以外的四个数位上,有14A 种排法, 再选三个奇数数与一个偶数数字全排放在其他数位上,共有3141 5444C C A A 种排法. 综合①和②,由分类计数原理,符合条件的五位数共有325545C C A +3141 5444C C A A =11040个. 例8 由数字1,2,3,4,5可以组成多少个无重复数字,比20000大,且百位数字不是3

基本计数原理和排列组合

附 录 一.两个基本计数原理分类加法计数原理:做一件事情,完成它有n 类办法,在第一类办法中有m 1种不同的方法,在第二类办法中有m 2种不同的办法……在第n 类办法中有m n 种不同的方法,那么完成这 件事情共有N=m 1+m 2+…+m n 种不同的方法。 分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一个步骤有m 1种不同的方法,做第二个步骤有m 2种不同的办法……做第n 个步骤有m n 种不同的方法,那么完成这件 事情共有N=m 1×m 2×…×m n 种不同的方法。 两个基本计数原理是解决计数问题最基本的理论根据,它们分别给出了用两种不同方式(分类和分步)完成一件事情的方法总数的计算方法。考虑用哪个计数原理,关键是看完成一件事情是否能独立完成,决定是分类还是分步。如果完成一件事情有n 类办法,每类办法都能独立完成,则用分类加法计数原理;如果完成一件事情,需要分成n 个步骤,各个步骤都是不可缺少的,需要依次完成所有步骤,才能完成这件事情,则用分步乘法计数原理。 二.排列 以下陈述中如无特别说明,n、m 都表示正整数。一般的,从n 个不同的元素中任取m (m ≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。如果要求排列中诸元素互不相同,则称为选排列;反之,若排列中的元素可以有相同时,则称为可重复排列。可重复排列在生活中比较常见,如电话号码、证件号码、汽车牌照,等等。从n 个不同的元素中任取m(m ≤n)个元素的所有排列的个数,叫做从n 个不同元素中任取m 个元素的排列数。用符号m n A 。为导出m n A 的计算公式,注意到对任一选排列,其第一位(从左到右计)可以放置编号1到n 的n 个元素的任意一个,共有n 种可能的结果;对于第一位的每一种放置结果,第二位可以放置剩下的n-1个元素中的任意一个,共有n-1种可能的结果;...,对于第m-1位的每一种放置结果,第m 位可以放置最后剩下的n-m+1个元素中的任何一个,共有n-m+1种可能结果。因此,根据乘法计数原理,有排列数公式: ) 1()2)(1(+---=m n n n n A m n (1.3)从n 个不同的元素全部取出的一个排列,叫做n 个不同元素的一个全排列,记作n n A ,也记之 为!n 。根据排列数的公式有 .12)1(!????-?=n n n (1.4)

计数原理与排列组合经典题型

计数原理与排列组合题型解题方法总结 计数原理 一、知识精讲 1、分类计数原理: 2、分步计数原理: 特别注意:两个原理的共同点:把一个原始事件分解成若干个分事件来完成。 不同点:如果完成一件事情共有n类办法,这n类办法彼此之间相互独立的,无论哪一类办法中的哪一种方法都能单独完成这件事情,求完成这件事情的方法种数,就用分类计数原理。分类时应不重不漏(即任一种方法必须属于某一类且只属于这一类) 如果完成一件事情需要分成n个步骤,各个步骤都是不可缺少的,需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事情的方法种数就用分步计数原理。各步骤有先后,相互依存,缺一不可。 3、排列 (1)排列定义,排列数 (2)排列数公式: (3)全排列列: 4.组合 (1)组合的定义,排列与组合的区别; (2)组合数公式: (3)组合数的性质 二、.典例解析 题型1:计数原理 例1.完成下列选择题与填空题 (1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有种。 A.81 B.64 C.24 D.4 (2)四名学生争夺三项冠军,获得冠军的可能的种数是( ) A.81 B.64 C.24 D.4 (3)有四位学生参加三项不同的竞赛, ①每位学生必须参加一项竞赛,则有不同的参赛方法有; ②每项竞赛只许有一位学生参加,则有不同的参赛方法有;

③每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则不同的参赛方法有 。 例2(1)如图为一电路图,从A 到B 共有 条不同的线路可通电。 例3: 把一个圆分成3块扇形,现在用5种不同的颜色给3块扇形涂色,要求相邻扇形的颜色互不相同,问有多少钟不同的涂法?若分割成4块扇形呢? 例4、某城在中心广场造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有 ________ 种.(以数字作答) 例5、 四面体的顶点和各棱的中点共10个,在其中取4个不共面的点,问共有多少种不同的取法? 例6、(1)电视台在”欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封.现有主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果? (2)三边均为整数,且最大边长为11的三角形的个数是 D C B A

排列组合知识点汇总及典型例题(全)

排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!!!! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意:分类不重复不遗漏。即:每两类的交集为空集, 所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排列组合问题时,常常既要分 类,又要分步。其原则是先分类,后分步。 (43.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相 邻接元素在已排好的元素之间及两端的空隙之间插入。 (5)、顺序一定,除法处理。先排后除或先定后插 解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。即先全排,再除以定序元素的全排列。 解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法; (6)“小团体”排列问题——采用先整体后局部策略 对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。 (7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排考虑,再分段处理。 (8).数字问题(组成无重复数字的整数) ① 能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数。②能被3整除的数的特征:各位数字之和是3的倍数; ③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数。 ⑤能被5整除的数的特征:末位数是0或5。 ⑥能被25整除的数的特征:末两位数是25,50,75。 ⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数。 4.组合应用题:(1).“至少”“至多”问题用间接排除法或分类法: (2). “含”与“不含” 用间接排除法或分类法: 3.分组问题: 均匀分组:分步取,得组合数相乘,再除以组数的阶乘。即除法处理。 非均匀分组:分步取,得组合数相乘。即组合处理。 混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘。 4.分配问题: 定额分配:(指定到具体位置)即固定位置固定人数,分步取,得组合数相乘。

(完整版)排列组合知识点与方法归纳

排列组合知识点与方法归纳 一、知识要点 1.分类计数原理与分步计算原理 (1)分类计算原理(加法原理): 完成一件事,有n类办法,在第一类办法中有m1种不同的方法,在第二类办 法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法,那么完 成这件事共有N= m1+ m2+…+ m n种不同的方法。 (2)分步计数原理(乘法原理): 完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有 m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事共有 N= m1× m2×…× m n种不同的方法。 2.排列 (1)定义 从n个不同元素中取出m()个元素的所有排列的个数,叫做从n个不 同元素中取出m个元素的排列数,记为 . (2)排列数的公式与性质 a)排列数的公式: =n(n-1)(n-2)…(n-m+1)= 特例:当m=n时, =n!=n(n-1)(n-2)…×3×2×1规定:0! =1 b)排列数的性质: (Ⅰ) =(Ⅱ) (Ⅲ) 3.组合 (1)定义

a)从n个不同元素中取出个元素并成一组,叫做从n个不同元素中取 出m个元素的一个组合 b)从n个不同元素中取出个元素的所有组合的个数,叫做从n个不同 元素中取出m个元素的组合数,用符号表示。 (2)组合数的公式与性质 a)组合数公式:(乘积表示) (阶乘表示) 特例: b)组合数的主要性质: (Ⅰ)(Ⅱ) 4.排列组合的区别与联系 (1)排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。 (2)注意到获得(一个)排列历经“获得(一个)组合”和“对取出元素作全排列”两个步骤,故得排列数与组合数之间的关系: 二、经典例题 例1、某人计划使用不超过500元的资金购买单价分别为60、70元的单片软件和盒装磁盘,要求软件至少买3片,磁盘至少买2盒,则不同的选购方式是() A .5种 B.6种 C. 7种 D. 8种 解:注意到购买3片软件和2盒磁盘花去320元,所以,这里只讨论剩下的180元如何使用,可从购买软件的情形入手分类讨论:第一类,再买3片软件,不买磁盘,只有1种方法;第二类,再买2片软件,不买磁盘,只有1种方法; 第三类,再买1片软件,再买1盒磁盘或不买磁盘,有2种方法;第四类,不买软件,再买2盒磁盘、1盒磁盘或不买磁盘,有3种方法;于是由分类计数原理可知,共有

排列组合与计数原理

排列组合与计数原理 【复习目标】1.能熟练的判断利用加法原理和乘法原理。简单的排列组合组合数公式。 【复习重难点】加法原理和乘法原理公式的计算及应用。 1.高三(1),(2),(3)班分别有学生52,48,50人。 (1)从中选1人当学生代表的不同方法有____________种; (2)从每班选1人组成演讲队的不同方法有____________种; (3)从这150名学生中选4人参加学代会的不同方法有____________种; (4)从这150名学生中选4人参加数理化三个课外活动小组,共有不同方法有__________种。 2.假设在200件产品中有三件次品,现在从中任意抽取5件,期中至少有2件次品的抽法有__________种。 3.若,64 3n n C A 则n=___________。 例1.在1到20这20个整数中,任取两个数相加,使其和大于20,共有________种取法。 变式训练:从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为_______。 例2.从6人中选4人分别到张家界、韶山、衡山、桃花源四个旅游景点游览,要求每个旅游景点只有一人游览,每人只游览一个旅游景点,且6个人中甲、乙两人不去张家界游览,则不同的选择方案共有______________种. 例3.如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有_______ . 变式训练:要安排一份5天的值班表,每天有一人值班,现有5人,每人可以值多天班或不值班,但相邻两天不准由同一人值班,问此值班表共有_______ 种不同的排法.

两个计数原理与排列组合知识点与例题

两个计数原理与排列组合知识点及例题 两个计数原理内容 1、分类计数原理: 完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1 +m2 +……+m n种不同的方法. 2、分步计数原理: 完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n种不同的方法. 例题分析 例1某学校食堂备有5种素菜、3种荤菜、2种汤。现要配成一荤一素一汤的套餐。问可以配制出多少种不同的品种? 分析:1、完成的这件事是什么? 2、如何完成这件事?(配一个荤菜、配一个素菜、配一汤) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步配一个荤菜有3种选择 第二步配一个素菜有5种选择 第三步配一个汤有2种选择 共有N=3×5×2=30(种) 例2 有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书。 (1)从书架上任取一本书,有多少种不同的取法? (2)从书架上任取一本数学书和一本语文书,有多少种不同的取法? (1)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算。 解:属于分类:第一类从上层取一本书有5种选择 第二类从下层取一本书有4种选择 共有N=5+4=9(种) (2)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步从上层取一本书有5种选择 第二步从下层取一本书有4种选择 共有N=5×4=20(种) 例3、有1、2、3、4、5五个数字. (1)可以组成多少个不同的三位数? (2)可以组成多少个无重复数字的三位数? (3)可以组成多少个无重复数字的偶数的三位数? (1)分析: 1、完成的这件事是什么? 2、如何完成这件事?(配百位数、配十位数、配个位数) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 略解:N=5×5×5=125(个)

高中数学排列组合公式大全_高中数学排列组合重点知识

高中数学排列组合公式大全_高中数学排列组合重点知识 1.排列及计算公式 从n个不同元素中,任取mm≤n个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出mm≤n个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 pn,m表示. pn,m=nn-1n-2……n-m+1= n!/n-m!规定0!=1. 2.组合及计算公式 从n个不同元素中,任取mm≤n个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出mm≤n个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 cn,m 表示. cn,m=pn,m/m!=n!/n-m!*m!;cn,m=cn,n-m; 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=pn,r/r=n!/rn-r!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/n1!*n2!*...*nk!. k类元素,每类的个数无限,从中取出m个元素的组合数为cm+k-1,m. 排列Pnmn为下标,m为上标 Pnm=n×n-1....n-m+1;Pnm=n!/n-m!注:!是阶乘符号;Pnn两个n分别为上标和下标=n!;0!=1;Pn1n为下标1为上标=n 组合Cnmn为下标,m为上标 Cnm=Pnm/Pmm ;Cnm=n!/m!n-m!;Cnn两个n分别为上标和下标 =1 ;Cn1n为下标1为上标=n;Cnm=Cnn-m 加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。 两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。 排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。

排列组合基本知识

有关排列组合的基本知识 排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合. (一)两个基本原理是排列和组合的基础 (1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法. (2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法. 这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理. 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来. (二)排列和排列数 (1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列. 从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法. (2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列,当m=n时,为全排列Pnn=n(n-1)(n-1)…3·2·1=n!

(三)组合和组合数 (1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合. 从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合. (2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个 这里要注意排列和组合的区别和联系,从n个不同元素中,任取m(m≤n)个元素,“按照一定的顺序排成一列”与“不管怎样的顺序并成一组”这是有本质区别的. 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力 (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式 3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)

两个计数原理、排列与组合

全国卷五年考情图解高考命题规律把握 1.考查形式 高考在本章一般命制1道 小题或者1道解答题,分 值占5~17分. 2.考查内容 计数原理常与古典概型综 合考查;对二项式定理的 考查主要是利用通项公式 求特定项;对正态分布的 考查,可能单独考查也可 能在解答题中出现;以实 际问题为背景,考查分布 列、期望等是高考的热点 题型. 3.备考策略 从2019年高考试题可以 看出,概率统计试题的阅 读量和信息量都有所加 强,考查角度趋向于应用 概率统计知识对实际问题 作出决策. 第一节两个计数原理、排列与组合 [最新考纲] 1.理解分类加法计数原理和分步乘法计数原理.2.能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题.3.理解排列的概念

及排列数公式,并能利用公式解决一些简单的实际问题.4.理解组合的概念及组合数公式,并能利用公式解决一些简单的实际问题. 1.两个计数原理 分类加法计数原理 分步乘法计数原理 条件 完成一件事有两类不同方案,在 第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法 完成一件事需要两个步骤,做第1步有m 种不同的方法,做第2步有n 种不同的方法 结论 完成这件事共有N =m +n 种不同的方法 完成这件事共有N =mn 种不同的方法 排列的定义 从n 个不同元素中取出 m (m ≤n )个元素 按照一定的顺序排成一列 组合的定义 合成一组 排列数 组合数 定义 从n 个不同元素中取出 m (m ≤n )个元素的所有不同排 列的个数 从n 个不同元素中取出m (m ≤n )个元素的所有不同组合的个数 公式 A m n =n (n -1)(n -2)…(n -m + 1)= n ! (n -m )! C m n =A m n A m m =n (n -1)(n -2)…(n -m +1)m ! 性质 A n n =n !,0!=1 C m n =C n -m n ,C m n +C m -1n =C m n +1 一、思考辨析(正确的打“√”,错误的打“×”) (1)所有元素完全相同的两个排列为相同排列. ( ) (2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.

计数原理-排列组合

排列组合 知识点 一、排列 定义:一般地,从n 个不同元素中取出)(n m m ≤个元素,按照一定顺序排成一列,叫做从n 个不同元素中 取出m 个元素的一个排列;排列数用符号m n A 表示 对排列定义的理解: 定义中包括两个基本内容:①取出元素②按照一定顺序。因此,排列要完成的“一件事情”是“取出m 个元素,再按顺序排列” 相同的排列:元素完全相同,并且元素的排列顺序完全相同。若只有元素相同或部分相同,而排列顺序不相同,都是不同的排列。比如abc 与acb 是两个不同的排列 描述排列的基本方法:树状图 排列数公式:),)(1()2)(1(*∈+-???--=N m n m n n n n A m n 我们把正整数由1到n 的连乘积,叫做n 的阶乘,用!n 表示,即12)2()1(!??????-?-?=n n n n ,并规定1!0=。 全排列数公式可写成!n A n n =. 由此,排列数公式可以写成阶乘式: )!(!)1()2)(1(m n n m n n n n A m n -= +-???--=(主要用于化简、证明等) 二、组合 定义:一般地,从n 个不同元素中取出)(n m m ≤个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合;组合数用符号m n C 表示 对组合定义的理解: 取出的m 个元素不考虑顺序,也就是说元素没有位置要求,无序性是组合的特点. 只要两个组合中的元素完全相同,则不论元素的顺序如何,都是相同的组合.只有当两个组合中的元素不完全相同时,才是不同的组合 排列与组合的区别:主要看交换元素的顺序对结果是否有影响,有影响就是“有序”,是排列问题;没影响就是“无序”,是组合问题。 组合数公式: ),()!(!!!)1()2)(1(n m N m n m n m n m m n n n n A A C m m m n m n ≤∈-=+-???--==*,且 变式:),,()! ()1()2)(1()!(!!n m N m n C m n m n n n m n m n C m n n m n ≤∈=-+???--=-= *-且

两个计数原理与排列组合知识点及例题

两个计数原理与排列组合知识点及例题两个计数原理内容 1、分类计数原理: 完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1 +m2 +……+m n种不同的方法. 2、分步计数原理: 完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n种不同的方法. 例题分析 例1 某学校食堂备有5种素菜、3种荤菜、2种汤。现要配成一荤一素一汤的套餐。问可以配制出多少种不同的品种? 分析:1、完成的这件事是什么? 2、如何完成这件事?(配一个荤菜、配一个素菜、配一汤) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步配一个荤菜有3种选择 第二步配一个素菜有5种选择 第三步配一个汤有2种选择 共有N=3×5×2=30(种) 例2 有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书。 (1)从书架上任取一本书,有多少种不同的取法? (2)从书架上任取一本数学书和一本语文书,有多少种不同的取法? (1)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算。 解:属于分类:第一类从上层取一本书有5种选择 第二类从下层取一本书有4种选择 共有N=5+4=9(种) (2)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步从上层取一本书有5种选择 第二步从下层取一本书有4种选择 共有N=5×4=20(种) 例3、有1、2、3、4、5五个数字. (1)可以组成多少个不同的三位数? (2)可以组成多少个无重复数字的三位数? (3)可以组成多少个无重复数字的偶数的三位数? (1)分析: 1、完成的这件事是什么? 2、如何完成这件事?(配百位数、配十位数、配个位数) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 略解:N=5×5×5=125(个) 【例题解析】 1、某人有4条不同颜色的领带和6件不同款式的衬衣,问可以有多少种不同的搭配方法?

排列组合的基本理论和公式

排列组合的基本理论和公式 排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合. (一)两个基本原理是排列和组合的基础 (1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法. (2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1 种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法.这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理. 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来. (二)排列和排列数 (1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法. (2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列 当m=n时,为全排列Pnn=n(n-1)(n-2)…3·2·1=n! (三)组合和组合数 (1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合. 从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合. (2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个

计数原理与排列组合

计数原理与排列组合 计数原理一、知识导学 1.分类计数原理:完成一件事n类办法,那么完成这件事共有N =1m +2m +……+n m 种不同的方法. 2. 分步计数原理:完成一件事分成n个步骤,那么完成这件事共有N =1m ×2m ×…×n m 种不同的方法. 二、经典例题导讲[例1]体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有 ( ) A .12 种 B .7种 C .24种 D .49种 分析:学生进门有7种选择,同样出门也有7种选择,由分步计数原理,该学生的进出门方案有7×7=49种. ∴应选D . [例3]三张卡片的正反面分别写有1和2,3和4,5和6,若将三张卡片并列,可得到几个不同的三位数(6不能作9用). 解:解法一 第一步,选数字.每张卡片有两个数字供选择,故选出3个数字,共有3 2=8种选法.第二步,排数字.要排好一个三位数,又要分三步,首先排百位,有3种选择,由于排出的三位数各位上的数字不可能相同,因而排十位时有2种选择,排个位只有一种选择.故能排出3×2×1=6个不同的三位数. [例5] 用0,1,2,3,4,5这六个数字, (1)可以组成多少个数字不重复的三位数? (2)可以组成多少个数字不重复的三位奇数? (3)可以组成多少个数字不重复的小于1000的自然数? 解:(1)分三步:①先选百位数字,由于0不能作为百位数,因此有5种选法;②十位数字有5种选法;③个位数字有4种选法.由分步计数原理知所求三位数共有5×5×4=100个. (3)分三步:①先选个位数字,由于组成的三位数是奇数,因此有3种选法;②再选百位数字有4种选法;③个位数字也有4种选法.由分步计数原理知所求三位数共有3×4×4=48个. (4)分三类:①一位数,共有6个;②两位数,共有5×5=25个;③三位数,共有5×5×4=100个.因此,比1000小的自然数共有6+25+100=131个 四、典型习题导练 1.将4个不同的小球放入编号为1、2、3的三个不同的盒子中,其中每个盒子都不空的放法共有( ) A .43种 B .3 4种 C .18种 D .36种

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

12.1计数原理与简单排列组合问题

第十二章 计数原理 本章知识结构图 第一节 计数原理与简单排列组合问题 考纲解读 1.理解分类加法计数原理和分步乘法计数原理. 2.会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题. 3.理解排列、组合的概念. 4.能用计数原理推导排列数、组合数公式. 命题趋势探究 1.本节为高考必考内容,一般有1~2道选择题或填空题. 2.题目主要以实际应用题形式出现. 3.试题的解法具有多样性,一般根据计数重复或遗漏来设计错误选项,在解答选择题时可通过正向(分类相加)和反向(总数减去对立数)互相检验,也可以通过排除法筛选正确选项. 知识点精讲 基本概念 1.分类加法计数原理 ○ 1有n 类方法 完成一件事 ○ 2任两类无公共方法(互斥) 共有N = ○ 3每类中每法可单独做好这件事 12n m m m ++???+ 种不同方法.如图12-1所示.

计 计 A 计计计计1 计计1 计计2 计计 m1 计计计计n 计计1 计计2 计计 m n m1计 m n计 计计计计A计计 m1+m2+m3+···+m n计计计计计计 图12-1 2.分步乘法计数原理 ○1必须走完n步,才能完成任务 完成一件事○2前一步怎么走对后一步怎么共有N 走无影响(独立) 12n m m m =??????种不同方法.如图12-2所示. m1计m n计 计计计计B计计m1×m2×m3×···×m n计计计计计 计 m2计m i计 图12-2 两个原理及其区别. 分类加法计数原理和“分类”有关,如果完成某件事情有n类办法,这n类办法之间是互斥的,那么求完成这件事情的方法总数时,就用分类加法计数原理. 分步乘法计数原理和“分步”有关,是针对“分步完成”的问题.如果完成某件事情有n个步骤,而且这几个步骤缺一不可,且互不影响(独立),当且仅当依次完成这n个步骤后,这件事情才算完成,那么求完成这件事情的方法总数时,就用分步乘法计数原理. 当然,在解决实际问题时,并不一定是单一应用分类计数原理或分步计数原理,有时可能同时用到两个计数原理.即分类时,每类的方法可能运用分步完成;而分步后,每步的方法数可能会采取分类的思想求方法数.对于同一问题,我们可以从不同的角度去处理,从而得到不同的解法(但方法数相同),这也是检验排列组合问题的很好方法. 3.排列与排列数 从n个不同元素中取出m(m≤n)个(不同)元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m个元素的一个排列.从n个不同元素中选取m个元素(n≥m)的排列个数 共有A m n . ()()() A121 m n n n n n m =--???-+ g g g g (m个连续正整数之积,n为最大数). ()() A12321! n n n n n n =--???= g g g g g g 注

相关主题
文本预览
相关文档 最新文档