当前位置:文档之家› 冲量和动量、动量定理练习题.doc

冲量和动量、动量定理练习题.doc

冲量和动量、动量定理练习题.doc
冲量和动量、动量定理练习题.doc

一、冲量和动量、动量定理练习题

一、选择题

1.在距地面h高处以v0水平抛出质量为m的物体,当物体着地时和地面碰撞时间为Δt,则这段时间内物体受到地面给予竖直方向的冲量为[ ]

2.如图1示,两个质量相等的物体,在同一高度沿倾角不同的两个光滑斜面由静止自由滑下到达斜面底端的过程中,相同的物理量是[ ]

A.重力的冲量

B.弹力的冲量

C.合力的冲量

D.刚到达底端的动量

E.刚到达底端时的动量的水平分量

F.以上几个量都不同

3.在以下几种运动中,相等的时间内物体的动量变化相等的是[ ]

A.匀速圆周运动

B.自由落体运动

C.平抛运动

D.单摆的摆球沿圆弧摆动

4.质量相等的物体P和Q,并排静止在光滑的水平面上,现用一水平恒力推物体P,同时给Q物体一个与F同方向的瞬时冲量I,使两物体开始运动,当两物体重新相遇时,所经历的时间为[ ]

A.I/F

B.2I/F

C.2F/I

D.F/I

5.A、B两个物体都静止在光滑水平面上,当分别受到大小相等的水平力作用,经过相等时间,则下述说法中正确的是[ ]

A.A、B所受的冲量相同

B.A、B的动量变化相同

C.A、B的末动量相同

D.A、B的末动量大小相同

6.A、B两球质量相等,A球竖直上抛,B球平抛,两球在运动中空气阻力不计,则下述说法中正确的是[ ]

A.相同时间内,动量的变化大小相等,方向相同

B.相同时间内,动量的变化大小相等,方向不同

C.动量的变化率大小相等,方向相同

D.动量的变化率大小相等,方向不同

7.关于冲量、动量与动量变化的下述说法中正确的是[ ]

A.物体的动量等于物体所受的冲量

B.物体所受外力的冲量大小等于物体动量的变化大小

C.物体所受外力的冲量方向与物体动量的变化方向相同

D.物体的动量变化方向与物体的动量方向相同

二、填空题

8.将0.5kg小球以10m/s的速度竖直向上抛出,在3s内小球的动量变化的大小等于______kg·m/s,方向______;若将它以10m/s的速度水平抛出,在3s内小球的动量变化的大小等于______kg·m/s,方向______。

9.在光滑水平桌面上停放着A、B小车,其质量m A=2m B,两车中间有一根用细线缚住的被压缩弹簧,当烧断细线弹簧弹开时,A车的动量变化量和B车的动量变化量之比为______。

10.以初速度v0竖直上抛一个质量为m的小球,不计空气阻力,则小球上升到最高点的一半时间内的动量变化为______,小球上升到最高点的一半高度内的动量变化为______(选竖直向下为正方向)。

11.车在光滑水平面上以2m/s的速度匀速行驶,煤以100kg/s的速率从上面落入车中,为保持车的速度为2m/s不变,则必须对车施加水平方向拉力______N。

12.在距地面15m高处,以10m/s的初速度竖直上抛出小球a,向下抛出小球b,若a、b 质量相同,运动中空气阻力不计,经过1s,重力对a、b二球的冲量比等于______,从抛出到到达地面,重力对a、b二球的冲量比等于______。

13.重力10N的物体在倾角为37°的斜面上下滑,通过A点后再经2s到斜面底,若物体与斜面间的动摩擦因数为0.2,则从A点到斜面底的过程中,重力的冲量大小______N·s,方向______;弹力的冲量大小______N·S,方向______;摩擦力的冲量大小______N·s。方向______;合外力的冲量大小______N·s,方向______。

14.如图2所示,重为100N的物体,在与水平方向成60°角的拉力F=10N作用下,以2m/s的速度匀速运动,在10s内,拉力F的冲量大小等于______N·S,摩擦力的冲量大小等于______N·s。

15.质量m=3kg的小球,以速率v=2m/s绕圆心O做匀速圆周运动

个圆周的过程中动量的变化量大小为______。

16.质量为20g的小球,以20m/s水平速度与竖直墙碰撞后,仍以20m/s的水平速度反弹。在这过程中,小球动量变化的大小为______。

三、计算题

17.质量为1kg的物体从高5m处的平台以1m/s的速度水平抛出,不计空气阻力,求物体落地时的动量。(g=10m/s2)

18.质量为10kg的铁锤,从某一高度处落下后与立在地面上的木桩相碰,碰前速度大小为10m/s,碰后静止在木桩上,若铁锤与木桩的作用时间为0.1s,重力加速度取g=10m/s2。求:(1)铁锤受到的平均冲力。(2)木桩对铁锤的平均弹力。

冲量和动量、动量定理练习题答案

一、选择题

1.D 2.F

3.B C

4.B

5.D

6.A C

7.B C

二、填空题

8.14.7,竖直向下,14.7,竖直向下

9.-1

11.400

12.1∶1,1∶3

13.20,竖直向下,16,垂直斜面向上,3.2,沿斜面向上,8.8,沿斜面向下14.100,50

三、计算题

18.1000N,竖直向上,1100N,竖直向上

动量、冲量及动量守恒定律

动量、冲量及动量守恒定律

动量和动量定理 一、动量 1.定义:运动物体的质量和速度的乘积叫动量;公式p=m v; 2.矢量性:方向与速度的方向相同.运算遵循平行四边形定则. 3.动量的变化量 (1)定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p′-p(矢量式). (2)动量始终保持在一条直线上时的运算:选定一个正方向,动量、动量的变化量用带有正负号的数值表示,从而将矢量运算简化为代数运算(此时的正负号仅代表方向,不代表大小). 4.与动能的区别与联系: (1)区别:动量是矢量,动能是标量. (2)联系:动量和动能都是描述物体运动状态的物 理量,大小关系为E k=p2 2m或p=2mE k. 二、动量定理 1.冲量 (1)定义:力与力的作用时间的乘积.公式:I=

Ft.单位:牛顿·秒,符号:N·s. (2)矢量性:方向与力的方向相同. 2.动量定理 (1)内容:物体在一个运动过程中始末的动量变化量等于它在这个过程中所受力的冲量. (2)公式:m v′-m v=F(t′-t)或p′-p=I.3.动量定理的应用 碰撞时可产生冲击力,要增大这种冲击力就要设法减少冲击力的作用时间.要防止冲击力带来的危害,就要减小冲击力,设法延长其作用时间.(缓冲) 题组一对动量和冲量的理解 1.关于物体的动量,下列说法中正确的是() A.运动物体在任一时刻的动量方向,一定是该时刻的速度方向 B.物体的动能不变,其动量一定不变 C.动量越大的物体,其速度一定越大 D.物体的动量越大,其惯性也越大 2.如图所示,在倾角α=37°的斜面上, 有一质量为5 kg的物体沿斜面滑下,物 体与斜面间的动摩擦因数μ=0.2,求物体下滑2

习题 动量矩定理(2)

动量矩定理(2) 班级 学号 姓名 一、选择题 1、圆柱在重力作用下沿粗糙斜面下滚,角加速度 ;当小球离开斜面后, 角加速度 。 (1)等于零; (2)不等于零; (3)不能确定 2、OA 杆重P ,对O 轴的转动惯量为J ,弹簧的弹性系数为k ,当杆处于铅垂位置时弹 簧无变形,取位置角?及其正向如图所示,则OA 杆在铅直位置附近作微振动的运动 微分方程为 。 (1) ??? Pb ka J --=2 ; (2) ??? Pb ka J 2+= ; (3) ??? Pb ka J +-=-2 ; (4) 二、填空题 1、在质量为M ,半径为R 的均质圆环上固接一质量为m 的均质细杆AB ,位置如图,切 有60=∠CAB °。若系统在铅垂面内以角速度ω绕O 轴转动,则系统对O 轴的动量 矩的大小为 。 2、如图系统中,小球质量为m ,水平杆OA 质量不计,弹簧刚度系数为k ,图示为静 平衡位置, 则系统作微振动时的微分方程为 。 三、计算题(解题步骤:①取研究对象画受力图②运动分析③列动力学方程求解) 1、两个重物M 1和M 2的质量各为m 1与m 2,分别系在两条不计质量的绳上,如图所示。此两绳又分别围绕在半径为r 1和r 2的塔轮上。塔轮的质量为m 3,质心为O ,对轴O 的回转半径为ρ。重物受重力作用而运动,求塔轮的角加速度。 ???Pb ka J -=-2

2、图示均质圆盘的半径R=180mm ,质量m=25kg 。测得圆盘的扭转振动周期s 11=T ;当加上另一物体时,测得扭转振动周期为s 2.1 2=T 。求所加物体对于转动轴的转动惯量。 3、一刚性均质杆重200N 。A 、B 处为光滑铰链约束。当杆位于水平位置时,C 处弹簧压缩了76mm ,弹簧刚度系数为8750N/m 。试求当约束A 突然移走时,此瞬时支座B 的反力。

动量与动量矩

三)动量矩定理 下面研究质点相对于某一根指定的直线的运动,这根直线称为“轴线”.这时着重的是力矩而不是力. 1.力对于轴线的力矩 图3-1 力F对轴线AB的力矩等于力F在垂直于轴线的平面S中的投影F⊥再乘以其与轴线AB的垂直距离d(一般称之为力臂).如果力F本身就在与AB垂直的平面内,力矩就等于F乘以F与AB的垂直距离d。力F对轴线AB的力矩记为 M, AB

AB M F =⊥ d (3.15) 通常按右手法则来规定力矩的指向,将右手的四指捏成拳状以表示力矩驱使物体转动的趋势,伸直的大拇指的指向即力矩的指向 2.对于轴线的动量矩和动量矩定理 (1)质点与轴连结. 如果质点与轴AB 相连结,则质点必在垂直于AB 的平面内作圆周运动.质点所受外力对AB 轴的力矩为 (3.16) mv 是质点的动量,R 是动量与轴AB 间的垂直距离.仿照力矩,我们将 mv 与R 的乘积称为质点对于AB 轴的动量矩(角动量) AB J , 即 AB AB M J = (3. 17) 这就是动量矩定理. (2)转动惯量. 将上式中的 AB J 以质点绕轴转动的角速度 ω表示 2 AB J mR ω= (3. 18) 2mR 称为质点对AB 轴的转动惯量,记为I AB ,则 AB AB J I ω= 动量矩定理(3.17)即 (3.19) 式中 α是质点绕轴转动的角加速度,这与牛顿第二定律 F ma =多么相似!从这类比中还可以看出, I 与 m 相对应, I 反映绕轴转动的惯性,所以称为转动惯量. (3)质点并不与轴连结.

图3-2 所讨论的质点并不与轴AB 连结,也不一定是绕轴转圈,只是相对于轴来研究质点的运动情况.为了方便,取AB 为直角坐标系的Z 轴.如质点的动量 m v 在 xy 平面内,它相对于z 轴的动量矩为 sin z J mvr θ= (3.20) 若动量 m v 不在 xy 平面内,我们可以将它分解为与 xy 平面垂直和与 xy 平面平行的分量,其中与 xy 平面垂直的动量分量对Z 轴的动量矩为零.所以 只要考虑在 xy 平面内的动量分量. 动量矩的正负和力矩一样,也用右手法则决定,和Z 轴正指向相同者取正值,反之为负值. 由牛顿第二定律可以导出一般情况下的动量矩定理 (3.21) 这是它的微分形式. 注意在一般情况下,此定理不宜表为 M Ia =,除非质点的转动惯量I 是常数.一般说来,质点运动时,它与转轴的距离不是常数,所以I 也不是常数. 我们还可以考察力矩的时间累积效果,将上式积分一次,得 2 1 21t z z z t M dz J J =-? (3.22) 式中 1z J 与 2z J 分别表示质点在时刻 1t 及 2t 的动量矩,力矩对时间的积分称为冲量矩.这就是对z 轴动量矩定理的积分形式,适宜用来研究冲击作用.

动量动量定理动量守恒定律专题

动量定理和动量守恒定律的应用 1. A、B、C三个质量相等的小球以相同的初速度v0分别竖直上抛、竖直下抛、水平抛出.若空气阻力不计,设落地时A、B、C三球的速度分别为v1、v2、v3,则 [ ] A、经过时间t后,若小球均未落地,则三小球动量变化大小相等,方向相同 B、A球从抛出到落地过程中动量变化的大小为mv1-mv0,方向竖直向下 C、三个小球运动过程的动量变化率大小相等,方向相同 D、三个小球从抛出到落地过程中A球所受的冲量最大 2. 某消防队员从一平台上跳下,下落2m后双脚触地,接着他用双腿弯屈的方法缓冲,使自身重心又下降了.在着地过程中地面对他双脚的平均作用力估计为[ ] A、自身所受重力的2倍 B、自身所受重力的5倍 C、自身所受重力的8倍 D、自身所受重力的10倍 3. 一个质点受到合外力F作用,若作用前后的动量分别为p和p’,动量的变化为△p,速度的变化为△v,则 A、p=-p’是不可能的 B、△p垂直于p是可能的 C、△P垂直于△v是可能的 D、△P=O是不可能的。 4. 一粒钢珠从静止状态开始自由下落,然后陷人泥潭中。若把在空中下落的过程称为过程Ⅰ,进人泥潭直到停止的过程称为过程Ⅱ, 则( ) A、过程I中钢珠的动量的改变量等于重力的冲量 B、过程Ⅱ中阻力的冲量的大小等于过程I中重力的冲量的大小 C、I、Ⅱ两个过程中合外力的总冲量等于零 D、过程Ⅱ中钢珠的动量的改变量等于零 5. 质量为m的木块下面用细线系一质量为M的铁块,一起浸没在 水中从静止开始以加速度a匀加速下沉(如图),经时间t1s后细

v 1 线断裂,又经t2s 后,木块停止下沉.试求铁块在木块停上下沉瞬间的速度. 6、 质量为M 的楔形物块上有圆弧轨道,静止在水平面上。质量为m 的小球以速度v1向物块运动。不计一切摩擦,圆弧小于90°且足够长。求小球能上升到的最大高度H 和物块的最终速度v 。 7、设质量为m 的子弹以初速度v0射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。求木块对子弹的平均阻力的大小和该过程中木块前进的距离。 8、质量为m 的人站在质量为M ,长为L 的静止小船的右端,小船的左端靠在岸边。当他向左走到船的左端时,船左端离岸多远 9、如图所示,一质量为M 的平板车B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,A 、B 间动摩擦因数为μ,现给A 和B 以大小相等、方向相反的初速度v0,使A 开始向左运动,B 开始向右运动,最后A 不会滑离B ,求: (1)A 、B 最后的速度大小和方向; (2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。 s 2 d s 1 v 0 v

动量定理和定量矩定理

第十二章 动量定理和动量矩定理 本章研究的两个定理 动量定理——力系主矢量的运动效应反映; 动量矩定理——力系主矩的运动效应反映。 一.质点系质量的几何性质 1. 质心 质点系的质量中心,其位置有下式确定: m r m r i i c ∑= ∑= i m m 其投影式为 m x m x i i c ∑= , m y m y i i c ∑= , m z m z i i c ∑= 2. 刚体对轴的转动惯量 定义:∑= 2i i Z r m I 为刚体对z 轴的转动惯量或)(2 2i i i Z y x m I +=∑ 影响Z I 的因素?? ? ??是常量与刚体是固连在一起时若轴的位置有关与转轴量的分布有关与刚体的质量多少和质z I z z 单位:2kgm 物理意义:描述刚体绕z 轴时惯性大小的度量。 Z I 的计算方法: (1) 积分法 例12.1已知:设均质细长杆为l ,质量为m 。求其对于过质心且与杆的轴线垂直的轴z 的转动惯量。 解:建立如图12.2所示坐标,取微段dx 其质量为dx l m dm = ,则此杆对轴z 的转动惯

量为:12 2 2220 ml dx x l m I l z ==? 例12.2已知:如图12.3所示设均质细圆环的半径为R ,质量为m ,求其对于垂直于圆 环平面且过中心O 的轴的转动惯量。 解:将圆环沿圆周分为许多微段,设每段的质量为i m ,由于这些微段到中心轴的距离都等于半径R ,所以圆环对于中心轴z 的转动惯量为: 222mR m R R m I i i z ===∑∑ 例12.3已知:如图12.4所示,设均质薄圆板的半径为R ,质量为m ,求对于垂直于板面且过中心O 的轴z 的转动惯量。 解:将圆板分成无数同心的细圆环,任一圆环的半径为r ,宽度为dr ,质量为 rdr R m dm ππ22= ,由上题知,此圆环对轴z 的转动惯量为dr r R m dm r 32 2 2=,于是,整个圆板对于轴z 的转动惯量为: 23 02 212mR dr r R m I R z ==? (2) 回转半径(惯性半径) 设刚体对轴z 的转动惯量为Z I ,质量为m ,则由式m I z z =ρ定义的长度,称为刚 体对轴z 的回转半径。 例如:均质杆(图12.2) 122ml I z = l l 289.012 2 ==ρ 均质圆环(图12.3) 2 mR I z = R =ρ

理论力学(机械工业出版社)第十一章动量矩定理习题解答

习 题 11-1 质量为m 的质点在平面Oxy 内运动,其运动方程为:t b y t a x ωω2sin ,cos ==。其中a 、b 和w 均为常量。试求质点对坐标原点O 的动量矩。 t a x v x ωωsin -== t b y v y ωω2cos 2== x mv y mv L y x O +-= )cos 2cos 22sin sin (t a t b t b t a m ωωωωωω?+?= )cos 2cos 22sin (sin t t t t mab ωωωωω?+?= )cos 2cos 2cos sin 2(sin t t t t t mab ωωωωωω?+?= )2cos (sin cos 22t t t mab ωωωω+= t mab ωω3cos 2= 11-2 C 、D 两球质量均为m ,用长为2 l 的杆连接,并将其中点固定在轴AB 上,杆CD 与轴AB 的交角为θ,如图11-25所示。如轴AB 以角速度w 转动,试求下列两种情况下,系统对AB 轴的动量矩。(1)杆重忽略不计;(2)杆为均质杆,质量为2m 。 图11-25 (1) θθ222sin 2)sin (2ml l m J z =?= θω22sin 2l m L z = (2) θθ220 2sin 3 2d )sin (2ml x x l m J l z ==?杆 θ22sin 3 8 ml J z = θ ω22sin 3 8 l m L z = 11-3 试求图11-26所示各均质物体对其转轴的动量矩。各物体质量均为m 。 图11-26 (a) ω23 1ml L O = (b) 22291)6(121ml l m ml J O =+= ω29 1ml L O -=

动量、动量守恒定律知识点总结Word版

龙文教育动量知识点总结 一、对冲量的理解 1、I =Ft :适用于计算恒力或平均力F 的冲量,变力的冲量常用动量定理求。 2、I 合 的求法: A 、若物体受到的各个力作用的时间相同,且都为恒力,则I 合=F 合.t B 、若不同阶段受力不同,则I 合为各个阶段冲量的矢量和。 1、意义:冲量反映力对物体在一段时间上的积累作用,动量反映了物体的运动状态。 2、矢量性:ΔP 的方向由v ?决定,与1p 、2p 无必然的联系,计算时先规定正方向。 三、对动量守恒定律的理解:1、研究对象:相互作用的物体所组成的系统 2、条件: A 、理想条件:系统不受外力或所受外力有合力为零。 B 、近似条件:系统内力远大于外力,则系统动量近似守恒。 C 、单方向守恒:系统单方向满足上述条件,则该方向系统动量守恒。 结论:等质量 弹性正碰 时,两者速度交换。 依据:动量守恒、动能守恒 五、判断碰撞结果是否可能的方法: 碰撞前后系统动量守恒;系统的动能不增加;速度符合物理情景。 动能和动量的关系:m p E K 22 = K mE p 2= 六、反冲运动: 1、定义:静止或运动的物体通过分离出一部分物体,使另一部分向反方向运动的现象叫反冲运动。 2、规律:系统动量守恒 3、人船模型: 条件:当组成系统的2个物体相互作用前静止,相互作用过程中满足动量守恒。

七、临界条件: “最”字类临界条件如压缩到最短、相距最近、上升到最高点等的处理关键是——系统各组成部分具有共同的速度v。 八、动力学规律的选择依据: 1、题目涉及时间t,优先选择动量定理; 2、题目涉及物体间相互作用,则将发生相互作用的物体看成系统,优先考虑动量守恒; 3、题目涉及位移s,优先考虑动能定理、机械能守恒定律、能量转化和守恒定律; 4、题目涉及运动的细节、加速度a,则选择牛顿运动定律+运动学规律; 九、表达规范:说明清楚研究对象、研究过程、规律、规定正方向。 典型练习 一、基本概念的理解:动量、冲量、动量的改变量 1、若一个物体的动量发生了改变,则物体的() A、速度大小一定变了 B、速度方向一定变了 C、速度一定发生了改变 D、加速度一定不为0 2、质量为m的物体从光滑固定斜面顶端静止下滑到底端,所用的时间为t, 斜面倾角为θ。则() A、物体所受支持力的冲量为0 B、物体所受支持力冲量为 θ cos mgt C、重力的冲量为mgt D、物体动量的变化量为 θ sin mgt 3、在光滑水平面上水平固定放置一端固定的轻质弹簧,质量为m的小球沿弹簧所位于的直线方向以速 度v运动,并和弹簧发生碰撞,小球和弹簧作用后又以相同的速度反弹回去。在球和弹簧相互作用过程 中,弹簧对小球的冲量I的大小和弹簧对小球所做的功W分别为: A、I=0、W=mv2 B、I=2mv、W = 0 C、I=mv、W = mv2/2 D、I=2mv、W = mv2/2 二、动量定理的应用: 4、下列运动过程中,在任意相等时间内,物体动量变化相等的是:() A、匀速圆周运动 B、自由落体运动 C、平抛运动 D、匀减速直线运动

高考物理专题汇编物理动量守恒定律(一)

高考物理专题汇编物理动量守恒定律(一) 一、高考物理精讲专题动量守恒定律 1.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。某兴趣小组制作了两种火箭模型来探究多级结构的优越性,模型甲内部装有△m=100 g 的压缩气体,总质量为M=l kg ,点火后全部压缩气体以v o =570 m/s 的速度从底部喷口在极短的时间内竖直向下喷出;模型乙分为两级,每级内部各装有2 m ? 的压缩气体,每级总质量均为 2 M ,点火后模型后部第一级内的全部压缩气体以速度v o 从底部喷口在极短时间内竖直向下喷出,喷出后经过2s 时第一级脱离,同时第二级内全部压缩气体仍以速度v o 从第二级底部在极短时间内竖直向下喷出。喷气过程中的重力和整个过程中的空气阻力忽略不计,g 取10 m /s 2,求两种模型上升的最大高度之差。 【答案】116.54m 【解析】对模型甲: ()00M m v mv =-?-?甲 21085=200.5629 v h m m g =≈甲甲 对模型乙第一级喷气: 10022 m m M v v ??? ?=-- ???乙 解得: 130m v s =乙 2s 末: ‘ 11=10m v v gt s -=乙乙 22 11 1'=402v v h m g -=乙乙乙 对模型乙第一级喷气: ‘120=)2222 M M m m v v v ??--乙乙( 解得: 2670= 9 m v s 乙 2 2222445=277.10281 v h m m g =≈乙乙 可得: 129440 += 116.5481 h h h h m m ?=-≈乙乙甲。 2.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。已知磁场的磁感应强度

动量矩定理习题

动量矩定理 习 题 例1:单摆将质量为m 的小球用长为l 的线悬挂于水平轴上,使其在重力作用下绕悬挂轴O 在铅直平面内摆动。线自重不计且不可伸长,摆线由偏角0?时从静止开始释放,求单摆的运动规律。 解:将小球视为质点。其速度为? l v =且垂直于摆线。摆对轴的动量矩为 ()?? 2ml l ml mv m o =?= 又 ()o T m o =,则外力对轴O 之矩为 ()?sin mgl F m o -= 注意:在计算动量矩与力矩时,符号规定 应一致(在本题中规定逆时针转向为正)。 根据动量矩定理,有 ()??sin 2mgl ml t x -= d d 即 0sin =+?? l g (a) 当单摆做微幅摆动时,??≈sin ,并令l g n = 2ω 则式(a )成为 02=+?ω? n (b ) 解此微分方程,并将运动初始条件带入,即当t=0时,0??=,00=? ,得单摆微幅摆动时的运动方程为 t n ω??cos 0= ? 由此可知,单摆的运动是做简谐振动。其振动周期为 g l T n π ωπ 22==

例2:双轴传动系统中,传动轴Ⅰ与Ⅱ对各自转轴的转动惯量为1J 与2J ,两齿轮的节圆半径分别为1R 与2R ,齿数分别为1z 与2z ,在轴Ⅰ上作用有主动力矩1M ,在轴Ⅱ上作用有阻力矩2M ,如图所示。求轴Ⅰ的角加速度。 解:轴Ⅰ与轴Ⅱ的定轴转动微分方程分别为 1111R P M J τε-= (a ) 2222R P M J τε+-= (b) 又 1 22112z z R R i === εε (c ) 以上三式联立求解,得 2 21211i J J i M M +-= ε 例3:质量为m 半径为R 的均质圆轮置放在倾角为α的斜面上,在重力的作用下由静止开始运动,设轮与斜面间的静、动滑动摩擦系数分别为f 、f ',不计滚动摩阻。试分析轮的运动。 解:取轮为研究对象,根据平面运动微分方程有 F mg ma c -=αsin (a ) N mg +-=αcos 0 (b) FR J c =ε (c) 由式(b )得 αc o s mg N = (d) 情况一: 设接触处绝对光滑。则F=0,由式(a )、(c)得 αs i n g a c = 0=ε 情况二:设接触处绝对粗糙。轮只滚不滑,做纯滚动。F 为静滑动摩擦力。 εR a c = ααεαsin 3 1 sin 32 sin 3 2 g F g R g a c = = = ∴

动量与动量守恒定律练习题(含参考答案)

高二物理3-5:动量与动量守恒定律 1.如图所示,跳水运动员从某一峭壁上水平跳出,跳入湖水中,已知 运动员的质量m =70kg ,初速度v 0=5m/s 。若经过1s 时,速度为v = 5m/s ,则在此过程中,运动员动量的变化量为(g =10m/s 2 ,不计空气阻力): ( ) A. 700 kg·m/s B. 350 kg·m/s B. C. 350(-1) kg·m/s D. 350(+1) kg·m/s 2.质量相等的A 、B 两球在光滑水平面上,沿同一直线,同一方向运动,A 球的动量p A =9kg?m/s ,B 球的动量p B =3kg?m/s .当A 追上B 时发生碰撞,则碰后A 、B 两球的动量可能值是( ) A .p A ′=6 kg?m/s ,p B ′=6 kg?m/s B .p A ′=8 kg?m/s ,p B ′=4 kg?m/s C .p A ′=﹣2 kg?m/s ,p B ′=14 kg?m/s D .p A ′=﹣4 kg?m/s ,p B ′=17 kg?m/s 3.A 、B 两物体发生正碰,碰撞前后物体A 、B 都在同一直线上运动,其位移—时间图象如图所示。由图可知,物体A 、B 的质量之比为: ( ) A. 1∶1 B. 1∶2 C. 1∶3 D. 3∶1 4.在光滑水平地面上匀速运动的装有砂子的小车,小车和砂子总质量为M ,速度为v 0,在行驶途中有质量为m 的砂子从车上漏掉,砂子漏掉后小车的速度应为: ( ) A. v 0 B. 0Mv M m - C. 0mv M m - D. ()0M m v M - 5.在光滑水平面上,质量为m 的小球A 正以速度v 0匀速运动.某时刻小球A 与质量为3m 的静止 小球B 发生正碰,两球相碰后,A 球的动能恰好变为原来的14.则碰后B 球的速度大小是( ) A.v 02 B.v 06 C.v 02或v 06 D .无法确定

高中物理动量守恒定律解题技巧讲解及练习题(含答案)

高中物理动量守恒定律解题技巧讲解及练习题(含答案) 一、高考物理精讲专题动量守恒定律 1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞. ①求弹簧恢复原长时乙的速度大小; ②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N 【解析】 【详解】 (1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得: 又知 联立以上方程可得,方向向右。 (2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为 由动量定理可得,挡板对乙滑块冲量的最大值为: 2.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,物块C的v-t图象如图乙所示.求: ①物块C的质量? ②B离开墙后的运动过程中弹簧具有的最大弹性势能E P? 【答案】(1)2kg(2)9J 【解析】 试题分析:①由图知,C与A碰前速度为v1=9 m/s,碰后速度为v2=3 m/s,C与A碰撞过程动量守恒.m c v1=(m A+m C)v2 即m c=2 kg ②12 s时B离开墙壁,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大

第11章动矩定理

第11章 动量矩定理 上一章我们学习了动量定理,它只是从一个侧面反映物体间机械运动传递时,动量的变化与作用在物体上力之间的关系。但当物体作定轴转动时,若质心在转轴上,则物体动量等于零,可见对于转动刚体而言,动量不再用来描述转动物体的物理量。在这一章里我们学习描述转动物体的物理量——动量矩,以及作用在物体上力之间的关系。 11.1 动量矩定理 11.1.1质点和质点系动量矩 1.质点的动量矩 如图11-1所示,设质点在图示瞬时A 点的动量为m v ,矢径为r ,与力F 对点O 之矩的矢量表示类似,定义质点对固定点O 的动量矩为 v r v M m ×=)(m o (11-1) 图11-1 图11-2 质点对固定点O 的动量矩是矢量,方向满足右手螺旋法则,如图11-1所示,大小为固 定点O 与动量AB 所围成的三角形面积的二倍,即 mvh =OAB =)(m M 0的面积Δ2v 其中,h 为固定点O 到AB 线段的垂直距离,称为动量臂。 单位为kg.m 2/s 。

质点的动量对固定轴z 的矩与力F 对固定轴z 的矩类似,如图11-2所示,质点的动量v m 在oxy 平面上的投影xy )m (v 对固定点O 的矩,定义质点对固定轴z 的矩,同时也等于质点对固定点O 的动量矩在固定轴z 上的投影。质点对z 轴的动量矩是代数量,即 z o xy o m =m M =m M Z )]([])[()(v M v v (11-2) 2.质点系的动量矩 质点系对固定点O 的动量矩等于质点系内各质点对固定点O 的动量矩的矢量和,即 ∑==n i i i o )(m 1v M L o (11-3) 质点系对固定轴z 的矩等于质点系内各质点对同一轴z 动量矩的代数和,即 Z o n i i i z z )(m =L ][L v M =∑=1 (11-4) 刚体作平移时动量矩的计算:将刚体的质量集中在刚体的质心上,按质点的动量矩计 算。 刚体作定轴转动时动量矩的计算: 设定轴转动刚体如图11-3所示,其上任一质点i 的质量为m i ,到转轴的垂直距离为i r ,某瞬时的角速度为ω,刚体对转轴z 的动量矩由式(11-4)得 图11-3 ω J =ω)r m (=) r ωr (m =)r v (m =)(m M =L z n i i i n i i i i n i i i i n i i i z ∑∑∑∑====1 21 1 1v z 即 ωJ =L z z (11-5)

动量定理习题

动量、冲量及动量定理一 1.两物体质量之比为m 1∶m 2=4∶1,它们以一定的初速度沿水平面在摩擦力作用下做减速滑行到停下来的过程中 (1)若两物体的初动量相同,所受的摩擦力相同,则它们的滑行时间之比为_______; (2)若两物体的初动量相同,与水平面间的动摩擦因数相同,则它们的滑行时间之比为_______; (3)若两物体的初速度相同,所受的摩擦力相同,则它们的滑行时间之比为_______; (4)若两物体的初速度相同,与水平面间的动摩擦因数相同,则它们的滑行时间之比为_______. 2. 从高为H 的平台上,同时水平抛出两个物体A 和B ,已知它们的质量m B =2m A ,抛出时的速度v A =2v B ,不计空气阻力,它们下落过程中动量变化量的大小分别为Δp A 和Δp B ,则( ) A.Δp A =Δp B B.Δp A =2Δp B C.Δp B =4Δp A D.Δp B =2Δp A 3.“蹦极”是一项勇敢者的运动,如图5-1-1所示,某人用弹性橡皮绳拴住身体自高空P 处自由下 落,在空中感受失重的滋味.若此人质量为60 kg ,橡皮绳长20 m ,人可看成质点,g 取10 m/s 2,求: (1)此人从点P 处由静止下落至橡皮绳刚伸直(无伸长)时,人的动量为_______; (2)若橡皮绳可相当于一根劲度系数为100 N/m 的轻质弹簧,则此人从P 处下落到_______m 时具有最大速度;(3)若弹性橡皮绳的缓冲时间为3 s ,求橡皮绳受到的平均冲力的大小. 4. 高压采煤水枪出水口的截面积为S ,水的射速为v ,射到煤层上后,水速度为零.若水的密度为ρ,求水对煤层的冲力. 5.将一质量为kg 1的物体以速度0v 抛出,若在抛出后s 5钟落地,不计空气阻力,试求此物体在落地前s 3内的动量变化。 6.玻璃杯同一高度下落下,掉在水泥地上比掉在草地上容易碎,这是由于玻璃杯与水泥地撞击的过程中( ) A .玻璃杯的动量较大 B .玻璃杯受到的冲量较大 C .玻璃杯的动量变化较大 D .玻璃杯的动量变化较快 7.蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做出各种空中动作的运动项目。一个质量为kg 60的运动员,从离水平网面m 2.3高处自由落下,着网后又沿竖直方向蹦回离水平网面m 0.5高处。已知运动员与网接触的时间为s 2.1,若把这段时间内网对运动员的作用力当作恒力来处理,求此力的大小。 8.如图1所示,质量为M 的小车在光滑的水平面上以速度0v 向右做匀速直线运动,一个质量为m 的小球从高h 处自由下落,与小车碰撞后反弹上升的高度为仍为h 。设M ?m ,发生碰撞时弹力N F ?mg ,小球与车之间的动摩擦因数为μ,则小球弹起时的水平速度可能是 A .0v B .0 C .gh 22μ D .-v 0 9.一个质量为m=2kg 的物体,在F 1=8N 的水平推力作用下,从静止开始沿水平面运动了t 1=5s,然后推力减小为F 2=5N,方向不变,物体又运动了t 2=4s 后撤去外力,物体再经 过t 3=6s 停下来。试求物体在水平面上所受的摩擦力。 10.质量是60kg 的建筑工人,不慎从高空跌下,由于弹性安全带的保护作用,最后使人悬挂在空中.已

《理论力学》第十一章动量矩定理习题解

y x 第十一章 动量矩定理 习题解 [习题11-1] 刚体作平面运动。已知运动方程为:23t x C =,24t y C =,3 2 1t = ?,其中长度以m 计,角度以rad 计,时间以s 计。设刚体质量为kg 10,对于通过质心C 且垂直于图平面的惯性半径m 5.0=ρ,求s t 2=时刚体对坐标原点的动量矩。 解: )(1223|2 2m x t C =?== )(1624|22m y t C =?== t t dt d dt dx v C Cx 6)3(2=== )/(1226|2s m v t Cx =?== t t dt d dt dy v C Cy 8)4(2=== )/(1628|2s m v t Cy =?== 2323)21(t t dt d dt d === ?ω )/(622 3 |22s rad t =?==ω → →→+=k v m M J L C Z Cz O )]([ω → → -+=k y mv x mv m L C Cx C Cy O ][2 ωρ → =→ ?-?+??=k L t O ]1612121665.0[10|2 2 → =→ =k L t O 15|2 )/(2 s m kg ?,→ k 是z 轴正向的单位向量。 [习题11-2] 半径为R ,重为W 的均质圆盘固结在长l ,重为P 的均质水平直杆AB 的B 端,绕铅垂轴Oz 以角速度ω旋转,求系统对转轴的动量矩。 解: g Pl l g P J AB z 3312 2,= ??=

平动 )(a O 转动 绕定轴C )( b 转动 绕定轴1 )(O c 1 O 在圆弧上作纯滚动 )(d g l R W l g W g J l z 4) 4(R W 412222,+= ?+??=圆盘 ωω?+?=圆盘,,z AB z z J J L ω4) 4(3[222g l R W g Pl L z ++= ω)4443( 2 2 2 g WR g Wl g Pl L z ++= ω4333(2 22g WR g Wl g Pl L z ++= ω)433( 2 2R g W l g W P L z ++= [习题11-3] 已知均质圆盘质量为m ,半径为R ,当它作图示四种运动时,对固定点1O 的动量矩分别为多大?图中l C O =1。 解:)(a 因为圆盘作平动,所以 ωω211ml J L z O O == 解:)(b → → → →?+=p r L L C C O 1 其中,质心C 的动量为0 ωω22 1 1mR J L Cz O = = 解:)(c ωω)2 1 (2211ml mR J L z O O +== 解:)(d 因为圆盘作平面运动,所以: )(11→ +=C Z O Cz O v m M J L ω

高中物理专题复习--动量及动量守恒定律

高中物理专题复习 动量及动量守恒定律 一、动量守恒定律的应用 1.碰撞 两个物体在极短时间内发生相互作用,这种情况称为碰撞。由于作用时间极短,一般都满足内力远大于外力,所以可以认为系统的动量守恒。碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。 仔细分析一下碰撞的全过程:设光滑水平面上,质量为m 1的物体A 以速度v 1向质量为m 2的静止物体B 运动,B 的左端连有轻弹簧。在Ⅰ位置A 、B 刚好接触,弹簧开始被压缩,A 开始减速,B 开始加速;到Ⅱ位置A 、B 速度刚好相等(设为v ),弹簧被压缩到最短;再往后A 、B 开始远离, 弹簧开始恢复原长,到Ⅲ位置弹簧刚好为原长,A 、B 分开,这时A 、B 的速度分别为21v v ''和。全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了。 ⑴弹簧是完全弹性的。Ⅰ→Ⅱ系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。这种碰撞叫做弹 性碰撞。由动量守恒和能量守恒可以证明A 、B 的最终速度分别为:12 11 2 12 12 112,v m m m v v m m m m v +='+-='。 ⑵弹簧不是完全弹性的。Ⅰ→Ⅱ系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,部分转化为动能, 部分转化为内能;因为全过程系统动能有损失(一部分动能转化为内能)。这种碰撞叫非弹性碰撞。 , ⑶弹簧完全没有弹性。Ⅰ→Ⅱ系统动能减少全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,A 、B 不再分开,而是共同运动,不再有Ⅱ→Ⅲ过程。这种碰撞叫完全非弹性碰撞。可以证明,A 、B 最终的共同速度为12 11 21v m m m v v += '='。在完全非弹性碰撞过程中,系统的动能损失最大,为:()() 2121212 2121122121m m v m m v m m v m E k +='+-=?。 例1. 质量为M 的楔形物块上有圆弧轨道,静止在水平面上。质量为m 的小球以速度v 1向物块运动。 / ~

【物理】 物理动量守恒定律专题练习(及答案)

【物理】 物理动量守恒定律专题练习(及答案) 一、高考物理精讲专题动量守恒定律 1.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。某兴趣小组制作了两种火箭模型来探究多级结构的优越性,模型甲内部装有△m=100 g 的压缩气体,总质量为M=l kg ,点火后全部压缩气体以v o =570 m/s 的速度从底部喷口在极短的时间内竖直向下喷出;模型乙分为两级,每级内部各装有2 m ? 的压缩气体,每级总质量均为 2 M ,点火后模型后部第一级内的全部压缩气体以速度v o 从底部喷口在极短时间内竖直向下喷出,喷出后经过2s 时第一级脱离,同时第二级内全部压缩气体仍以速度v o 从第二级底部在极短时间内竖直向下喷出。喷气过程中的重力和整个过程中的空气阻力忽略不计,g 取10 m /s 2,求两种模型上升的最大高度之差。 【答案】116.54m 【解析】对模型甲: ()00M m v mv =-?-?甲 21085=200.5629 v h m m g =≈甲甲 对模型乙第一级喷气: 10022 m m M v v ??? ?=-- ???乙 解得: 130m v s =乙 2s 末: ‘ 11=10m v v gt s -=乙乙 22 11 1'=402v v h m g -=乙乙乙 对模型乙第一级喷气: ‘120=)2222 M M m m v v v ??--乙乙( 解得: 2670= 9 m v s 乙 2 2222445=277.10281 v h m m g =≈乙乙 可得: 129440 += 116.5481 h h h h m m ?=-≈乙乙甲。 2.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块 并留在其中, 与木块 用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧 被压缩瞬间 的速度 ,木块 、 的质量均为 .求:

(完整版)动量-动量守恒定律专题练习(含答案)

动量 动量守恒定律 一、动量和冲量 1、关于物体的动量和动能,下列说法中正确的是: A 、一物体的动量不变,其动能一定不变 B 、一物体的动能不变,其动量一定不变 C 、两物体的动量相等,其动能一定相等 D 、两物体的动能相等,其动量一定相等 2、两个具有相等动量的物体A 、B ,质量分别为m A 和m B ,且m A >m B ,比较它们的动能,则: A 、 B 的动能较大 B 、A 的动能较大 C 、动能相等 D 、不能确定 3、恒力F 作用在质量为m 的物体上,如图所示,由于地面对物体的摩擦力较大,没有被拉动,则经时间t ,下列说法正确的是: A 、拉力F 对物体的冲量大小为零; B 、拉力F 对物体的冲量大小为Ft ; C 、拉力F 对物体的冲量大小是Ftcosθ; D 、合力对物体的冲量大小为零。 4、如图所示,PQS 是固定于竖直平面内的光滑的14 圆周轨道,圆心O 在S 的正上方,在O 和P 两点各有一质量为m 的小物块a 和b ,从同一时刻开始,a 自由下落,b 沿圆弧下滑。以下说法正确的是 A 、a 比b 先到达S ,它们在S 点的动量不相等 B 、a 与b 同时到达S ,它们在S 点的动量不相等 C 、a 比b 先到达S ,它们在S 点的动量相等 D 、b 比a 先到达S ,它们在S 点的动量不相等 二、动量守恒定律 1、一炮艇总质量为M ,以速度v 0匀速行驶,从船上以相对海岸的水平速度v 沿前进方向射出一质量为m 的炮弹,发射炮弹后艇的速度为v /,若不计水的阻力,则下列各关系式中正确的是 。 A 、'0()Mv M m v mv =-+ B 、'00()()Mv M m v m v v =-++ C 、''0()()Mv M m v m v v =-++ D 、'0Mv Mv mv =+ 2、在高速公路上发生一起交通事故,一辆质量为1500kg 向南行驶的长途客车迎面撞上了一辆质量为3000kg 向北行驶的卡车,碰后两车接在一起,并向南滑行了一段距离后停止。根据测速仪的测定,长途客车碰前以20m/s 的速度行驶,由此可判断卡车碰前的行驶速率为: A 、小于10 m/s B 、大于10 m/s 小于20 m/s C 、大于20 m/s 小于30 m/s D 、大于30 m/s 小于40 m/s 3、质量相同的物体A 、B 静止在光滑的水平面上,用质量和水平速度相同的子弹a 、b 分别射击A 、B ,最终a 子弹留在A 物体内,b 子弹穿过B ,A 、B 速度大小分别为v A 和v B ,则: A 、v A >v B B 、v A <v B C 、v A =v B D 、条件不足,无法判定 4、质量为3m ,速度为v 的小车, 与质量为2m 的静止小车碰撞后连在一起运动,则两车碰撞后的总动量是 O P S Q F

动量定理与动量守恒定律典型例题解析

动量定理与动量守恒定律·典型例题解析 【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为 v 02 ,物体与盒子右壁相碰后即粘在右壁上,求: (1)物体在盒内滑行的时间; (2)物体与盒子右壁相碰过程中对盒子的冲量. 解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt = m mv t 0·-,=v v g 0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰 撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右. v mv m v 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043 点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键. 【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上 挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4 C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大? 解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =

2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车 具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419 点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒. 【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离? 点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分. 参考答案 例例跟踪反馈...;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.

相关主题
文本预览
相关文档 最新文档