当前位置:文档之家› 铅锌元素的地球化学特征

铅锌元素的地球化学特征

铅锌元素的地球化学特征
铅锌元素的地球化学特征

铅锌元素的地球化学特征

一、铅锌的丰度

铅锌元素在地球及地层中的丰度(ppm)

黎彤(1976年)

铅锌在各类岩石中的丰度(ppm)

А·П·维诺格拉多夫(1962年)

铅锌在各类岩石中的丰度(ppm)

费德波(1961年)

二、铅锌的地球化学行为

1、岩浆作用阶段:

早期结晶阶段,形成各种高温氧化物等矿物,铅锌一般不晶出。

伟晶作用阶段:铅只能在晚期少量晶出,锌不晶出。

热液作用阶段:本作用在硅酸盐结晶基本结束后发生,残余溶液中富集了大量热液形成物,即亲铜元素、或硫化矿床中的典型成矿元素。铅锌以硫化物形式大量晶出。

容易成矿。并且主要形成于热液作用的中期、即中温热液阶段。

按费尔斯曼共生序数,热液作用金属矿物生成顺序如下:

高价氧化物(黑钨矿、锡石)、原子晶格硫化物(黄铁矿、闪锌矿、方铅矿)。

脉石矿物生成顺序如下:

硅酸盐、石英、氟石、碳酸盐、硫酸盐。

铅、银经常以异价类质同象置换;闪锌矿中经常呈类质同象的是:铁、钆(Cd)、铟(In)、锰。铁、钆(Cd)、锰含量可达百分之几。

2、表生作用阶段:

铅锌元素在不同类型的粘土质土壤中以细小分散相颗粒形式或离子交换形式,如Pb2+替代K+而引起含有机质的森林或黑土中有铅富集,或被强吸附和交换离子的富腐植质、铁锰氢氧化物的胶体强烈吸收;铅锌在沉积岩的粗碎屑物中,含量一般极微,但在还原环境下含在大量的H2S存在的页岩中铅的含量约20ppm,锌有时可达200~1000ppm。

表生作用对铅锌影响最大的是氧化作用,它使原在内生作用形成的紧密共生的铅锌硫化物矿床,破坏原有地球化学平衡条件,发生显著迁移使铅锌分离,形成不同性质的铅锌氧化物,以达至新的地球化学平衡。

铅锌硫化物的铅锌在表生带中能被Fe2(SO4)3、H2SO4、CuSO4中Fe3+、Cu2+离子置换,形成硫酸盐(参见《重金属元素的表生还原富集机制》)。由于铅锌硫酸盐溶解度相差十分悬殊,PbSO4溶解度为0.041克//升,ZnSO4为531.2克/ 升。使铅基本上在原生露头原地富集在次生矿床,而锌流失或渗透至下部与不同介质交代,形成次生氧化物。

在氧化带下,铅锌硫化物变化程序一般是:方铅矿氧化成不易溶的铅矾(PbSO4),当与碳酸盐溶液或方解石进行交代生成白铅矿(PbCO3),如继续氧化,可逐步交代成磷氯铅矿(Pb5(PO4)3Cl)和矾铅矿(Pb5(VO4)3Cl)。大体是:

方铅矿→铅矾→白铅矿→磷氯铅矿→矾铅矿

闪锌矿氧化后形成易溶于水的硫酸锌被淋滤流失,流经石灰岩、碳酸盐物质时发生交代成菱锌矿(ZnCO3),如与其它杂质或不同性质围岩作用时,形成水锌矿(Zn5(CO3)2(OH)6又称锌华)、极异矿(Zn4(H2O)[Si2O7](OH)2)等复杂的含锌氧化矿物;否则,锌完全流失,公残全铅的氧化物。

——《中国铅锌矿床地质勘探问题研究》(1984)

元素地球化学背景特征

一、元素地球化学背景特征 工区对Au、Ag、Cu、Pb、Zn、As、Sb、Bi、W、Sn、Mo等十一种元素的含量进行了统计分析,其地球化学特征参数见表3-1。 1、全区内背景值对比特征, (1)从1∶5万水系沉积物测量—土壤测量—岩石测量,背景值逐渐增高的有Sb、Pb、Ag、Cu、Zn等元素,其中以Pb、Ag、Zn变化最为显著,Pb在1∶5万水系沉积物测量中最低为17.36×10-6,到1∶1万土壤地球化学测量中增加到40.64×10-6,在岩石中最高为85.45×10-6;Ag在1∶5万水系沉积物测量中最低为0.06×10-6,到1∶1万土壤地球化学测量中增加到0.10×10-6,在岩石中最高为0.13×10-6,增加了一个数量级;Zn在1∶5万水系沉积物测量中最低为72.78×10-6,到1:1万土壤地球化学测量中增加到96.38×10-6,在岩石中最高为537.88×10-6, 增加了一个数量级,是正常的成矿序列,反映了是区内的主成矿元素,从岩石中迁移进入土壤经次生变化后迁移到水系中进一步的贫化。 (2)区内从岩石测量或土壤测量—1∶5万水系沉积物测量,背景值逐渐增高的有Sn、Au等元素,Sn在岩石中最低为1.72×10-6; 到1:1万土壤地球化学测量中增加到 2.21×10-6,在1∶5万水系沉积物测量中最高为2.51×10-6,是一个反正常的变化序列,但同处一个数量级;Au在岩石中为0.97×10-9; 到1:1万土壤地球化学测量中减少到0.54×10-9,在1∶5万水系沉积物测量中最高为1.22×10-9,反映出Sn、Au元素从岩石中迁移进入土壤经次生变化后,迁移到水系中富集。 (3)区内从土壤测量—1∶5万水系沉积物测量—岩石测量,背景值逐渐增高的有Bi、W、Mo等元素,这类均是高温元素,其中Bi在土壤中最低0.36×10-6,在1∶5万水系沉积物测量中为0.46×10-6, 在岩石中最高为0.50×10-6; W在土壤中最低2.19×10-6,在1∶5万水系沉积物测量中为2.29×10-6, 在岩石中最高为3.18×10-6; Mo在土壤中最低0.51×10-6,在1∶5万水

地球化学稀土元素配分分析()

《地球化学》实习测验 REE图表处理及参数计算 一、实习目的 1、掌握稀土元素组成模式图的制作方法。 2、掌握表征稀土元素组成的基本参数。 3、培养独立查阅文献及处理数据的能力。 二、基本原理 1、稀土元素组成模式图 1、原子序数为横坐标 2、标准化数据为纵坐标 3、对数刻度 2、表征稀土元素组成的基本参数 3、稀土总量 4、轻重稀土比值 5、轻稀土分异指数 6、重稀土分异指数 7、铕、铈异常 三、实习测验内容 1、绘制各类侵入岩的稀土元素组成模式图; 2、计算各类侵入岩稀土元素组成的基本参数; 3、对已绘制的图表和计算出的数据进行解释。 4、在以上实习内容掌握之后,自行查阅文献一篇,并进行以上3项操作。

四、实习测验步骤 1、根据查阅文献数据,找到自己想要的数据 表1 蒙库铁矿床岩石、矿石、矿物稀土元素成分分析(ppm) 2、选出自己要的数据建立表格 表2 稀土元素组成模式图(ppm) 3、对数据进行球粒陨石标准化 表3球粒陨石标准化后稀土元素组成模式图(ppm) 图1 蒙库铁矿床稀土元素配分图 5、计算稀土元素基本参数 表4 表征稀土元素组成的基本参数 6、数据及图表的解析 (1)绿帘石:∑REE=266.49ppm,表明稀土元素含量较高;LR/HR=4.98,表明轻重稀土元素间发生了较大的分异,轻稀土元素相对富集;(La/Sm)N=2.26,(Gd/Lu)N=1.47,显示轻重稀土元素内部都发生了分异作用,轻稀土元素分异更明显。Eu异常值=1.23,为强正异常;Ce异常值=0.95,表明Ce基本无异常;稀土元素配分模式为轻稀土富集,重稀土相对亏损的右倾型,图像具有左陡右缓特点,Eu正异常明显特征。 (2)磁铁矿矿石:∑REE=10.75ppm,表明稀土元素含量较低;LR/HR=3.15,表明轻重稀土元素间发生了较大的分异,轻稀土元素相对富集;(La/Sm)N=1.47, (Gd/Lu)N=0.88,显示轻重稀土元素内部都发生了分异作用,轻稀土元素分异更明显。 Eu异常值=1.8,为强正异常;Ce异常值=0.84,位弱Ce异常;稀土元素配分模式为轻稀土富集,重稀土相对亏损的右倾型,图像具有左陡右缓特点,Eu正异常明显特征。

勘探地球化学复习资料

化探复习 1、勘查地球化学的概念; 在地质与地球化学的理论指导下,在各种介质(包括岩石、土壤、水、水系沉积物、生物、气体等)中系统地在不同比例尺与规模上采集地球化学样品,经测试分析与数据处理,发现地球化学异常与其它地球化学指标,据此作为找矿的线索与依据,进而寻找矿床;同时用以解决一些地质等其它问题。 2、勘查地球化学的分类; 丰度(Abundance):泛指元素在一定的自然体系中的平均含量,也叫克拉克值。 浓集系数:它就是某元素在矿体中的含量(通常以最低可采平均品位作标准)与其地壳丰度的比值。 浓集系数反映了元素在地壳中局部集中(成矿)的能力。 浓集系数较大的元素在矿体周围呈现的地球化学异常强度较大。 对于某些伴生的微量元素,如果其浓集系数较主要成矿元素明显地大,则这些伴生元素便就是寻找该矿床的良好指示元素。Hg、Sb、Bi、As成为金矿床的指示元素便就是这个原因。浓度克拉克值:即地质体中某元素的平均含量与其克拉克值的比值。浓度克拉克值>1,说明元素富集,反之则分散。 化学元素在不同成分岩浆岩中的丰度变化,反映了岩浆成因与物质来源的差异,以及结晶分异与地球化学演化过程中元素的分配;同时也体现出造岩元素对微量元素含量变化的制约作用。 研究岩浆岩中化学元素的丰度变化具有重大找矿意义。 2、化学元素在各类沉积岩中的分布 (1)碱金属元素(2)碱土金属(3)亲氧元素 元素在地质体内的分布形态一般有五种情况:

①结合在多种矿物中的元素一般服从正态分布; ②集中在一、二种矿物内的元素呈对数正态分布; ③多次地化作用迭加形成的含量呈正态分布;单一作用呈正态分布。 ④扩散作用形成的含量呈对数正态分布;对流混匀作用呈正态分布。 ⑤两次不同地质作用,可引起两种类型相同而参数不同的分布形式。 研究分布类型的目的就是:正确选择背景值、背景上限以及各种数据处理方法。 通过对分布形式检验直接得到某些地化信息。 地壳中元素的存在形式与元素的迁移 地球化学环境就是使元素所在的地球化学系统得以保持平衡的各种物理化学条件的总合 原生环境,就是指从天然降水循环面以下直到能够形成正常岩石的最深水平的环境; 次生环境,就是地表天然水、大气所能够影响范围的环境 丰度研究的意义 1.判断特殊地球化学过程 2.衡量研究区化学元素富集或贫化的程度 3.作为选择分析方法灵敏度的依据 4.作为矿产资源评价预测的依据 地球化学系统中元素的总量称为地球化学储量。 在地球化学储量中,能被人类开采利用的部分叫作资源,资源中被探明的部分叫作矿产储量。资源量占地球化学储量的百分比叫作矿化度。 短吨= 907、18474 公斤=0、91吨 岩石的酸度,就是指岩石中含有SiO2 的重量百分数。 岩石的碱度即指岩石中碱的饱与程度 通常把Na2O+K2O的重量百分比之与,称为全碱含量 各岩类的标型元素组合为: 1、超基性岩元素,典型代表就是Cr、Ni、Co、Mg及Pt族。 2、基性岩元素,Cu、Fe、V、Ti、P、Mn、Ca、Sc、Sb等。 3、亲中性岩元素,Al、Ga、Zr、Sr等。 4、亲酸性岩元素,种类最多,以Li、Be、Ta、U、Th、K、Rb、Cs、F、B为代表。 5、碱性岩以富含Nb、Ta、Be及REE(稀土元素)为特征。 沉积岩可以分为碎屑岩、泥质岩与化学沉积岩三个类型 二、元素的赋存形式 1、矿物形式:独立矿物(主要造岩矿物)、副矿物、主矿物中的机械包裹体、固熔体分解物、液相包裹体中的子矿物; 2、非矿物形式:类质同象混入物,元素呈离子、分子、胶体被矿物表面吸附,超显微非结构混入物,有机结合物。 三、元素迁移 元素迁移的方式 1、化学及物理化学迁移 2、机械迁移 3、生物及生物地球化学迁移 地球化学异常:就是指某些天然物质(岩石、土壤、水系沉积物、生物等)中某一特征元素的含量偏离正常含量或某些化学性质明显的发生变化的现象。 地球化学背景及背景区: 在化探中将无矿或未受矿化影响的天然物质(岩石、土壤、水系沉积物、生物等)中某一特征元素的正常含量(一般含量)称为背景。 而将那些具有正常含量的地区称为背景区或正常区。

成都市土壤元素地球化学背景

成都市土壤元素地球化学背景 四川省地质矿产勘查局区调队朱礼学刘志祥陈斌邮编610213 国土资源部成都岩矿测试中心李小英邮编610081 摘要:本文扼要介绍了成都市辖区环境背景及土壤环境地球化学背景的调查方法,重点介绍了成都市土壤第一环境、第二环境地球化学元素的背景值及元素分布特征,地球化学分区,首次揭示本区土壤的地球化学背景。 关键词:成都市,土壤,地球化学背景。 成都市位处四川省中部,四川盆地西部,成都平原腹地,地跨东经1020 55'—1050 53'北纬300 6'—310 26',东西长192km,南北宽148km,幅原12900多平方公里,境内有平原、台地、丘陵、山地等多种地貌,海拔387—5364m,气候属于亚热带湿润季风气候区,是四川省工农业、政治、经济文化中心,随着社会的进步与发展,资源与环境日渐成为人们关注的热点,土壤与水、大气、阳光一样是万物生长之源,其环境背景及现状倍受人们关注。由中国地调局部署,四川地勘局实施的国土资源大调查项目“成都平原多目标地球化学调查”首次揭示了成都市土壤环境地球化学背景值及元素分布特征。 一、成都市土壤环境背景 成都市辖区北西部为龙门山区,南东为龙泉山区,腹地为平原,平原与山地间分布有浅丘台地,龙门山区为浅覆盖深切割区或基岩裸露区. 龙泉山区为浅切割、浅覆盖地区,平原区为深覆盖地区,全区覆盖及切割特征见图1。 除龙门山基岩裸露区外,全市土壤是以第四系、第三系、侏罗系、白垩系母岩为基础发育而成的。主要有水稻土、紫色土、黄土、棕壤等主要土壤类型(图2)。 全市土地农业综合分区可划分为五大区: Ⅰ.近郊平原、浅丘粮、油副食品区;Ⅱ.中部平原农、牧、渔区;Ⅲ.中部丘陵粮、果(经作林、枚区);Ⅳ.远郊中低山林、土特产区,Ⅴ.远郊高山水源涵养区(图3)。 二、土壤环境元素地球化学背景调查方法 不同地球化学景观区,土壤成土母质、成土作用、覆盖厚度、农业土壤利用存在着较大差异。地球化学背景的影响因素亦较为复杂,用以确定本地区地球化学背景的样品的采集深度、层位、采集密度、样品分析介质的粒度等应力求一个科学的、经济可行的、易于实施的模式。经国土资源部物化探研究所(河北廊坊)周国华等人研究评估(2000年)认为:本地区土壤第二环境浅层采集深度0—0.2m ,第一环境(深层)深度在0.8m以下,分析样土壤粒度平原区过干筛-20目,低山丘陵区紫色土-40目,土壤样品中地球化学元素的分布能较好地反映采样区的土壤环境地球化学背景。 (一)采样方法技术 平原区采样深度1.50—1.80m,丘区紫色土地区采样深度0.40—0.80m,龙门山区0.80m以

煤中稀土元素地球化学的研究进展

煤中稀土元素地球化学的研究进展 刘文中,肖建辉,陈 萍 (安徽理工大学地球与环境学院安徽省矿山地质灾害防治重点实验室,安徽淮南 232001) 摘 要:对国内外有关煤中稀土元素丰度的资料做了最新的统计分析,并讨论了煤中稀土元素的丰度、来源和赋存形式及地质成因。研究结果表明,稀土元素在煤中主要与硅酸盐矿物结合,其来源主要是陆源碎屑或溶液,同时也不排除煤中有机质在吸附稀土元素时起的重要作用;煤中稀土元素的分布特征继承了陆源物质铕(Eu)负异常的地球化学特征;煤中稀土元素的分布特征不受煤变质程度的影响,煤中稀土元素含量主要取决于煤的无机组分含量。 关键词:稀土元素;地球化学;煤 中图分类号:P595 文献标志码:B 文章编号:0253-2336(2007)11-0106-03 R esearch progress on geochem istry of rare earth elem ent i n coal LIU W en zhong ,X I A O Jian hu,i C HEN P i n g (Anhui P rov i n ci a lK ey L ab of m i ne g eolog ic a l d isaste r pre v e n ti on and con t rol ,School o f Ea rt h and E nvironm e n t , Anhui Universit y o f S cie n ce and Tec hn ology,Hua i nan 232001,C hina ) 基金项目:安徽省教育厅高校省级自然科学重点研究资助项目(KJ2007A006) 稀土元素有特殊的地球化学性能,如化学性质稳定、均一化程度高、不易受变质作用干扰,一经 纪录 在含煤岩系中,容易被保存下来,是研究煤地质成因的地球化学指示剂。稀土元素在自然界分布广泛,虽然煤中稀土元素含量不高,但在煤灰中稀土元素可以富集,并可望得到综合利用。因此,对煤中稀土元素的研究已成为煤地质学、环境科学以及材料科学的重要内容。 1 煤中稀土元素的丰度 国外研究煤中稀土元素起步较早,一些学者在 实验基础上得出了可靠的数据,如Sw a i n 报道了世界多数煤中稀土元素含量大致范围[1] ;世界煤中 稀土元素总量的平均值为46 3 g /g [2] ;美国煤中稀土元素总量的平均值为62 1 g /g [3];加拿大悉 尼盆地煤中稀土元素总量的平均值为30 g /g [4] 。 国内开展煤中稀土元素研究始于20世纪90年代,近年来取得了一些重要的研究成果。赵志根等人对中国110个煤样中稀土元素的含量分布进行了分析与总结[5] ,由于煤中稀土元素的赋存受多方面因素影响,稀土元素在煤中的含量分布范围相当宽,中间值段80%样品的分析数据可较为客观地 反映中国多数煤中稀土元素的丰度。研究者们还发现,在La ,Ce ,N d ,Sm,Eu ,Tb ,Yb,Lu 这8个稀土元素中,除Eu 外其余7个元素在煤中的平均值含量明显高于世界煤。华南二叠纪煤中稀土元素总量的平均值最大,其次是华北石炭、二叠纪煤,中新生代煤最小 [6] 。淮北煤田二叠纪煤中稀 土元素明显富集,稀土元素总量平均值为141 2 g /g ,高于中国及世界其他地区的煤 [7] 。华南地 区晚二叠世和晚三叠世的煤中,不同煤层的稀土元素含量平均值变化较大,在32~456 g /g [8] 。虽然不同地区、不同数量煤样的分析结果丰富了煤中 稀土元素丰度的数据,但就样品数量和代表性而言,研究中国煤中稀土元素的丰度仍具有很大的局限性。 2 煤中稀土元素的来源和赋存形式 近年来,国内外陆续报道了有关煤中稀土元素来源和赋存形式的研究成果:!保加利亚Piri n 煤中稀土元素主要与硅酸盐矿物相结合,煤中稀土元素的含量随灰分的增高而增加;与灰分及灰分的主要成分(S,i A ,l Fe ,Na )具有较好的正相关关系,而与低灰分中的典型组分钙缺少相关性,煤和岩石夹层的稀土元素标准化分布模式相似;与典型的陆源灰分的微量元素(T ,i Pb ,C r ,Th ,Ta , 106

土壤元素背景值的研究_以南方某区域为例

土壤元素背景值的研究 以南方某区域为例 曹雪琴,万军伟,陈 雯,王 超 (中国地质大学环境学院,武汉430074) 摘 要:依据南方某区域农业地质与生态地球化学调查取得的区域地球化学资料,按照不同土壤类型求取了研究区的土壤元素背景值,并分别与该区域所在省和全国平均水平进行横向和纵向比较,进而对研究区土壤中各元素及指标的丰缺状况进行分析,从而对现有土壤利用状况作出评价,为该地区土壤污染评价和治理修复提供了重要的地球化学依据,也为农业环境的规划和相应标准的制定提供了基础资料。 关键词:土壤;环境;元素背景值 中图分类号:X825;X820.1 文献标识码:A 文章编号:1671 1556(2009)02 0027 06* Study on Soil Element Background Values T aking a R egion in the South for Ex am ple CAO Xue qin,WAN Jun w ei,CH EN Wen,WA NG Chao (S chool of Envir onment,China Univer sity of Geosciences,Wuhan430074,China) Abstract:Acco rding to the regional geochemical data obtained fro m agricultural geolo gy and eco g eo chem i cal investigatio n of a r eg io n in the South,the so il element backgr ound values o f different soil types in the resear ch area are obtained and have horizo ntal and vertical compar isons w ith those of the pro vince in w hich the reg ion lies and those of the national average lev el.Then the analysis is made on the conditio ns of the a bundance and scarcity of regional soil element background values and index es in the soil of the r esearch area in or der to pr ovide the basic and comprehensive inform ation fo r estimating the present situatio n o f soil use, planning the ag ricultural enviro nment,making the corresponding standards and pr oviding important g eo chem ical data for so il pollutio n appr aisal and repairing. Key words:soil;environment;elem ent;backg round value 0 引 言 农业地质调查中,土壤环境背景值是最基本的化学参数之一,具有非常重要的理论和实践意义。 环境背景值是指一定时间和区域内不受或者很少受人类活动影响和现代工业污染的情况下的土壤化学组成或元素含量水平,也代表了成土过程发展到一定历史阶段,土壤与其各环境要素之间物质和能量交换达到动态平衡时的元素含量[1]。由于人类活动和环境影响的普遍性,现已很难通过调查研究获得绝对的土壤环境背景值。土壤生态地球化学基准值既是土壤地球化学环境自然演变的结果,又是衡量由人类活动叠加到土壤中的化学元素等组分多少的度量标准,其涵义涉及土壤的自然背景、人为累积程度、元素现实含量以及活动组分含量等研究内容[2]。因此土壤环境背景值只能是一个相对概念,包括自然背景部分和外源污染物部分[3],即调查时排除明显污染和主要干扰后的地球化学特征值。 土壤环境背景值作为农业地质和环境地球化学的一项重要指标和基础资料,为土壤环境的评价、土壤分区规律及影响因素的研究和局部异常区的圈定 第16卷 第2期2009年 3月 安全与环境工程 Safety and Enviro nm ental Engineering Vol.16 No.2 M ar. 2009 *收稿日期:2008 10 15 修回日期:2008 11 14 作者简介:曹雪琴(1984 ),女,硕士研究生,主要研究方向为水工环地质。E mail:cxq84813@https://www.doczj.com/doc/166784971.html,

微量元素地球化学期末作业培训课件

西藏阿里多龙地区中侏罗统碎屑沉积岩的地球 化学特征及其构造环境分析 学号:120110100 姓名:胡维云专业:构造地质学 前言 班公湖—怒江成矿带西段位于西藏自治区西北部的阿里地区境内,跨班公湖—怒江缝合带南北两侧,由于仅开展过 1∶25 万区域地质调查、1∶20万区域化探等少量基础地质工作,是西藏地质工作程度最低的地区之一。近年来该成矿带内资源评价工作取得了突出的进展,多龙超大型斑岩铜金矿床和嘎尔穷、嘎拉勒、弗野、材玛等大型矽卡岩型铜铁多金属矿床的相继发现与评价,揭示出班公湖—怒江成矿带成矿条件优越,找矿潜力巨大。关于班公湖—怒江结合带所代表的特提斯洋盆的性质,打开、闭合的时限和多龙大型矿集区的构造背景、成矿作用,不同的学者存在很大的争议。目前,己有许多资料证明了该带代表了一个已消失的具有一定规模的洋壳盆地。王恒忠等(2005)认为班公湖--怒江缝合带内的早白奎世OIB型火山岩是班公湖—怒江洋盆演化晚期的洋岛(塔仁本区早白垩世OIB型玄武岩(主要依据于上覆灰岩中化石时代));而张玉修等(2004)研究认为该套玄武岩是早白垩世冈底斯弧弧后盆地的产物。 一、研究目的及意义 拟通过研究多龙地区中侏罗统地层的岩石类型及组合特征和岩石地球化学特征,分析该地区中侏罗统地层形成的大地构造环境,为正确认识多龙超大型斑岩铜金矿床的成矿地质背景和结合带的演化提供了新的线索。 二、研究区地质背景 构造位置上,多龙地区处于班公湖—怒江缝合带北侧, 羌塘地块的南缘;地理位置上处于西藏自治区阿里地区。该区构造以断裂为主,呈近东西向带状断续展布。断裂构造主要表现为一系列走向近东西向且大致平行的北倾逆冲断层,并控制着地层和岩浆岩的分布。沿构造-岩浆带,大规模的岛弧火山活动发生在中—晚侏罗世,形成燕山早期陆缘火山弧,为一套含大量火山碎屑岩的以安山质为主的玄武—安山—流纹岩组合,火山作用晚期岩浆成分向碱性演化,以陆相中心式喷发为主,兼具熔岩溢流(西藏自治区区域地质志,2000)。岩浆的深成侵入作用发生在早白垩世至晚白垩世早期,以中酸性幕式侵入为特点,岩体一般呈岩珠或小岩基沿东西向呈带状分布,岩性主要有石英闪长岩、花岗闪长岩、二长花岗岩、似斑状花岗岩及花岗斑岩,年龄在70—140Ma之间(西藏自治区区域地质志,2000)。研究区地层主要为晚三叠统的日干配错组、中侏罗统的曲色组一段、色哇组、,早白垩统的美日切组,新近系中新统的康托组、更新统和全新统。地层属羌塘—昌都地层区内的羌南地层分区之多码分区,出露宽度大于10km。 三、研究依据 据现有资料研究表明:砂岩的TFe2O3+MgO、TiO2含量,以及Al2O3/SiO2、K2O/Na2O 和A12O3/(CaO+Na2O)等比值具有显著的构造背景差异,因而成为其形成的大地构造环境判别的重要参数(Bhatia,1983)。Roser等人(1986)认为,K2O/Na2O值与SiO2值可有效地示踪砂岩形成构造环境,并编制了构造判断图解。在Bhatia(1983)提出的TiO2-TFe2O3+MgO图解,Roser和Korsch(1988)提出了区分物源区是铁镁质的、中性的或长英质火成岩和石英沉积

青州市表层土壤元素地球化学组合特征研究

青州市表层土壤元素地球化学组合特征研究 收稿日期:20171229;修订日期:20180122; 编辑:陶卫卫基金项目:山东省潍坊市专项资金项目,潍坊市土地质量地球化学调查与评价(Z F C G 2016587 )作者简介:姜冰(1984 ),男,山东昌邑人,工程师,主要从事区域地质调查及矿产勘查工作;E m a i l :j b i n g 08@163.c o m 姜冰,刘阳,颜丙鹏 (山东省第四地质矿产勘查院,山东潍坊 261021 )摘要:聚类分析和因子分析可以获得土壤元素地球化学组合特征及其差异性三对青州市表层土壤样品数据进行分析研究,通过聚类分析,绘制表层土壤元素聚类谱系图,将23种元素或指标分为5个元素组合簇群及2个单元素簇,研究各元素间的组合特征,探讨其相关性二聚集性及其指示意义;通过因子分析,找出有代表性的因子,用其代表变量,绘制典型因子得分等值线图,并从中分析不同元素组合的区域分布基于何种因素,用11个代表性因子的分布特征就基本可以代表青州市表层土壤23项原始变量的分布特征,并对F 1,F 2,F 3主因子进行了地质解释三聚类分析与因子分析相结合,利于表层土壤中元素的共生组合特征及其差异性研究,利于对研究区表层土壤异常进行归纳总结三 关键词:聚类分析;因子分析;土壤元素;青州市中图分类号:X 142 文献标识码:B 引文格式:姜冰,刘阳,颜丙鹏.青州市表层土壤元素地球化学组合特征研究[J ].山东国土资源,2018,34(9):4954. J I A N GB i n g ,L I U Y a n g ,Y A NB i n g p e n g .S t u d y o nG e o c h e m i c a lA s s e m b l a g eC h a r a c t e r i s t i c s o f S u r f a c e S o i l E l e m e n t s i nQ i n g z h o uC i t y [J ].S h a n d o n g L a n da n dR e s o u r c e s ,2018,34(9):4954. 2017年,潍坊市土地质量地球化学调查与评价工作中,对测定的青州市8132件表层土壤样品数据,通过聚类分析和因子分析,进行了元素地球化学组合特征研究三 1 概述 青州市位于潍坊市西约60k m 处, 属潍坊市辖区的县级市三区内总的地势是西南高,东北低;冲沟较多,河流纵横,以近南北向河流为主,少量近东西向,水系源头多在西南部的中低山区;气候属北温带亚湿润大陆性季风气候,多年平均气温12.7?,多年平均年降水量为664mm ,多年平均无霜期191.7 天,多年平均积温为4331.7?三 区内地层分区为华北地层区之华北平原地层分区与鲁西地层分区,地层可分为古生代寒武系二奥陶系及新生代新近系二第四系三岩浆岩仅零星见有中生代闪长玢岩二新生代辉绿玢岩三火山岩少量分布在谭坊镇,是新生代火山活动的产物三区内由2个 构造单元组成,以NW 方向益都断裂为界,西南为 断块隆起区,东北为断块凹陷区三构造形式以断裂构造为主,构造方位多N E 向,NW 向次之三矿产资源丰富,主要有铁矿二水泥用灰岩二建筑石料用灰岩二 玄武岩等三 2 样品采集及分析 2.1 样品采集 土壤表层样采样点布设在1?5万土地利用类型 图上三采样点以网格状布设,按1k m 2为单位,采样密度平均为5件/k m 2三样点分布在网格内主要土壤类型和土地利用类型的代表性地块内,并兼顾空间分布均匀性三在布设的采样点上,以G P S 定位点为中心,向四周辐射20~50m 确定分样点,等份组合成一个混合样三采样深度为0~20c m ,由2~6个子样等量混合组成1件样品三采集的各分样点土壤掰碎,挑出杂物,充分混合后,四分法留取1~1.5 k g 装入样品袋三自然风干过1 0目尼龙筛后样品重四 94四第34卷第9期 山东国土资源 2018年9月

地球化学稀土元素配分分析

地球化学稀土元素配分分 析 Final revision by standardization team on December 10, 2020.

《地球化学》实习测验 REE图表处理及参数计算 一、实习目的 1、掌握稀土元素组成模式图的制作方法。 2、掌握表征稀土元素组成的基本参数。 3、培养独立查阅文献及处理数据的能力。 二、基本原理 1、稀土元素组成模式图 1、原子序数为横坐标 2、标准化数据为纵坐标 3、对数刻度 2、表征稀土元素组成的基本参数 3、稀土总量 4、轻重稀土比值 5、轻稀土分异指数 6、重稀土分异指数 7、铕、铈异常 三、实习测验内容 1、绘制各类侵入岩的稀土元素组成模式图; 2、计算各类侵入岩稀土元素组成的基本参数; 3、对已绘制的图表和计算出的数据进行解释。 4、在以上实习内容掌握之后,自行查阅文献一篇,并进行以上3项操作。 四、实习测验步骤 1、根据查阅文献数据,找到自己想要的数据 表1 蒙库铁矿床岩石、矿石、矿物稀土元素成分分析(ppm) 2、选出自己要的数据建立表格 表2 稀土元素组成模式图(ppm) 3、对数据进行球粒陨石标准化 表3球粒陨石标准化后稀土元素组成模式图(ppm) 图1 蒙库铁矿床稀土元素配分图 5、计算稀土元素基本参数

表4 表征稀土元素组成的基本参数 6、数据及图表的解析 (1)绿帘石:∑REE=,表明稀土元素含量较高;LR/HR=,表明轻重稀土元素间发生了较大的分异,轻稀土元素相对富集;(La/Sm)N=,(Gd/Lu)N=,显示轻重稀土元素内部都发生了分异作用,轻稀土元素分异更明显。Eu异常值=,为强正异常;Ce异常值=,表明Ce基本无异常;稀土元素配分模式为轻稀土富集,重稀土相对亏损的右倾型,图像具有左陡右缓特点,Eu正异常明显特征。 (2)磁铁矿矿石:∑REE=,表明稀土元素含量较低;LR/HR=,表明轻重稀土元素间发生了较大的分异,轻稀土元素相对富集;(La/Sm)N=, (Gd/Lu)N=,显示轻重稀土元素内部都发生了分异作用,轻稀土元素分异更明显。Eu异常值=,为强正异常;Ce异常值=,位弱Ce异常;稀土元素配分模式为轻稀土富集,重稀土相对亏损的右倾型,图像具有左陡右缓特点,Eu正异常明显特征。 (3)块状黄铁矿:∑REE=225ppm,表明稀土元素含量较高;LR/HR=,表明轻重稀土元素间发生了较大的分异,轻稀土元素相对富集;(La/Sm)N=,(Gd/Lu)N=,显示轻重稀土元素内部都发生了分异作用,轻稀土元素分异更明显。Eu异常值=,为强正异常;Ce异常值=,为Ce弱异常;稀土元素配分模式为轻稀土富集,重稀土相对亏损的右倾型,Eu正异常明显特征。 五、结论 1、绿帘石、磁铁矿矿石、块状黄铁矿的配分模式具有相似性,均为右倾型,正Eu 异常,富集轻稀土元素。差别在于(1)稀土元素含量,绿帘石和块状黄铁矿具有较丰

微量元素地球化学在岩石成因和成矿作用中的应用

关于微量元素地球化学的读书报告 (021111班2011100 ---- ---) 微量元素基本概念 微量元素(minor elements) 依不同学者给出了不同的定义。盖斯特(Gast, 1968)定义微量元素“不作作系内任何相主要组份存的非化学计量的分散元素” 。按此定义微量元素是相对的,在一个 体系中为微量元素,而在另一个体系中可能为常量元素。有人从热力学角度来定义微量元素:在 研究的对象中元素的其含量低到可可近似地用稀溶液定律来描述其行为,则该元素可称为微量元 素。一般的,将地壳中除O、Si、Al、Fe、Ca、Mg、Na、K、Ti 等9 种 元素(它们的总重量丰度占99%左右)以外的其它元素统称为微量元素,它们在岩石或矿物中的含量一般在1%或0.1%以下,含量单位常以10-6或10-9表示。 开始的研究主要集中在了解和查明微量元素在陨石、地球及其各层圈以及各类地质体中的分布、丰度及其规律,而后认识到微量元素作为一种示踪剂或指示剂,研究成岩成矿作用,如岩石 类型划分,原岩恢复、成岩成矿的物质来源和物理化学条件微量元素的特殊的地球化学性质,同 时可以利用热力学的有关理论,建立微量元素地球化学模型,对成岩和成矿的熔融和结晶作用过程进行定量理论计算,使微量元素地球化学有自己的特殊的研究方法和理论体系。在地球化学中最大量和最主要的应用集中表现为:利用微量元素的组成、相互关系等特征作为各类岩石、矿石的成因类型的“指纹元素” ,并进一步利用微量元素来探讨和指示地质、地球化学过程。 二微量元素在成岩过程中的化学示踪作用 1.1 微量元素地球化学对和组合关系图解在将微量元素资料用于地球化学问题研究时,常将两个元素的关系、或将两个元素比值的关系、或两组元素和比值的关系进行对比,可统称为微量元素对,或微量元素地球化学对。一般说来,微量元素对常常是地球化学性质相近的元素,如Nb/Ta,Zr/Hf ,Sr/Ba ,Th/U, Cr/Ni ,Cl/Br 等,也可以其中一个是主元素,另一个是与其他化性质相似的微量元素,如K/Rb, Mg/Li ,Ca/Sr ,Fe/V,Al/Ga ,S/Se 等。前述各单个稀土元素比值(如La/Ce )也常 用作元素对。 应该根据研究目的选择不同的元素对。如研究岩浆形成机制和过程鉴别要选择分配性 质相同或相反的元素对,如Ba/Nb, Nb/Th,以及Ce—Ni, Cr - Ta等。要讨论氧化、还原状态,要选择变价元素对,如Fe2+/Fe3+, V3+/V5+,Eu2+/Eu3+,以及Mn/Mg等。要研究岩体剥蚀深度,要选择元素浓度随深变而增减的,如Li/Sc ,Rb/Bi ,Sb/Bi 等。而要进行变质岩原岩恢复,则需选择对变质作用较稳定的元素,如Zr/Ti ,Zr/Ni ,Cr/Ti ,Zr/Mg 等等。有时为了

内蒙古准和热木音苏木地区元素地球化学分布特征

内蒙古准和热木音苏木地区元素地球化学分布特征

————————————————————————————————作者:————————————————————————————————日期:

内蒙古准和热木音苏木地区元素地球化学分布特征 内蒙古准和热木音苏木地区元素地球化学分布特征 【摘要】内蒙古准和热木音苏木地区具有较好的找矿前景,通过在准和热木音苏木地区开展1:5万地球化学测量以及重点研究区1:1万地球化学测量工作,对样品中的Ag、As、Au、Bi、Cd、Co、Cr、Cu、Hg、Mo、Ni、Pb、Sb、Sn、W、Zn共计16种元素进行分析,总结了该地区以上16种元素的地球化学分布特征,为进一步地球化学异常的圈定、成矿靶区的预测提供了资料。 【关键词】准和热木音苏木;地球化学分布特征 0 前言 准和热木音苏木地区位于内蒙古自治区中北部的边境地区,属于中低山丘陵区,地势比较平坦,海拔高度一般在1000~1200m之间。研究区工业化程度较弱,人类活动对环境的影响程度小,基本上保持了原生环境,对本区进行的地球化学分布特征的研究基本可以达到预期的效果。 1 区域地质背景 研究区处于西伯利亚板块东南缘古生代陆缘增生带(Ⅱ级),或为晚古生代泥盆纪陆缘增生带和晚古生代后碰撞构造岩浆岩带(Ⅲ级)。区内有两条北东向的主要断裂,在中部以及东北部存在数量较少的其它类型的小型断裂。区内地层由新到老见图1。石炭纪、二叠纪岩浆活动强烈。侵入岩十分发育,由于受到区域构造的控制,大多呈北东向分布。 2 区域地球化学特征 2.1 景观地球化学特征 依据全国地球化学景观区划分方案(郭志娟等,2015),研究区处在干旱荒

长江口沉积物重金属元素地球化学特征及其底质环境评价

长江口沉积物重金属元素地球化学特征 及其底质环境评价 孟 翊,刘苍字,程 江 (华东师范大学河口海岸国家重点实验室,上海200062) 摘要:通过对长江口区32个表层沉积样品中Cu、Cr、Zn、Pb等重金属元素及Al等常量元素的含量分布进行定量研究,揭示水动力和沉积作用是研究区元素分布的主要控制因素,进而采用聚类分析将研究区划分为4个沉积地球化学分区。此外,本次研究采用模糊数学方法,以Cu、Cr、Zn、Pb重金属元素作为评价因子对长江口区进行底质环境的多因子评价,结果发现研究区的底质环境都受到了不同程度的污染,从而为探讨研究区沉积地球化学过程和环境保护提供了科学依据。 关键词:沉积地球化学;重金属元素;环境评价;长江口 中图分类号:P736.4 文献标识码:A 文章编号:025621492(2003)0320037207 长江口是一个水丰沙多的中潮河口,它的年径流量和年输沙量分别达9240亿m3和4186亿t。在复杂的水动力因子,如径流、潮流、河口余环流和波浪等的相互作用下,大量流域来沙在河口区沉积,建造了庞大的水下三角洲。由于多种水动力因子的相互消长,加之生物地球化学作用的影响,使得进入该区水体中的重金属元素具有复杂的沉积地球化学特征[1—3]。因此,研究重金属元素在沉积物中的含量和分布,不仅可以揭示重金属元素在河口地区迁移富集的规律[4,5],进而探讨水动力和沉积条件的变化,而且对于水资源保护与开发利用、区域环境评价[6]及经济发展都具有重要意义。 1 研究区域及方法 本次研究样品主要采集于1988—1992年的长江河口锋调查[2],共计32个表层沉积样品。研究范围西起长江口南北分叉处,东至长江水下三角洲前缘,可达123°E附近(图1)。 样品处理方法:用取泥器取出表层沉积物,放入聚乙烯瓶中,取50g沉积物,经风干、烘干后保存于干燥箱中,取一定量样品用HCl2HNO32HClO42HF 消化,经HNO3重溶后制成5%的溶液,采用美国产Jarrell Ash1000ICP光谱仪,测定重金属元素Cu、Cr、Zn、Pb和常量元素Al、Fe等元素的总量,结果表 基金项目:国家自然科学基金资助项目(40206013) 作者简介:孟 翊(1967—),女,助理研究员,主要从事海洋沉积与沉积地球化学研究,E2mail:ymeng@https://www.doczj.com/doc/166784971.html, 收稿日期:2003201210;改回日期:2003204223. 文凤英编辑明绝大多数分析元素的相对误差小于5%。与此同时还采用COUL TER L S100Q激光粒度仪做了沉积物的粒度分析。 2 结果与讨论 2.1 重金属元素含量及分布趋势 河口沉积物中的重金属元素不仅蕴含许多有价值的地质和环境信息,而且能较好地显示该地区的污染情况,是开展地球化学研究和进行环境评价的基础资料[7,8]。 表层沉积物中重金属元素的平面分布趋势显示,Cu、Cr、Zn、Pb等的高值区均位于30150°~31150°N、122°~122192°E的范围,即高值区主要分布在南支口外的长江水下三角洲地区(图2)。 表层沉积物中重金属元素的分布,在东西纵向上表现为从口内到口外含量增加,达到一高值后又呈下降趋势,且下降幅度较大(图3a)。南北横向的变化趋势与东西纵向的有些相似,即从南向北重金属元素的含量呈先低后高、再有所降低的变化趋势(图3b)。因此,重金属元素的含量分布总体上在东西纵向上呈两侧低、中间高,而南北横向上则显示南高北低的格局。 2.2 元素的相关性 对几种重金属元素所做的相关分析表明,Cu、Cr、Zn、Pb与Al2O3具有极好的正相关性,相关系数分别为0191、0191、0188、0167(图4)。Al2O3是大 2003年8月 海洋地质与第四纪地质 Vol.23,No.3第23卷第3期 MARIN E GEOLO GY&QUA TERNAR Y GEOLO GY Aug.,2003

微量元素地球化学的应用

微量元素在成岩成因和成矿成因研究中的应用 姓名:叶勃 学号: 班级024121

微量元素在成岩成因和成矿成因研究中的应用 前言 人类活动所能涉及的地壳主要是由92种化学元素组成.其中元素O、Si、Al、Fe、Ca、Na、K、Mg和Ti九种元素占据地壳和地幔的99%,其余83种元素只占1%,然而正是这1%的元素给人类的发展提供了丰富的物质基础——矿产资源。随着人们对微量元素性质的逐步认识,人们发现微量元素在成岩成因和成矿成因上有重要的作用。这次读书报告,我读了《微量元素地球化学及其应用》(戴塔根刘汉元著)以及相关的文献。 第一章何为微量元素 微量元素是指自然界除了主量元素外,丰度低于0.1%,在体系中不作为任何相的主要成分,浓度低到服从稀溶液定律的元素。在地球化学研究中,习惯上微量元素不记入矿物分子式中。 微量元素与主量元素是相对的,根据研究对象的不同而存在差别。例如,锆石中的Zr通常属于微量元素,但是在锆石中,它属于常量元素。 微量元素存在的三个形式:在矿物快速结晶过程中陷入囚禁带内、在主晶格的间隙缺陷中和在固溶体中以类质同像替代主要元素的原子或离子。 为微量元素地球化学做出最大贡献的人是能斯特,他提出能斯特分配定律,不仅将地学与化学联系起来,更重要的是他将地球化学由定性研究引向定量研究,打开了研究微量元素地球化学的大门。根据能斯特分配定律,我们引进了分配系数为组数i在两相(α和β)之间的质量浓度比值。 同时,因为元素的地球化学,或者行为往往受到多个矿物的影响,通常为矿物集合体,所以,我们引入总分配系数的概念,它是微量元素在各矿物相与熔体间简单分配系数与矿物相含量的加权之和。

稀土元素地球化学

在岩浆作用中,REE趋向于晚期富集。由超基性岩、基性岩、中性岩一酸性岩或碱性岩,REE逐浙增高,并在钠质火成岩类的碱性岩中达最大富集。从世界上各类稀土矿床的产出情况来看,REE成矿的母岩主要是碱性岩、碳酸岩和花岗岩。和其他稀有元素一样,REE 在岩浆岩中的矿化宫集作用在很大程度上取决于REE的丰度和岩石化学条件。 Cullers和Grat(1984)用Eu/Sm表示Eu的异常,他以成粒陨石的Eu焰皿比值0.35为标准:大于此值为正Eu异常;小于此值为负Eu异常,与此值相近为无异常。 δEu值在稀土乔素地球化学参缉中占有轻重要的地位,它常常作为划分同二大类岩石的亚类和讨论成岩成矿条件的重要参数之一。例如花岗岩类可划分为壳型与壳樱型和富碱侵入体型。壳型花岗岩Eu为中等亏损,δEu平均值为0.46;壳幔型花岗岩Eu为弱亏损,δEu平均值为0.84;碱性花岗岩Eu则强烈亏损,δEu<0.30。 2.总的说来,REE的分馏程度较低,稀土球粒陨石标准化分布型式比较简单。其中大陆玄武岩富集∑Ce;侵入基性岩的稀土分馏较小;从中大西洋脊和东太平洋隆起采集的深海次碱性玄.武岩看,其REE分布型式与球粒陨石相似,仅La、Ce、Pr有明显亏损,在更碱性的深海玄武岩中未见La、Ce、Pr亏损。 3.大陆玄武岩的稀土改分变化很大,但存在两个明显的趋势。无论是∑REE或∑Ce/∑Y均大于球粒陨石。除个别例外,玄武岩的铕异常都很不明显,其δEu值高于沉积岩和花岗岩的δEu值。有时还见有负铈异常,如西伯利亚玄武岩的∑Ce均<l。 (2)碳酸岩和共生的碱性硅酸盐岩石 虽然碳酸岩具有最高的REE含量和LREE/HREE比值,但其变化范围也很大(∑REE =72—15515ppm,(La/Lu)cn=7.1 —1240)。碳酸岩无Eu异常,但出现负Ce异常。无Ce异常的样品比有Ce异常的样品可能形成于更低的氧化条件下。 三、稀土参数图解 这类图解很多,可用于探讨岩石的形成机理或成因分类等问题。分别叙述如下: (一)La/Sm—La图解 La/Sm对La的图解(图70),在此图上,可以把部分熔融与分离结晶作用区分开来。如该图所示,取自大洋中脊的样品主要落在部分熔融的趋势线上,而冰岛及其附近的样品则沿分离结晶的趋势线分布,这反映了上述岩石的不同成因。此图解用于基性岩类是没有问题的,但对于花岗岩类能否应用则有不同的认识。因为在基性岩中无含REE的副矿物,而在花岗岩类中则常出现含REE的副矿物,如磷灰石、德石、锆石等,甚至于出现REE的独立矿物,如褐帘石、独居石、磷亿矿等;另外,在基性岩中无挥发分,而在花岗岩类(尤其是岩浆分异晚期岩体)中常有挥发分,特别是氟)的聚集,后者的出现对REE分配系数有很大影响。因此在对花岗岩类制作La/Sm—La图解或进行定量模式计算对都要充分考虑上述影响因素,并设法加以排除,否则所计算与团解得出的结论难以令人信服。

相关主题
文本预览
相关文档 最新文档