当前位置:文档之家› 一类无理式函数值域的解法

一类无理式函数值域的解法

一类无理式函数值域的解法
一类无理式函数值域的解法

数形结合在一类无理函数问题的应用

上海市青浦区教师进修学院 倪明

数学是研究客观世界的空间形式与数量关系的科学.数形结合的思想方法是指概括数学问题的条件和结论之间的内在联系,分析它的代数意义(即数量关系),理解它的几何意义,使数量关系和空间图形巧妙和谐结合起来.充分利用这种结合可以恰当地改变问题或改变提问的角度,灵活地进行数与形关系的转化来解决问题.数形结合和转化可起到化抽象为直观的“以形辅数”作用和化直观为精细的“以数解形”作用.

在一维空间实现数形结合的桥梁是数轴,即实数与数轴上的点存在一一对应关系;在二维空间实现数形结合的桥梁是坐标系,即有序实数对(a ,b )与坐标系中的点存在一一对应关系.本文试从“以形辅数”的角度解析一类无理函数问题. 一、理解形如)()(x g x f =(其中)(x g 是一次、二次函数)的函数图像

形如)()(x g x f =

(其中)(x g 是一次、二次函数)的函数是教学中经常碰到的函数类

型,在高一时我们习惯从对解析式的研究得到它们的系列性质,局限于用描点法得到它们的图像.在学习了解析几何后我们就可以了解它们具体的图像,同时也多了一条解决问题的途径.

(一)当)(x g 是一次函数时,可设)0()(≠+=a b ax x g 则将)()(x g x f =两边平方

)

0,0(2≥≠+=y a b

ax y 整

)0,0()

(2≥≠+=y a a

b

x a y 即函数图像是以)0,(a

b

-顶点的抛物线在y 轴上方(含顶点)的部分.以x y =例,具体图像如下.

(二)当)(x g 是二次函数时,可设)(2

++=c

bx ax x g 边平方可得)0,0(2

2

≥≠++=y a c

bx ax y 整理得a

b a

c a b x a y 44)2(2

22

-++=

)0,0(≥≠y a ,即函数图像是以)0,2(a

b

-

为顶点的圆、椭圆或双曲线在y 轴上方(含顶点)的部分.以函数322++=

x x y 、7422+-=x x y 、122++-=x x y 、

1422++-=x x y 为例,具体图像如下:

隐藏 g(x)的图象

(一)函数问题 例1(上海09高考理14)将函数2642--+=

x x y [])60(,

∈x 的图像绕坐标原点逆时针方向旋转角θ)0(αθ≤≤,得到曲线C .

θ,曲线C 都是一个函数的图像,则α的最大值为?

:由

2

642--+=x x y 得[])6,0(13)2()3(2

2

∈=++-x y x ,它的图像是以)2,3(-心,13为半径的一段圆弧,设过原点且与曲线C kx y =,当0=θ时,231=

-

=OC

k k ,此时直线的倾斜角为y 轴重合时,曲线上的点满足函数的定义,即是一个函数的图像,再逆时针旋转时,曲线不

再是一个函数的图像,旋转角为β-

90,则23)90tan(=

,即2

3arctan =θ. (二)方程问题

方程和不等式可以看成函数的特定状态,是情理中的事.

例2 若方程01)1(2

=+++x a x 有实数解,实数a 范围.

解一:用解无理方程的一般方法得(1)0=a 数解0=x ;(2)0≠a 时,两边平022)1(2222=++-a x a x a ,①012=-a 即=a 1-=x ,经检验其中1-=a 时无实数解;②012≠-a T'

根就比较困难.解二:整理方程得

a

x

x -

=++1)1(2将方程有实数解看成函数1)1(2++=x y 和函数a

x

y -

=

法一可得21≤<-a .

(三)不等式问题

例3若不等式a x x +>-228恒成立,求实数a 解:将不等式两边分别构造为函数(282

≥-=y x y ,a x y +=(如图)当直线系位于半椭圆下方时,符合题意,例4若关于x 的不等式

0)lg()1lg(2

1

2>+--b ax x )2

1

,32(-,求实数a ,b 的值. 解析:将不等式0)l g ()1l g (2

1

2>+--b ax x 等价化012>+>-b ax x ,不等式两边分别构造)11(12

<<--=x x y 和0,>+=y b ax y 3

3和)2

3

,

21(,进而可求得直线方程中a ,b 的值. 三、构造几何意义的量,利用“以形助数”解一类无理函数值域问题 (一)形如)0()(<+++=

ac d cx b ax x f 其中

例5(1) 求函数x x y -++=54的值域.

解:令4+=

x s ,x t -=5

则9)5()4(2

222=-++=+x x t s ,0,0≥≥t s

t s y +=.即所求函数的值域转化为平面直角坐标当直线t s y +=与圆弧92

2=+t s 0,0≥≥t s 取值范围.

在平面直角坐标sOt 中,0=-+y t s 表示斜率为1-

T'

)3,0()0,3(、,当23=y 时直线与圆弧相切,所以函数的值域是[]

23,3.

(2) 求函数x x y -++=642的值域.

解:令42+=

x s ,x t -=6

则16)6(2)42(22

222=-++=+x x t s ,

,0≥t s t s y +=.即所求函数的值域转化为平面直角坐标sOt 直线t s y +=与椭圆弧

18

162

2=+t s 0,0≥≥t s 取值范围.

在平面直角坐标sOt 中,0=-+y t s 表示斜率为1-的直线系.当22=y 时直线过上顶点)22,0(,当62=y 时直线与椭圆弧相切,所以函数的值域是[]

62,22. (二)形如)0()(>+-+=

ac d cx b ax x f 其中 例6 (1)求函数54--+=x x y 的值域.

解:令4+=

x s ,5-=x t

则9)5()4(2

222=--+=-x x t s ,0,0≥≥t s

t s y -=.即所求函数的值域转化为平面直角坐标sOt 中,当直线t s y -=与双曲线的

19

92

2=-t s 0,0≥≥t s 在第一象限图像有公共点时的取值范围. 在平面直角坐标sOt 中,0=--y t s 表示斜率为1系.当3-=y 时直线过右顶点)0,3(,当0=y 线的渐近线重合,所以函数的值域是[)0,3-. (2) 求函数112+--=

x x y 的值域(略)

说明:形如)0()(>+++=

ac d cx b ax x f 其中和形)0()(<+-+=ac d cx b ax x f 其中 以上利用有序实数对(a ,b )与坐标系中的点存在的一一对应关系介绍了“以形辅数”

在一类无理函数问题中的应用,考虑到实数对的表示还有多种形式:用三角表示

)sin ,cos (θθr r 、向量的坐标表示),(y x 和复数的坐标表示(即用复数的实部与虚部作坐

标表示点),所以这些题的解法还有很多,在这里就不一一赘述了.值得一提的是,在教与学中要加强数和形的转化意识,常见的有函数式?函数图像、二元方程?曲线方程、向量模复数模?坐标平面上两点之间距离等.

数形结合是重要的数学思想和常用的数学方法,本文从“以形辅数”的角度解析一类无理函数问题,当然,在由“数”到“形”的转化中还要关注转化的精确性,这样才能更好地体现数学抽象化和形式化的魅力。

参考文献:

[2] 林玉粦.用数形结合求函数的最值[J].福建中学数学,2001,4:24-25. [3] 陈立强.一类无理式函数值域问题的统一解法[J].数学教学,2012,10:36-37. [4] 朱恩九.“以形辅数”的解题途径[J].数学通报,1994,4:33-35.

判别式法求函数值域

判别式法求函数值域 [6] 把函数转化成关于x 的二次方程(,)0F x y =,通过方程有实根,判别式0?≥,从而求得原函数的值域,这种方法叫做判别法。形如 2111122222 (,0)a x b x c y a a a x b x c ++=++不同时为的函数常用此法。此类问题分为两大类:一类为分子和分母没有公因式一般可使用判别式0?≥解得,但要注意判别式?中二次项系数为零和不为零两种情况;另一类为分子和分母中有公因式,约去因式回到上述方法解决。但值得注意的是函数的定义域问题。 例1、求函数22y=3 x x +的值域。 分析:函数22y=3x x +形如2111122222 (,0)a x b x c y a a a x b x c ++=++不同时为,且定义域为全休实数,因此可用判别式法求解。 解:由22y=3 x x + 得 2320yx y x +-= 当y = 0 时, x = 0 当0y ≠时,由0?≥ 得24120y -≥ ∴33 y -≤≤ ∴函数22y= 3x x +的值域为|33y y ??-≤≤?????。 例2、求函数22(1)(2)(1) x y x x +=--的值域。 分析:察看函数22(1)(2)(1)x y x x += --可知,分子和分母存在公因式1x +,因为分母不为0,则有10x +≠,因此可以分子和分母同时约去公因式1x +。从而原函数就等价为2(2)(1) y x x =--,再用判别式法去解。 解:由22(1)(2)(1)x y x x +=--=2(2)(1)x x --=2232 x x -+ 得

23220yx yx y -+-= ∵当0y =时,-2 = 0 ,不成立 当0y ≠时,由0?≥,得2(3)4(22)y y y ---=280y y +≥ ∴8y ≤-或0y ≥ 由于0y ≠ ∴函数22(1)(2)(1)x y x x +=--的值域为{}|80y y y ≤->或。

值域经典题型

值域简单练习题 1.求6)(2+-=x x x f 在[]11, -上的值域 2.求函数132)(++= x x x f 的值域 3. 求函数1 33)(2+++=x x x x f 的值域 4.求函数x x x f -+=1)(的值域 5.1321 3)(x x +?-=x f 6.1)(22 +--=x x x x x f 7.x -1x 3131)(-+=x f 8.x x x f +-+=243)( 9.2x 2x -)(2++=x f 10.y =11.2256y x x =-++ 12.2cos 1 3cos 2x y x +=- 13. 求函数()1y x =≥的值域。

值域的求法加强练习题 解答题(共10小题) 1.已知函数的定义域为集合A,函数的值域为集合B,求A∩B和(C R A)∩(C R B). 2.已知函数f(x)=x2﹣bx+3,且f(0)=f(4). (1)求函数y=f(x)的零点,写出满足条件f(x)<0的x的集合; (2)求函数y=f(x)在区间(0,3]上的值域. 3.求函数的值域:. 4.求下列函数的值域: (1)y=3x2﹣x+2;(2);(3); (4);(5)(6); 5.求下列函数的值域 (1); (2); (3)x∈[0,3]且x≠1;

(4). 6.求函数的值域:y=|x﹣1|+|x+4|. 7.求下列函数的值域. (1)y=﹣x2+x+2;(2)y=3﹣2x,x∈[﹣2,9];(3)y=x2﹣2x﹣3,x∈(﹣1,2];(4)y=.8.已知函数f(x)=22x+2x+1+3,求f(x)的值域. 9.已知f(x)的值域为,求y=的值域. 10.设的值域为[﹣1,4],求a、b的值.

分数函数的值域

分数函数的值域 这里说的是二次即二次以下分式函数的值域,由于高二学了一阶导数,笔者见到不少学生学了导数之后,看到分式函数想都不想就直接求导做,毫无疑问是可以做出来的,但是,对于分式的导数,比原函数还要麻烦,如果函数很简单,用导数似乎有些大材小用,如果函数很复杂,求导之后就更加复杂,做起来也比较麻烦,因此,对于此类分式函数题目求最值,轻易莫求导!!! 下面进入正题,这里说的分式函数大致以下几种形式:y=, y=,y=,y=其中y=与y= 基本一致 对于这个问题,一般来说可能会用到三个方法:分离常数、均值不等式、几何法(构造斜率)、反函数法、判别式法。反函数法和判别式法这里不再赘述,以下我们分别讨论 首先,对于最简单的分式线性函数y=,反函数法在此不再赘述,即是反解出x,利用定义域求值域,这里说下分离常数法,这个方法很重要,要谨记 例1:若x∈[-1,2)求函数y=的值域 解一(分离常数法):y= =

=2+ 由x∈[-1,2)则y∈(-∞,1] 分离常数的目的是为了将自变量“挤”到分母或分子,则函数单调性、值域显而易见 解二(构造斜率法):原式可看作点A(2,1)到点P(x,2x)的斜率,其中P在直线y=2x(x∈[-1,2))上,作出图像即可得到答案构造斜率法运用时要注意,若定点与动点连线中有x轴的垂线,则垂线应画成虚线,它是正、负无穷的分界线(斜率k=tanθ) 反函数法略 然后是分子或分母中出现二次,无论是在分子还是在分母,处理方法基本一致。同样用到类似分离常数的配凑方法,对于功底不好的同学,可以对一次式换元, 例2求函数y==,x∈[0,2] 解一:令t=x+2(t∈[2,4]),则x=t-2 则y== 分子分母同除以t后得,y=t+-6≥2-6(当且仅当t=时“=”成立)

函数值域方法大全

值域最值专题 一.知识点 1.函数的值域的定义 在函数y=f(x)中,与自变量x 的值对应的y 的值叫做函数值,函数值的集合叫做函数的值域。 2.确定函数的值域的原则 ①当函数y=f(x)用表格给出时,函数的值域是指表格中实数y 的集合; ②当函数y=f(x)用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数y=f(x)用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数y=f(x)由实际问题给出时,函数的值域由问题的实际意义确定。 二、基本初等函数的值域 1.一次函数y=ax+b(a0)的定义域为R ,值域为R 2 2.二次函数的定义域为R , f(x) ax bx c(a 0)22(4ac b)(4ac b)当a>0时,值域为{};当a<0时,值域为{}。 y|y y|y 4a4ak y (k 0) 3.反比例函数的定义域为{x|x0},值域为{y|y0}; xx+ 4.y =a(a>0且a≠1)的值域是R 5.y =logx(a>0且a≠1)的值域是R a 三.当函数y=f(x)用解析式给出时,求函数值域的方法 1.直接法分析:从自变量x 的范围出发,推出y=f(x)的取值范围;(也可以利用常见函数的值域来求) 222x 0,1,2,3y x 2xx 1 1 xy 练习⑴, ⑵3 x y f(x) 2 4 x ⑶ . 答{ y| y2} ⑷ 答{ y| y R 且y -1/2} 2x 52.图象法:当一个函数图象可作时,通过图象可求其值域; 222xy 2x x 1y 2x 4x 103练习⑴(≤≤) ⑵ xx y 1 x x 31f(x) 1 24 ⑶(≤≤) ⑷ 2f f(x) x 6, 2x 4x 6已知(取二者的大的函数值),则 max 3.利用函数的单调性――利用

正确用判别式法求值域着重点辨析

正确用判别式法求值域“着重点”辨析 用判别式法求函数的值域是求值域的一种重要方法之一,它主要适用于分式型二次函数,或可通过换元法转化为二次函数的一些函数求值域问题。但在用判别式法求值域时因忽视一些“着重点”而经常出错,下面针对“着重点”一一加以辨析 着重点1 对二次方程的二次项系数是否为零加以讨论 例1 求函数3 22122+-+-=x x x x y 的值域。 错解 原式变形为0)13()12()12(2=-+-+-y x y x y (*) ∵R x ∈,∴0)13)(12(4)12(2≥----=?y y y ,解得 21103≤≤y 。 故所求函数的值域是]21,103[ 分析 把21=y 代入方程(*)显然无解,因此21=y 不在函数的值域内。事实上,21=y 时,方程(*)的二次项系数为0,显然用“?”来判定其根的存在情况是不正确的,因此要注意判别式存在的前提条件,即需对二次方程的二次项系数加以讨论。 正解 原式变形为0)13()12()12(2 =-+-+-y x y x y (*) (1)当2 1= y 时,方程(*)无解; (2)当2 1≠y 时,∵R x ∈,∴0)13)(12(4)12(2≥----=?y y y ,解得2 1103<≤y 。 由(1)、(2)得,此函数的值域为)21,103[ 着重点2 将原函数转化为方程时应等价变形 例2 求函数1++=x x y 的值域。 错解 移项平方得:()011222=+++-y x y x , 由()014)]12([22≥+---=?y y 解得43≥y ,则原函数的值域是?? ????+∞,43. 分析 由于1-= -x x y 平方得()011222=+++-y x y x ,这种变形不是等价变

附录2(分式函数求值域方法总结)

分式型函数求值域的方法总结 一、形如()ax b f x cx d += + (,0a o b ≠≠)(一次式比一次式)在定义域内求值域。 例1:求21()32 x f x x +=+(2)3x ≠-的值域。 解:242()133()2323()3x f x x x +-=-++=123332 x -+∵1122330,323323x x -≠∴-≠++ ∴其值域为}2/3y y ?≠?? 一般性结论,()ax b f x cx d += + (,0a o b ≠≠)如果定义域为{x /d x c ≠-},则值域}/a y y c ?≠?? 注:本题所用方法即为分离常数法,分离常数之后,分子便不含有x 项,使计算变得简便。 例2:求21()32x f x x += +,()1,2x ∈的值域。 分析:由于此类函数图像可以经过反比列函数图像平移得出,所以解决在给定区间内的值域问题,我们可以画出函数图像,求出其值域。 解:21()32x f x x +=+=123332x -+,是由1 3y x =-向左平移23,向上平移23得出,通过图像观察,其值域为35,58?? ??? 小结:函数关系式是一次式比一次式的时候,我们发现在此类函数的实质是反比例函数通过平时得出的,因此我们可以作出其图像,去求函数的值域。

x 分析:此类函数中,当0a <,函数为单调函数,较简单,在此我们不做讨论,当0a >时, 对函数求导,'2()1,a f x x =-'()0f x > 时,(x ∈-∞? +∞),'()0f x <时, (x ∈?,根据函数单调性,我们可以做出此类函数的大致图像,其我们常 其图像 例3:求4()2,((1,4)f x x x x =+ ∈上的值域。 解:将函数整理成2()2()f x x x =+,根据双钩函数的性质,我们可以判断此函数在单调递减,在)+∞1,4出的函数值,我们可以知道在1处取的最大值,所以其值域为) ?? 三、用双钩函数解决形如2()mx n f x ax bx c +=++(0,0m a ≠≠),2()ax bx c f x mx n ++=+(0,0m a ≠≠)在定义内求值域的问题。 例3:已知0t >,则则函数241t t y t -+=的最小值为_______. 解:24114t t y t t t -+==+-,t o >∴由基本不等式地2y ≥-

如何用判别式法求函数值域

如何用判别式法求函数值域 用判别式法求值域是求函数值域的常用方法,但在教学过程中,很多学生对用判别式求值域掌握不好。一是不理解为什么可以这样做,二是学生对哪些函数求值域可以用判别式法,哪些函数不能也比较模糊。本人结合自己的教学实践谈谈对本内容的一点体会。 一、判别式法求值域的理论依据 例1、 求函数1 22+--=x x x x y 的值域 象这种分子、分母的最高次为2次的分式函数可以考虑用判别式法求值域。 解:由1 22+--=x x x x y 得: (y-1)x 2+(1-y)x+y=0 ① 上式中显然y ≠1,故①式是关于x 的一元二次方程 ?? ????-+--=∴≠≤≤-≥?---=?13111,13 10) 1(4)1(222,x x x x y y y ,y y y 的值域为又解得令 为什么可以这样做?即为什么△≥0,解得y 的范围就是原函数的值域? 我们可以设计以下问题让学生回答: 1、 当x=1时,y=? (0) 反过来当y=0时,x=?(1) 当x=2时,y=? (32) 当y=3 2时,x=?(2) 以上y 的取值,对应x 的值都可以取到,为什么? (因为将y=0和y=3 2代入方程①,方程的△≥0) 2、 当y=-1时,x=? 当y=2时,x=? 以上两个y 的值x 都求不到,为什么求不到?(因为将y 的值代入方程①式中△<0,所以无解) 3、 当y 在什么范围内,可以求出对应的x 值? 4、 函数1 22+--=x x x x y 的值域怎样求? 若将以上问题弄清楚了,也就理解了判别式求值域的理论依据。 二、判别式法求值域的适用范围 前面已经谈到分子、分母的最高次为2次的分式函数可以考虑用判别式法求值域。是不是所有这种类函数都可以用判别式法求值域?

关于判别式法求值域增根的研究

关于判别式法求值域增根的研究 文章来源:2008年下半年度《试题与研究》 我们都知道对于形如f ( x ) = 的二次分式函数我们通常使用判别式来求其值域。但这是在分子分母没有公因式的前提下进行的,若分子分母有公因式时,我们须先 约去公因式,化成f(x) =的形式,然后再求出其值域。但如果我们用判别式法求这类函数的值域时,会出现什么情况呢?让我们比较吧! 例:求二次分式函数y = 的值域.

y = y = = , = 通过比较,我们发现用判别式法求值域的结果,比先化成一次分式函数来求解其值域的结果多了一个值y = 2。这就是说,

用判别式法求值域会产生增根。这是为什么呢?下面让我们首先来研究一下用判别式法来求值域的原理吧! 函数是定义域到值域的映射,在定义域内任何一个x值,在值域内都有唯一一个y值与之对应。反过来,值域内每一个y 值,都会有一个或多个x值与之对应。将某一函数化为关于x 的方程(将y看作是x的系数),只是将x和y的对应关系用另一种形式表示出来,其对应实质并未改变。判别式法求值域就是基于这种思想而产生的。 将二次分式函数的分母乘到另一侧,得到一个关于x的方程。如果二次项系数不为0,此方程为关于x的一元二次方程。其中,当△≥0时(△是含字母y的式子),将这个范围内的y 值代入方程,都能够得到一个或两个与之对应的x值;而当△<0时,方程无解,这说明在此范围内的y值没有x值与之对应,因此此范围内的值y不属于值域。如果二次项系数为0,此方程为关于x的一次方程,将此时y的取值代入解析式可得到一个与之对应的x值,如果所得x值在定义域内,则该y值属于值域;如果所得x值不在定义域内,或所得解析式根本没有意义,则该y值不属于值域。

次分式函数值域的求法

二次分式函数值域的求法 甘肃 王新宏 一 定义域为R 的二次分式函数用“判别式”法 解题步骤:1 把函数转化为关于x 的二次方程 2 方程有实根,△≥0 3 求的函数值域 1:求y =2 2222+++-x x x x 的值域 解:∵x 2+x+2>0恒成立 由y =2 2222+++-x x x x 得, (y -2)x 2+(y+1)x+y-2=0 ①当y-2=0时,即y=2时,方程为x=0∈R ②当y-2≠0时,即y ≠2时, ∵x ∈R ∴方程(y -2)x 2+(y+1)x+y-2=0有实根 ∴△=(y+1)2 -(y-2) ×(y-2) ≥0 ∴3y 2-18y+15≤0 ∴1≤y ≤5 ∴函数值域为[]5,1 练习1:求y =432+x x 的值域 ?? ????-43,43 二 分母最高次幂为一次的二次分式函数值域常转化为“√”函数或用“均值不等式”来做。 先来学习“√”函数。 形如y =x+ x k (x>0 ,k>0)的函数,叫“√”函数 图像

单调性:在x ∈[] k ,0时,单调递减。在x ∈[] +∞,k 时,单调递减。 值域:[]+∞,2k 解题步骤:①令分母为t,求出t 的范围 ②把原函数化为关于t 的函数 ③利用“√”函数的单调性或均值不等式来求值域 例2 求y =12122-+-x x x (32 1≤

高中数学求函数值域的解题方法总结(16种)

求函数值域的解题方法总结(16种) 在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。 一、观察法: 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例:求函数()x 323y -+=的值域。 点拨:根据算术平方根的性质,先求出 ()x 3-2的值域。 解:由算术平方根的性质知()0x 3-2≥,故()3x 3-23≥+。 点评:算术平方根具有双重非负性,即:(1)、被开方数的非负性,(2)、值的非负性。本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧发。 练习:求函数()5x 0x y ≤≤=的值域。(答案:{}5,4,3,2,1,0) 二、反函数法: 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例:求函数2 x 1x y ++=的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数2 x 1x y ++=的反函数为:y y --=112x ,其定义域为1y ≠的实数,故函数y 的值域为{}R y 1,y |y ∈≠。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。 练习:求函数x -x -x x 10101010y ++=的值域。(答案:{}1y 1-y |y 或)。 三、配方法: 当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求函数的值域。 例:求函数() 2x x -y 2++=的值域。 点拨:将被开方数配方成平方数,利用二次函数的值求。 解:由02x x -2≥++可知函数的定义域为{}2x 1-|x ≤≤。此时2x x -2++=

一次分式函数最值问题

一次分式函数最值问题 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

拆分函数解析式结构,巧解问题 --------------函数()ax b f x cx d +=+值域(最值)问题的解法 在高中,初学函数之时,我们接触的具体函数并不多。前面我们已经给出了一元二次函数值域(最值)的求法步骤。除此,还有一类()(0)ax b f x c cx d +=≠+函数也很常见,它也是今后解决其他复杂函数值域(最值)问题的基础。此类函数看似生疏,而实际这类函数的图像,就是我们初中学过的反比例函数图像。 此类问题有三种类型,一种是函数式子决定定义域,不额外附加函数定义域;另一种是附加定义域。还有一种是可转化为()(0)ax b f x c cx d += ≠+型的函数,此类随着学习的深入,再行和大家见面。 下面我们以具体实例,说明如何依据函数解析式的结构特征,选择适当的方法步骤解决问题。 【例题1】:求函数21()3 x f x x +=-的值域; 【思路切入】:从函数结构可以得出,函数定义域由分式决定,为 {|3}x x R x ∈≠且,此时,将函数解析式的结构进行拆分变换,不难得出反比例函数结构,如此,得到解法程序: 1、将函数分解为反比例的结构; 2、根据反比例结构特性,或者利用图像,或者利用数式属性得到函数值域。 【解析】:原函数可化为212677()2333 x x f x x x x +-+===+---, 7303 x x ≠≠-且 ,2y ∴≠,函数()f x 值域为{|2}y y R y ∈≠且; 【例题2】:求函数21(),(2,4]1x f x x x -=∈-的值域;

人教版必修一求函数值域的几种常见方法

人教版必修一求函数值域的几种常见方法 1.直接法:利用常见函数的值域来求 一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠= k x k y 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R , 当a>0时,值域为{a b ac y y 4)4(|2-≥};当a<0时,值域为{a b a c y y 4)4(|2 -≤}. 例1.求下列函数的值域 ① y=3x+2(-1≤x ≤1) ②x x f -+=42)( ③1 += x x y ④x x y 1 + = 解:①∵-1≤x ≤1,∴-3≤3x ≤3, ∴-1≤3x+2≤5,即-1≤y ≤5,∴值域是[-1,5] ②∵),0[4+∞∈-x ∴),2[)(+∞∈x f 即函数x x f -+=42)(的值域是 { y| y ≥2} ③1 111 111 +- =+-+= +=x x x x x y ∵ 01 1≠+x ∴1≠y 即函数的值域是 { y| y ∈R 且y ≠1}(此法亦称分离常数法) ④当x>0,∴x x y 1+ ==2)1(2 +- x x 2≥, 当x<0时,)1(x x y -+ --==-2)1(2 --- -x x 2-≤ ∴值域是 ]2,(--∞[2,+∞).(此法也称为配方法) 函数x x y 1+ =的图像为: 2.二次函数比区间上的值域(最值): 例2 求下列函数的最大值、最小值与值域: ①142+-=x x y ; ②]4,3[,142∈+-=x x x y ;③]1,0[,142∈+-=x x x y ; ④]5,0[,142∈+-=x x x y ; 4 3 21 -1-2-3 -4 -6 -4 -2 2 4 6 y=x o -2 -112 f x () = x+ 1x

函数的值域专题

函数的值域专题 第I 类:简单的复合函数 引例1:241x y --=;)4(log 22x y -=;124++=x x y ;1sin sin 2++=x x y 第II 类:带分式的复合函数(换元、部分分式法、反解(判别式法)、公式法) 引例2:直接写出函数=y x x 3121+-的值域为____________,曲线的对称中心为________;若添加条件[]1,0∈x ,则值域为________; 根据以上结论直接写出函数的值域:)2,0(sin 31sin 21?? ????∈+-=πx x x y ;[])1,0(3121∈+-=x x x y 引例3:求函数1 32+-=x x y 的值域 变式:求函数312-+= x x y 的值域 变式:求函数x x x x y cos sin 2cos sin ++=(?? ????∈2,0πx )的值域 引例4:求函数1 58522+++=x x x y 的值域 变式:若已知函数)(1 3)(22R x x n x mx x g ∈++-=的值域为[]8,2,求实数n m ,的值 解答: 练:若已知函数)(1 8)(22R x x n x mx x g ∈+++=值域为[]9,1,求实数n m ,的值 第III 类:带根式的复合函数 引例5:求函数x x y 21--=的值域; 思考:根式函数)0(≠+++=AC D Cx B Ax y 的值域如何研究? 引例6:求函数x x x f 211)(--+=的值域; 变式1:求函数x x x f 21)(-=的值域; 变式2:求函数x x y -++=31的值域;

映射,函数定义域,值域_解题办法归纳

一种特殊的对应:映射 (1) (2) (3) (4) 1.对于集合A 中的每一个元素,在集合B 中都有一个(或几个)元素与此相对应。 2.对应的形式:一对多(如①)、多对一(如③)、一对一(如②、④) 3.映射的概念(定义):强调:两个“一”即“任一”、“唯一”。 4.注意映射是有方向性的。 5.符号:f : A B 集合A 到集合B 的映射。 6.讲解:象与原象定义。 再举例:1?A ={1,2,3,4} B ={3,4,5,6,7,8,9} 法则:乘2加1 是映射 2?A =N + B ={0,1} 法则:B 中的元素x 除以2得的余数 是映射 3?A =Z B =N * 法则:求绝对值 不是映射(A 中没有象) 4? A ={0,1,2,4} B ={0,1,4,9,64} 法则:f : a b =(a -1)2 是映射

一一映射 观察上面的例图(2)得出两个特点: 1?对于集合A中的不同元素,在集合B中有不同的象(单射) 2?集合B中的每一个元素都是集合A中的每一个元素的象(满射)即集合B中的每一个元素都有原象。

从映射的观点定义函数(近代定义): 1?函数实际上就是集合A 到集合B 的一个映射 f :A B 这里 A , B 非空。 2?A :定义域,原象的集合 B :值域,象的集合( C )其中C ? B f :对应法则 x ∈A y ∈B 3?函数符号:y =f (x ) —— y 是 x 的函数,简记 f (x ) 函数的三要素: 对应法则、定义域、值域 只有当这三要素完全相同时,两个函数才能称为同一函数。 例:判断下列各组中的两个函数是否是同一函数?为什么? 1.3 ) 5)(3(1+-+= x x x y 52-=x y 解:不是同一函数,定义域不同 2。 111-+=x x y )1)(1(2-+=x x y 解:不是同一函数,定义域不同 3。 x x f =)( 2 )(x x g = 解:不是同一函数,值域不同 4. x x f =)( 33 )(x x F = 解:是同一函数 5.21)52()(-=x x f 52)(2-=x x f 解:不是同一函数,定义域、值域都不同

函数值域的求法大全

函数值域的求法大全 题型一 求函数值:特别是分段函数求值 例 1 已知 f ( x ) = 1 ( x ∈ R ,且 x ≠ - 1) , g ( x ) = x 2 + 2( x ∈ R ). (1)求 f (2),g (2)的值; (2)求 f [g (3)]的值. 解 (1) ∵ f ( x )= , ∴ f (2) = = 3. 又∵g (x )=x 2+2, ∴g (2)=22+2=6. (2)∵g (3)=32+2=11, ∴f [g (3)]=f (11)= =12. 反思与感悟 求函数值时,首先要确定出函数的对应关系 f 的具体含义,然后将变量代入解 析式计算,对于 f [g (x )]型的求值,按“由内到外”的顺序进行,要注意 f [g (x )]与 g [f (x )]的区别. x +1 跟踪训练 4 已知函数 f (x )= . (1)求 f (2);(2)求 f [f (1)]. x +1 2+1 3 解 (1) ∵ f ( x )=x + 2 , ∴ f (2) =2 + 2 = 4. 5.已知函数 f (x )=x 2+x -1. (1)求 f (2),f (1x ); (2)若 f (x )=5,求 x 的值. 解 (1) f (2) = 22+ 2 - 1 = 5, 1 1 1 1 + x -x 2 f (x )=x 2+x -1= x 2 . (2)∵f (x )=x 2+x -1=5,∴x 2+x -6=0, ∴x =2,或 x =-3. (3) 4.函数f (x )对任意自然数x 满足f (x +1)=f (x )+1,f (0)=1,则f (5)= __________ . 答案 6 解析 f (1)=f (0)+1=1+1=2,f (2)=f (1)+1=3, (2)f (1)= 1+1 1+2 22 =23,f [f (1)]=f (32 )= 23+1 3+2 5 8.

最全函数值域的12种求法(附例题,习题)[1]

高中函数值域的12种求法 一.观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x) 的值域。 点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。 解:由算术平方根的性质,知√(2-3x)≥0, 故3+√(2-3x)≥3。 ∴函数的知域为. 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。 本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二.反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例2求函数y=(x+1)/(x+2)的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。 练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y>1}) 三.配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域 例3:求函数y=√(-x2+x+2)的值域。 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2] 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。 练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3}) 四.判别式法 若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。 解:将上式化为(y-2)x2-(y-2)x+(y-3)=0 (*) 当y≠2时,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2<x≤10/3 当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。 点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域。常适应于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数。 练习:求函数y=1/(2x2-3x+1)的值域。(答案:值域为y≤-8或y>0)。 五.最值法 对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域。 例5已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域。 点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。 解:∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x代入z=xy+3x 中,得z=-x2+4x(-1≤x≤3/2), ∴z=-(x-2)2+4且x∈[-1,3/2],函数z在区间[-1,3/2]上连续,故只需比较边界的大小。 当x=-1时,z=-5;当x=3/2时,z=15/4。 ∴函数z的值域为{z∣-5≤z≤15/4}。 点评:本题是将函数的值域问题转化为函数的最值。对开区间,若存在最值,也可通过求出最值而获得函数的值

高中函数值域的经典例题 12种求法

一.观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x) 的值域。 点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。 解:由算术平方根的性质,知√(2-3x)≥0, 故3+√(2-3x)≥3。 ∴函数的知域为 . 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。 本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二.反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例2求函数y=(x+1)/(x+2)的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y>1}) 三.配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域 例3:求函数y=√(-x2+x+2)的值域。 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2] 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3}) 四.判别式法 若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。 解:将上式化为(y-2)x2-(y-2)x+(y-3)=0 (*) 当y≠2时,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2<x≤10/3 当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。 点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域。常适y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数。 练习:求函数y=1/(2x2-3x+1)的值域。(答案:值域为y≤-8或y>0)。 五.最值法 对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函域。 例5已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域。 点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。 解:∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x代入z=-x2+4x(-1≤x≤3/2), ∴z=-(x-2)2+4且x∈[-1,3/2],函数z在区间[-1,3/2]上连续,故只需比较边界的大小。 当x=-1时,z=-5;当x=3/2时,z=15/4。

求分式函数值域的几种方法-精品

求分式函数值域的几种方法-精品 2020-12-12 【关键字】情况、方法、条件、领域、问题、难点、良好、沟通、发现、掌握、研究、特点、关键、理想、思想、需要、途径、重点、反映、检验、化解、分析、树立、解决、方向 摘要:在高中数学教学、乃至高中毕业会考题和高考中,经常遇到求分式函数值域的问 题.关于分式函数的值域的求法,是高中数学教学中的一个难点.通过对分式函数的研究总结了求其值域的常见几种方法:配方法,反函数法,判别式法,单调性法,换元法(根式代换、三角代换等),不等式法,方程法,斜率法等. 关键词:分式函数 值域 方法. 1 引言 求分式函数值域是函数值域问题中的一个重要内容,它不仅是一个难点、重点,而且是解决函数最值问题的一个重要工具.关于求函数值域与最值的方法也是多种多样的,归纳起来,常用的方法有:配方法,反函数法,判别式法,单调性法,换元法(根式代换、三角代换等),不等式法,方程法,斜率法等.本文就中学阶段出现的各种类型的分式函数值域问题运用以上初等方法进行分析. 2 求分式函数值域的常见方法 2.1 用配方法求分式函数的值域 如果分式函数变形后可以转化为2 122 a y b a x b x c =+++的形式则我们可以将它的分母配方,用直接法求得函数的值域. 例1 求2 1 231 y x x =-+的值域. 解:2 131248y x = ? ?-- ?? ?, 因为2 31248x ? ?-- ?? ?≥18-, 所以函数的值域为:(],8-∞-∪()0,+∞.

例2 求函数221 x x y x x -=-+的值域. 解:2 1 11 y x x -= +-+, 因为2 2112x x x ? ?-+=- ?? ?34+≥34, 所以34- ≤21 01 x x -<-+, 故函数的值域为1,13?? -???? . 先配方后再用直接法求值域的时候,要注意自变量的取值范围.取“=”的条件. 2.2 利用判别式法求分式函数的值域 我们知道若()200,,ax bx c a a b R ++=≠∈有实根,则24b ac ?=-≥0常常利用这一结论来求分式函数的值域. 例1 求2234 34 x x y x x -+=++的值域. 解:将函数变形为()()()2133440y x y x y -+++-=①, 当1y ≠时①式是一个关于x 的一元二次方程. 因为x 可以是任意实数, 所以?≥0, 即()()()334144y y y +---7507y y =-+-≥0, 解得, 17 ≤ y ≤1或1y <≤7, 又当1y =时,0x =, 故函数的值域为1,77?? ???? . 例2 函数22 21 x bx c y x ++=+的值域为[]1,3,求b ,c 的值. 解:化为()20y x bx y c --+-=, ⑴当2y ≠时()()42x R b y y c ∈??=---≥0, ?()224428y c y c b -++-≥0,

用判别式法求函数值域的方法

用判别式法求函数值域的方法 例1求函数y=1 223222++--x x x x 的值域 解:∵2x 2+2x+1=2(x+21)2+2 1>0 ∴函数的定义域为R , 将原函数等价变形为(2y-1)x 2+(2y+2)x+y+3=0, 我认为在此后应加上:关于..x .的方程(....2.y .-.1.).x .2.+(2y+2)x+y+3=0..............有实数解.... 例2求函数y=6 3422-+++x x x x 的值域 解:由x 2+x-6≠0得x ≠2,x ≠-3 ∴函数的定义域为{x|x ∈R ,x ≠2,x ≠-3} 由原函数变形得:(y-1)x 2+(y-4)x-6y-3=0 我认为在此之后应加上:关于..x .的方程(....y .-.1.).x .2.+(y ...-.4)x ...-.6y ..-.3=0...有实数根且至少....... 有一根不为.....2.且不为...-.3. 例1及例2也需要作此修正,本人认为,这些文字说明对于整个题目的解题过程起着统帅作用.... ,同时也暴露出作者的思维过程,不能略去。 思考之二:对于形如y=f ex dx c bx ax ++++22中分子分母都有公因式的处理方法 中处理方法是要验证△=0时对应的y 值,该文中是这样的说明的:由于函数变形为方程时不是等价转化,故在考虑判别式的同时,还需对△=0进行检验,若对应的自变量在函数的定义域内,则y 值在值域内,否则舍去。 但在文2中例2中第2小题并没有对△=0进行检验,得出正确结果,这就使读者很困惑,究竟什么情况要检验,什么情况不进行检验呢 我认为有关形如y=f ex dx c bx ax ++++22中分子分母都有公因式的处理方法第一种可以按例2中约去公因式的方法,这已经不是判别式法的范围之内,不在讨论之列,第二种处理方法仍然用判别式法,只不过在例1的解法基础上稍加改动即可, 例3 求函数求函数y=6 3422-+++x x x x 的值域 解:由x 2+x-6≠0得x ≠2,x ≠-3 ∴函数的定义域为{x|x ∈R ,x ≠2,x ≠-3} 由原函数变形得:(y-1)x 2+(y-4)x-6y-3=0 我认为在此之后应加上:关于..x .的方程(....y .-.1.).x .2.+(y ...-.4)x ...-.6y ..-.3=0...有实数根且至少....... 有一根不为.....2.且不为...-.3. (1)当y=1时,代入方程求得x= -3,而x ≠-3,因此y ≠1 (2)当y ≠1时关于x 的方程(y-1)x 2+(y-4)x-6y-3=0为一元二次方程,可以验

分式函数求值域

分式型函数求值域的方法探讨 在教学中,笔者常常遇到一类函数求值域问题,此类函数是以分式函数形式出现,有一次式比一次式,二次式比一次式,一次式比二次式,二次式比二次,现在对这类问题进行探讨。 一、形如d cx b ax x f ++= )((0,≠≠b o a )(一次式比一次式)在定义域内求值域。 例1:求2 312)(++=x x x f ()32-≠x 的值域。 解:23134)32(3)32(2)(+--++=x x x x f =233132+-x 32233132,02331≠+-∴≠+-x x ∴其值域为}? ??≠32/y y 一般性结论,d cx b ax x f ++=)((0,≠≠b o a )如果定义域为{/x c d x -≠},则值域 }? ??≠c a y y / 例2:求2 312)(++=x x x f ,()2,1∈x 的值域。 分析:由于此类函数图像可以经过反比列函数图像平移得出,所以解决在给定区间内的值域问题,我们可以画出函数图像,求出其值域。 解:2312)(++=x x x f =233132+-x ,是由x y 31 -=向左平移32,向上平移32得出,通过图像观察,其值域为?? ? ??85,53 小结:函数关系式是一次式比一次式的时候,我们发现在此类函数的实质是反比例函数通过平时得出的,因此我们可以作出其图像,去求函数的值域。

二、形如求x a x x f + =)(()0≠a 的值域。 分析:此类函数中,当0a 时, 对函数求导,,1)(2'x a x f -=0)('>x f 时,),(a x -∞∈?+∞,a ),0)(',则则函数241t t y t -+=的最小值为_______. 解:41142-+=+-=t t t t t y ,∴>o t 由基本不等式地2-≥y

相关主题
文本预览
相关文档 最新文档