当前位置:文档之家› 开启式活塞制冷压缩机的结构特点

开启式活塞制冷压缩机的结构特点

开启式活塞制冷压缩机的结构特点
开启式活塞制冷压缩机的结构特点

开启式活塞制冷压缩机的结构特点:

较大的压缩机采用开启式-- 曲轴通过轴封伸出机体由原动机驱动。图11-2 示出CM02型开启式制冷压缩机结构图。

1 .本体结构。机体1A 的上隔板与缸盖2A 之间形成排气腔,下隔板以下是曲轴箱,上、下隔板之间形成吸气腔。曲轴16 有两个互成180°的曲拐,八缸机每个曲柄销上配有四套连杆活塞,从轴向看气缸成扇形布置(六缸机呈W型;四缸机呈V 型),相邻气缸中心线夹角45°,轴向每两缸成一列。曲轴出轴端有机械轴封,我国国标规定轴封处油渗漏应不超过0.5 mL/h 。曲轴另一端带齿轮滑油泵11。吸气腔最低处有与曲轴箱相通的吸气回油孔,作用是:

(1)让吸气从系统中带回的滑油流回曲轴箱;

(2)让经活塞环漏入曲轴箱的冷剂经此孔进入吸气腔被抽走;

(3)在必要时能用压缩机本身抽空曲轴箱,回收油中溶解的冷剂或拆修后抽空曲轴箱内空气。

本机型回油孔上设有止回阀1B,万一发生“奔油”能使之关闭,而抽吸曲轴箱内气体时压差较小,止回阀不关闭。

2.安全阀。压缩机应设有安全阀(本机型安全阀24设在吸、排腔之间)或安全膜片(功率〉10 kW可不设),在冷剂压力过高时开启或爆破,使冷剂回流至吸入侧。其开启或爆破压力应不大于高压侧设计压力(我国造船规范规定R22装置为 2.2 MPa,R134a 装置为 1.4 MP a)。

3.多用接头。本机型吸、排截止阀壳体上设有由小型截止阀42控制的多用接头,它可接压力表或压力控制器,还有其他多种用途。有的制冷压缩机吸、排截止阀采用双阀座结构,在阀体上设了常通接头和可用阀盘启闭的多用接头。将阀杆退足则截止阀全开,多用接头关闭;若阀杆退足后反旋一、二圈,则多用接头与截止阀都开启。

4 .缸套--气阀组件(图11-3 )。气缸套19A与吸气阀升程限位器19H用螺钉连在一起,置于机体上隔板上,通过垫片19K使吸、排气腔之间密封。缸套上部凸缘有一圈吸气孔通吸气腔,由环形吸气阀片19F用吸气阀弹簧压紧。排气阀升程限位器

20B与排气阀内阀座20A用埋头螺栓连接,被缸头弹簧21压在吸气阀定位器19H(排气阀外阀座)上。环形排气阀片20C由弹簧压在19H和20A构成的阀座上。活塞在上止点时缸内的余隙高度应符合说明书要求,本机型定为0.8?1.2 mm靠缸套垫片19K来调整。

筒状活塞18 有一道密封环和一道刮油环。为减轻重量,高速制冷压缩机活塞常由铝合金制成。由于铝合金活塞的热胀系数比钢制的活塞销大,故冷态时二者是过盈配合。拆装活塞销时应先将活塞在热油中或铁板上加热至70 C左右。

较大的活塞式压缩机排气阀升程限位器能被顶起,亦称“假盖”。当吸入过

多液态冷剂或滑油发生液击时,缸内压力迅速超过排气腔压力,能克服弹簧21的张力将排气阀连同其内阀座20A和升程限位器20B一同顶起,以免连杆轴承和主轴承受过大的冲击负荷。

,宕

[--■ itj -■ 一JG H 仝O ?:口

图11-2 CMO28型开启式活塞制冷压缩机

1A-机体;1B-止回阀;1E-螺塞;2A-缸盖;3A、86A-侧盖;4A、7A-端盖;5A、6A- 轴承盖;5E、6E-主轴承;7G-吸气滤器;8A-轴封盖;9A-油管;11-滑油泵;12A- 螺钉;16-曲轴;16J-销钉;17-连杆;21-缸头弹簧;23-加油阀;24-安全阀;25A-吸入截止阀;25B-排出截止阀;30-吸气和滑油压力表;42-多用接头的截止阀;45-油压差控制器;57A-电加热器;60A-滤油筒;60J-铁环;60K-磁铁;62A- 控制油管;62B-油管接头;66F-吸气滤网;87K-控制油室盖

(㈡二

L>耀宀

帘扁洽:

a

l-v

图11-3 带卸载油缸的缸套-气阀组件 2A-缸盖;12A-螺钉;12B-弹簧垫圈;12C -卸载油缸底;12D-卸载活塞;12E-卸载

油缸;12F-弹簧;12G 12H-油封;12J-锁紧环;17-连杆;18-活塞;18A-活塞

销;18C-密封环;18D-刮油环;18E-卡环;19A-气缸套;19B-卸载顶杆;19C-卸载 环弹簧;19F-吸气阀片;19G-吸气阀弹簧;19H-吸气阀升程限位器;19J-螺钉;

19K-垫片;20A-排气阀内阀座;20B-排气阀升程限位器;20C-排气阀片;20D-螺 栓;20F-弹簧导向元件;20H-排气阀弹簧;21-缸头弹簧;62A-卸载油管;62H-O

形密封圈

5 .油压卸载机构--本机型采用吸气回流式。缸套下部外围设有卸载油缸 12E,用锁

紧环12J 将其与油缸底12C 装成一体,用螺钉将其固定在缸体下隔板 上。当油缸内无油压时,卸载活塞 12D 被底部的16个弹簧12F 顶起,推动卸载环 和6根顶杆19B 顶开吸气阀片19F ,则该缸因吸气回流而无效工作,从而卸载。若 自带滑油泵排出的压力油通入油缸,则会克服弹簧

12F 的张力将活塞12D 压下,在 弹簧19C 作用下卸载环和顶杆落下,吸气阀片便可自由动作,该缸即能正常工作而 加

载。

6 .润滑系统。曲轴箱内的滑油通过纸质滤油筒 60A 及内设磁性滤器,由滑

油泵11吸入。然后排至机械轴封油腔,同时经曲轴和连杆的油孔去润滑主轴承和 连杆大、小端轴承(活塞与气缸壁靠飞溅润滑);另外,再由设在该侧盖上的三通 电磁阀(图中未示)控制,通至每对气缸的卸载油缸。侧盖

86A 上还设有油压调节 阀(图中未示),多余的油顶开调节阀泄入曲轴箱。压缩机一端设有指示吸入压力 和油压的压力表30及油压差控制器45。

功率V 5 kW 的压缩机采用飞溅润滑或离心式润滑。后者是用曲轴自由端设 的甩

油盘将油甩入曲轴端部的油槽,再经曲轴中心的钻孔,由轴旋转产生的离心力 吸入,供至各摩擦面。! 土丄卜亠

i ■ ■.亠:T ” , 5 r,

uiLh —- 訓

■ 辽 ihy 二m

_ 誣一一二二=

AT

~LLiU

4-_ 血 一

曲轴箱中压力越高、温度越低,则氟利昂在滑油中的溶解度越大,启动时容

易“奔油”。压缩机曲轴箱内可根据需要设电加热器,长期停用后启动应提前6?8 h 通电加热滑油,让溶于油中的氟利昂逸出;压缩机运行中断电停止加热,暂停时自动通电加热,可使油中溶解的氟利昂尽量少,避免启动时“奔油”。

制冷压缩机

《制冷压缩机》电子教案 第三章螺杆式制冷压缩机 螺杆式制冷压缩机是指用带有螺旋槽的一个或两个转子(螺杆)在气缸内旋转使气体压缩的制冷压缩机。螺杆式制冷压缩机属于工作容积作回转运动的容积型压缩机,按照螺杆转子数量的不同,螺杆式压缩机有双螺杆与单螺杆两种。 第一节螺杆式压缩机的工作过程 一、工作原理及工作过程 1. 组成 螺杆式制冷压缩机主要由转子、机壳(包括中部的气缸体和两端的吸、排气端座等)、轴承、轴封、平衡活塞及输气量调节装置组成。图3-1是典型开启螺杆式压缩机的一对转子、气缸和两端端座的外形图。 1—吸气端座 2—阴转子 3—气缸 4—滑阀 5—排气端座 6—阳转子 2. 工作原理 螺杆式压缩机的工作是依靠啮合运动着的一个阳转子与一个阴转子,并借助于包围这一对转子四周的机壳内壁的空间完成的。 3. 工作过程 图3-2为螺杆式压缩机的工作过程示意图。其中,a、b为一对转子的俯视图,c、d、e、f为一对转子由下而上的仰视图。

二、特点 就压缩气体的原理而言,螺杆式制冷压缩机与往复活塞式制冷压缩机一样,同属于容积式压缩机械,就其运动形式而言,螺杆式制冷压缩机的转子与离心式制冷压缩机的转子一样,作高速旋转运动。所以螺杆式制冷压缩机兼有二者的特点。 1. 优点 (1)转速较高、又有质量轻、体积小,占地面积小等一系列优点。 (2)动力平衡性能好,故基础可以很小。 (3)结构简单紧凑,易损件少,维修简单,使用可靠,有利于实现操作自动化。 (4)对液击不敏感,单级压力比高。 (5)输气量几乎不受排气压力的影响。在较宽的工况范围内,仍可保持较高的效率。

2. 缺点 (1)噪声大。 (2)需要有专用设备和刀具来加工转子。 (3)辅助设备庞大。 第二节结构及基本参数 一、主要零部件的结构 螺杆式制冷压缩机的主要零部件包括机壳、转子、轴承、平衡活塞、轴封及输气量调节装置等。 1. 机壳 螺杆式制冷压缩机的机壳一般为剖分式。它由机体(气缸体)、吸气端座、排气端座及两端端盖组成,如图3-3所示。

活塞式制冷压缩机电效率的比较

活塞式制冷压缩机电效率的比较 一、前言? 在各种类型制冷压缩机中,活塞式压缩机是问世最早、至今还广为应用的一种机型,这无疑是因为它具有一系列其他类型压缩机所不及的优点: 1、能适应较广阔的压力范围和制冷量要求;? 2、热效率较高,单位耗电量较少,特别是气阀的存在使偏离设计工况运行时更为明显; 3、对材料要求低,多用普通钢铁材料,加工比较容易,造价比较低廉;? 4、技术上较为成熟,生产使用上积累了丰富的经验;? 5、装置系统比较简单;

活塞式压缩机的上述优点使它在各种制冷空调装置,特别在中、小冷量范围内,成为制冷机中应用最广、生产批量最大的一种机型。?而半封闭式压缩机既保持了开启式压缩机易于拆卸、修理的优点,同时又取消了轴封装置,改善了密封情况,机组更加结构紧凑,噪声低,当用吸入的低温工质冷却电动机时,有利于机器的小型轻量化。 目前采用R22用于中、低温的半封闭活塞式制冷压缩机广泛应用于冷库、冷藏运输、冷冻加工、陈列柜和厨房冰箱等场合。但有关半封闭活塞式制冷压缩机的研究还比较少,尤其对电效率方面的研究和分析就更少,本文在这方面进行了一些工作。 二、压缩机特点? SANYO半封闭活塞式制冷压缩机所用工质为R22,蒸发温度范围-40℃~-5℃,冷凝温度30℃~54.4℃,排气温度130℃以下,吸气温度18℃以下,采用空气冷却电机壳外壁。SANYO半封闭压缩机体积效率高,冷却性能优异,无需喷液冷却仅靠风冷,噪音低,振动少,加工技术高,可靠性好。BITZER半封闭活塞式制冷压缩机采用R22、R134a、R404a、R507为工质,可用于空调、中温和低温冷却,蒸发温度范围-50℃~15℃,采用风机附加冷却(低温时喷液冷却)。BITZER半封闭活塞式制冷压缩机采用高质量材料和零件,结构可靠耐用,加大铁芯电机,制冷量大,制冷系数高,运行范围广。 三、电效率对比

开启式活塞制冷压缩机的结构特点

开启式活塞制冷压缩机的结构特点: 较大的压缩机采用开启式-- 曲轴通过轴封伸出机体由原动机驱动。图11-2 示出CM02型开启式制冷压缩机结构图。 1 .本体结构。机体1A 的上隔板与缸盖2A 之间形成排气腔,下隔板以下是曲轴箱,上、下隔板之间形成吸气腔。曲轴16 有两个互成180°的曲拐,八缸机每个曲柄销上配有四套连杆活塞,从轴向看气缸成扇形布置(六缸机呈W型;四缸机呈V 型),相邻气缸中心线夹角45°,轴向每两缸成一列。曲轴出轴端有机械轴封,我国国标规定轴封处油渗漏应不超过0.5 mL/h 。曲轴另一端带齿轮滑油泵11。吸气腔最低处有与曲轴箱相通的吸气回油孔,作用是: (1)让吸气从系统中带回的滑油流回曲轴箱; (2)让经活塞环漏入曲轴箱的冷剂经此孔进入吸气腔被抽走; (3)在必要时能用压缩机本身抽空曲轴箱,回收油中溶解的冷剂或拆修后抽空曲轴箱内空气。 本机型回油孔上设有止回阀1B,万一发生“奔油”能使之关闭,而抽吸曲轴箱内气体时压差较小,止回阀不关闭。 2.安全阀。压缩机应设有安全阀(本机型安全阀24设在吸、排腔之间)或安全膜片(功率〉10 kW可不设),在冷剂压力过高时开启或爆破,使冷剂回流至吸入侧。其开启或爆破压力应不大于高压侧设计压力(我国造船规范规定R22装置为 2.2 MPa,R134a 装置为 1.4 MP a)。 3.多用接头。本机型吸、排截止阀壳体上设有由小型截止阀42控制的多用接头,它可接压力表或压力控制器,还有其他多种用途。有的制冷压缩机吸、排截止阀采用双阀座结构,在阀体上设了常通接头和可用阀盘启闭的多用接头。将阀杆退足则截止阀全开,多用接头关闭;若阀杆退足后反旋一、二圈,则多用接头与截止阀都开启。 4 .缸套--气阀组件(图11-3 )。气缸套19A与吸气阀升程限位器19H用螺钉连在一起,置于机体上隔板上,通过垫片19K使吸、排气腔之间密封。缸套上部凸缘有一圈吸气孔通吸气腔,由环形吸气阀片19F用吸气阀弹簧压紧。排气阀升程限位器 20B与排气阀内阀座20A用埋头螺栓连接,被缸头弹簧21压在吸气阀定位器19H(排气阀外阀座)上。环形排气阀片20C由弹簧压在19H和20A构成的阀座上。活塞在上止点时缸内的余隙高度应符合说明书要求,本机型定为0.8?1.2 mm靠缸套垫片19K来调整。 筒状活塞18 有一道密封环和一道刮油环。为减轻重量,高速制冷压缩机活塞常由铝合金制成。由于铝合金活塞的热胀系数比钢制的活塞销大,故冷态时二者是过盈配合。拆装活塞销时应先将活塞在热油中或铁板上加热至70 C左右。

活塞式制冷压缩机的工作原理及结构

活塞式制冷压缩机的工作原理及结构 1、活塞压缩机的分类按使用的制冷剂来分,有氨压缩机和氟利昂压缩机两种。按压缩级数来分,有单级压缩和双级压缩两种。按汽缸中心线的位置分,有直立式、V型、W型和S(扇)型。按压缩机的总体结构来分,有开启式、半封闭式、全封闭式三种。 2、活塞式压缩机的工作过程1)理想工作过程在分析活塞式压缩机的工作过程中,可以先把实际过程简化成理想过程。简化时假定:a、压缩机没有余隙容积;b、吸、排气过程没有容积损失;c、压缩过程是理想的绝热过程;d、无泄漏损失。这样,压缩机的理想工作过程可用图2-1所示的P需要变频器,影响油压b、压缩机间隙运行压缩机经济性降低d、顶开吸气阀片11 卸载机构的液力传动机构,主要由油缸、油活塞、拉杆、弹簧、转动环、顶杆等组成。拉杆上的凸环嵌在汽缸套外部的转动环中。卸载机构的工作原理:卸载启动的原理:注意事项:高、低压级油缸有所区别,见图2-11;压缩机左右两侧汽缸外的转动环上斜槽方向不同。(8)油泵及润滑系统飞溅润滑:借助曲轴连杆机构的运动,把曲轴箱中的润滑油甩向需要润滑的表面,或是让飞溅起来的油按设定的路线流过需要润滑的表面。压力润滑:利用油泵加压的润滑油通过输油管路输送到需要润滑的摩擦面。这种供油方式油压稳定,油量充足,润滑安全可靠。图2-12 润滑系统油路

的流向:曲轴箱中的润滑油经过装在曲轴箱底部的滤网式(粗)油过滤器和三通阀后被油泵吸入,提高压力后,经梳片式(精)滤油器滤去杂质后分成两路:一路去后主轴承座,润滑主轴颈,并通过主轴颈内的油道去相邻的一个曲柄销润滑该曲柄销上的连杆大头轴瓦,再通过连杆体中的油孔输送到连杆小头衬套,润滑活塞销。这一路在后轴承座上设有油压调节阀,一部分油经过油压调节阀旁通流回到曲轴箱;另一路进入轴封箱,润滑和冷却轴封摩擦面并形成油封,然后进入前主轴承,润滑主轴颈及相邻曲柄销;此外再从轴封箱引出一路,供给卸载装置的油分配阀,作为能量调节机构的液压动力。油泵:常用内啮合转子式油泵(简称转子泵),由曲轴驱动,对旋转方向有要求。压缩机电机的旋转方向是由油泵转向决定的。曲轴箱压力过低(汽蚀)或油泵磨损过大,都会影响油压的建立,蒸发温度低于-45℃时常采用外置油泵注意事项:精滤器的操作;油压的调整;油压不足时的分析和检修。(9)安全阀安全阀设置在吸气腔与排气腔之间,是一种压差式安全阀。当排气压力与吸气压力的差值超过规定值时,阀芯自动起跳,使吸、排气腔相通,高压气体泄向低压腔,起保护压缩机的作用;当压差减小低于规定值时,阀芯自动关闭。注意事项:安全阀压力调整后,用锁紧螺母锁紧,拧上阀帽后铅封,禁止随意调整设定值;安全阀起跳后,很容易造成泄漏。因此,起跳后须检修后才能再度使用。

往复活塞式压缩机性能测定实验

一、目的要求 1.了解往复活塞式压缩机的结构特点; 2.了解温度、压差等参数的测定方法,计算机数据采集与处理;3.掌握压缩机排气量的测定原理及方法; 4.掌握压缩机示功图的测试原理、测量方法和测量过程; 5.了解脉冲计数法测量转速的方法; 6.掌握测试过程中,计算机的使用和测量。 单作用压缩机工作原理图

二、实验仪器、设备、工具和材料

往复活塞式压缩机性能测定实验验装置简图 1-消音器2-喷嘴3-压力传感器4-温度传感器5-减压箱6-调节阀7-压力表8-安全阀9-稳压罐10-单向阀11-温度传感器12-压力传感器13-温度传感器14-吸入阀15-控制柜16-计算机17-接近开关18-冷却水排空阀19-进水阀20-排水管 注:图中虚线为信号传输线 三、实验原理和设计要求 活塞式压缩机原理示意简图 1.活塞压缩机排气量的测定实验的实验原理

用喷嘴法测量活塞式压缩机的排气量是目前广泛采用的一种方法。它是利用流体流经排气管道的喷嘴时,在喷嘴出口处形成局部收缩,从而使流速增加,经压力降低,并在喷嘴的前后产生压力差,流体的流量越大,在喷嘴前后产生的压力差就越大,两者具有一定的关系。因此测出喷嘴前后的压力差值,就可以间接地测量气体的流量。排气量的计算公式如下: 式中: q V:压缩机的排气量,m3/min, C:喷嘴系数,根据喷嘴前后的压力差,喷嘴前气体的绝对温度,在喷嘴系数表中查取,见本实验教材; D:喷嘴直径,D=19.05mm: H:喷嘴前后的压力差,mmH20; p0:吸入气体的绝对压力,Pa; T0:压缩机吸入气体的绝对温度,K; T1:压缩机排出气体的绝对温度,K。 通过测量装置,计算机采集吸入气体温度T0、排出气体温度T1、喷嘴压差H,并由计算机已存储的喷嘴系数表,计算出喷嘴系数,用上述公式计算出排气量q V。 2.传感器的布置和安装 排气量的测试需要测量出喷嘴前后的压力差、环境温度、排气温度三个参数,因此需要安装测量这三个参数的传感器。它们的布置如图1-2所示。

往复式压缩机原理及结构

往复式压缩机原理及结构 发展历程 从世界范围内看压缩机的发展历程和概况。活塞式压缩机的发展历史悠久,具有丰富的设计、研究、制造和运行的经验,至今在各个领域中依然被广泛采用、发展着。然而,也必须注意到,制冷压缩机的不断进步也反映在其种类的多样性方面,活塞式以外的各类压缩机机型,如离心式、螺杆式、滚动转子式和涡旋式等均被有效地开发和利用,并各具特色,这就为我们制冷工程的业内人士在机型的选择上提供了更多的可能性。在这样的背景之下,活塞式压缩机的使用范围必然受到一定影响而出现逐渐缩小的趋势,这一趋势在大冷量范围内表现得更为显著。在中小冷量范围内,实际上还是以活塞式压缩机为主 往复式压缩机的优缺点 优点: 适应较广泛的压力范围 热效率高、单位耗电量少、加工方便 对材料要求低,造价低廉 生产、使用、设计、制造技术成熟 装置系统较简单 缺点: 转速受到限制 结构复杂、易损件多、维修工作量大 运转时有震动 输气不连续、气体压力有波动 第一章热力循环 (1)理论循环与实际循环之间的差别

(2)实际循环的压缩机的性能 1.制冷压缩机的性能指标 输气量:单位时间内由吸气端输送到排气端的气体质量称谓压缩机的质量输气量q,单位为kg/h,此气体若换算为吸气状态的容积,则是压缩机的容积输气量q, 单位为立方米/h。 制冷量:表示制冷压缩机的工作能力的重要指标之一,即单位时间内所能产生的制冷量。 输气系数:表示压缩机气缸工作容积的有效利用率,即压缩机实际输气量与理论输气量之比值--称为输气系数。 指示功率和指示效率:单位时间内所消耗的指示功就是压缩机的指示功率。 制冷压缩机的指示效率就是压缩一公斤工质所需绝热循环理论功的值。 轴功率、轴效率和机械效率: 由原动机传到压缩机主轴上的功率,称为轴功率。 制冷压缩机的等熵理论功率与轴功率之比,称为轴效率,用以评定压缩机 主轴输入功率利用的完善程度。 机械效率是压缩机的指示功率和轴功率之比,用以评定压缩机摩擦损耗的 大小程度。 电功率与电效率: 从电源输入驱动电动机的功率就是压缩机所消耗的电功率。 电效率是等熵理论功率与电功率之比,用以评定电动机输入功率利用的完 善程度。 效能比:为了最终衡量制冷压缩机在动力消耗方面的制冷效果,采用效能比,是指 压缩机所产生的制冷量与所消耗功率之比。有相对于轴功率与相对于电功率

活塞式压缩机工作原理

一、活塞式压缩机的工作原理 当活塞式压缩机的曲轴旋转时,通过连杆的传动,活塞便做往复运动,由气缸内壁、气缸盖和活塞顶面所构 成的工作容积则会发生周期性变化。活塞式压缩机的活塞从气缸盖处开始运动时,气缸内的工作容积逐渐增大, 这时,气体即沿着进气管,推开进气阀而进入气缸,直到工作容积变到最大时为止,进气阀关闭;活塞式压缩机 的活塞反向运动时,气缸内工作容积缩小,气体压力升高,当气缸内压力达到并略高于排气压力时,排气阀打开 ,气体排出气缸,直到活塞运动到极限位置为止,排气阀关闭。当活塞式压缩机的活塞再次反向运动时,上述过 程重复出现。总之,活塞式压缩机的曲轴旋转一周,活塞往复一次,气缸内相继实现进气、压缩、排气的过程, 即完成一个工作循环。 二、活塞压缩机的优点 1、活塞压缩机的适用压力范围广,不论流量大小,均能达到所需压力; 2、活塞压缩机的热效率高,单位耗电量少; 3、适应性强,即排气范围较广,且不受压力高低影响,能适应较广阔的压力范围和制冷量要求; 4、活塞压缩机的可维修性强; 5、活塞压缩机对材料要求低,多用普通钢铁材料,加工较容易,造价也较低廉; 6、活塞压缩机技术上较为成熟,生产使用上积累了丰富的经验; 7 、活塞压缩机的装置系统比较简单。 三、活塞压缩机的缺点 1、转速不高,机器大而重; 2、结构复杂,易损件多,维修量大; 3、排气不连续,造成气流脉动; 4、运转时有较大的震动。 活塞式压缩机在各种场合,特别是在中小制冷范围内,成为制冷机中应用最广、生产批量最大的一种机型。 活塞式压缩机的分类 双击自动滚屏发布者:admin 发布时间:阅读:399次 1、按所采用的工质分类,一般有氨压缩机和氟利昂压缩机两种。 按压缩级数分类,有单级压缩和两级压缩。单级压缩机是指压缩过程中制冷剂蒸气由低压至 高压只经过一次压缩。而所谓的两级压缩机,压缩过程中制冷剂蒸气由低压至高压要连续经 过两次压缩。 2、按作用方式分类,有单作用压缩机和双作用压缩机。 其制冷剂蒸气仅在活塞的一侧进行压缩,活塞往返一个行程,吸气排气各一次。而双作用压

半封闭活塞式制冷压缩机电效率的比较

半封闭活塞式制冷压缩机电效率的比较摘要:本文对采用R22用于中、低温的SANYO和BITZER半封闭活塞式制冷压缩机的电效率进行了分析和对比,为采用R22用于中、低温的半封闭活塞式制冷压缩机的设计、校核和计算提供了依据。 一、前言 在各种类型制冷压缩机中,活塞式压缩机是问世最早、至今还广为应用的一种机型,这无疑是因为它具有一系列其他类型压缩机所不及的优点: 1、能适应较广阔的压力范围和制冷量要求; 2、热效率较高,单位耗电量较少,特别是气阀的存在使偏离设计工况运行时更为明显; 3、对材料要求低,多用普通钢铁材料,加工比较容易,造价比较低廉; 4、技术上较为成熟,生产使用上积累了丰富的经验; 5、装置系统比较简单; 活塞式压缩机的上述优点使它在各种制冷空调装置,特别在中、小冷量范围内,成为制冷机中应用最广、生产批量最大的一种机型。 而半封闭式压缩机既保持了开启式压缩机易于拆卸、修理的优点,同时又取消了轴封装置,改善了密封情况,机组更加结构紧凑,

噪声低,当用吸入的低温工质冷却电动机时,有利于机器的小型轻量化。 目前采用R22用于中、低温的半封闭活塞式制冷压缩机广泛应用于冷库、冷藏运输、冷冻加工、陈列柜和厨房冰箱等场合。但有关半封闭活塞式制冷压缩机的研究还比较少,尤其对电效率方面的研究和分析就更少,本文在这方面进行了一些工作。 二、压缩机特点 SANYO半封闭活塞式制冷压缩机所用工质为R22,蒸发温度范围-40℃~-5℃,冷凝温度30℃~54.4℃,排气温度130℃以下,吸气温度18℃以下,采用空气冷却电机壳外壁。SANYO半封闭压缩机体积效率高,冷却性能优异,无需喷液冷却仅靠风冷,噪音低,振动少,加工技术高,可靠性好。 BITZER半封闭活塞式制冷压缩机采用R22、R134a、R404a、R507为工质,可用于空调、中温和低温冷却,蒸发温度范围-50℃~15℃,采用风机附加冷却(低温时喷液冷却)。BITZER半封闭活塞式制冷压缩机采用高质量材料和零件,结构可靠耐用,加大铁芯电机,制冷量大,制冷系数高,运行范围广。 三、电效率对比 电效率ηel是等熵理论功率Pts与电功率Pel之比,即: ηel=Pts/Pel 它是用以评定电动机输入功率利用的完善程度。

往复活塞式压缩机设计毕业设计(论文)

1 引言 空气压缩机是指压缩介质为空气的压缩机,主要作用是为生活、生产提供源源不断地、具有一定压力的压缩空气。作为一种工业装备,压缩机广泛应用于石油、化工、天然气管线、冶炼、制冷和矿山通风等诸多重要部门;作为燃气涡轮发动机的基本组成元件,在航空、水、陆交通运输和发电等领域随处可见;作为增压器,已成为当代内燃机不可缺少的组成部件。在诸如大型化肥、大型乙烯等工艺装置中,它所需投资可观,耗能比重大,其性能的高低直接影响装置经济效益,安全运行与整个装置的可靠性紧密相关,因而成为备受关注的心脏设备[1]。 压缩机按工作原理可分为容积式和动力式两大类;按压缩级数分类,可分为单级压缩机、两级压缩机和多级压缩机;按功率大小分类,可分为微小型压缩机、中型压缩机和大型压缩机。按压缩机的结构形式可分为立式、卧式和角度式。而且角度式又可分为L型、V型、W型、扇形和星型等。不同形式的压缩机具有其鲜明的特点,根据其工作原理的不同决定了其不同的适用范围[2]。 空气压缩机的选择主要依据气动系统的工作压力和流量。起源的工作压力应比气动系统中的最高工作压力高20%左右,因为要考虑供气管道的沿程损失和局部损失。如果系统中某些地方的工作压力要求较低,可以采用减压阀来供气。空气压缩机的额定排气压力分别为低压(0.7MPa~1.0MPa)、中压(1.0MPa~10MPa)、高压(10MPa~100MPa)和超高压(100MPa以上),可根据实际需求来选择。常见使用压力一般为0.7~1.25MPa[3]。 空气压缩机应用范围极为广泛,且由资料显示国内需求量呈上升趋势,是中小型工业用压缩机一个庞大的族群。中、小型微型工业用往复活塞式压缩机有着相同的传动部件基础上变换压缩级数和气缸直径,迅速派生出多品种变形产品的便利条件。不仅其容积流量、排气压力变化多端,通过适当调整部分零部件材质还可以压缩多种气体,大为扩展服务领域[4]。 活塞式压缩机与其他类型的压缩机相比,特点是 (1)压力范围最广。活塞式压缩机从低压到超高压都适用,目前工业上使用的最高工作压力达350MPa,实验室中使用的压力则更高。 (2)效率高。由于工作原理不同,活塞式压缩机比离心式压缩机的效率高很多。而回转式压缩机由于高速气流阻力损失和气体内泄漏等原内,效率亦较低。 (3)适应性强。活塞式压缩机的排气量可在较广泛的范围内进行选择;特则是在较小排气量的情况下,要做成速度型,往往很困难,甚至是不可能的。此外,气体的重度对压缩机性能的影响也不如速度型那样显著,所以同一规格的压缩机,将其用于不同介质时,较易改造[5~7]。 根据机械部JB1407-85《微型往复活塞式空气压缩机基本参数》规定,额定排气压力分为0.25MPa、0.4MPa、0.7MPa、1.0MPa、1.25MPa和1.4MPa几个档

制冷压缩机讲义第二章

Δ第二章,活塞式制冷压缩机的工作原理和基本热力计算 熟悉活塞式制冷压缩机的工作过程,掌握理论工作过程和实际工作过程的差异,能正确分析影响活塞式制冷压缩机输气量和输气系数的各种因素,掌握输气系数、制冷量、功率和效率的计算方法。能正确运用性能曲线图。 第一节,单级活塞式制冷压缩机的工作原理和理想工作过程, 分析工作原理就是要研究压缩机的工作过程,一般要通过它的工作循环来说明。压缩机工作循环:是指活塞在汽缸内往复运动一次,缸内汽体经过一系列状态变化重现原始状态所经过的全部过程。 为了便于分析实际工作过程,我们设想存在没有余隙容积损失和能量损失的理想工作过程,将它作为实际工作过程的比较标准。(便于简化分析) 一、活塞式制冷压缩机理论工作过程的理想条件。 1、压缩机没有余隙容积,理论输气量与汽缸容积相等。 2、吸气和排气过程没有压力损失,(吸气压力等于蒸发压力,排气压力等于冷凝压力) 3、吸气与排气过程中无热量传递,即汽体与汽缸壁无热交换,绝热压缩。 4、无漏气损失。高低压汽体不发生串漏。 5、无摩擦损失。运动机件在工作中没有摩擦,不消耗摩擦功。 (电机功率消耗全部转化为压缩功。) 二、压缩机理论工作过程的组成。 压缩机的理论工作过程由吸气过程、压缩过程、排气过程组成。

1、吸气过程。 活塞从外止点向右运动时缸内容积增大,压力降低,吸气管中压力为P1的汽体顶开吸气阀进入汽缸内,直到活塞一向内止点,吸气完毕。吸气过程结束。 吸气过程体积增大,压力不变,过程线为0——1. 2、压缩过程, 当活塞从内止点向左移动时,吸气阀关闭,缸内容积缩小,汽体压力逐渐升高,当压力身高到排气管压力P2时,排气阀会打开,此时压缩过程结束,如图1——2点,特点:体积缩小压力升高。 3、排气过程。 当汽缸内压力升高到P2时,汽体顶开排气阀片进入排气管,活塞继续向左移动,缸内体积缩小,压力不变。直到活塞移到外止点。此时缸内汽体排尽,排气过程结束。过程线2——3,特点:体积缩小,压力不变。 上述三个过程共同组成一个循环,称为压缩机的理想工作循环。 在上述三个过程中,只有压缩过程存在汽体状态变化,(压力、比容、温度变化),是热力过程,其它过程是一般的汽体流动过程。 三、压缩机的理论排气量。 一个汽缸工作容积:Vp=(π/4)D2S (m3) 设压缩机的汽缸数为i,转速为n. 则压缩机理论排气量Vh=60*i*n*Vp=47.12insD2米3/时 理论排气量可用来表示压缩机排气量的大小。 四、压缩机理想工作过程的耗功。 理论压缩循环示功图 理论循环耗功: 压缩机在理想工作过程中曲轴每旋转一周(一个工作循环),活塞对汽体所做的功: 吸气过程:汽体对活塞做功为负值:P1V1, 相当于面积:0-0’-1’-1-0.值:P1V1,单位:Kg/m2*m3=Kgm. 压缩过程:活塞对汽体做功,正值,

活塞式制冷压缩机的故障种类及原因

活塞式制冷压缩机的故障种类及原因 在活塞式制冷压缩机的日常运行中,由于种种原因,如操纵不当等轻易发生故障,可能发生的故障其种类和原因很多。 下面就对常见的压缩机故障做下简单的回类: l、压缩机不能正常启动运行 (1)供电电压过低;电机线路接触不良; (2)排汽阀片漏气。造成曲轴箱内压力太高; (3)能量调节机构失灵; (4)温度控制器失调或发生故障; (5)压力继电器失灵。 2、压缩机启动、停机频繁: (1)由于排汽阀片漏汽,使高低部分压力平衡,造成进汽压力过高; (2)温度继电器幅差太小; (3)由于冷凝器缺水造成压力过高,高压继电器动作。 3、压缩机启动后没有油压或运转中油压不起: (1)油泵管路系统连接处漏油或管道堵塞; (2)油压调节阀开启过大或阀芯脱落; (3)曲轴箱油太少;

(4)曲轴箱内有氨液,油泵不进油; (5)油泵严重摩损,间隙过大; (6)连杆轴瓦和曲柄销,连杆小头衬套和活塞销摩损严重; (7)油压表阀未打开。 4、油压过高 (1)油压调节阀未开或开启太小; (2)油路系统内部堵塞; (3)油压调节阀阀芯卡住。 5、油泵不上压 (1)油泵零件严重摩损,致使间隙过大; (2)油压表不准,指针失灵; (3)油泵部件检验后装配不当。 6、曲轴箱中润滑油起泡沫 (1)润滑油中混有大量氨液,压力降低时由于氨液蒸发引起泡沫; (2)曲轴箱加油过多,连杆大头揽动润滑油引起。 7、油温过高 (1)曲轴箱油冷却器没有供水; (2)轴与瓦装配不适当,间隙过小; (3)润滑油中含有杂质,致使轴瓦拉毛; (4)轴封摩擦环安装过紧或摩擦环拉毛;

(5)吸、排汽温度过高。 8、油压不稳定 (1)油泵吸进有泡沫的油; (2)油路不畅通。 9、压缩机耗油量过大 (1)油环严重摩损,装配间隙过大; (2)油环装反,环的锁口安装在一条垂直线上; (3)活塞与汽缸间隙过大; (4)排汽温度过高,使润滑油被气流大量带走; (5)曲轴箱油面过高; (6)油分离器的自动回油阀不灵,油不能自动回曲轴箱而被排走。 10、曲轴箱压力升高 (1)活塞环密封不严,造成了高压向低压串气; (2)排汽阀片封闭不严; (3)缸套与机体密封面漏气; (4)曲轴箱内进进氨液,蒸发后致使压力升高。 11、能量调节机构失灵 (1)油压过低; (2)油管堵塞; (3)油活塞管住;

往复式压缩机基本知识

培训教案 培训课题: 往复式压缩机基本结构、工作原理、常见故障及注意事项培训日期: 2017年8月培训课时:2课时 课程重点: 讲述往复式压缩机基本结构、工作原理、常见故障及注意事项。 培训目标及要求: 通过培训使全体员工对往复机的结构、工作原理有一定的了解,掌握其常见故障,明确注意事项,真正做到“四懂三会” 授课内容: 一、往复式压缩机的型号、结构及工作原理 1、往复式压缩机型号 2、往复式活塞压缩机的工作过程 往复式活塞压缩机属于于容积型压缩机。靠气缸内作往复运动的活塞改变工作容积压缩气体。气缸内的活塞,通过活塞杆、十字头、连杆与曲轴联接,当曲轴旋转时,活塞在汽缸中作往复运动,活塞与气缸组成的空间容积交替的发生扩大与缩小。当容积扩大时残留在余隙内的气体将膨胀,然后再吸进气体;当容积缩小时则压缩排出气体,以单作用往复式活塞压机(见图)为例,将其工作过程叙述如下:

(1)吸气过程当活塞在气缸内向左运动时,活塞右侧的气缸容积增大,压力下降。当压力降到小于进气管中压力时,则进气管中的气体顶开吸气阀进入气缸,随着活塞向左运动,气体继续进入缸内,直至活塞运动到左死点为止,这个过程称吸气过程。 (2)压缩过程当活塞调转方向向右运动时,活塞右侧的气缸容积开始缩小,开始压缩气体。(由于吸气阀有逆止作用,故气体不能倒回进气管中;同时出口管中的气体压力高于气缸内的气体压力,缸内的气体也无法从排气阀排到出口管中;而出口管中气体又因排气阀有逆止作用,也不能流回缸内。)此时气缸内气体分子保持恒定,只因活塞继续向右运动,继续缩小了气体容积,使气体的压力升高,这个过程叫做压缩过程。 (3)排气过程随着活塞右移压缩气体、气体的压力逐渐升高,当缸内气体压力大于出口管中压力时,缸内气体便顶开排气阀而进人排气管中,直至活塞到右死点后缸内压力与排气管压力平衡为止。这叫做排气过程。 (4)膨胀过程排气过程终了,因为有余隙存在,有部分被压缩的气体残留在余隙之内,当活塞从右死点开始调向向左运动时,余隙内残存的气体压力大于进气管中气体压力,吸气阀不能打开,直到活塞离开死点一段距离,残留在余隙中的高压气体膨胀,压力下降到小于进气管中的气体压力时,吸气阀才打开,开始进气。所以吸气过程不是在死点开始,而是滞后一段时间。这个吸气过程开始之前,余隙残存气体占有气缸容积的过程称膨胀过程。 4、往复式压缩机的结构 往复式活塞压缩机由机座、中间接筒、曲轴、连杆、十字头、活塞杆、活塞、填料箱、气阀、飞轮、冷却和调节控制系统及附属管线等组成。如图

冷库制冷压缩机工作原理

冷库制冷压缩机工作原理 活塞式冷库制冷压缩机 活塞式制冷压缩机是闻世最早的一种机型,至今发展已相当完善。活塞式压缩机具有高速、多缸、能量可调、热效率高、适于多种制冷剂等优点;其工作压力范围广,能适应较宽的能量范围和不同场合。其缺点是:结构较复杂,需检修周期短,对湿行程敏感,易损件多,有脉冲振动及运行平衡性差。 活塞式制冷压缩机的分类方式有多种,按封闭方式通常分为开启式制冷压缩机、半封闭式制冷压缩机、全封闭式制冷压缩机三类。 螺杆式制冷压缩机 螺杆式压缩机没有活塞式压缩机所需的气缸,活塞、活塞环、汽缸套等易损部件,机器结构紧凑,体积小,重量轻,没有余隙容积,少量液体进入机内时无液击危险。可利用活阀进行10%~100%的无级能量调节,适用范围广,运行平稳可靠,需检修周期长,无故障运行时间可达(2~5)×104h。由于使用润滑油使机器的冷却使用和密封性能得到改善,排

气温度降低,即使蒸发温度较低(

-40℃)和压缩比较高(25左右),仍然可以单级运行,即在一定范围内可以代替两级压缩循环。但是,螺杆式制冷压缩机的加工和装配要求精度较高,不适宜于变工况运行,有较大的噪音,在一般情况下,需装置消音和隔音设备,在制冷压缩时,需要喷加润滑油,因而需要油泵、油冷却器和油回收器等较多辅助设备。 螺杆式制冷压缩机是一种新型的高转速制冷压缩机,它与活塞式压缩机同属于容积式压缩机。从压缩气体的原理来看,它们的共同点都是靠容积的变化而使气体被压缩的;不同点是这两类压缩机实现工作容积变化的方式不同。活塞式压缩机是借助曲轴连杆机构的运动,而使汽缸的工作容积发生变化;螺杆式压缩机则是借助与轴直接连接的转子的旋转运动而使工作容积发生变化。 近年来,开发了内容积比可调螺杆压缩机,可调节范围为2.6~5,使螺杆压缩机的性能有了进一步改善。最近国内开发了新型半封闭螺杆机,采用5:6不对称新齿形,使容积效率大为提高。新型螺杆制冷压缩机的运转经济性、可靠性和使用寿命,已经超过了活塞式制冷压缩机。因此,在制冷装置设计选用时应予以充分的重视。 (素材和资料部分来自网络,供参考。可复制、编制,期待您的好评与关注)

往复式压缩机基本构成和工作原理

往复式压缩机基本构成和工作原理 基本构成和工作原理 一、总体结构和组成 (1)工作腔部分:气缸、活塞、活塞杆、活塞环、气阀、密封 填料等; (2)传动部分:曲柄、连杆、十字头; (3)机身部分:机身、中体、中间接头、十字头滑道等; (4)辅助部分:润滑冷却系统、气量调节装置、安全阀、滤清 器、缓冲器等。

二、机构学原理和构成

(1)活塞压缩机的机构学原理如图2-2所示。 (2)控制气体进出工作腔的气阀如图2-3所示。 三、汽缸基本形式和工作腔 (1)单作用汽缸 对压缩机的汽缸而言,缸内仅在活塞一侧构成工作腔并进行 压缩循环的结构称为单作用汽缸。 (2)双作用汽缸 在活塞两侧构成两个工作腔并进行相同级次压缩循环的结构 称为双作用汽缸。

(3)级差式汽缸 通过活塞与汽缸结构的搭配,构成两个或两个以上工作腔, 并在各个工作腔内完成两个或两 个以上级次的压缩循环的结构, 称为级差式汽缸。 (4)平衡腔 有些多工作腔汽缸,其中的一个腔室仅与 某个工作腔进气相 通,而不用于气体压缩,起力平衡作用,称为 平衡腔。 (5)工作腔 容积式压缩机中,直接用来处理气体的容 积可变的封闭腔室 称为工作腔,一个压缩机可能有一个工作腔,也可能有多个工作 腔,同时或轮流工作,执行压缩任务。 (6)工作容积 工作腔内实际用来处理气体的那部分体 积称为工作容积。 (7)余隙容积

工作腔在排气接触以后,其中仍然残存一部分高压气体,这 部分空间称为余隙容积,余隙容积一般有害。 四、压缩机结构形式 (1)列 压缩机中,把一个连杆对应的一组汽缸及相应的动静部件称 为一列。一列可能对应一个汽缸,也可能对应串在一起的多个汽缸。 (2)分类:立式、卧式、角度式。 (3)立式压缩机的汽缸中心线与地面垂直。 (4)卧式压缩机的汽缸中心线与地面平行。 (5)角度式压缩机如图,包括L 型、V型、W型、扇形、星型等。

西安交通大学 往复式压缩机 期末考试

1.从原理、结构、用途上如何划分压缩机? 答:原理:容积式压缩机和动力式压缩机。 结构: 用途:①动力用压缩机②化工工艺用压缩机③制冷和气体分离用压缩机④气体输送用压缩机 2.为什么要定义级的理论循环?级的理论循环是如何定义的?说明研究分析压 缩机时理论循环的意义? 答:原因:? 如何定义:①无余隙容积②进排气过程无流动阻力损失③进排气过程无气流脉动④进排气过程无热交换⑤无泄漏⑥过程指数为常数 意义:是研究压缩机实际工作过程的基础。 3.级的实际循环与理论循环的差别是什么?为什么会有这些差别? 答:①存在气体膨胀线(存在余隙容积) ②进气过程线低于名义进气压力线,排气过程线高于名义排气压力线,且有非直线(存在进排气压力损失及压力脉动) ③压缩、膨胀过程的过程指数是变化的(由于泄漏、传热等的影响) 4.压缩机实际循环指示图? 答:

5.进气系数的意义是什么?在指示图中如何表示?理想气体的容积系数、压力 系数、温度系数关系式? 答:意义:实际进气量Vs与理论进气量Vh的比值称为进气系数。 在指示图如何表示:将折算到名义进气温度下的实际循环进气量Vs,Vh 在图中已表示。 容积系数:压力系数: 温度系数:其中,是将折算到名义压力P1下的容积。 补:分析影响容积系数的诸因素? 答:①相对余隙容积 ②压力比 ③膨胀系数(热交换起决定作用,m大趋向绝热。高转速来不及换热,趋近绝热;压比高因壁温高,m小;冷却好的,气体与气缸温差小,趋近绝热;气体漏入,m小;气体漏出,m大) ④实际气体 6.分析影响实际循环指示功的诸因素? 答:①进排气压力损失②泄漏和传热影响③进气系数影响 7.为什么要多级压缩?如何确定级数和各级压力比? 答:原因:①提高压缩机经济性 ②降低排气温度 ③提高容积效率 ④降低气体作用力 如何确定级数:①对于大型连续运转压缩机,省功最重要 ②对于微小型压缩机,成本低、价格低最重要 ③保证运转可靠,机器寿命高,各级压比不应过高 ④对温度要求严格的特殊压缩机,级数多少取决于排气温度 限制 如何确定压力比:实际压缩机中存在压力损失、回冷不完善、余隙容积、热 交换、泄漏等,实际压力比并非是等压比分配。按等压比 分配或等功原则分配压力比可以使压缩机总指示功最小。 (注:为使各级排气温度不致过高,应适当增加第一级压比

冷库制冷压缩机工作原理

冷库制冷压缩机工作原 理 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

冷库制冷压缩机工作原理 活塞式冷库制冷压缩机 活塞式制冷压缩机是闻世最早的一种机型,至今发展已相当完善。活塞式压缩机具有高速、多缸、能量可调、热效率高、适于多种制冷剂等优点;其工作压力范围广,能适应较宽的能量范围和不同场合。其缺点是:结构较复杂,需检修周期短,对湿行程敏感,易损件多,有脉冲振动及运行平衡性差。 活塞式制冷压缩机的分类方式有多种,按封闭方式通常分为开启式制冷压缩机、半封闭式制冷压缩机、全封闭式制冷压缩机三类。 螺杆式制冷压缩机 螺杆式压缩机没有活塞式压缩机所需的气缸,活塞、活塞环、汽缸套等易损部件,机器结构紧凑,体积小,重量轻,没有余隙容积,少量液体进入机内时无液击危险。可利用活阀进行10%~100%的无级能量调节,适用范围广,运行平稳可靠,需检修周期长,无故障运行时间可达(2~5)×104h。由于使用润滑油使机器的冷却使用和密封性能得到改善,排气温度降低,即使蒸发温度较低(-40℃)和压缩比较高(25左右),仍然可以单级运行,即在一定范围内可以代替两级压缩循环。但是,螺杆式制冷压缩机的加工和装配要求精度较高,不适宜于变工况运行,有较大的噪音,在一般情况下,需装置消音和隔音设备,在制冷压缩时,需要喷加润滑油,因而需要油泵、油冷却器和油回收器等较多辅助设备。 螺杆式制冷压缩机是一种新型的高转速制冷压缩机,它与活塞式压缩机同属于容积式压缩机。从压缩气体的原理来看,它们的共同点都是靠容积的变化而使气体被压缩的;不同点是这两类压缩机实现工作容积变化的方式不同。活塞式压缩机是借助曲轴连杆机构的运动,而使汽缸的工作容积发生变化;螺杆式压缩机则是借助与轴直接连接的转子的旋转运动而使工作容积发生变化。

活塞式制冷压缩机

第二部分制冷机及辅助设备 第一章活塞式制冷压缩机 第一节活塞式制冷压缩机工作原理1、活塞压缩机的分类 按使用的制冷剂来分,有氨压缩机和氟利昂压缩机两种。 按压缩级数来分,有单级压缩和双级压缩两种。 按汽缸中心线的位置分,有直立式、V型、W型和S(扇)型。 按压缩机的总体结构来分,有开启式、半封闭式、全封闭式三种。 2、活塞式压缩机的工作过程 1)理想工作过程 在分析活塞式压缩机的工作过程中,可以先把实际过程简化成理想过程。简化时假定: a.压缩机没有余隙容积; b.吸、排气过程没有容积损失; c.压缩过程是理想的绝热过程; d.无泄漏损失。 这样,压缩机的理想工作过程 可用图2-1所示的P—V图来表示。 纵坐标表示压力P,横坐标表示活塞在汽缸中移动时

形成的容积V。 在图中,4→1表示吸气过程,活塞从上止点开始向右移动,排气阀(片)关闭,吸气阀(片)打开,在压力P1下吸入制冷剂气;1→2表示压缩过程,活塞从下止点向左移动,制冷剂从压力P1绝热压缩到P2,此过程吸、排气阀均关闭;2→3表示排气过程,活塞左行至2位置时排气阀打开,活塞继续左行,在压力P2下把制冷剂排出汽缸。由于假设没有余隙容积,活塞运行到3点时制冷剂全部排出。当活塞再次向右移动时进行下一次的吸气过程。 2)实际工作过程 压缩机的实际工作过程与理想工作过程有很大不同。实际过程存在三余隙容积;吸排气阀有阻力,工作时存在压力损失;汽缸壁与制冷剂之间有热交换,非绝热过程;有漏气损失。 a.余隙容积的影响(容积系数λV) 余隙:活塞运动到上止点位置时,活塞顶与阀座之间保持一定的间隙,称为余隙,余隙所形成的容积称为余隙容积。..\表2-1活塞压缩机装配间隙.doc造成余隙的主要原因是: 防止曲柄连杆机构受热延伸时不至于使活塞撞击阀座而引起机器损坏; 排气阀的通道占据一定的空间; 运动部件的磨损使零件配合间隙变大;

活塞式氨制冷压缩机常见故障和检修

活塞式氨制冷压缩机常见故障与检修 在冷库的制冷系统中,制冷压缩机是核心设备,通常被称之为制冷主机。目前,在中小型冷库制冷系统中多采用活塞式制冷压缩机,因制冷工质的不同常分为氨制冷压缩机和氟制冷压缩机,这里将主要介绍活塞式氨制冷脱机的常见故障与思路。 一、制冷压缩机无法正常启动 检修思路 (1)首先检测是否由供电电压过低或是电动机线路连接不良造成的。如果确系为电网电压过低,则待电网电压恢复正常后再次启动:如果是线路接触不良,应检测线路与电动机有关的连接处,并予以修复。 (2)检查排气阀片是否漏气:如果因排气阀片破损或密封不严漏气就会造成曲轴箱内压力过高,致使无法正常启动.更换排气阀片和密封线即可 (3)检查能量调节机构是否失灵。主要检查供油管路是否存在堵塞、压力过低、油活塞卡住等情况并根据故障原因进行修复 (4)检查温度控制器是否损坏或失调;如果是失调则应调整温度控制器;如果是损坏则应修复或更坏: (5)检查压力继电器是否失灵。检修压力继电器,并重新设定压力参数即可

二、没有油压检修思路 (1)检查油泵管路系统连接处有无漏油处或堵塞处是漏油。应紧固接头;如果是堵塞,应疏通油管路。 (2)是否由于油压调节阀开启过大或着阀芯脱落。若是油压调节阀调节不当,应调整油压调节阀,并将油压调至需要的数值;若属于阀芯脱落,则要重新将阀芯装好,并且紧固牢 (3)若曲轴箱内油太少或是存在氨液,就会导致油泵不进油。若是油太少就应及时加油;若是后者,要及时停机,排除氨液; (4)油泵磨损严重.间隙过大,造成油压上不来。对这种情况.要对油泵进行修理,故障严重时应直接更换。 (5)检查连杆轴瓦、主轴瓦、连杆小头衬套和活塞销是否已经严重磨损。此时要及时更换相关零部件。 (6)曲轴箱后端盖垫片发生错位,堵塞住了油泵的进油通道,应做拆卸检查,并将垫片的位置重新固定好。 三、曲轴箱内产生大量泡沫 检修思路 曲轴箱内润滑油起泡沫发生了液击,主要有以下两个方面的原因造成的:

往复活塞式压缩机结构及力学分析

1往复活塞式压缩机结构及力学分析 1.1往复活塞式压缩机活塞杆与十字头组件 1.1.1活塞杆与十字头组件的组成 1.1.2活塞杆与压缩机装配后的垂直跳动量限制与分析 1.1.3活塞杆结构设计 1.1.4活塞杆与十字头连接方式 1.1.5十字头体、滑履、十字头销 1.2活塞组件 1.2.1活塞结构 1.2.2柱塞结构 1.2.3毂部设计及与活塞杆的连接方式 1.2.4活塞的材料及其质量支承面 1.2.5双作用活塞主要尺寸确定和强度计算 1.2.6活塞组件失效与修理 1.3往复活塞式压缩机活塞杆所受综合活塞力的计算 1.3.1往复压缩机的气体力 1.3.2往复压缩机的惯性力 1.3.3相对运动表面间的摩擦力 1.3.4活塞杆所受综合活塞力

1.4 往复活塞式压缩机活塞杆强度校核 1 往复活塞式压缩机结构及力学分析 1.1 往复活塞式压缩机活塞杆与十字头组件 1.1.1 活塞杆与十字头组件的组成 该组件包括活塞杆、十字头及十字头销三个主要零件,此外还有相应的一些联结零件。它们处于气缸与机身之间,其一端连接活塞,另一端连接连杆,而十字头滑履又支承在机身滑道上,故处于极为重要的部位。在压缩机的运行中,该处极易发生事故,并造成重大的破坏,例如连杆小头衬套烧损、活塞杆断裂等。此外,活塞环、填料非正常失效,往往是活塞杆倾斜引起的。并且,十字头滑履与滑道之间的间隙还是检验其机身与曲轴、连杆等运动部件总体精度的重要指标,新压缩机的十字头滑履与滑道的间隙应控制在()0.8 1.20000~1D δ=,其中D 为十字头直径。 1.1.2 活塞杆与压缩机装配后的垂直跳动量限制与分析 活塞杆在压缩机运行过程中能否平直运动十分重要。API618中,对活塞杆的径向跳动的公差作了规定,即水平径向跳动量为0.064mm ±,其垂直径向跳动为在活塞杆热态预期径向跳动的基础上每1mm 行程不大于0.00015Smm ±(S 为活塞行程)。 另有资料指出:活塞杆水平跳动时,如安装合适则一般无需调整,其跳动量一般不会超过0.08mm 。冷态垂直跳动许用值见表2-1. 表2-1活塞杆冷态垂直跳动量许用值 Table.2-1 The piston rod cold vertical jump allowable value 气缸直径/mm 冷态跳动量/mm 120~200 0.000~0.050 240~290 0.012~0.063 330~380 0.038~0.088 445~520 0.063~0.139 585~675 0.100~0.165 活塞杆倾斜或下沉原因: a) 气缸与活塞之间的间隙及十字头与滑道间隙冷态时不等,故使装配后活塞杆呈倾斜 状态,如图2-1所示。一些压缩机制造者称:新压缩机空负荷运行45min 后停机测 量,活塞杆在一个行程内的跳动量为零。压缩机长期运行后,活塞与气缸的通常均大于十字头与滑道的磨损。在有油润滑时后者润滑丰富,前者则相对较差;在气缸

相关主题
文本预览
相关文档 最新文档