当前位置:文档之家 > 第十四章 二维运动估计

第十四章 二维运动估计

第十四章 二维运动估计

早期设计的机器视觉系统主要是针对静态场景的,为了满足更高级的应用需求,必须研究用于动态场景分析的机器视觉系统.动态场景分析视觉系统一般需要较大的存储空间和较快的计算速度,因为系统的输入是反应场景动态变化的图像序列,其包含的数据十分巨大.图像动态变化可能由摄象机运动、物体运动或光照改变引起,也可能由物体结构、大小或形状变化引起.为了简化分析,通常我们假设场景变化是由摄象机运动和物体运动引起的,并假设物体是刚性的.

根据摄象机和场景是否运动将运动分析划分为四种模式:摄象机静止-物体静止,摄象机静止-物体运动,摄象机运动-物体静止,摄象机运动-物体运动,每一种模式需要不同的分析方法和算法。摄象机静止-物体静止模式属于简单的静态场景分析.摄像机静止-场景运动是一类非常重要的动态场景分析,包括运动目标检测、目标运动特性估计等,主要用于预警、监视、目标跟踪等场合。摄象机运动—物体静止是另一类非常重要的动态场景分析,包括基于运动的场景分析、理解,三维运动分析等,主要用于移动机器人视觉导航、目标自动锁定与识别等.在动态场景分析中,摄象机
运动—物体运动是最一般的情况,也是最难的问题,目前对该问题研究的还很少.

根据摄象机和场景是否运动将运动分析划分为四种模式:摄象机静止-物体静止,摄象机静止-物体运动,摄象机运动-物体静止,摄象机运动-物体运动,每一种模式需要不同的分析方法和算法。摄象机静止-物体静止模式属于简单的静态场景分析.摄像机静止-场景运动是一类非常重要的动态场景分析,包括运动目标检测、目标运动特性估计等,主要用于预警、监视、目标跟踪等场合。摄象机运动—物体静止是另一类非常重要的动态场景分析,包括基于运动的场景分析、理解,三维运动分析等,主要用于移动机器人视觉导航、目标自动锁定与识别等.在动态场景分析中,摄象机运动—物体运动是最一般的情况,也是最难的问题,目前对该问题研究的还很少.

图像运动估计是动态场景分析的基础,现在已经成为计算机视觉新的研究热点。根据所涉及的空间,将图像运动估计分为二维运动估计和三维运动估计,显然,这种划分不是十分严格,因为二维运动参数的求解有时需要三维空间的有关参数引导,而许多三维参数的求解需要以二维参数为基础。本章主要讨论二维运动估计,三维运动估计和分析将在第十五章讨论。

14.1图像运动特征检测

对许多应用来说,检测图像序列中相邻两帧图像的差异是非常重要的步骤.场景中任何可察觉的运动都会体现在场景图像序列的变化上,如能检测这种变化,就可以分析其运动特性.如果物体的运动限制在平行于图像平面的一个平面上,则可以得到物体运动特性定量参数的很好估计.对于三维运动,则只能得到物体空间运动的定性参数 189

下载Word文档免费下载:

第十四章 二维运动估计下载

(共34页)

TOP相关主题