当前位置:文档之家› 哈工大电路原理基础课后习题

哈工大电路原理基础课后习题

哈工大电路原理基础课后习题
哈工大电路原理基础课后习题

哈工大电路原理基础课后习题

第一章习题1、1 图示元件当时间t<2s时电流为2A,从a

流向b;当t>2s时为3A,从b流向a。根据图示参考方向,写出电流的数学表达式。1、2图示元件电压u=(5-9e-t/t)V,t >0。分别求出 t=0 和t→ 时电压u 的代数值及其真实方向。

图题1、1 图题1、

21、3 图示电路。设元件A消耗功率为10W,求;设元件B消耗功率为-10W,求;设元件C发出功率为-10W,求。图题1、

31、4求图示电路电流。若只求,能否一步求得?1、5 图示电路,已知部分电流值和部分电压值。

(1)

试求其余未知电流。若少已知一个电流,能否求出全部未知电流?

(2)

试求其余未知电压 u

14、u

15、u

52、u53。若少已知一个电压,能否求出全部未知电压?1、6 图示电路,已知,,,。求各元件消耗的功率。

1、7 图示电路,已知,。求(a)、(b)两电路各电源发出的功率和电阻吸收的功率。

1、8 求图示电路电压。

1、9 求图示电路两个独立电源各自发出的功率。

1、10 求网络N吸收的功率和电流源发出的功率。

1、11 求图示电路两个独立电源各自发出的功率。

1、12 求图示电路两个受控源各自发出的功率。

1、13 图示电路,已知电流源发出的功率是12W,求r的值。

1、14 求图示电路受控源和独立源各自发出的功率。1、15图示电路为独立源、受控源和电阻组成的一端口。试求出其端口特性,即关系。1、16 讨论图示电路中开关S开闭对电路中各元件的电压、电流和功率的影响,加深对独立源特性的理解。

第二章习题2、1 图(a)电路,若使电流A,,求电阻;图(b)电路,若使电压U=(2/3)V,求电阻R。2、2 求图示电路的电压及电流。

2、3 图示电路中要求,等效电阻。求和的值。2、4求图示电路的电流I。

2、5 求图示电路的电压U。

2、6 求图示电路的等效电阻。2、7 求图示电路的最简等效电源。图题2、

72、8 利用等效变换求图示电路的电流I。(a)

(b)图题2、

82、9 求图示电路的等效电阻 R 。2、10 求图示电路的电流和。

2、11列写图示电路的支路电流方程。图题2、1

12、12 图示电路,分别按图(a)、(b)规定的回路列出支路电流方程。图题2、1

22、13 用回路电流法求图示电路的电流I。

2、14 用回路电流法求图示电路的电流I。

图2、13 图2、1

42、15用回路电流法求图示电路的电流。图题2、15 图题2、1

62、16 图示电路,列出回路电流方程,求 m 为何值时电路无解。

2、17 图示电路,分别按图(a)、(b)规定的回路列出回路电流方程。图题2、1

72、18 图示电路中当以④为参考点时,各节点电压为

Un1=7V,Un2=5V,Un3=4V,Un4=0。求以①为参考点时的各节点电压。

2、19 图示电路中已知部分支路电压及节点①、③之间的电压,求各节点电压。

2、20用节点电压法求图示电路5A电流源发出的功率。图题2、20 图题2、2

12、21 图示电路,用节点电压法求1A电流源发出的功率。

2、22 列出图示电路的节点电压方程。2、23 列出图示电路的节点电压方程。图题2、22 图题2、2

32、24 用改进节点电压法求图示电路的电流I。图题2、2

42、25 列出图示电路的改进节点电压法方程。

图题2、25 图题2、2

62、26 用任意方法求图示电路的电流和。

2、27 求图示电路的输出电压。

图题2、27 图题2、2

82、28 求图示电路运算放大器的输出电流。

2、29 用节点分析法求图示电路的电压增益。图题2、29 图题2、302、30 求图示电路的输出电压。

2、31 根据所学知识,设计一个4输入单输出的数模转换器(DAC),即输出电压与输入电压的关系为。

第三章习题3、1 图示电路,已知A,求电阻R。

3、2 用叠加定理求图示电路的电流 I 及电阻消耗的功率。

3、3 图示电路,当 IS =2A 时,I =3V。

4、9图示电路,设I=1020U)A。试用牛顿-拉夫逊法求电压和电流,要求电压准确到10-3V。初值分别为和。

4、10图示电路,设非线性电阻特性如图(b)所示。试求电压U的值。

*4、11图题4、11(a)电路中两个非线性电阻的伏安特性分别如图(b)、(c)所示。试求电流。

4、12图示电路中二极管特性近似用(单位:A,V)表示。(1)

求U2与U1的关系。(2)

10W电阻与二极管交换位置后,再求U2与U1的关系。

第五章习题5、1图(a)所示电容。(1)

设电压如图(b)所示,求出电流i。(2)

设电流如图(c)所示,且 t=0 时已存有0、5C的电荷,求出t=3、5s时的电压u。图题5、

15、2图示电容网络,已知。(1)

求等效电容。(2)

设各电容原未充电,,求各电容储存的电场能量。

图题5、2 图题5、

35、3 图示RC串联电路,设uC(0)=0,i(t)=Ie-。求在0

5、4 图示电路称为积分器(integrator),求输出电压与输入电压的关系。

5、5 图示电路称为微分器(differentiator),求输出电压与输入电压的关系。

图题5、4 图题5、

55、6 已知图示电路中电容储能的变化规律为(t>0)。试求t>0时的变化规律。图题5、6 图题5、

75、7已知图示电路中。求控制系数。5、8 设图(a)所示电感中i(0)=1A,现在两端施加图(b)所示电压。(1)

求时间t为何值时电流i为零。

(2)

求t=4s时电感上的磁链和存储的磁场能。

图题5、8 图题5、

95、9 求图示电路中电压的最大绝对值。

5、10图(a)所示电感中,i(0)=0,周期电压u如图(b)。求t=4s时电感电流值。5、11 计算图示电路电容和电感各自储存的能量。

图题5、11 图题5、1

25、12 图示电路已知,。求电压的变化规律。5、13 求图示电路的等效电感。

5、14 图(a)所示互感为全耦合。证明图(b)是它的等效电路,其中。5、15 证明图(a)所示由电感组成的梯形电路与图(b)所示的含理想变压器电路相互等效,求出及变比n。5、16图示电路中,要求u2=u1,变比n应为多少?5、17 图示电路,设。求8Ω电阻消耗的功率。5、18 求图示电路的等效电容。

第六章习题6、1 已知图示电路中V、

A、

A、A。试写出电压和各电流的有效值、初相位,并求电压越前于电流的相位差。6、2 写出下列电压、电流相量所代表的正弦电压和电流(设角频率为ω):

(a)

(b)

(c)

(d)30A6、3 下列各式中电压、电流、磁通、电荷均为同频率的正弦量,设角频率为ω。试将各式变换为相量形式。

(a), (b)

(c)6、4 用相量法计算图题6、1所示电路的总电流。

6、5 图示电路中正弦电流的频率为50Hz时,电压表和电流表的读数分别为100V和15A;当频率为100Hz时,读数为100V和10A。试求电阻R和电感L。6、6 图示各电路中已标明电压表和电流表的读数,试求电压和电流的有效值。6、7 在图示电路中已知A,rad/s。求各元件的电压、电流及电源电压,并作各电压、电流的相量图。

6、8 在图示电路中各元件电压、电流取关联参考方向。设

=1A,且取为参考相量,画出各电流、电压相量图,根据相量图写出各元件电压、电流相量。6、9 已知图示电路中V,,,求。

6、10 已知图示电路中的感抗,要求。以电压为参考相量画出相量图,求电阻R和容抗。6、11 设图题6、7所示电路中正弦电源角频率分别为500、1000和2000rad/s,试求此电路在这三种频率下的阻抗以及串联等效电路参数。

6、12 求图示电路中电压相量的表达式。

6、13 已知图示电路中S,V,A,rad/s。求受控电流源的电压。6、14 在图示移相电路中设,试求输出电压和输入电压的相位差。

6、15 图示电路中V,rad/s,试求输出电压。6、16 图示为双T形选频电路,设已知输入电压及电路参数。试求输出电压的表达式。并讨论输入电压频率为何值时输出电压等于零?6、17 已知图示电路中V,rad/s。试求电流。

6、18 求图示一端口网络的输入阻抗。

6、19 求图示一端口网络的输入阻抗,并证明当时,与频率无关且等于。

6、20 求图示电路的戴维南等效电路。

6、21 设图示一端口网络中V,rad/s。求其戴维南等效电路。6、22 图示电路中H,F,A。求为何值时电压与电阻无关?求出电压。

6、23 图中为正弦电压源,rad/s。问电容C等于多少才能使电流的有效值达到最大?6、24 图示阻容移相器电路,设输入电压及、已知,求输出电压,并讨论当由零变到无穷时输出电压与输入电压的相位差变化范围。

6、25 图示电路,,角频率rad/s。要求无论怎样改变,电流有效值始终不变,求的值,并分析电流的相位变化情况。6、26 图示RC分压电路,求频率为何值时与同相?6、27 图示RC分压电路,求电路参数满足什么条件时,输出电压与输入电压在任何频率下都保持同相位?并求的值。6、28 设图示电路中,,,,,,V。求电压。

6、29 图示电路,要求在任意频率下,电流与输入电压始终

同相,求各参数应满足的关系及电流的有效值。

6、30 图示电路,设V,求网络N的平均功率、无功功率、功率因数和视在功率。

6、31 图为三表法测量负载等效阻抗的电路。现已知电压

表、电流表、功率表读数分别为36V、10A和288W,各表均为理想仪表,求感性负载等效阻抗Z。再设电路角频率为rad/s,求负载的等效电阻和等效电感。

6、32 图示电路,已知电压,电流,电源输出功率。求负载

阻抗及端电压。6、33 已知图示电路中V,设功率表不消耗功

率,问它的读数应为多少?6、34 已知图示电路中负载1和2的平均功率、功率因数分别为W、(感性)和W、(容性)。试求各负载的无功功率、视在功率以及两并联负载的总平均功率、无功功

率、视在功率和功率因数。6、35 功率为40W的白炽灯和日光灯

各100只并联在电压220V的工频交流电源上,设日光灯的功率因数为0、5(感性),求总电流以及总功率因数。如通过并联电容把功率因数提高到0、9,问电容应为多少?求这时的总电流。6、36 图示电路,,吸收的平均功率,功率因数(感性)。求电压有效值

和电流有效值。

6、37 图示电路中V,rad/s,。问负载阻抗Z为多少可获得最大功率?求出此最大功率。

6、38 图示电路中电源频率kHz,V,内阻,负载电阻。为使获得最大功率,和应为多少?求出此最大功率。6、39 图示电路中电源电压V,内阻,负载阻抗,问理想变压器的变比为多少时,可获得最大功率?试求此最大功率。

6、40 图示电路,已知,耦合系数,,角频率rad/s。求负载阻抗为何值时它消耗的功率为最大?并求此最大功率。

第七章习题7、1已知对称星形联接三相电源的A相电压为,试写出各线电压瞬时表达式,并作各相电压和线电压的相量图。7、2已知星形联接的负载各相电压相量分别为,试计算各线电压有效值。7、3今测得三角形联接负载的三个线电流均为

10A,能否说线电流和相电流都是对称的?若已知负载对称,试求相电流。7、4对称三角形联接的负载与对称星形联接的电源相接。已知负载各相阻抗为(8-j6)Ω,线路阻抗为j2Ω,电源相电压为220V,试求电源和负载的相电流。7、5作星形联接的三相电源,其每相内阻抗为,供给一个功率因数为0、8的感性对称三相负载,用电压表和电流表分别测得三相电源输出电压和电流各为380V和2A。若把此负载断开,电源输出电压应为多少?7、6 图示电路电流表的读数均为2A,求电流和。图题7、

67、7一个联接成星形的对称负载接在线电压为380V的对称三相电源上(无中线),负载每相阻抗。(1)求负载相电压和相电流,作电压、电流相量图;(2)设C相断线,重求各相电压和相电流;(3)设C相负载短路,再求各相电压和相电流。7、8一个联接

成三角形的负载,其各相阻抗,接在线电压为380V的对称三相电源上。(1)求线电流和负载相电流;(2)设负载中一相断路,重求相电流和线电流;(3)设一条端线断路,再求相电流和线电流。7、9星形联接的负载与线电压为380V的对称三相电源相接,各相负载的电阻分别为无中线,试求各相电压。7、10已知星形联接负载的各相阻抗为(10+j15)Ω,所加线电压对称,为380V。试求此负载的功率因数和吸收的平均功率。7、11 某对称负载的功率因数为(感性),当接于线电压为380V的对称三相电源时,其平均功率为30kW。试计算负载为星形接法时的每相等效阻抗。7、12一对称三相负载与对称三相电源相接,已知其线电流,线电压,试求此负载的功率因数和吸收的平均功率。7、13某负载各相阻抗

Z=(6+j8)Ω,所加对称线电压是380V,分别计算负载接成星形和三角形时所吸收的平均功率。7、14两组对称负载并联如图所示。其中一组接成三角形,负载功率为10kW,功率因数为0、8(感性),另一组接成星形,负载功率也是10kW,功率因数为0、

855(感性)。端线阻抗。要求负载端线电压有效值保持380V,问电源线电压应为多少?

图题7、1

47、15图示对称三相电路,负载的额定电压为380V,额定功率为

11、6kW,功率因数为0、8,现并联星形接法的对称三相电容,使并联部分的功率因数达到1,工频三相电源线电压为

380V。求电容C值和负载实际电压及吸收的平均功率。7、16图示为用功率表测量对称三相电路无功功率的一种方法,已知功率表的读数为4000W,求三相负载的无功功率。

图题7、15 图题7、16第八章习题8、1求图示倒锯齿波的傅里叶级数展开式,并画出频谱图。

8、2 设图示电路中正弦电压,由于存在二极管,电流为非正弦周期量。试求电流i的有效值和此二端电路输入的平均功率。

8、3 RLC串联电路的端口电压,端口电流,角频率rad/s,求R、L、C及的值。8、4 图示电路N为无独立源网络,,。(1) 求电压和电流的有效值;(2)

求网络N吸收的平均功率;(3)求三种频率下网络N的等效阻抗。

图题8、4 图题8、

58、5 图示电路,一个线圈接在非正弦周期电源上,其源电压为。设,求线圈电流的瞬时表达式及其有效值,并比较电压和电流所含三次谐波百分数。8、6 图示电路中,电压。试求电流i 及其有效值以及此电路吸收的平均功率。

图题8、6 图题8、

78、7 图示电路中,已知,,。求电压及其电源提供的平均功率。

8、8已知图中。求电流i和电压源发出的功率。

图题8、8 图题8、

98、9图示电路中,, ,。试求电压u及其有效值。

8、10已知图示电路中,求电流i的有效值。图题8、108、11 图示电路,直流电压源,非正弦周期电流源波形如图(b)所示。求电阻消耗的平均功率。8、12已知图示电路中,、求两电阻吸收的平均功率和电源发出的平均功率。8、13已知图示电路中输入电压,当负载为下列两种情况时分别计算输出电压 (1)负载为电阻R=10Ω;(2)负载为电感,且。

图题8、12 图题8、13第九章习题9、1 求图示电路的网络函数及其截止频率,指出通带范围。

9、2求图示RC并联电路的输入阻抗,大致画出其幅频特性和相频特性,确定通带、阻带和截止频率。9、3 图示电路,在什么条件下端口电压与端口电流波形相似?即在任何频率下等效输入阻抗为不变的实数,求出表达式。

9、4 求图示电路的网络函数,它具有高通特性还是低通特性?9、5求图示电路的转移电压比为开路电压),写出其幅频特性和相频特性,指出电压的相位随频率变化的范围。

9、6求图示电路的转移电压比,当时,此网络函数有何特性?9、7设图示电路处于谐振状态,其中。求电压UL和电阻

R2。

9、8 图示电路已知,rad/s时电流的有效值为最大,量值是1A,此时。(1)

求R、L、C及品质因数Q;(2)

求电压。9、9 RLC串联电路的谐振角频率为rad/s,通频带为rad/s,谐振时阻抗为。求R、L、C。9、10 RLC串联电路的谐振频率为876Hz,通频带为750Hz到1kHz,已知。(1) 求R、C及品质因数Q;(2)

设输入电压有效值为

23、2V,求在上述三个频率时电路的平均功率;(3)

求谐振时电感电压和电容电压。9、11 RLC串联电路中,已知电感,若要求电路的谐振频率覆盖中波无线电广播频率(从550Hz 到1、6MHz)。试求可变电容C的变化范围。

9、12 已知图示电路中,。试求当两线圈顺接和反接时的谐振角频率。若在这两种情况下外加电压均为6V,试求两线圈上的电压和。

9、13 图示电路,正弦电流源有效值,角频率rad/s,,,。问可变电容C为何值时电流I最小?

可变电容C又为何值时电流I为最大?并求出I的最小值和最大值。9、14电阻为、电感为160mH的线圈与一可调电容器串联,接到电压为rad/s的电源上。当调节电容使电路达到谐振时,问电容器和线圈的端电压各为多少?9、15 求图示一端口网络的谐振角频率和谐振时等效阻抗与R、L、C的关系。

9、16试证图示电路中是带通函数。若要求其谐振频率带宽,且,试求L和C。9、17 RLC并联电路中,已知谐振角频率

rad/s,谐振时阻抗为,频带宽度为rad/s。求R、L、C。9、18已知图示电路处于谐振状态,。试求电流和。

9、19 图示RLC并联电路处于谐振状态,已知,,电容电流有效值。求R和C的值。9、20 设图示滤波电路的输入电压中除直流分量外尚有的正弦分量。若要求输出电压中正弦分量占滤波前的5%,问电容C应为多少?9、21图示滤波器能够阻止电流的基波通至负载,同时能使九次谐波顺利地通至负载。设,基波频率,求电感L1和L2。

第章习题

10、1 图示电路时处于稳态,时开关断开。求初始值、和。

10、2 图示电路时处于稳态,时开关断开。求初始值、及开关两端电压。

图题

10、1 图题

10、2

10、3 图示电路,开关原是接通的,并且处于稳态,时开关断开。求时的变化规律。

10、4 图示电路,开关接通前处于稳态,时开关接通。求时的电压及电阻消耗的能量。

图题

10、3 图题

10、4

10、5 图示电路,开关原是断开的,时接通。求时的电流。

10、6 图示电路,开关原是接通的,时断开,已知。求电压。

图题

10、5 图题

10、6

10、7图示电路时处于稳态,时换路。求时的电压。

10、8图示电路时处于稳态,时换路。求时的电流。

图题

10、7 图题

10、8

10、9 图示电路时处于稳态,时开关断开。求时的电压。

10、10 图示电路时处于稳态,时开关断开。求时的电感电流。

图题

10、9 图题

10、10

10、11图示电路原处于稳态,时开关接通。求为何值时。

10、12图示电路原处于稳态,时开关断开。求时的电压。

图题

10、11 图题

10、12

10、13图示电路原处于稳态,时r突然由10Ω变为5Ω。求时的电压。

10、14图示电路,为阶跃电压。已知当时,零状态响应V。现把C换成5H电感,其它参数不变,再求零状态响应。

图题

10、13 图题

10、14

10、15图示电路,设。求时i的变化规律,指出其中的强制分量与自由分量。

10、16 图示电路,设 V ,时处于稳态。求时的变化规律,指出其中的强制分量与自由分量。

图题

10、15 图题

10、16

10、17 图示电路,时处于稳态,时开关断开。求时的电压。

10、18 图示电路,时处于稳态,时开关断开。求时的电压。

图题

10、17

图题

10、18

10、19图示电路原处于稳态,已知时开关由a倒向b。求时的电压。

10、20图示电路,已知时开关S1接通,时开关S2接通。求时的电压,并画出波形。

图题

10、19 图题

10、xx、21图示电路原处于稳态,时换路,求时的电压。

10、22 图示电路时处于稳态,并且。时开关接通。求时的电压和。

图题

10、21 图题

10、22

10、23 图示电路时开关接通,设,。求时电压和的变化规律图题

10、23

10、24图示电路,已知,求电流。

10、25求图示电路时独立电压源的输出功率。

图题

10、24 图题

10、25

10、26 图(a)所示电路,电压源波形如图(b)所示。求电压的变化规律。

10、27图示电路,设。求电流,并画出波形图。图题

10、26 图题

10、28电路及输入电压波形如图所示。求证在稳态时电容电压的最大和最小值分别为其中。图题

10、28

10、29电路如图所示。(1)求的单位阶跃特性。(2)求的单位冲激特性。

10、30 图示含运算放大器电路,V,求阶跃响应。

图题

10、29 图题

10、30

10、31求图示电路电压的单位冲激特性,并画出其波形。

10、32图示电路,已知,求冲激响应,并画出其波形。

图题

10、31 图题

10、32

10、33电路如图(a)所示,试用卷积积分计算分别为图(b)、

(c)时的零状态响应。图题

10、33

10、34 图示电路,时开关突然接通。(1)求电路为振荡、非振荡过渡过程时电阻R应满足的条件。(2)设。求零输入响应。

10、35求图示电路的单位阶跃特性及单位冲激特性。图题

10、34 图题

10、36图示电路原处于稳态,时开关打开。要求在时满足,求电路参数应满足的关系。

10、37图示电路原处于稳态,,时开关接通。求时的全响应。

图题

10、36 图题

10、37

10、38列出图示电路的标准形式状态方程。

10、39图示电路。(1)列出电路的状态方程。(2)由状态方程求所满足的微分方程。图题

10、38 图题

10、39第一章习题

11、1根据定义求和的象函数。

11、2 设。求的象函数。

11、3 设(设t为纯数)。分别求对应象函数、、,验证卷积定理。

11、4 求下列函数的原函数。(a), (b), (c)

11、5 分别求图示电路的等效运算阻抗或等效运算导纳。

11、6 图示电路,设电感电压零状态响应象函数为,求电源电压[用表示]。

哈工大工程流体力学(二)试题

1.沿程阻力, 2.时间平均压强, 3.水力短管,5.翼弦 6.点汇, 7.旋涡强度, 8.速度势函数, 9.水力粗糙管,10.紊流 1.局部阻力, 2.时间平均流速, 3.水力长管,,5.翼弦 1.6.点源,7.涡线,8.流函数,9.水力光滑管,10.层流 2.水击现象、边界层 3.入口起始段、攻角、空气动力翼弦 1.简述边界层的特点 2.何谓述叶栅理论中的正问题和反问题 二、简答题(10分) 1. 在机翼理论中,如何利用保角变换法解决机翼绕流问题的 2.试推求有压管路产生水击时压强最大升高值的计算公式, 并说明减小水击的措施。(10分) 二、简答题 1.试分析流体流经弯管时局部阻力产生的具体原因是什么?(8分) 2.结合流体对圆柱体的有环量绕流,分析升力是如何产生的?(7分) 3.简述粘性流体绕物体流动时压差阻力产生的原因。 4.简述水击现象的物理过程,并说明减少水击现象的措施。 5.简述曲面边界层的分离现象 三、推求边界层的动量积分关系式(15分) 四、推求边界层的微分方程(普朗特边界层方程)

四、试推导说明圆柱外伸管嘴出流流量大于同直径薄壁小孔口的出流流量(10分) 三.推导理想流体平面有势流动中偶极流的速度势函数和流函数。(15分) 说明速度势函数的存在条件,并证明速度势函数的特性 说明流函数的存在条件,并证明流函数的特性 四.流体在长为l 的水平放置的等直径圆管中作定常流动,若已知沿程损失因数为λ,管壁切应力为τ,断面平均流速为V ; 试证明:28 V λ τρ= 。 (15分) 试推导二元旋涡的速度和压强分布 试证明旋涡理论中的斯托克斯定理 试证明速度环量保持不变的汤姆逊定理 三、推导、证明题 1.试推导圆管层流流动的速度分布规律,并求: (1)断面平均流速 (2)动能修正因数 (15分) 五、用突然扩大使管道的平均流速从1V 减到2V ,如图所示,如果 cm d 51=及1V 一定,试求使测压管液柱差h 成为最大值的2V 及2d 为若 干?并求m ax h 是多少?(10分)

哈工大结构力学题库一章

第一章平面体系的几何组成分析 一判断题 1. 图示体系是几何不变体系。() 题1图题2图题3图题4图 2. 图示体系为几何可变体系。() 3. 图示体系是几何不变体系。() 4. 图示体系是几何不变体系。() 5. 图示体系是几何不变体系。() 题5图题6图题19图题20图 6. 图示体系为几何不变有多余约束。() 7. 几何瞬变体系产生的运动非常微小并很快就转变成几何不变体系,因而可以用作工程结 构。() 8. 两刚片或三刚片组成几何不变体系的规则中,不仅指明了必需的约束数目,而且指明了 这些约束必需满足的条件。() 9. 在任意荷载下,仅用静力平衡方程即可确定全不反力和内力的体系是几何不变体系。 () 10. 计算自由度W小于等于零是体系几何不变的充要条件。( ) 11. 几何可变体系在任何荷载作用下都不能平衡。( ) 12. 三个刚片由三个铰相联的体系一定是静定结构。( ) 13. 有多余约束的体系一定是超静定结构。( ) 14. 有些体系为几何可变体系但却有多余约束存在。() 15. 平面几何不变体系的三个基本组成规则是可以相互沟通的。() 16. 三刚片由三个单铰或任意六根链杆两两相联,体系必为几何不变。() 17. 两刚片用汇交于一点的三根链杆相联,可组成几何不变体系。() 18. 若体系计算自由度W<0,则它一定是几何可变体系。() 19. 在图示体系中,去掉其中任意两根支座链杆后,所余下都是几何不变的。() 20. 图示体系按三刚片法则分析,三铰共线,故为几何瞬变体系。() 21. 有多余约束的体系一定是几何不变体系。()

22. 几何不变体系的计算自由度一定等于零。() 23. 几何瞬变体系的计算自由度一定等于零。() 24. 图中链杆1和2的交点O可视为虚铰。() 题24图 二选择题 1. 图示体系为:() A.几何不变无多余约束 B.几何不变有多余约束 C.几何常变 D.几何瞬变 题1图题2图题3图 2. 图示体系为:() A.几何不变无多余约束 B.几何不变有多余约束 C.几何常变 D.几何瞬变 3. 图示体系虽有三个多余约束,但为保证其几何不变,哪两根链杆是不能同时去掉的。 A.a和e B. a和b C. a和c D. c和e ()4. 图示体系是() A.无多余联系的几何不变体系 B.有多余联系的几何不变体系 C.几何可变体系 D.瞬变体系 题4图题5图题6图 5. 欲使图示体系成为无多余约束的几何不变体系,则需在A端加入:() A.固定铰支座 B.固定支座 C.滑动铰支座 D.定向支座 6. 图示体系为() A.几何不变无多余约束 B.几何不变有多余约束 C.几何常变 D.几何瞬变 7. 图示体系的几何组成为() A.几何不变无多余约束 B.几何不变有多余约束 C.瞬变体系 D.可变体系

结构动力学大作业

结构动力学作业 姓名: 学号:

目录 1.力插值法 (1) 1.1分段常数插值法 (1) 1.2分段线性插值法 (4) 2.加速度插值法 (7) 2.1常加速度法 (7) 2.2线加速度法 (9) 附录 (12) 分段常数插值法源程序 (12) 分段线性插值法源程序 (12) 常加速度法源程序 (13) 线加速度法源程序 (13)

1.力插值法 力插值法对结构的外荷载进行插值,分为分段常数插值法和分段线性插值法,这两种方法均适用于线性结构的动力反应计算。 1.1分段常数插值法 图1-1为一个单自由度无阻尼系统,结构的刚度为k ,质量为m ,位移为y (t ),施加的外力为P (t )。图1-2为矩形脉冲荷载的示意图,图中t d 表示作用的时间,P 0表示脉冲荷载的大小。 图1-1 单自由度无阻尼系统示意图 图1-2 矩形脉冲荷载示意图 对于一个满足静止初始条件的无阻尼单自由度体系来说,当施加一个t d 时间的矩形脉冲荷载,此时结构在t d 时间内的位移反应可以用杜哈梅积分得到: 0()sin ()2 (1cos )(1cos ) (0) t st st d P y t t d m t y t y t t T ωττω πω=-=-=-≤≤? (1-1) 如果结构本身有初始的位移和速度,那么叠加上结构自由振动的部分,结构的位移反应为: 02()cos sin (1cos ) (0 )st d y t y t y t t y t t T πωωω =+ +-≤≤ (1-2)

图1-3 分段常数插值法微段示意图 对于施加于结构任意大小的力,将其划分为Δt 的微段,每一段的荷载都为一个常数(每段相当于一个矩形的脉冲荷载),如图1-3所示,则将每一段的位移和速度写成增量的形式为: 1cos t sin t (1cos t)i i i i y P y y k ωωωω +=?+ ?+-? (1-3) i+1/sin t cos t sin t i i i y P y y k ωωωωω =-?+ ?+ ? (1-4) 程序流程图如下

哈工大结构动力学大作业2012春

结构动力学大作业 对于如下结构,是研究质量块的质量变化和在简支梁上位置的变化对整个系统模态的影响。 1 以上为一个简支梁结构。集中质量块放于梁上,质量块距简支梁的左端点距离为L. 将该简支梁简化为欧拉伯努利梁,并离散为N 个单元。每个单元有两个节点,四个自由度。 单元的节点位移可表示为: ]1122,,,e v v δθθ?=? 则单元内一点的挠度可计作: 带入边界条件: 1 3 32210)(x a x a x a a x v +++=0 1)0(a v x v ===3 322102)(L a L a L a a v L x v +++===1 10 d d a x v x ===θ2 321232d d L a L a a x v L x ++===θ1 0v a =

[]12 3 4N N N N N = 建立了单元位移模式后,其动能势能均可用节点位移表示。单元的动能为: 00111()222 l l T T T ke e e e e y E dx q N Ndxq q mq t ρρ?===??? 其中m 为单元质量阵,并有: l T m N Ndx ρ=? 带入公式后积分可得: 222215622541322413354 1315622420133224l l l l l l l m l l l l l l ρ-?? ??-??= ?? -?? ---? ? 单元势能可表示为 22 200 11()()22 2 T l l T T e pe e e e q y E EI dx EI N N dxq q Kq x ?''''== =??? 其中K 为单元刚度矩阵,并有 ()l T K EI N N dx ''''=? 2 23 2212 612664621261266264l l l l l l EI k l l l l l l l -????-??=??---??-?? 以上为单元类型矩阵,通过定义全局位移矩阵,可以得到系统刚度矩阵和系统质量矩 1 1θ=a )2(1)(3211222θθ+--=L v v L a )(1)(22122133θθ++-= L v v L a 1232133222231)(θ???? ??+-+???? ??+-=L x L x x v L x L x x v 2 2232332223θ??? ? ??-+???? ??-+L x L x v L x L x 2 4231211)()()()()(θθx N v x N x N v x N x v +++=

哈工大工程流体力学样本

《工程流体力学》综合复习资料 一、判断题 1、根据牛顿内摩擦定律, 当流体流动时, 流体内部内摩擦力大小与该处的流 速大小成正比。 2、一个接触液体的平面壁上形心处的水静压强正好等于整个受压壁面上所有 各点水静压强的平均值。 3、流体流动时, 只有当流速大小发生改变的情况下才有动量的变化。 4、在相同条件下, 管嘴出流流量系数大于孔口出流流量系数。 5、稳定( 定常) 流一定是缓变流动。 6、水击产生的根本原因是液体具有粘性。 7、长管是指运算过程中流速水头不能略去的流动管路。 8、所谓水力光滑管是指内壁面粗糙度很小的管道。 9、外径为D, 内径为d的环形过流有效断面, 其水力半径为 4d D- 。 10、凡是满管流流动, 任何断面上的压强均大于大气的压强。 二、填空题 1、某输水安装的文丘利管流量计, 当其汞-水压差计上读数cm h4 = ?, 经过的流量为s L/ 2, 分析当汞水压差计读数cm h9 = ?, 经过流量为L/s。 2、运动粘度与动力粘度的关系是v=u/p , 其国际单位是厘斯(mm2/s) 。 3、因次分析的基本原理是: 因次和谐的原理 ; 具体计算方法分为两 种。 4、断面平均流速V与实际流速u的区别是。 5、实际流体总流的伯诺利方程表示式为 , 其适用条件是。 6、泵的扬程H是指扬程, m。 7、稳定流的动量方程表示式为。

8、计算水头损失的公式为与。 9、牛顿内摩擦定律的表示式τ=μγ , 其适用范围是是指在温度不变 的条件下, 随着流速梯度的变化, μ值始终保持一常数。 10、压力中心是指作用在物体上的空气动力合力的作用点。 三、简答题 1、稳定流动与不稳定流动。---流体在管道内或在窑炉系统中流动时, 如果任 一截面上的流动状况(流速、压强、重度、成分等)都不随时间而改变, 这种流动就称为稳定流动; 反之, 流动各量随着时间而改变, 就称为不稳定流动。实际上流体(如气体, 重油等)在管道内或窑炉系统中流动时, 只要波动不太大, 都能够视为稳定流动。 2、 产生流动阻力的原因。---直管阻力: 流体流经直管段时, 由于克服流体的粘滞性及与管内壁间的磨擦所产生的阻力。有粘管壁, 其壁面的流动速度降为0. 局部阻力: 流体流经异形管或管件时, 由于流动发生骤然变化引起涡流所产生的能量损失。 3、串联管路的水力特性。---串联管路无中途分流和合流时, 流量相等, 阻力 叠加。串联管路总水头损失等于串联各管段的水头损失之和, 后一管段的流量等于前一管段流量减去前管段末端泄出的流量。 4、如何区分水力光滑管和水力粗糙管, 两者是否固定不变? ---在紊流中存在 层流底层, 当层流底层厚度δl>5Δ时, 粗糙高度几乎全被层流底层淹没, 管壁对紊流区流体的影响很小, 这与流体在完全光滑的管道中流动类似, 这种情况的管子叫做水力光滑管。当层流底层厚度δl<0.3Δ时, 管壁上几乎所有的凸峰都暴露在紊流中, 紊流去的流体质点与凸峰相互碰撞, 阻力增加, 此时的管子叫做水利粗糙管。 5、静压强的两个特性。---1.静压强的方向是垂直受压面, 并指向受压面。2. 任一点静压强的大小和受压面方向无关, 或者说任一点各方向的静压强均相等。

哈工大结构力学题库七章

第七章 影响线 第七章影响线 判断题 图示梁AB 与A o B o ,其截面C 与C 0弯矩影响线和剪力影响线完全相同。 (X ) 图示梁K 截面的M K 影响线、Q 影响线形状如图a 、b 所示。 (K) (X) 图示梁的M C 影响线、Q C 影响线形状如图a 、b 所示。 lb ) (I 莎) <丨井1 图示梁的M C 影响线、M B 影响线形状如图a 、b 所示。 1. 2. 图示结构Q E 影响线的AC 段纵标不为零。(X ) 3. 4. 5. ■

6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 4 上f 甘兀丄 f ■ ) ___ ;_、T ■ ■ (b ) L_十=叼 (O> (X ) 图示结构M B影响线的AB段纵标为零。 图示梁跨中C截面弯矩影响线的物理意义是荷载P=1作用在截面C的弯矩图形。 用静力法作静定结构某量值的影响线与用机动法作该结构同一量值的影响线是不等价的。(X 求某量值影响线方程的方法,与恒载作用下计算该量值的方法在原理上是相同的。 影响线是用于解决活载作用下结构的计算问题,它不能用于恒载作用下的计算。 移动荷载是指大小,指向不变,作用位置不断变化的荷载,所以不是静力荷载。 用静力法作影响线,影响线方程中的变量x代表截面位置的横坐标。(X) 表示单位移动荷载作用下某指定截面的内力变化规律的图形称为内力影响线。 简支梁跨中截面弯矩的影响线与跨中有集中力P时的M图相同。(X) 简支梁跨中C截面剪力影响线在C截面处有突变。 绝对最大弯矩是移动荷载下梁的各截面上最大的弯矩。 静定结构及超静定结构的内力影响线都是由直线组成。 图示结构Q影响线的CD段为斜直线。 (X) (V) (X) (X) (V) (V) (V) 19. 图示结构K断面的剪力影响线如图b所示。(V)

流体力学大作业

《计算流体力学》课程大作业 作业内容:3-4人为小组完成数值模拟,在第8次课上每组进行成果展示,并在课程结束后每组上交一份纸质版报告。 数值模拟实现形式:自编程或者使用任意的开源、商业模型。 成果展示要求:口头讲述和幻灯片结合的方式,每组限时10分钟(8分钟讲述,2分钟提问和讨论)。 报告要求:按照期刊论文的思路和格式进行撰写(包括但不限于如下内容:摘要、绪论\引言、数值模型简介、数值结果分析\讨论、结论、参考文献)。 (以下题目二选一) 题目一:固定单方柱扰流问题 根据文章《Interactions of tandem square cylinders at low Reynolds numbers》中的实验进行数值模拟,完成但不局限于如下工作: (1)根据Fig. 2 中的雷诺数和方柱排列形式,进行相同雷诺数不同间距比情况下的方柱绕流数值模拟,并做出流线图和Fig.2中的结果对比。 (2)根据Fig. 3 中的雷诺数和方柱排列形式,进行相同雷诺数后柱不同转角情况下的方柱绕流数值模拟,并做出流线图和Fig.3中的结果对比。 (3)根据Fig. 12, 13 中的雷诺数和方柱间距比的设置进行数值模拟,作出频率、斯特劳哈尔数、阻力系数随雷诺数变化的折线并与图中对应的折线画在同一坐标系下比较。 (中共有4条折线,对应4种不同的方柱排列形式下的物理参数随雷诺数变化的规律,仅需选取单柱模型和其中一种双柱模型进行数值模拟,共计16个工况)。 题目二:溃坝问题 根据文章《Experimental investigation of dynamic pressure loads during dam break》中的实验进行数值模拟,完成但不局限于如下工作: (1)分别完成二维、三维的溃坝的数值建模,讨论二维、三维模型的区别。 (2)分别将二维、三维溃坝的数值模拟结果和Fig. 7,10中各时刻的自由面形态进行对比,并分别观测溃坝前端水舌的位置随时间的变化,其结果和Fig. 12 种的各试验结果放在同一坐标系下进行对比。 (3)根据实验设置数值观测点,分别观测与实验测点相对应的数值观测点上的水体高度、压力随时间的变化曲线,并和Fig.16, 18,21,30,31,32,33,35中的实验结果进行对比。

哈工大结构力学题库七篇(I)

第七章影响线 一判断题 1. 图示梁AB与A0B0,其截面C与C0弯矩影响线和剪力影响线完全相同。(X) 题1图题2图 2. 图示结构Q E影响线的AC段纵标不为零。(X) 3. 图示梁K截面的M K影响线、Q K影响线形状如图a、b所示。 4. 图示梁的M C影响线、Q C影响线形状如图a、b所示。 5. 图示梁的M C影响线、M B影响线形状如图a、b所示。 6. 图示结构M B影响线的AB段纵标为零。 7. 图示梁跨中C截面弯矩影响线的物理意义是荷载P=1作用在截面C的弯矩图形。(X) 8. 用静力法作静定结构某量值的影响线与用机动法作该结构同一量值的影响线是不等价 的。(X) 9. 求某量值影响线方程的方法,与恒载作用下计算该量值的方法在原理上是相同的。(√) 10. 影响线是用于解决活载作用下结构的计算问题,它不能用于恒载作用下的计算。(X) 11. 移动荷载是指大小,指向不变,作用位置不断变化的荷载,所以不是静力荷载。(X) 12. 用静力法作影响线,影响线方程中的变量x代表截面位置的横坐标。(X) 13. 表示单位移动荷载作用下某指定截面的内力变化规律的图形称为内力影响线。(√) 14. 简支梁跨中截面弯矩的影响线与跨中有集中力P时的M图相同。(X) 15. 简支梁跨中C截面剪力影响线在C截面处有突变。(√) 16. 绝对最大弯矩是移动荷载下梁的各截面上最大的弯矩。(√) 17. 静定结构及超静定结构的内力影响线都是由直线组成。(X) 18. 图示结构Q C影响线的CD段为斜直线。 19. 图示结构K断面的剪力影响线如图b所示。(√) 题19图 20. 用机动法作得图a所示Q B左结构影响线如图b。 题20图题21图 21. 图示结构a杆的内力影响线如图b所示 22. 荷载处于某一最不利位置时,按梁内各截面得弯矩值竖标画出得图形,称为简支梁的弯

哈工大工程流体力学部分习题详解

[陈书1-15] 图轴在滑动轴承中转动,已知轴的直径cm D 20=,轴承宽度cm b 30=,间隙cm 08.0=δ。间隙中充满动力学粘性系数s Pa 245.0?=μ的润滑油。若已知轴旋转时润滑 油阻力的损耗功率W P 7.50=,试求轴承的转速?=n 当转速min 1000r n =时,消耗功率为多少?(轴承运动时维持恒定转速) 【解】轴表面承受的摩擦阻力矩为:2 D M A τ= 其中剪切应力:dr du ρντ= 表面积:Db A π= 因为间隙内的流速可近似看作线性分布,而且对粘性流体,外表面上应取流速为零的条件,故径向流速梯度: δ ω2D dr du = 其中转动角速度:n πω2= 所以:23 2 2nD D D nb M Db πμπμ πδ δ == 维持匀速转动时所消耗的功率为:332 2D n b P M M n μπωπδ === 所以:Db P D n μπδ π1= 将: s Pa 245.0?=μ m cm D 2.020== m cm b 3.030== m cm 4 10808.0-?==δ W P 7.50= 14.3=π 代入上式,得:min r 56.89s r 493.1==n 当s r 3 50min r 1000= =n 时所消耗的功率为: W b n D P 83.63202 33== δ μπ [陈书1-16]两无限大平板相距mm 25=b 平行(水平)放置,其间充满动力学粘性系数 s Pa 5.1?=μ的甘油,在两平板间以m 15.0=V 的恒定速度水平拖动一面积为

2 m 5.0=A 的极薄平板。如果薄平板保持在中间位置需要用多大的力?如果置于距一板 10mm 的位置,需多大的力? 【解】平板匀速运动,受力平衡。 题中给出平板“极薄”,故无需考虑平板的体积、重量及边缘效应等。 本题应求解的水平方向的拖力。 水平方向,薄板所受的拖力与流体作用在薄板上下表面上摩擦力平衡。 作用于薄板上表面的摩擦力为: A dz du A F u u u μ τ== 题中未给出流场的速度分布,且上下两无限大平板的间距不大,不妨设为线性分布。 设薄板到上面平板的距离为h ,则有: h V dz du u = 所以:A h V F u μ = 同理,作用于薄板下表面的摩擦力为: A h b V F d -=μ 维持薄板匀速运动所需的拖力: ?? ? ??-+=+=h b h AV F F F d u 11 μ 当薄板在中间位置时,m 105.12mm 5.123 -?==h 将m 10 25mm 253 -?==b 、s m 15.0=V 、2 m 5.0=A 和s Pa 5.1?=μ代入,得: N 18=F 如果薄板置于距一板(不妨设为上平板)10mm 的位置,则: m 10 10mm 103 -?==h 代入上式得:N 75.18=F [陈书1-17]一很大的薄板放在m 06.0=b 宽水平缝隙的中间位置,板上下分别放有不同粘度的油,一种油的粘度是另一种的2倍。当以s m 3.0=V 的恒定速度水平拖动平板时,每平方米受的总摩擦力为N 29=F 。求两种油的粘度。 【解】平板匀速运动,受力平衡。 题中给出薄板”,故无需考虑平板的体积、重量及边缘效应等。 本题应求解的水平方向的拖力。

结构动力学哈工大版课后习题集解答

第一章 单自由度系统 1.1 总结求单自由度系统固有频率的方法和步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。 1、 牛顿第二定律法 适用围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律∑=F x m ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、 动量距定理法 适用围:绕定轴转动的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析和动量距分析; (2) 利用动量距定理J ∑=M θ ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 和势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程 θ θ??-???L L dt )( =0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、 能量守恒定理法 适用围:所有无阻尼的单自由度保守系统的振动。

解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即0) (=+dt U T d ,进一步得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值i A 、1+i A 。 (2)由对数衰减率定义 )ln( 1 +=i i A A δ, 进一步推导有 2 12ζ πζδ-= , 因为ζ较小, 所以有 π δζ2= 。 方法二:共振法求单自由度系统的阻尼比。 (1)通过实验,绘出系统的幅频曲线, 如下图:

流体力学 大作业

一.选择题 1.牛顿内摩擦定律适用于()。 A.任何流体B.牛顿流体C.非牛顿流体 2.液体不具有的性质是()。 A.易流动性B.压缩性C.抗拉性D.粘滞性 3连续介质假定认为流体()连续。 A.在宏观上B.在微观上C.分子间D.原子间 4.在国际单位制中流体力学基本量纲不包括()。 A.时间B.质量C.长度D.力. 5.在静水中取一六面体,作用在该六面体上的力有() A.切向力、正压力B.正压力C.正压力、重力D.正压力、切向力、重力 6.下述哪些力属于质量力( ) A.惯性力B.粘性力C.弹性力D.表面张力E.重力 7.某点存在真空时,()() A.该点的绝对压强为正值B.该点的相对压强为正值c.该点的绝对压强为负值D.该点的相对压强为负值 8.流体静压强的()。 A.方向与受压面有关B.大小与受压面积有关B.大小与受压面方位无关 9.流体静压强的全微分式为()。 A.B.C. 10.压强单位为时,采用了哪种表示法()。 A.应力单位B.大气压倍数C.液柱高度 11.密封容器内液面压强小于大气压强,其任一点的测压管液面()。A.高于容器内液面B.低于容器内液面C.等于容器内液面 12.流体运动的连续性方程是根据()原理导出的。 A.动量守恒 B. 质量守恒 C.能量守恒 D. 力的平衡 13. 流线和迹线重合的条件为()。

A.恒定流 B.非恒定流 C.非恒定均匀流 14.总流伯努利方程适用于()。 A.恒定流 B.非恒定流 C.可压缩流体 15. 总水头线与测压管水头线的基本规律是:()、() A.总水头线总是沿程下降的。 B.总水头线总是在测压管水头线的上方。 C.测压管水头线沿程可升可降。 D.测压管水头线总是沿程下降的。 16 管道中液体的雷诺数与()无关。 A. 温度 B. 管径 C. 流速 D. 管长 17.. 某圆管直径d=30mm,其中液体平均流速为20cm/s。液体粘滞系数为0.0114cm3/s,则此管中液体流态为()。 A. 层流 B. 层流向紊流过渡 C.紊流 18.等直径圆管中紊流的过流断面流速分布是()A呈抛物线分布B. 呈对数线分布 C.呈椭圆曲线分布 D. 呈双曲线分布 19.等直径圆管中的层流,其过流断面平均流速是圆管中最大流速的() A 1.0倍B.1/3倍C. 1/4倍D. 1/2倍 20.圆管中的层流的沿程损失与管中平均流速的()成正比. A. 一次方 B. 二次方 C. 三次方 D. 四次方 21..圆管的水力半径是( ) A. d/2 B. d/3 C. d/4 D. d/5. 22谢才公式中谢才系数的单位是()A. 无量纲B. C. D. . 23. 判断层流和紊流的临界雷诺数是() A.上临界雷诺数 B.下临界雷诺数 C.上下临界雷诺数代数平均 D.上下临界雷诺数几何平均 24.. 对于管道无压流,当充满度分别为()时,其流量和速度分别达到最大。 A. 0.5, 0.5 B. 0.95, 0.81 C. 0.81, 081 D. 1.0, 1.0 25.对于a, b, c三种水面线,下列哪些说法是错误()() A.所有a、c型曲线都是壅水曲线,即,水深沿程增大。B.所有b型曲线都是壅水曲线,即,水深沿程增大。C.所有a、c型曲线都是降水曲线,即,水深沿程减小。C.所有b型曲线都是降水曲线,即,水深沿程减

哈工大工程流体力学期末考试

哈工大工程流体力学期末考试题库 一、 概念解释题 1. 体胀系数:当压强不变而流体温度变化1K 时,其体积的相对变化率,即 1= V V T α?? 2. 体积模量:压缩率的倒数,即K 3. 理想流体:没有粘性的流体 4. 5. 6. 流束:过流场中非流面曲面S 7. 流管:过流场中任一封闭曲线l 8. 路系统 9. 统 10.流量:单位时间内流过总流过流断面的流体量 11.系统:有限体积的流体质点的集合 12.控制体:取流场中某一确定的空间区域 13.压力体:有所研究的曲面,通过曲面周界所作的垂直柱面和流体的自由 表面所围成的封闭体积 14.正压流体:是指内部任一点的密度只是压力的函数的流体 15.表面力:作用在所研究流体外表面上与表面积大小成正比的力 16.质量力:处于某种力场中的流体,所有质点均受有与质量成正比的力 17.流体动力粘度:也称为绝对粘度,表示单位速度梯度时内摩擦切应力的 大小,即/dv dh τ μ= 18.运动粘度:用动力粘度μ和流体密度ρ的比值来度量流体的粘度 19.沿程阻力:流体沿流动路程所受到的阻碍 20.局部阻力:流体经过各种局部障碍时,将会发生突然变形,产生阻碍流 体运动的力

21.有旋流动:流体微团的旋转角速度不等于零的流动 22.无旋流动:流体微团的旋转角速度等于零的流动 23.缓变流动:过流断面上的流动 24.过流断面:在流束或总流中与所有流线都相垂直的横断面 25.缓变过流断面的性质:流线之间的夹角很小,流线间几乎平行;流线具 有很大的曲率半径,离心惯性力不大,可认为质量力只有重力作用 26.恒定流动:流场中运动参数不随时间变化的流动 27.非恒定流动:流场中运动参数随位置和时间的改变而改变的流动 28.动能修正因数(定义式) 能间的比值,定义式为α 29.动量修正因数(定义式) 量间的比值,定义式为 α 30. 31.当量直径:总流过流断面面积的四倍与湿周之比,即 e 4 = A d χ 32.压强的表示方法:绝对压强、计士压强、真空度 33.水力光滑管:(厚度)δ>?(管壁的绝对粗糙度)时,粘性底层以外的 紊流区域完全不受管壁粗糙度影响的管内紊流流动 34.水力粗糙管:(厚度)δ

结构动力学

结构动力学试题 2016年4月 重庆交通大学结构工程硕士研究生考试 1.试述结构动力问题和静力问题的主要区别(10分) 答:结构静力学相比,动力学的复杂性表现在: (1)动力问题具有随时间而变化的性质; (2)数学解答不是单一的数值,而是时间的函数; (3)惯性力是结构内部弹性力所平衡的全部荷载的一个重要部分; (4)引入惯性力后涉及到二阶微分方程的求解; (5)需考虑结构本身的动力特性:刚度分布、质量分布、阻尼特性分布的影响。 2.什么是结构动力系统的阻尼?一般结构系统的阻尼有何特性?在结构分析中 阻尼问题的处理方法有哪些?(20分) 答:(1)结构在震动过程中的能量耗散作用称为阻尼; (2)阻尼的特性:a、阻尼耗能与质量(反映附属部分大小)和刚度(反映位移大小)有关。b、难以采用精确的理论分析方法; (3)对于多自由度体系:在结构动力分析中,通常从系统响应这个角度来考虑阻尼,而且能量的损耗是由外界激励来平衡的。一个振动系统可能存在多种不同类型的阻尼,一般来说,要用数学的方法来精确描述阻尼目前是比较困难的。因此,人们根据经验提出了一些简化模型,常用的阻尼模型有黏性阻尼和结构阻尼。黏性阻尼系统:黏性阻尼的特点是阻尼力和运动速度成真封闭。 在用振型叠加法进行分析时,能否将联立的运动方程化为解耦的一系列单自由度运动方程,将取决于阻尼矩阵的性质,即结构的振型是否关于阻尼阵满足正交条件。如果满足阻尼阵的正交条件,则采用振型叠加法分析时,就可以把多自由度体系的动力反应问题化为一系列单自由度问题求解;如果不满足阻尼阵的正交条件,则对位移向量用振型展开后,关于振型坐标的运动方程成为耦联的,必须联立求解,与解耦方程相比,增加了难度和计算量。 3.试述多自由度体系振型矩阵关于质量矩阵和刚度矩阵的正交性的意义,并写出广义正交性的表达式且加以证明。(20分) 答:(1)由振型关于质量、刚度正交性公式可知,i振型上的惯性力在j振型上作的虚功为0。由此可知,既然每一主振型相应的惯性力在其他主振型上不做功,那么它的振动能量就不会转移到别的主振型上去。换句话说,当一个体系只按某一主振型振动时,不会激起其他主振型的振动。这说明各个主振型都能单独出现,彼此线性无关。这就是振型正交的物理意义。一是可用于校核振型的正确性;二是在已知振型的条件下,可以通过折算质量与折算刚度计算对应的频率。而更主要的是任一同阶向量均可用振型的线性组合来表示,在受迫振动分析中,利用振型的正交性,在阻尼矩阵正交的假设下可使运动方程解藕. (2)振型正交性的证明在Clough书中应用的是Betti互易定理,就像D’Alember 原理一样考虑了惯性力,是运动学中功的互等定理。实际振型正交性的证明可

哈工大建筑工业出版社伍悦滨工程流体力学(水力学)课后习题答案

第一章 1、2 kg 19.6 N 2、900 kg/m 3 3、3.5 % 4、1.0 N 5、0.05 Pa ?s 6、4.3×10-5 N 7、39.5 N ?m 8、0.026 % 9、0.51×10-9 Pa -1 1.96×109 Pa 10、0.2 m 3 11、533×105 Pa 12、435.44 kPa 第二章 1、14994 Pa 2、-5880 Pa 3、352.8 kN ,275.4 kN 4、37.7 kPa ,29.6 kN 5、362.8 kPa 6、22.7kPa 7、p=p 0 8、1.63m/s 2 9、18.67 rad/s 10、2462N 竖直向下, 3977N 竖直向上 12、31kN 13、88.3kN 距水底1.5m 14、距液面1.56m 15、距液面1.414m 2.586m 16、23.45kN ,20o 17 、12 2 3x z P gh P ρρ==18、153.85kN ,0,0 19、28.85kN ,2.56 kN 20、0.114 21、不能 22、0.48m 第三章 1、35.86 m/s 2 2、36.27m/s 2二元/恒定 /非均匀流 3、ay-bx=c 4、x 2+y 2=c 5、3x -2y =3 6、y =0.242r 0 7、1,3不满足2满足 8、u x =-2xy -2x +f (y ) 9、4max 3Q bu = 10、18.05m/s, 22.25m/s 11、8.16 2.04 0.51 16.32 4.08 1.02 4.08 1.02 0.255 12、0.228kg/s 9.83m/s 13、4.77 m/s 14、0.158d 0.274d 0.354d 0.418d 0.474d ()21234520d u u u u u πρ++++ 15、0.056 m 16、300 mm 1.18m/s 17、Q 1/Q 2=0.28 18、2.64 kg/m 3 19、0xx yy zz εεε=== 0 xy yx z a εεω=== 有旋无角变形 ()() 2222222 2 222 0 xx yy zz xy z y x cxy cxy x y x y c y x x y εεεεωωω-== =++-= ===+ 无旋有角变形 第四章 1、10.9 L/s 2、1.87m 3、235.5mm 4、0.8m B →A 5、3.85m/s 4.34m/s 6、12.7 L/s 7、11.8m 79.0kPa 8、68.1 -0.48 -20.1 0 kPa 9、1.23m 10、8.22 L/s 428mm 11、1.5 m 3/s 12、-64.5Pa 967.5Pa 13、143.24kN 14、25.05 L/s,8.35 L/s 1.97 kN 15、3.26kN ,5.26kN 16、2.322kN 17、527N 18、8.5 m 3/s, 22.42kN 19、98.35kN, 120.05kN 20、2509W 21、2 2y x x y ψ?=-=+ ()220.5 x y ψ?=+不存在 ψ?、均不存在 ()2322 21 3322 y x x y x xy y x ψ?=+- =+--220.2ln 0.0285m/s 20.2ln 0.142m/s 2r r u r u θθψπθ?π -==+== 23、210 y ψ?=不存在 24() ()()222 2 2 2 2 2 224 x y y c x y x y xy u u x y x y ψ=+++= = -- 2522 32223 2 x y x y x y u x u y ?=---=-=-- 26、0 1/r u u r θ== 27000arctan 2 0 22s q y U y x q q x U y U ψπθππ =- =-= 第五章 1、S=kgt 2 2、N=kM ω 5 、Q μ= 6、5m,0.034 L/s,1.3m 7、2.26 m 3/s 8、1m,14 kN 9、74.7Pa,-35.6Pa 10、150min 11、8320kN 12、17.93 L/s,3.6m 13、54min 14、2.5KN ,17.7kw 15、1932s 16、7.61,1236N

哈工大结构动力学作业_威尔逊_θ法

结构动力学大作业(威尔逊- 法) : 学号: 班级: 专业:

威尔逊-θ法原理及应用 【摘要】在求解单自由度体系振动方程时我们用了常加速度法及线加速度法等数值分析方法。在多自由度体系中,也有类似求解方法,即中心差分法及威尔逊-θ法。实际上后两种方法也能求解单自由度体系振动方程。对于数值方法,有三个重要要求:收敛性、稳定性及精度。本文推导了威尔逊-θ法的公式,并利用MATLAB 编程来研究单自由度体系的动力特性。 【关键词】威尔逊-θ法 冲击荷载 阻尼比 【正文】威尔逊-θ法可以很方便的求解任意荷载作用下单自由度体系振动问题。实际上,当 1.37θ>时,威尔逊-θ法是无条件收敛的。 一、威尔逊-θ法的原理 威尔逊-θ法是线性加速度法的一种拓展(当1θ=时,两者相同),其基本思路和实现方法是求出在时间段[],t t t θ+?时刻的运动,其中1θ≥,然后通过插得到i t t +?时刻的运动(见图 1.1)。 图 1.1 1、公式推导 推导由t 时刻的状态求t t θ+?时刻的状态的递推公式: 对τ积分

{}{}{}{}{}{})(623 2 t t t t t t t y y t y y y y &&&&&&&-?+++=?++θτ θτττ {}{}{}{}{})2(6)(2t t t t t t t y y t y t y y &&&&&+?+?+=?+?+θθθθ {}{}{}{}{}t t t t t t t y y t y y t y &&&&&26 )()(62-?--?=?+?+θθθθ []{}{} {}[]{}{}{}[]{}{}{})223()26)(6( )(2t t t t t t t t t t y t y y t c y y t y t m P P P R &&&&&&?++?++?+?+-+=?+θθθθθ 2、MA TLAB 源程序: clc;clear; K=input('请输入结构刚度k(N/m)'); M=input('请输入质量(kg)'); C=input('请输入阻尼(N*s/m)'); t=sym('t');%产生符号对象t Pt=input('请输入荷载); Tp=input('请输入荷载加载时长(s)'); Tu=input('请输入需要计算的时间长度(s) '); dt=input('请输入积分步长(s)'); Sita=input('请输入θ'); uds=0:dt:Tu;%确定各积分步时刻 pds=0:dt:Tp; Lu=length(uds); Lp=length(pds); if isa(Pt,'sym')%荷载为函数 P=subs(Pt,t,uds); %将荷载在各时间步离散 if Lu>Lp P(Lp+1:Lu)=0; end elseif isnumeric(Pt)%荷载为散点 if Lu<=Lp

哈工大能源学院专业课历年考研真题

2007 工程流体力学(90分)(必选) 一、解释下列概念(20分) 1.旋转角速度、角变形速度 2.动能修正因数、动量修正因数 3.时间平均流速、断面平均流速 4.恒定流动、缓变流动 5.点源、点汇 二、推求不可压缩流体恒定流动的动量方程(15分) 三、推求圆管层流的速度分布规律,并求通过圆管中的流量及沿程阻力损失因数。 (15分) 四、推导说明圆柱外伸管嘴出流流量增大的原因(10分) 五、有长为L,直径为D的圆柱体,在图示位置上恰好处于平衡状态。不计摩擦力, 试计算1.圆柱体的重量;2.对壁面的作用力。(15分) 六、水沿两根同样长度L1=L2=40m,直径d1=40mm,d2=80mm的串联管路由水箱A 自由流入水池B中。设λ1=0.04,λ2=0.035,h=20m。(15分) 试确定:1.流量为多少?2.对L1、d1管并联同样长度及直径的支管时,流量为多少?

(1) 试导出圆柱体内的一维径向稳态导热微分方程,并给出边界条件;

燃烧学试题(60分)任选之三 1.解释下列专业名词(15分): (1)化合物的生成焓; (2)理论燃烧温度; (3)火焰传播速度; (4)燃料的高位发热量; (5)比表面积。 2.说明下列概念(20分): (1)阿累尼乌斯定律; (2)扩散火焰和预混火焰; (3)影响热力着火的着火温度的主要因素; (4)链锁反应。 3.在研究碳的燃烧过程中,根据燃烧条件不同可分为几个燃烧特性区,在不同的燃 烧特性区如何强化燃烧过程?(7分) 4.利用非绝热条件下谢苗诺夫热自燃理论分析燃料发热量对着火的影响。(8分) 5. 假定:1)油滴为均匀对称的球体;2)油滴随风飘动,与空气没有相对运动;3)燃烧进行得很快,火焰面很薄;4)油滴表面温度为饱和温度;5)忽略对流与辐射换热;6)忽略油滴周围的温度场不均匀对热导率、扩散系数的影响;7)忽略斯蒂芬流。试计算火焰锋面的直径、油耗量,以及油滴直径与时间的关系。(10分)

工程流体力学复习题

一、简答题 1.缓变过流断面、缓变流动 过流断面在流束或总流中与所有流线都相垂直的横断面。 缓变流动若某过流断面上的流线几乎是相互平行的直线,则此过流断面称为缓变断面,过流断面上的流动称为缓变流动。 2.流管与流束 流管在流场中任取一封闭曲线l(非流线),过曲线上各点做流线,所有这些流线构成一管状曲面,称为流管。 流束在流场中取一非流面的曲面S,则过曲面上各点所作流线的总和,称为流束。 3.动能、动量修正系数 动能修正因数用真实流速计算的动能与平均流速计算的动能间的比值。 动量修正因数用真实流速计算的动量与以平均流速计算的动量间的比值。 4.水力光滑管和水力粗糙管 △:管壁绝对粗糙度,δ:粘性底层厚度。 当δ>△时,管壁的粗糙突出部分完全淹没在粘性地层中。此时,粘性底层以外的紊流区域完全不受管壁粗糙度的影响,流体就好像在理想的完

全光滑管中流动,这种情况的管内紊流流动称为“水力光滑管”或简称为“光滑管”。 当δ<△时,管壁的粗糙突起有一部分或大部分暴露在紊流区内。此时,紊流区中的流体流过管壁粗糙突出部分时将会引起漩涡,造成附加的能量损失,即管壁粗糙度对紊流流动产生影响,这种情况的管内紊流流动称为“水力粗糙管”或简称为“粗糙管”。 5.等压面与压力体 等压面在充满平衡流体的空间,连接压强相等的各点所组成的面称为等压面。等压面有三个特性:等压面就是等势面;等压面与质量力垂直;两种混容的流体分界面为等压面。 压力体由所探究的曲面,通过曲面周界所作的垂直柱面和流体的自由表面(或其延伸面)所围成的封闭体积叫做压力体。 6.系统与控制体 系统有限体积的流体质点的集合称为系统。(不管流体怎样运动,且运动中系统的表面可以不断变形,但流体质点的集合不变,所含有的质量不变。) 控制体取流场中某一确定的空间区域,这个空间区域称为控制体。(控制体的周界称为控制面。) 7.流线与迹线

相关主题
文本预览
相关文档 最新文档