当前位置:文档之家› 高分子物理重要知识点

高分子物理重要知识点

高分子物理重要知识点
高分子物理重要知识点

高分子物理重要知识点

(1人评价)|95人阅读|8次下载|举报文档

高分子物理重要知识点

(1人评价)|96人阅读|8次下载|举报文档

1 高分子物理重要知识点第一章高分子链的结构 1.1高分子结构的特点和内容高分子与低分子的区别在于前者相对分子质量很高,通常将相对分子质量高于约1万的称为高分子,相对分子质量低于约1000的称为低分子。相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。一般高聚物的相对分子质量为104~106,相对分子质量大于这个范围的又称为超高相对分子质量聚合物。英文中“高分子”或“高分子化合物”主要有两个词,即polymers和Macromolecules。前者又可译作聚合物或高聚物;后者又可译作大分子。这两个词虽然常混用,但仍有一定区别,前者通常是指有一定重复单元的合成产物,一般不包括天然高分子,而后者指相对分子质量很大的一类化合物,它包括天然和合成高分子,也包括无一定重复单元的复杂大分子。与低分子相比,高分子化合物的主要结构特点是:(1)相对分子质量大,由很大数目的结构单元组成,相对

分子质量往往存在着分布;(2)主链有一定的内旋自由度使分子链弯曲而具有柔顺性;(3)高分子结构不均一,分子间相互作用力大;(4)晶态有序性较差,但非晶态却具有一定的有序性。(5)要使高聚物加工成为有用的材料,需加入填料、各种助剂、色料等。高分子的结构是非常复杂的,整个高分子结构是由不同层次所组成的,可分为以下三个主要结构层次(见表1-1):表1-1高分子的结构层次及其研究内容

名称内容备注链结构一级结构(近程结构)结构单元的化学组成键接方式构型(旋光异构,几何异构)几何形状(线形,支化,网状等)共聚物的结构指单个大分子与基本结构单元有关的结构二级结构(远程结构)构象(高分子链的形状)相对分子质量及其分布指由若干重复单元组成的链段的排列形状三级结构(聚集态结构、聚态结构、超分子结构)晶态非晶态取向态液晶态织态指在单个大分子二级结构的基础上,许多这样的大分子聚集在一起而成的聚合物材料的结构由于高分子结构的如上特点,使高分子具有如下基本性质:比重小,比强度高,弹性,可塑性,耐磨性,绝缘性,耐腐蚀性,抗射线。此外,高分子不能气化,常难溶,粘度大等特性也与结构特点密切相关。 1.2高分子链的近程结构高分子链的化学结构可分为四类:(1)碳链高分子,主链全是碳以共价

键相连:不易水解(2)杂链高分子,主链除了碳还有氧、氮、硫等杂原子:由缩聚或开环得到,因主链由极性而易水解、醇解或酸解(3)元素有机高分子,主链上全没有碳:具有无机物的热稳定性及有机物的弹性和塑性(4)梯形和螺旋形高分子:具有高热稳定性由单体通过聚合反应连接而成的链状分子,称为高分子链。聚合度:高分子链中重复单元的数目;除结构单元的组成外,端基对聚合物的性能影响很大:提高热稳定性链接结构是指结构单元在高分子链的联接方式(主要对加聚产物而言,缩聚产物的链接方式一般是明确的)。单烯类的键接方式有头-尾键接(一般以此中方式为主)和聚α-烯烃头-头(或称尾-尾)键接两类。聚二烯烃的键接结构有1,4加成和1,2或3,4加成,如聚丁二烯只有1,4和1,2两种,而聚异戊二烯则三种都有。(注意1,2或3,4加成物相当于聚α-烯烃,因而还进一步有不同的键接结构和旋光异构)1,4加成的聚二烯烃由于内双键上的基因排列方式不同而又分为顺式和反式两种构型,称为几何异构体。顺式重复周期长(0.816nm),不易结晶,弹性好,是很好的橡胶;反之反式重复周期短,易结晶,不宜用作橡胶。聚α-烯烃的结构单元存在不对称碳原子,每个链节都有d和l两种旋光异构体,它们在高分子链中有三种键接方式(即三种旋光异构体):全同立构(isotactic,缩写为i)为dddddd(或llllll)间

同立构(syndiotactic,缩写为s)为dldldl 无规立构(atactic,缩写为a)为dllddl等。有时人们还考虑三个单体单元组成的三单元组:ddd或lll 全同立构三单元组(I)dld或ldl 间同立构三单元组(S)ddl, lld, ldd或dll 杂同或杂规立构三单元组(H)全同立构和间同立构高聚物合称“等规高聚物”,等规异构体所占的百分数称为等规度。由于内消旋和外消旋作用,等规高聚物没有旋光性。等规度越高越易结晶,也具有较高的强度。上述几何异构和旋光异构都是高分子链的构型问题,构型(confignration)是分子中由化学键所固定的几何排列,这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。单链内旋转不能改变构型。高分子的几何形状主要有线形、支化和网状(交联)三类。线形高分子可溶(解)可熔(融),网状高分子不溶不熔,支化高分子处于两者的中间状态,取决于支化程度。交联度或支化度通常用单位体积中交联点(或支化点)的数目或相邻交联点(或支化点)之间的链的平均相对分子质量来表示。聚乙烯的结构与性能的关系典型地说明了支化对性能的影响(见表1-2)。聚乙烯径轴射线化学交联后软化点和强度都大为提高,可用于电缆包皮。表1-2 聚乙烯的结构与性能

名称缩写链结构密度结晶度熔点主要用途高压聚乙烯(低密度聚乙烯) LDPE 支化0.91-0.94

60-70%105℃薄膜(较软) 低压聚乙烯(高密度聚乙烯) HDPE 线形0.95-0.97 95%135℃硬管材(较硬) 共聚物(copolymer)根据单体的连接方式分为四类:无规(random)共聚~~AABABAABBAB ~~ 嵌段(block)共聚~~AAAAABBBBBBAAAA~~交替(alternate)共聚~~ABABABABAB~~接枝(graft)共聚~~AAAAAAAAAAAAAA~~ B B B B B B B 共聚物的命名原则是将两单体名称以短划相连,前面冠以“聚”字,例如聚丁二烯-苯乙烯,或称丁二烯-苯乙烯共聚物。国际命名法中在两单体之间插入-co-, -alt-, -b-, -g-, 以区别无规、交替、嵌段和接枝。共聚的目的是改善高分子材料的性能,因而共聚物常有几种均聚物的优点,典型的如ABS。共聚破坏了结晶能力,乙烯和丙稀的无规共聚物成为橡胶(乙丙橡胶)。1.3高分子链结构的远程结构单键是ζ电子组成的,电子云分布是轴对称的,高分子在运动时C-C单键可绕轴旋转,称内旋转。由于单键能内旋转,高分子链在空间会存在数不胜数的不同形态(又称内旋转异构体),称为构象(conformation)。单键的内旋转是导致高分子呈卷曲构象的原因,内旋转愈自由,卷曲的趋势就愈大。总的来说,高分子链有五种构象,即无规线团(random coil)、

伸直链(extended chain)、折叠链(folded chain)、锯齿链(zigzag chain)和螺旋链(helical chain)。注意前三者是整个高分子链的形态,而后两者是若干链节组成的局部的形态,因而会有重叠,如伸直链可以由锯齿形组成也可以由螺旋形组成。由于高分子链中近邻原子上连有基团(至少有氢原子),单链内旋转要克服一定的能垒。从势能图(图1-1)上可见,反式(trans)能量最低,是最稳定的状态,旁式(ganshe)次之,顺式(cis)能量最高。反式用t表示,旁式有两种,记为g和g’。因而聚乙烯分子链在晶相中即采用全反式(即tttttt)的构象,称锯齿形构象。另一方面当侧基较大时,如聚丙稀取全反式构象仍会拥挤,因而聚丙稀采取t和g交替排列(即tgtgtg或tg’tg’tg’)的构象,称螺旋形构象。聚丙烯的一个螺旋周期包括三个结构单元,称31螺旋。无规线团是线形高分子在溶液或熔体中的主要形态。由于碳-碳键角为109.5?,一个键的自转会引起相邻键绕其共转,轨迹为圆锥形,如图1-2所示。高分子链有成千上万个单键,单键内旋转的结果会导致高分子链总体卷曲的形态。图1-3以100个碳链为例说明了这个问题。

图1-1丁烷中C-C键的内旋转位能图

构象能u c g g'

t 图1-2 碳链聚合物的单键内旋转(φn为内旋转角

) 图1-3碳数100的链构象模拟图

39 流动,增加外力作用时间就相当于降低粘流温度。[成型加工温度必须在粘流温度和分解温度之间] 高聚物的流动性表征: 1.剪切粘度: ①表观粘度ηa:其意义是ζ与γ的比值已不再是常数的非牛顿流体,比牛顿粘度小。表观粘度大则流动性小。②稠度ηc:(微分粘度) 2. 拉伸粘度:液体流动时其速度梯度方向与流动方向一致,这种流动称拉伸流动,如吹塑离开模口的流动 3. 熔融指数:在一定温度下,熔融状态的高聚物在一定的负荷下十分钟内从规定的直径和长度的标准毛细血管中轮流出的重量(克数)。熔融指数愈大则流动性愈好。熔融指数测定仪,从定义可知,它测定是给定剪切速率下的年度(即粘度的倒数)。加工条件对高聚物剪切粘度的影响: 1. 温度的影响:在fT以上,随着T的升高熔体的自由体积增加,链段活动能力增加,分子间作用力减弱,流动性增大,熔体粘度岁温度升高以指数方式降低。温度是首要的粘度调节手段。在fT以下,表观粘度的对数与温度倒数之间的线性关系不再有效,表观粘度活化能随温度降低而急剧增大。 2.

剪切速率的影响:曲线头尾两段水平直线为第一,第二牛顿区,即在低和高剪切速率区剪切粘度不随剪切速率而改变,而中间剪切速率区随剪切速率增加而降低。3. 剪切应力的

影响:(由于熔体的非牛顿流动行为,与剪切速率对粘度的影响类似,因高聚物链柔顺性不同而异,柔性链高分子(如聚甲醛和聚乙烯)比刚性高分子(如聚碳酸酯和PMMA)更敏感。 4. 压力的影响:(按照自由体积概念,液体粘度由自由体积决定)压力增加自由体积减小,分子间相互作用力增大,导致流体粘度升高。5. 应用:即针对具体物料,选择合适的工艺条件高聚物分子结构对剪切粘度的影响:1. 分子量:高聚物的粘性流动是分子链重心沿流动方向发生位移和链间相互滑移的结果。实现重心的位移,需要完成的链段协同位移的次数就越多,因此剪切粘度随分子量升高而增加。分子量大的流动性就差,表观粘度就高,熔融指数就小;且分子量缓慢增大降导致表观粘度急剧增高和熔融指数迅速下降。工业上常用熔融指数作为衡量高聚物分子量大小的相对指标。存在临界分子量Mc,小于Mc时零切粘度与重均分子量成正比;大于Mc,零切粘度随重均分子量增加而急剧增大。2. 分子量分布:分子量分布窄的或者单分散的高聚物其剪切粘度主要由重均分子量决定,而分布宽的高聚物,其熔体粘度却可能与重均没有严格关系,大分子量尾端对剪切粘度及其流变行为有特别重要的影响。①对分布宽的高聚物,高分子量部分对零切粘度的贡献比低分子量部分多,分布宽的有可能有较高的零切粘度。②分子量愈大,对剪切速率的反应愈敏感,剪切引起的粘度降低愈大。从第

一牛顿区进入假塑性区也愈早,即在更低的剪切速率下便发生粘度随剪切速率增加而降低。分布宽,其熔体的流动开始出现非牛顿性的剪切速率值更低。 3. 链支化的影响当支链不太长时链支化对熔体粘度影响不大,因为支化分子比同分子量的线型分子在结构上更为紧凑,使短支链高聚物的零切粘度比同分子量的线型高聚物略低一些。当支链长到足以相互缠结,影响就是显著的。 4. 其它结构因素的影响:能使玻璃化温度升高的因素也能使粘度升高,对分子量相近的不同高聚物,柔性链的粘度比刚性链低。

40 分子的极性、氢键和离子键等对高聚物熔融指数有很大的影响,氢键能使尼龙、聚乙烯等高聚物粘度增加;离子键能把分子链相互连结在一起使粘度大幅度升高;分子间作用力强,熔融指数也较大。6.3.8 剪切流动的法向应力和高聚物熔体的弹性效应由于高聚物熔体的弹性效应,三个法向应力不再相等。法向应力差N1和N2,他们的大小依赖于剪切速率:第一法向应力差N1= 第二法向应力差N2= 第一法向应力差为正值,较大,称为主法向应力差。由于法向应力差的存在,高聚物熔体流动时引起一系列在牛顿流体活动中不会出现的现象:1.韦森堡(Weissenberg)效应当高聚物熔体或浓溶液在各种旋转粘度计中或在容器中进行电动搅拌时,受到旋转剪切作用,液体会沿内筒壁或轴上升,发生包轴或爬竿现象在锥板粘度

计中则产生锥体和板分开的力,这类现象称为韦森堡(Weissenberg)效应。2.挤出物胀大当高聚物熔体从小孔、毛细管观狭缝中挤出时,挤出物的直径后厚度会明显大于模口的尺寸,这种现象称为挤出物胀大(或离模效应,巴拉斯效应)。挤出物的最大直径与模口直径的比值来表征胀大比B=D/D0。影响因素:①采用大长径比的毛细管:B 与剪切速率的关系是剪切速率增大,B增大。当L/R足够大,胀大可以认为是完全由剪切速率引起。②胀大比B还与熔体温度有关,T愈高,取向分子的松弛愈快,B随T升高而减小。③当剪切速率和T不变时,随分子量增加B值增大。当支链分子量大于Mc,B随支链增加而增加。④刚性材料加入,B减小。3.流动的不稳定性和熔体破裂现象剪切速率γ不大,挤出物表面光滑;当γ超过某一临界值后,随γ的继续增大,挤出物的外观依次出现表面粗糙、尺寸周期性起伏,直至破裂成碎块等种种畸变现象,称为不稳定流动或弹性湍流。原因为两种:①一是所谓的滑粘现象,就在高剪切速率条件下,在高聚物熔体与毛细管壁间的滑移现象,其原因是高聚物熔体在剪切速率最大的毛细管壁处的表观粘度最低,亦有人认为一种流动分级效应使低分子量部分较多的集中于毛细管壁处,也使表观粘度最低,总体结果是熔体沿管壁发生整体滑移,导致不稳定流动,流速不均匀出现脉动,表现为挤出物表面粗糙或横截面积的脉动变化;一般发生在

毛细管内或出口端附近。②另一种是熔体破裂,就是熔体受到过大的作用力时发生类似橡胶断裂的破裂。原因是拉伸应力造成,而不是剪切应力,一般发生在毛细管入口。6.3.9 拉伸粘度1.拉伸粘度的测定方法:①要获得纯拉伸流动;②要在稳态下进行测量;③维持温度恒定。一般采用等温纺丝法测量。2.拉伸粘度于拉伸应力的关系

拉伸粘度与拉伸应力的关系:(A)拉伸粘度与拉伸应力无关。主要是聚合度较低的线型高聚物,如尼龙66、聚甲醛和PMMA等(B)当拉伸应力增至粘度开始下降的应力值时,拉伸粘度开始随拉伸应力的增加而上升。主要是支化高聚物如支化聚乙烯等。(C)当拉伸应力增至粘度开始下降的应力值时,拉伸粘度开始随拉伸应力的增加而下降。主要是高聚合度的线型高聚物,如高密度聚乙烯和聚丙烯。--------拉伸粘度的种种变化与流体的非牛顿型以及分子链在拉伸方向上的取向有关系--------- 3.拉伸粘度与拉伸应变速率的关系:稳态单轴拉伸流动:拉伸粘度随拉伸应变速率的增加而降低拉伸流动中发生链解缠结,结果使拉伸粘度降低;同时分子链发生伸展沿延流动方向取向,结果使分子间相互作用增

41 加,对流动的阻力增加,拉伸粘度增大,就看哪一种效应占优势。7 高聚物的力学性质高聚物的力学性质对温度和时间的依赖性强烈,表现为粘弹性行为:同时具

有粘性液体和纯粹弹性固体的行为(为高分子长链,有松弛特性)。7.1 玻璃态和结晶态高聚物的力学性质7.1.1基本物理量:⑴应变:当材料受到外力作用而所触的条件使它不能产生惯性移动时,几何形状和尺寸变化,这种变化称应变。单位面积上的附加内力为应力。对各向异性材料有三个基本类型:①拉伸应变:材料受到的外力F是垂直于截面积的大小相等、方向相反并作用在同一直线上的两个里,材料受到的形变为拉伸应变。ε=(l-l0)/l0 =△l ②弹性模量:理想的弹性固体其应力与应变成比例,比例常数称为弹性模量。是材料发生单位应变时的应力,表征材料抵抗变形能力的大小,模量愈大,愈不易变形,材料刚度愈大。可分杨氏模量、剪切模量和体积模量三种:杨氏模量的倒数称为拉伸柔量(D),剪切模量倒数称为剪切柔量J,体积模量的倒数则为可压缩度。③机械强度:材料抵抗外力破坏的能力。⑵常用力学性能指标:①拉伸强度:在规定的试验温度、湿度和试验速度下,在标准试样上沿轴向施加拉伸载荷,直到试样被拉断为止,断裂前试样承受的最大载荷P与试样的宽度b和厚度d的乘积的比值。δt= P/ b*d ②弯曲强度:(或挠曲强度)在规定试验条件下,对标准试样施加静弯曲力矩,直到试样折断为止,取实验过程中最大载荷P,δf=P/2=(l0/2)/(bd2 /6)=1.5P *l0/ b*d2 ③冲击强度:衡量材料韧度的强度指标,表征材料抵抗冲

击载荷破坏的能力,为试样受冲击载荷而折断时单位面积所吸收的能量。δi= W/bd (W-冲断试样所消耗的功)测定方法有摆锤式冲击实验,落重式冲击实验和高速拉伸等。④硬度:衡量材料表面抵抗机械压力的能力的一种指标,其大小与材料的抗张强度和弹性模量有关。7.1 .2几类高聚物的拉伸行为:1.玻璃态高聚物的拉伸:7.1.5 高聚物的破坏和理论强度从分子结构看,高聚物抵抗外力破坏的能力主要靠分子内化学键合力和分子间的范德华力和氢键。高分子链排列方向的平行于受力方向,则断裂时可能是化学键的断裂或分子间的滑脱;高分子链的排列方向是垂直于受力方向的,则断裂时可能是范德华力和氢键的破坏。破坏所有的高分子链、使分子间范德华力和氢键全部破坏是不可能的,在正常断裂时首先是未取向部分的范德华力和氢键的破坏,应力集中到取向的主链上,直接承受外力的取向主链数目少,最终被拉断。理论强度和实际强度之间的巨大差距说明,提高聚合物实际强度的潜力是很大的。影响高聚物实际强度的因素:1.高分子本身结构的影响:①增加高分子极性或产生氢键可使强度提高,极性基团或氢键密度愈大,则强度愈高,但过密过或取代基过大,阻碍链段的运动,不能实现强迫高弹形变,表现为脆性断裂,强度虽大但脆。②主链含有芳杂环的高聚物强度和模量比脂肪族主链的高,引入芳杂环时侧基强度和模量提高;③分子链支

化程度增加,使分子链间的距离增加,作用力减小,因而拉伸强度会降低,冲击强度会提高。④适度的交联有效的增加分子链间的联系,使分子链不易发生相对滑移,强度增高,但交联使结晶度下降,取向困难;⑤分子量低则拉伸强度和冲击强度都低,随分子量增大,拉伸强度和冲击强度会提高;

42 2.结晶和取向的影响:结晶度增加,对提高拉伸强度、弯曲强度和弹性模量有好处;高聚物的球晶结构会降低材料的冲击强度;取向可使材料的强度提高甚至几十倍。3.应力集中物的影响:应力集中:材料存在缺陷,受力时材料的内部应力平均分布状态将发生变化,使缺陷附近局部范围内的应力急剧增加,远远超过应力平均值的现象。缺陷是应力集中物,包括裂缝、空隙、缺口、银纹和杂质等。材料破坏的薄弱环节,降低强度。4.增塑剂的影响:增塑剂的加入对高聚物起稀释作用,减小了高分子链间的作用力,强度降低,降低值与加入量成正比。同时由于增塑剂使链段运动能力增强,故随着增塑剂含量增加,冲击强度提高。5.填料的影响:有些填料只起稀释作用,为惰性填料,虽降低成本但降低强度;有些填料使用适当可显著提高强度,为活性填料。6.共聚和共混的影响:共聚可以综合两种以上均聚物的性能,可加入均聚物以提高强度;共混可获得具有比原来组分更为优越的的使用性能。7.外力作用速度和

温度的影响:提高拉伸速度等同于降低温度在冲击试验中,随温度升高,冲击强度增加,在接近Tg时冲击强度将迅速增加,不同品种间的差别缩小。7.2 高弹态高聚物的力学性质:(高弹态是高聚物特有的基于链段运动的一种力学状态)㈠橡胶的使用温度范围:①改善高温耐老化性能,提高耐热性,:通过改变橡胶的化学结构和选择合适的配方a.改变橡胶的主链结构:改变主链中的双键结构,使用不含双键或很少双键的橡胶;分子主链中含有硫原子的聚硫胶和含氧原子的聚醚或氯醇胶有很好的耐老化性能。B.改变取代基的结构:带有供电取代基者容易氧化,带吸电取代基者难氧化;c.改变交联键的结构:选择键能较大的交联结构可提高硫化胶的耐热性。此外,配合剂的用量和性质以及老化环境对老化影响大。②降低Tg,避免结晶,改善耐寒性:(Tg是橡胶类聚合物使用的最低温度,耐寒性不足是由于在低温下橡胶会发生玻璃化转变或发生结晶,导致橡胶变硬变脆和丧失弹性。)a.聚合物玻璃化:原因是分子相互接近,分子间作用力加强,以致链段运动被冻结------增加链段活动性使Tg下降。b.聚合物结晶:是高分子链或链段的规整排列,大大增加分子间相互作用力,使聚合物强度和硬度增加,弹性下降---降低聚合物结晶能力和结晶速度的措施会增加聚合物的弹性,提高耐寒性。㈡高弹性的特点:①弹性模量很小而形变量很大;②形变需要时间;③形变时有

热效应;㈢橡胶弹性的热力学分析橡胶的极限性质:(指极限强度、最大伸长率和断裂行为)①结晶的影响:结晶性交联网的应变诱发结晶作用可引起应力应变曲线的急剧升高,有利于提高其极限性质。②端链的影响:端链多则断裂强度低。③交联网的断裂机理:“最弱链节”理论认为交联网的断裂开始于最短的网链,因其可伸长性很短。可该理论与实际事实不符,短链多极限性质无较大的降低。大量的短链引入双模交联网,则极限性质得到改善。构成的交联网是脆性的,最大伸长率小;全部由长链构成的交联网的极限强度低,所以要比例适当。(四)高聚物的力学松弛----粘弹性高聚物的力学性质随时间的变化称为力学松弛,基本的现象有:1.蠕变:指的是在一定的温度何较小的恒定外力作用下,材料的形变随时间的增加而渐增大的现象,从分子运动和变化看:①普弹形变:当高分子材料受到外力的作用,分子链内部键长和键角立刻发生变化,这种形变量是很小的,外力除去,普弹形变立刻恢复。

②高弹形变:是分子链通过链段运动逐渐伸展的过程,形变量比普弹形变大得多。外力除去,形变慢慢回复。③粘性流动:分子间没有化学交联的线形高聚物,则还会发生分子间的相对滑移。外力除去,不能回复。当外力除去后总会留下一部分不能回复的形变,称永久形变。

43 蠕变与温度高低和外力大小有关,温度过低,外力太

小,蠕变很小且很慢,在短时间内不易觉察;温度过高、外力过大,形变发展过快,也感觉不出蠕变现象;在适当的外力作用下,在Tg以上不远,链段在外力下可运动,但运动时受到的摩擦力又较大,只能缓慢运动,则可看到明显的蠕变现象。2.应力松弛:指的是在恒定温度和形变保持不变的情况下高聚物内部的应力随时间增加而逐渐衰减的现象。

高分子物理期末复习题

《高分子物理》期末复习题集(没有参考答案) 第一章 高分子链的结构 教学大纲 本章的主要内容是介绍链的近程结构和远程结构。其中近程结构介绍了高分子链结构单元的化学组成、键接方式、立体构型、支化与交联和端基等内容;远程结构包括高分子的大小及柔顺性,着重介绍柔顺性的成因、影响因素和定量描述。 要求掌握:1、高分子链近程结构和远程结构的主要内容,并能举例说明各自对性能的影 响; 2、构象、构型 、柔顺性和链段等基本概念; 3、影响柔顺性的因素有哪些?并能判断不同分子链间柔顺性的大小。 要求理解:1、平衡态柔顺性的表征方法(θ状态测量法、几何算法和高斯统计法)及异 同; 2、自由联接链、等效自由联结链和高斯链的异同 3、正确理解和初步运用以下公式 (1)20206 1 h =ρ (2)θθ cos 1cos 122-+=nl h f (3)b z h 3 21 *= = β (4)22zb h =

(5)20 2 20 2max )2cos (h nl h L z θ == 要求了解:(1)几何算法计算自由旋转链的末端距; (2)高斯统计算法计算高斯链的假设、计算过程及几种末端距的结果。 习题 一、名词解释: 有规立构高分子、立构规整度、链段、等效自由连接链、高斯链、聚合物的链结构、 有规立构高分子:其分子可以仅用一个以,一种简单序列排列的构型重复单元描述的规整高聚物。 立构规整度:指高聚物中含有全同立构与间同立构的总的百分数。 链段:大分子中能够完全自由取向的最小单元。 高斯链:末端距分布以及链段分布符合高斯分布函数的链。 等效自由结合链:高分子链段与链段自由结合,并且无规取向。称为等效自由结合链 二、判断题 (1) 低温度可以使聚丙烯的链处于冻结状态,其构象数减少,规整度提高。X (2) 大部分高分子主链上都含有σ单键,任何条件下都能内旋转。X (3) 立构规整度高的聚合物都能结晶。X (4) 温度越高内旋转异构体的数目越多。 (5) 结晶高聚物的构象数比取向高分子的构象数少。X (6) 同一高分子玻璃态的末端距大于其粘流态的末端距。X (7) 自由结合链就是高斯链。X (8) 链段的长度是由高斯统计理论计算得来的。X (9) 高斯统计理论只能用来计算柔顺链的末端距。 (10) 几何计算得到的末端距一定小于无扰状态的末端距。 (11) 自由旋转链的末端距公式说明记键角越大、键长越长、键的个数越多末端距越大。 (12) 支化高分子的柔顺性比无支化链的柔顺性好。X (13) 交联使高分子链的柔顺性下降。X (14) 分子量增大高分子链的柔顺性提高。X 三、填空题 (1) 端基对聚合物的??热稳定性??影响很大,例如聚碳酸酯的??羟基端??和酰氯端基存在 使其??热稳定性??降低。 (2) 顺序异构体对聚合物的性质也有一定的影响,例如聚乙烯醇做维尼纶中只??头尾键合 ??结构才能与甲醛缩合,而??头头键合?结构的存在使维尼纶中含有?羟??基,它具有亲水性,使维尼纶缩水且强度下降。 (3) 轻度交联可使材料强度???提高?????、模量??增大?????、弹性??变好?????、粘流温 度??升高?????、蠕变??减少?????、应力松弛??不会为0?????、损耗因子???变小????。

高分子物理知识点总结

高分子物理知识点总结 导读:我根据大家的需要整理了一份关于《高分子物理知识点总结》的内容,具体内容:高分子物理是研究高分子物质物理性质的科学。下面我给你分享,欢迎阅读。高分子链的构型有旋光异构和几何异构两种类型。旋光异构是由于主链中的不对称碳原子形成的,有全同... 高分子物理是研究高分子物质物理性质的科学。下面我给你分享,欢迎阅读。 高分子链的构型有旋光异构和几何异构两种类型。 旋光异构是由于主链中的不对称碳原子形成的,有全同、间同和无规三种不同的异构体(其中,高聚物中全同立构和间同立构的总的百分数称为等规度。)。 全同(或等规)立构:取代基全部处于主链平面的一侧或者说高分子全部由一种旋光异构单元键接而成间同立构:取代基相间地分布于主链平面的两侧或者说两种旋光异构单元交替键接 无规立构:取代基在平面两侧作不规则分布或者说两种旋光异构单元完全无规键接 几何异构是由于主链中存在双键而形成的,有顺式和反式两种异构体。构象:原子或原子基团围绕单键内旋转而产生的空间分布。 链段:把若干个键组成的一段链作为一个独立运动的单元 链节(又称为重复单元):聚合物中组成和结构相同的最小单位

高分子可以分为线性、支化和交联三种类型。其中支化高分子的性质与线性高分子相似,可以溶解,加热可以熔化。但由于支化破坏了高分子链的规整性,其结晶能力大大降低,因此支化高分子的结晶度、密度、熔点、硬度和拉伸强度等,都较相应的线性高分子的低。 交联高分子是指高分子链之间通过化学键形成的三维空间网络结构,交联高分子不能溶解,只能溶胀,加热也不能熔融。 高分子链的构象就是由单键内旋转而形成的分子在空间的不同形态。 单键的内旋转是导致高分子链呈卷曲构象的根本原因,内旋转越自由,卷曲的趋势就越大。这种不规则的卷曲的高分子构象称为无规线团。 高分子链的内旋转并不是完全自由的,有键角和空间位阻的限制。 自由结合链的内旋转没有键角和位垒限制;自由旋转链有键角限制,但没有空间位阻的限制。自由结合链和自由旋转链都是假想的理想链,实际中是不存在的。 实际的高分子链既不是自由结合链,也不是自由旋转链,但可以看作是一个等效的自由结合链。 柔顺性:高分子链能够改变其构象的性质 末端距:线性高分子的一端到另一端的距离 内聚能:克服分子间的作用力,把1mol液体或者固体移到其分子间的引力范围之外所需要的能量(单位体积内的内聚能则称为内聚能密度) 聚合物在不同的条件下结晶,可以形成不同的形态。 聚合物的单晶一般只能在极稀溶液中(浓度小于0.1%)缓慢结晶才能形成。

高分子物理题库定

一、填充题 1一般用Mw来表征聚合物平均分子量比Mn更恰当,因为聚合物的性能如强度、熔体粘度更多地依赖于样品中较大的分子。 2在分子量积分分布曲线上,90%处的分子量与50%处的分子量的比值对高分子量尾端较敏感 3均聚物分子中有且只有一种(真实的、隐含的或假设的)单体。因此,-[O(CH2)5CO]m-[OCH2CO]n-属于共聚物,-[CH2CH2CH2CH(CH3)]n- 属于均聚物。 4结晶高分子由于含有完善程度不同的晶体,没有精确的熔点,而存在熔限。 5根据形成条件的不同,聚合物的液晶分为热致性液晶和溶致性液晶。 6高聚物的增塑主要是由于增塑剂的加入导致高分子链间相互作用力的减弱。 7高分子的特性粘度主要反映了溶剂分子与高聚物分子之间的内摩擦效应,其值决定于前者的性质,但更决定于后者的形态和大小,是一个与后者的聚合物分子量有关的量。 8在用毛细管粘度计测定高分子溶液粘度时,其中奥氏粘度计要求每一测定所取的液体体积必须相同。 9甲苯的玻璃化温度为113K,假如以甲苯作为聚苯乙烯(Tg=373K)的增塑剂, 含有20%体积分数甲苯的聚苯乙烯的玻璃化温度为321K 。 10温度升高对高分子的分子运动有两方面的作用,包括增加能量和使聚合物体积膨胀,增大运动空间 11由于聚三氟氯乙烯容易形成结晶,为了制备透明薄板,成型过程中制品冷却要迅速,使之结晶度低,晶粒尺寸小。 12高聚物悬浮液和乳胶等分散体系通常属于假塑型流体,即流体粘度随剪切速率的增加而降低。 13材料的弹性模量是指在弹性形变范围内单位应变所需应力的大小,是材料刚性的一种表征。 14玻璃态和晶态聚合物的拉伸过程本质上都属于高弹形变,但其产生的温度范围不同,前者在Tb 和Tg 之间,而后者在Tg和Tm 之间产生。 15.用塑料绳绑捆东西,时间久了会变松,这是材料的应力松弛现象 16.稳定高聚物分子三维结构的作用力包括氢键、范德华力、疏水作用和盐键。此外共价二硫键在稳定某些高分子的构象方面也起着重要作用。

高分子物理知识点总结与习题

聚合物的结构(计算题:均方末端距与结晶度) 1.简述聚合物的层次结构。 答:聚合物的结构包括高分子的链结构和聚合物的凝聚态结构,高分子的链结构包括近程结构(一级结构)和远程结构(二级结构)。一级结构包括化学组成、结构单元链接方式、构型、支化与交联。二级结构包括高分子链大小(相对分子质量、均方末端距、均方半径)和分子链形态(构象、柔顺性)。三级结构属于凝聚态结构,包括晶态结构、非晶态结构、取向态结构、液晶态结构和织态结构。 构型:是指分子中由化学键所固定的原子在空间的几何排列。 (要改变构型,必须经过化学键的断裂和重组。) 高分子链的构型有旋光异构和几何异构两种类型。 旋光异构是由于主链中的不对称碳原子形成的,有全同、间同和无规三种不同的异构体(其中,高聚物中全同立构和间同立构的总的百分数称为等规度。)。 全同(或等规)立构:取代基全部处于主链平面的一侧或者说高分子全部由一种旋光异构单元键接而成 间同立构:取代基相间地分布于主链平面的两侧或者说两种旋光异构单元交替键接 无规立构:取代基在平面两侧作不规则分布或者说两种旋光异构单元完全无规键接 几何异构是由于主链中存在双键而形成的,有顺式和反式两种异构体。 构象:原子或原子基团围绕单键内旋转而产生的空间分布。 链段:把若干个键组成的一段链作为一个独立运动的单元 链节(又称为重复单元):聚合物中组成和结构相同的最小单位 高分子可以分为线性、支化和交联三种类型。其中支化高分子的性质与线性高分子相似,

可以溶解,加热可以熔化。但由于支化破坏了高分子链的规整性,其结晶能力大大降低,因此支化高分子的结晶度、密度、熔点、硬度和拉伸强度等,都较相应的线性高分子的低。 交联高分子是指高分子链之间通过化学键形成的三维空间网络结构,交联高分子不能溶解,只能溶胀,加热也不能熔融。 高分子链的构象就是由单键内旋转而形成的分子在空间的不同形态。 单键的内旋转是导致高分子链呈卷曲构象的根本原因,内旋转越自由,卷曲的趋势就越大。 这种不规则的卷曲的高分子构象称为无规线团。 高分子链的内旋转并不是完全自由的,有键角和空间位阻的限制。 自由结合链的内旋转没有键角和位垒限制;自由旋转链有键角限制,但没有空间位阻的限制。 自由结合链和自由旋转链都是假想的理想链,实际中是不存在的。 实际的高分子链既不是自由结合链,也不是自由旋转链,但可以看作是一个等效的自由结合链。 柔顺性:高分子链能够改变其构象的性质 末端距:线性高分子的一端到另一端的距离 内聚能:克服分子间的作用力,把1mol液体或者固体移到其分子间的引力范围之外所需要的能量(单位体积内的内聚能则称为内聚能密度)

最新高分子物理重要知识点复习课程

高分子物理重要知识点 第一章高分子链的结构 1.1高分子结构的特点和内容 高分子与低分子的区别在于前者相对分子质量很高,通常将相对分子质量高于约1万的称为高分子,相对分子质量低于约1000的称为低分子。相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。一般高聚物的相对分子质量为104~106,相对分子质量大于这个范围的又称为超高相对分子质量聚合物。 英文中“高分子”或“高分子化合物”主要有两个词,即polymers和Macromolecules。前者又可译作聚合物或高聚物;后者又可译作大分子。这两个词虽然常混用,但仍有一定区别,前者通常是指有一定重复单元的合成产物,一般不包括天然高分子,而后者指相对分子质量很大的一类化合物,它包括天然和合成高分子,也包括无一定重复单元的复杂大分子。 与低分子相比,高分子化合物的主要结构特点是: (1)相对分子质量大,由很大数目的结构单元组成,相对分子质量往往存在着分布; (2)主链有一定的内旋自由度使分子链弯曲而具有柔顺性; (3)高分子结构不均一,分子间相互作用力大; (4)晶态有序性较差,但非晶态却具有一定的有序性。 (5)要使高聚物加工成为有用的材料,需加入填料、各种助剂、色料等。 高分子的结构是非常复杂的,整个高分子结构是由不同层次所组成的,可分为以下三个主要结构层次(见表1-1): 表1-1高分子的结构层次及其研究内容 由于高分子结构的如上特点,使高分子具有如下基本性质:比重小,比强度高,弹性,可塑性,耐磨性,绝缘性,耐腐蚀性,抗射线。 此外,高分子不能气化,常难溶,粘度大等特性也与结构特点密切相关。 1.2高分子链的近程结构 高分子链的化学结构可分为四类: (1)碳链高分子,主链全是碳以共价键相连:不易水解 (2)杂链高分子,主链除了碳还有氧、氮、硫等杂原子:由缩聚或开环得到,因主链由极性而易水解、醇解或酸解(3)元素有机高分子,主链上全没有碳:具有无机物的热稳定性及有机物的弹性和塑性 (4)梯形和螺旋形高分子:具有高热稳定性 由单体通过聚合反应连接而成的链状分子,称为高分子链。聚合度:高分子链中重复单元的数目; 除结构单元的组成外,端基对聚合物的性能影响很大:提高热稳定性 链接结构是指结构单元在高分子链的联接方式(主要对加聚产物而言,缩聚产物的链接方式一般是明确的)。

高分子物理习题及答案最新版

一、单项选择题 1.高分子的基本运动是( B )。 A.整链运动B.链段运动C.链节运动 2.下列一组高聚物分子中,柔性最大的是( A )。 A.聚氯丁二烯 B.聚氯乙烯 C.聚苯乙烯 3. 下列一组高聚物中,最容易结晶的是( A ). A.聚对苯二甲酸乙二酯 B. 聚邻苯二甲酸乙二酯 C. 聚间苯二甲酸乙二酯 4.模拟线性聚合物的蠕变全过程可采用( C )模型。 A.Maxwell B. Kelvin C. 四元件 5.在半晶态聚合物中,发生下列转变时,判别熵值变大的是( A )。(1)熔融(2)拉伸取向(3)结晶(4)高弹态转变为玻璃态 6.下列一组高聚物分子中,按分子刚性的大小从小到大的顺序是(ADBFC )。 A.聚甲醛; B.聚氯乙烯; C.聚苯乙烯; D. 聚乙烯;F. 聚苯醚 7..假塑性流体的特征是( B )。 A.剪切增稠B.剪切变稀C.粘度仅与分子结构和温度有关 8.热力学上最稳定的高分子晶体是( B )。 A.球晶B.伸直链晶体C.枝晶 9.下列高聚物中,只发生溶胀而不能溶解的是( B )。 A. 高交联酚醛树脂; B. 低交联酚醛树脂; C.聚甲基丙稀酸甲脂 10.高分子-溶剂相互作用参数χ1( A )聚合物能溶解在所给定的溶剂中

A. χ1<1/2 B. χ1>1/2 C. χ1=1/2 11.判断下列叙述中不正确的是( C )。 A.结晶温度越低,体系中晶核的密度越大,所得球晶越小; B.所有热固性塑料都是非晶态高聚物; C.在注射成型中,高聚物受到一定的应力场的作用,结果常常得到伸直链晶体。 12. 判断下列叙述中不正确的是( C )。 A.高聚物的取向状态是热力学上一种非平衡态; B.结晶高聚物中晶片的取向在热力学上是稳定的; C.取向使材料的力学、光学、热性能各向同性。 13.关于高聚物和小分子物质的区别,下列( D )说法正确 ⑴高聚物的力学性质是固体弹性和液体粘性的综合; ⑵高聚物在溶剂中能表现出溶胀特性,并形成居于固体和液体的一系列中间体系; ⑶高分子会出现高度的各向异性。 A. ⑴⑵对 B. ⑵⑶对 C. ⑴⑶对 D.全对 三、问答题:

高分子物理重要知识点

高分子物理重要知识点 (1人评价)|95人阅读|8次下载|举报文档 高分子物理重要知识点 (1人评价)|96人阅读|8次下载|举报文档 1 高分子物理重要知识点第一章高分子链的结构 1.1高分子结构的特点和内容高分子与低分子的区别在于前者相对分子质量很高,通常将相对分子质量高于约1万的称为高分子,相对分子质量低于约1000的称为低分子。相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。一般高聚物的相对分子质量为104~106,相对分子质量大于这个范围的又称为超高相对分子质量聚合物。英文中“高分子”或“高分子化合物”主要有两个词,即polymers和Macromolecules。前者又可译作聚合物或高聚物;后者又可译作大分子。这两个词虽然常混用,但仍有一定区别,前者通常是指有一定重复单元的合成产物,一般不包括天然高分子,而后者指相对分子质量很大的一类化合物,它包括天然和合成高分子,也包括无一定重复单元的复杂大分子。与低分子相比,高分子化合物的主要结构特点是:(1)相对分子质量大,由很大数目的结构单元组成,相对

分子质量往往存在着分布;(2)主链有一定的内旋自由度使分子链弯曲而具有柔顺性;(3)高分子结构不均一,分子间相互作用力大;(4)晶态有序性较差,但非晶态却具有一定的有序性。(5)要使高聚物加工成为有用的材料,需加入填料、各种助剂、色料等。高分子的结构是非常复杂的,整个高分子结构是由不同层次所组成的,可分为以下三个主要结构层次(见表1-1):表1-1高分子的结构层次及其研究内容 名称内容备注链结构一级结构(近程结构)结构单元的化学组成键接方式构型(旋光异构,几何异构)几何形状(线形,支化,网状等)共聚物的结构指单个大分子与基本结构单元有关的结构二级结构(远程结构)构象(高分子链的形状)相对分子质量及其分布指由若干重复单元组成的链段的排列形状三级结构(聚集态结构、聚态结构、超分子结构)晶态非晶态取向态液晶态织态指在单个大分子二级结构的基础上,许多这样的大分子聚集在一起而成的聚合物材料的结构由于高分子结构的如上特点,使高分子具有如下基本性质:比重小,比强度高,弹性,可塑性,耐磨性,绝缘性,耐腐蚀性,抗射线。此外,高分子不能气化,常难溶,粘度大等特性也与结构特点密切相关。 1.2高分子链的近程结构高分子链的化学结构可分为四类:(1)碳链高分子,主链全是碳以共价

高分子物理部分复习题

高分子物理部分复习题 一、名词解释 构型、构象、柔顺性、内耗、等同周期、假塑性流体、远程结构、近程结构、末端距、聚集态结构、液晶、 取向、熵弹性、玻璃化转变温度、应力松弛、蠕变、杂链高分子、元素有机高分子、键接结构、旋光异构、均相成核、异相成核、时温等效原理、粘流态、玻璃化转变温度、 二、填空题 1.聚合物的粘弹性体现在具有、、三种力学松驰现象。(3分) 2.分子间的范德华力包括、和。(1.5分) 3.作为橡胶、塑料和纤维使用的聚合物之间的主要区别是。 4. 材料一般需要较高程度的取向。 5.某聚合物试样中含两个组分,其相对分子质量分别1╳104 g/mol和2╳105g/mol,相应的质量分数(w i)分别是0.2和0.8,其数均相对分子质量、重均相对分子质量和相对分子质量多分散系数分别是、和 6.高分子链的柔顺性越大,它在溶液中的构象数越,其均方末端距越。 7.橡胶的高弹性的特点是:(1)弹性模量很,而形变量很;(2)形变需要;(3)形变时有效应。 8. 制备高分子合金的方法有()和()。 9.随着聚合物结晶度的提高,其弹性模量;随着结晶聚合物分子量的增加,其熔点;随着聚合物交联程度的提高,其弹性模量。 10.PET的玻璃化转变温度是69℃,但用它制造的可乐瓶和矿泉水瓶在很低的温度下却还有很高的抗冲击性能,主要是由于它在玻璃化转变温度以下还存在 。 13.下列聚合物中,玻璃化转变温度从高到低次序正确的是:()。 A.聚二甲基硅橡胶、PS、PP、PC; B.PET、PC、PP、顺丁橡胶; C.PMMA、PC、PET、聚二甲基硅橡胶; D.PC、PS、PP、顺丁橡胶。 15.聚乙烯能作为塑料使用,是因为:()

高分子物理习题 答案

高分子物理部分复习题 构象;由于单键(σ键)的内旋转,而产生的分子在空间的不同形态。它是不稳定的,分子热运动即能使其构象发生改变 构型;分子中由化学键所固定的原子在空间的排列。稳定的,要改变构型必需经化学键的断裂、重组 柔顺性;高聚物卷曲成无规的线团成团的特性 等同周期、高聚物分子中与主链中心轴平行的方向为晶胞的主轴,其重复的周期 假塑性流体、无屈服应力,并具有粘度随剪切速率增加而减小的流动特性的流体 取向;高分子链在特定的情况下,沿特定方向的择优平行排列,聚合物呈各向异性特征。 熵弹性、聚合物(在Tg以上)处于高弹态时所表现出的独特的力学性质 粘弹性;外力作用,高分子变形行为有液体粘性和固体弹性的双重性质,力学质随时间变化的特性 玻尔兹曼叠加、认为聚合物在某一时刻的弛豫特性是其在该时刻之前已经历的所有弛豫过程所产生结果的线性加和的理论原理 球晶、球晶是由一个晶核开始,以相同的速度同时向空间各方向放射生长形成高温时,晶核少,球晶大 应力损坏(内耗)、聚合物在交变应力作用下产生滞后现象,而使机械能转变为热能的现象 应力松弛、恒温恒应变下,材料的内应变随时间的延长而衰减的现象。 蠕变、恒温、恒负荷下,高聚物材料的形变随时间的延长逐渐增加的现象 玻璃化转变温度Tg:玻璃态向高弹态转变的温度,链段开始运动或冻结的温度。挤出膨大现象、高分子熔体被强迫挤出口模时,挤出物尺寸大于口模尺寸,截面形状也发生变化的现象 时温等效原理、对于同一个松驰过程,既可以在低温下较长观察时间(外力作用时间)观察到,也可以在高温下较短观察时间(外力作用时间)观察出来。 杂链高分子、主链除碳原子以外,还有其他原子,如:氧、氮、硫等存在,同样以共价键相连接 元素有机高分子、主链含Si、P、Se、Al、Ti等,但不含碳原子的高分子 键接结构、结构单元在高分子链中的联结方式 旋光异构、具有四个不同取代基的C原子在空间有两种可能的互不重叠的排列方式,成为互为镜像的两种异构体,并表现出不同的旋光性 均相成核、处于无定型的高分子链由于热涨落而形成晶核的过程 异相成核、是指高分子链被吸附在固体杂质表面而形成晶核的过程。Weissenberg爬杆效应当插入其中的圆棒旋转时,没有因惯性作用而甩向容器壁附近,反而环绕在旋转棒附近,出现沿棒向上爬的“爬杆”现象。 强迫高弹形变对于非晶聚合物,当环境温度处于Tb<T <Tg时,虽然材料处于 玻璃态,链段冻结,但在恰当速率下拉伸,材料仍能发生百分之几百的大变形 冷拉伸;环境温度低于熔点时虽然晶区尚未熔融,材料也发生了很大拉伸变形 溶度参数;单位体积的内聚能称为内聚物密度平方根 介电损耗;电介质在交变电场中极化时,会因极化方向的变化而损耗部分能量和发热,称介电损耗。 聚合物的极化:聚合物在一定条件下发生两极分化,性质偏离的现象 二、填空题

高分子物理知识点

构象:具有一定组成和构型的高分子链通过单键的内旋转而形成的分子中的原子在空间的排列 柔性: 高分子链中单键内旋的能力; 高分子链改变构象的能力; 高分子链中链段的运动能力; 高分子链自由状态下的卷曲程度。 链段:两个可旋转单键之间的一段链,称为链段 影响柔性因素: 1支链长,柔性降低;交联度增加,柔顺性减低。 2一般分子链越长,构象数越多,链的柔顺性越好。 3分子间作用力越大,聚合物分子链所表现出的柔顺性越小。分子链的规整性好,结晶,从而分子链表现不出柔性。 控制球晶大小的方法: 1控制形成速度; 2采用共聚方法,破坏链的均一性和规整性,生成较小的球晶; 3外加成核剂,可获得小甚至微小的球晶。 聚合物的结晶形态: 1单晶:稀溶液,慢降温,螺旋生长 2球晶:浓溶液或熔体冷却 3树枝状晶:溶液中析出,低温或浓度大,分子量大时析出; 4纤维状晶:存在流动场,分子量伸展,并沿流动方向平行排列; 5串晶:溶液低温,边结晶边搅拌; 6柱晶:熔体在应力作用下冷却结晶; 7伸直链晶:高压下融融结晶,或熔体结晶加压热处理。 结晶的必要条件: 1内因: 化学结构及几何结构的规整性; 2外因:一定的温度、时间。 结晶速度的影响因素: 1温度——最大结晶温度:低温有利于晶核形成和稳定,高温有利于晶体生长; 2压力、溶剂、杂质:压力、应力加速结晶,小分子溶剂诱导结晶; 3分子量:M 小结晶速度块,M 大结晶速度慢; 熔融热焓?H m :与分子间作用力强弱有关。作用力强,?H m 高 熔融熵?S m :与分子间链柔顺性有关。分子链越刚,?S m 小 聚合物的熔点和熔限和结晶形成的温度T c 有一定的关系: 结晶温度Tc 低(< Tm ),分子链活动能力低,结晶所得晶体不完善,从而熔限宽,熔点低; 结晶温度Tc 高(~ Tm ),分子链活动力强,结晶所得晶体更加完善,从而熔限窄,熔点高。 取向:在外力作用下,分子链沿外力方向平行排列。聚合物的取向现象包括分子链、链段的取向以及结晶聚合物的晶片等沿特定方向的择优排列。 取向机理: 1高弹态:单键的内旋转。外力作用下,链段取向;外力解除,链段解取向 2粘流态:高分子各链段的协同运动。外力作用下,分子链取向;外力解除,分子链解取向 3结晶高聚物:非晶区取向,可以解取向;晶粒取向,不易解取向 取向度: 高分子合金又称多组分聚合物, 在该体系中存在两种或两种以上不同的聚合物, θ θθ22sin 2 3 1)1cos 3(2 1-=-=f

高分子物理期末复习思考题

第五章分子运动及热转变 1聚合物的分子运动有何特点?为什么聚合物的分子运动是一个松弛过程?松弛时间与温度有什么关系? 2为什么非晶聚合物在不同的温度范围会呈现不同力学状态?从分子运动观点解释非晶聚合物的温度~形变曲线,并讨论结晶、交联、增塑、分子量对聚合物温度~形变曲线的影响。 3简述玻璃化转变的4种理论,并用自由体积理论解释玻璃化转变的机理和过程。影响聚合物玻璃化转变温度Tg的因素? 4有哪些测定聚合物Tg温度的方法?测量时温度变化速率及外力作用时间对Tg 值会有什么影响? 5影响聚合物结晶能力的因素有哪些? 6如何用 Avrami 方程处理聚合物结晶动力学? 如何得到 n、K、t1/2?这些参数的物理意义是什么? 7结晶温度如何影响结晶速度、结晶度、结晶完善程度和晶粒尺寸? 8从聚合物材料的综合性能考虑,什么是最佳的结晶形态?如何得到这种结晶形态? 9拉伸可以促进结晶和提高结晶熔点,它的热力学依据是什么? 10为什么结晶聚合物熔融时有一个宽的熔限?可以通过哪些方法测定结晶聚合物的熔点?各自的Tm是如何定义的? 11影响结晶熔点的因素有哪些?如何提高结晶聚合物的熔点? 12总结结晶温度高低和降温速度快慢对结晶度、结晶熔点和晶粒尺寸的影响,讨论要得到高结晶度、高熔点和小晶粒尺寸可以采取哪些方法? 13为什么在玻璃化温度以下仍存在“次级转变”?次级转变所对应的分子运动形式?对聚合物的力学性能会造成什么影响? 第六章橡胶弹性理论 1聚合物的高弹态有何特点?为什么在高弹态随温度升高聚合物的弹性模量反而增大? 2可以通过哪些方法提高橡胶的热稳定性?可以通过哪些方法提高橡胶的耐寒性 3什么叫熵弹性、能弹性?什么叫理想弹性体?橡胶弹性的本质是什么? 4什么是“交联橡胶的状态方程式”?该公式的实际意义?具体用途? 5聚合物溶胀平衡方程式?它可以解决哪些问题 第七章聚合物的粘弹性 1什么叫蠕变?交联和未交联橡胶的蠕变曲线有何差别?如何提高聚合物的耐蠕变性能? 2什么叫应力松弛?应力松弛产生的原因是什么? 3什么叫“滞后”?什么叫“力学损耗”? 4为什么在橡胶的拉伸-回缩应力—应变曲线上,对应于同一应力,回缩时的形变总是大于拉伸时的形变?滞后圈的物理意义是什么? 5复数模量、储能模量、损耗模量、内耗的定义?它们与温度的关系?与外力作用频率的关系?

高分子物理期末知识点总结

UNIT1.碳链高分子:主链全部由C以共价键相连接;杂链:主链含C,以及O、S等两种或以上的原子以共价键相连接;构造:聚合物分子的各种形状(线形、枝化、交联、梯形、螺旋)构型:由化学键固定的原子在空间几何排列;构像:原子或原子团绕单键内旋转所产生的空间排布。旋光异构体:结构单元为-CH2-CHX-型,包含一个不对称C,所形成的异构体;分为全同:取代基都在主平面一侧或都由一种旋光异构单元键接而成;间同:相间分布于或两种交替链接;无规:不规则分布或两种无规链接。链段:高分子链中的单键旋转时互相牵制,一个键转动,要带动附近的一段链一起运动,把若干个键组成的一段链作为一个独立运动的单元。自由连结链:一个孤立高分子链在旋转时不考虑键角限制和位垒的障碍,每个分子由足够过的不占有体积的化学键自由结合而成的,每个键在任方向取向几率相等的理想模型。自由旋转链:分子链中每个键在键角所允许的方向自由转动,不考虑空间位阻对旋转的影响;等效自由:将一个原来有n个键长为l键角固定旋转不自由的键组成的链可视为Z个长度为b的自由结合链段的的高分子链;链的柔性:分子链能够改变其构象的性质.(不但高分子本身是一个独立运动单元,而且在每个高分子中还存在能独立运动的小单元,他们热运动的结果 使链有强烈的卷曲倾向,这是大分子链具备柔性的最根本内在原因)柔性实质:构象数增,S增,分子链卷曲程度增,分子链在无外力作用下总是自发采取卷曲形态,使构象熵最大。平衡态柔性:热力学平衡条件下的柔性,取决于反式与旁式构象之间的能量差ΔUtg。动态柔性:在外界条件影响下从一种平衡态构象向另一种平衡态构象转变的难易程度,转变速度取决于位能曲线上反式和旁式构象之间的位垒ΔUb与外场作用能之间的关系(ΔUb与kT).影响柔性的因素:分子结构:a主链结构1主链全部由单键组成,一般柔性较好,PE PP;不同单键,柔性不同Si-O>C-N>C-O>C-C.2有孤立双键,柔性大,顺式聚1,4-丁二烯;共轭双键,不能内旋转,分子刚性,聚乙炔,聚苯;有芳杂环,柔性差,芳香尼龙.b取代基1极性大作用力大,内旋转受阻,柔性差,PAN聚氯乙烯>聚1,2-二氯乙烯.3极性取代基的分布对柔性有影响,聚偏二氯乙烯>聚氯乙烯.4非极性取代基,基团体积大,空间位阻大,内旋困难,柔性差,PS1/2不良溶剂。χ1kT的物理意义:把一个溶剂分子放入高聚物中时引起的能量变化。高分子aq与小分子aq区别?什么时候可当成理想aq?比小分子aq溶解的缓慢的多,粘度明显大于小分子aq,性质存在相对摩尔质量的依赖性,而分子量有分散性,故研究很复杂;当链段与溶剂相互作用产生的混合热和混合熵相互抵消时。X1=1/2,U1e=0的溶液才能将此高分子溶液看做是理想溶液,但即使是X1=1/2,高分子溶液的ΔHm也不为0.符合理想溶液条件的高分子溶液混合自由能来源于混合热和混合熵。X1=1/2的高分子溶液宏观上热力学性质遵从理想溶液规律,其微观状态与小分子理想溶液有本质区别。过量化学位:Flory-Krigbaum稀溶液理论:1高分子稀溶液中链段的分布是不均匀的,而是以链段云得形式分布在溶剂中,每一链段云可近似球体.2在连段云内,以质心为中心,链段的径向分布符合高斯分布.3链段云彼此接近要引起自由能的变化,每个高分子链段云有其排斥体积。(引入热参数,令,定义θ=)θ温度:超额混合热/超额混合熵;θ溶液:当T=θ时,Δu1E为零,链段间与溶剂间作用能抵消,无扰状态,排斥体积为零;当T=θ,此时的高分子aq,在宏观上看热力学性质遵从理想aq,但微观状态仍是非理想,因混合热和混合熵均不为零,只是两者的效应刚好抵消,所以Δu1E=0,这一条件为θ条件或θ状态,(θ条件:选择合适的溶剂和温度,可以使溶剂分子对高分子构象所产生的干扰忽略不计(此时高分子“链段”间的相互作用等于”链段”与溶剂分子间的相互作用).在θ条件下测得的高分子尺寸为无干扰尺寸,只有无干扰尺寸才是高分子本身结构的反应)对应为θ溶剂,对应温度为θ温度。。第二维利系数A2:与χ1一样,表征高分子链段与溶剂分子之间的相互作用。凝胶:交联聚合物溶胀体,不熔不溶,既是聚合物浓溶液,又是高弹性固体;冻胶:由范德华力交联形成,加热或拆散可拆散范德华力交联而溶解。 UNIT4.数均分子量Mn:按物质的量统计的平均分子量;重均分子量Mw:按质量统计的平均分子量;Z均分子量Mz:按Z量的统计平均分子量;黏均分子量Mη:用稀溶液黏度法测得的平均分子量(z ≥w≥η≥n)。单分散:z=w=n。为什么z≥w≥η≥n?因为Mn靠近低分子量部分,则低分子量部分对其影响大,Mw靠近高分子量部分,则高分子量对其影响较大,一般用Mw表征比Mn更恰当,聚合物熔体粘度依赖于高分子量部分。分子量测定方法:端基分析(Mn)、沸点升高或冰点降低(Mn)、气相渗透法VPO(Mn)、渗透压法(Mn)、黏度法(Mη)。沸升冰降测的是Mn?是的,通过热力学推导,可知,溶液的沸点升高值ΔTb和冰点降低值ΔTf正比于溶液浓度,即正比于溶质分子数,而与溶质的分子量成反比,由此可推导出高分子数均分子量Mn。稀溶液依数性:沸点升高、冰点下降、蒸汽压下降、渗透压等数值仅与溶液中的溶质数有关,而与溶质的本性无关。特性粘度[η](表示高分子aq的c趋于0时,单位浓度的增加对增比浓度或相对粘度对数的贡献);体积排除色谱法(SEC):又称凝胶渗透色谱法(GPC),分离机理:在分离作用由于大小不同的分子在色谱柱中的多孔性填料中占据的空间体积不同造成的。色谱柱中装填表面和内部有着各种大小不同的空洞和通道的多孔填料,以待测样品的某种溶剂充满柱子,最大的分子,只能留在填料颗粒之间,走的路径最短,先被溶剂冲出来,较大的分子,走颗粒间的路径和颗粒内较大的孔,路径长一些,较后被冲出来,较小的分子,颗粒间、颗粒内的大孔,还进入颗粒内的小孔,走的路径最多,最后被溶剂冲洗出来(大分子Ve小,小分子Ve大)SEM纵坐标记录洗提液与纯溶剂折射率差值Δn,在极稀溶液中,相当与Δc(洗提液的相对浓度),横坐标是保留体积Vr(淋出体积Ve),表征分子尺寸大小。保留体积小,分子尺寸大。 VPO:加入不挥发溶质沸点升高冰点降低蒸汽压下降。由于溶液的依数性,沸点升高值正比于浓度反比与分子量。由于高分子溶液热力学性质与理想溶液偏差,只有无限稀释才符合。所以测各种浓度,外推在恒温密闭容器内充有溶剂饱和蒸汽,将一滴不挥发溶质的溶液滴1和溶剂滴2悬在这个饱和蒸气中。由于1中溶剂的蒸气压较低,就会有溶剂分子从饱和蒸气相凝聚到溶液滴上。并放出凝聚热,使1温度升高。由于依数性,达平衡时,两液滴温差与溶质摩尔分数成正比。ΔT=AX2,ΔT温度差,X2溶质摩尔分数。 UNIT5.分子运动及转变特点:①运功单元的多重性A高分子链的整体运动:分子分子链质量中心的相对移动。B链段运动:区别于小分子的特殊运动形式。质量中心不变,一部分链段通过单键内旋转而相对于另一部分链段运动,使大分子可以伸展或卷曲。C链节、支链、侧击的运动。D晶区内的分子运动②分子运动的时间依耐性:外因作用下,聚合物从一平衡态通过分子运动过渡到另一与外界条件相连的新的平衡总需要时间,原因是整个分子链,链段、链节等运动单元的运动都需要克服内摩擦阻力,不可能瞬间完成③分子运动的温度依耐性:升温,一方面运动单元热运动能量提高,另一方面由于体积膨胀,分子距离增加,运动单元活动空间增大,松弛加快,松弛时间减小。聚合物分子运动特点:a.运动单元的多重性,包括整分子链平移、链段运动、链节支链侧基等小尺寸单元的流动、原子在平衡位置的振动、晶区的运动b.高分子运动的时间依赖性c.分子运动的温度依赖性松弛时间:橡皮由Δx(t)变为Δx(0)的1/e倍时所需要的时间,表征松弛过程快慢。(开始较快,后来越慢)。论述自由体积理论:液体或固体,它的整个体积包括两个部分:一部分是为分子本身占据的,称占有体积;另一部分是分子间的空隙,称自由体积,它以大小不等的空穴无规分布在聚合物中,提供了分子的活动空间,使分子链可能通过转动和位移而调整构象。在玻璃化温度以下,链段运动被冻结,自由体积也处于冻结状态,其空穴尺寸和分布基本上保持固定。聚合物的玻璃化温度为自由体积降至最低值的临界温度。在此温度下,自由体积提供的空间已不足以使聚合物分子链发生构象调整,随着温度升高,聚合物的体积膨胀只是由于分子振幅、链长等的变化,即分子占有体积的膨胀,而在玻璃化温度以上,自由体积开始膨胀,为链段运动提供了空间保障,链段由冻结状态进入运动状态,随着温度升高,聚合物的体积膨胀除了分子占有体积的膨胀之外,还有自由体积的膨胀,体积随温度的变化率比玻璃化温度以下为大。为此,聚合物的比体积-温度曲线在Tg时发生转折,热膨胀系数在Tg发生突变。影响Tg的因素:①主链的柔性:柔性越高,Tg高②取代基:侧基极性强,Tg高;极性基数高,Tg高;取代基位阻高,内旋转受阻程度高,Tg高③构型:全同Tg较低;顺反异构中,反式分子柔性差,Tg较高④分子量:M较低时,M高,Tg高;当分子量超过一定值后,Tg不再依赖分子量⑤外力速率:张力可强迫链段沿张力方向运动,Tg低,压力使分子链运动困难,Tg升高;冷却速率快,Tg高。另外:调节Tg手段:增塑、共聚、共混。聚合物Tg开始时随相对分子质量增大而升高,当达到一定值之后,Tg变为与相之无关的常数?相对分子质量对Tg的影响主要是链端的影响,处于链末端的链段比链中间的链段受的牵制要小些,因而有比较剧烈的运动,链端浓度的增加预期Tg会降低,链端浓度与数均相对分子质量成反比,超过临界相对分子质量后链端的比例很小,其对Tg影响可以忽略。聚合物中加入单体、溶剂、增塑剂等低分子物时导致Tg下降:Tg具有可加和性,这些物质Tg较高分子低许多,所以混和Tg比聚合物低。分子结构与结晶能力的关系(为什么结晶聚合物结晶不完整?)a.链的对称性、规整性越高,结晶能力越强b.共聚,无规共聚降低结晶能力c.链柔性差降低结晶能力,柔性太好不能结晶d.分子间作用力过大降低结晶能力e.交联降低结晶能力f.分子量增大限制结晶。{高压力下形成的结晶高聚物结晶体密度高,拉应力可以加速高聚物结晶}。结晶聚合物边熔融边升温的现象是由于试样中含有完善程度不同的晶体。结晶时,如果降温程度不是足够的慢,随着熔体黏度的增加,分子链的活动性减小,来不及作充分的位置调整,则结晶停留在不同的阶段上;等温结晶过程中,也存在着完善程度不同的晶体。这时再升温,在通常的升温速度下,比较不完善的晶体将在较低的温度下熔融,比较完善的晶体则要在较高的温度下熔融,因而出现较宽的熔融范围。结晶过程的特点:结晶温度区间在Tg与Tm之间;同一聚合物在同一结晶温度下,结晶速度随结晶时间过程而变化;结晶聚合物结晶不完善,没有精确的熔点,存在容限。 UNIT6.什么情况下符合虎克定律?在形变很小时,交联橡胶的应力应变关系才符合虎克定律。 UNIT7.五个区域:玻璃态区、玻璃—橡胶转变区、橡胶—弹性平台区、橡胶流动区、液体流动区。力学松弛:聚合物的各种性能表现出对时间的依赖性。蠕变:一定的温度、较小恒应力持续作用下,材料应变随时间增加而增大的现象(包括瞬时可逆的普弹形变ε1、滞后可逆高弹形变ε2、不可逆的黏性形变ε3;Tg以下,链段运动松弛时间很长,ε2很小;材料本体粘度很大,ε3很小;因此蠕变主要由ε1构成,蠕变量很小。Tg以上,链段运动的松弛时间变短,导致ε2较大,材料的本体粘度η3仍很大,ε3较小,蠕变主要由ε2构成,夹杂少量ε3。同时,ε 3 随时间的发展而发展,导致总形变不断发展)。应力松弛:恒定温度和形变保持不变时,聚合物内部应力随时间增加而逐渐衰减的现象;产生原因:当聚合物受到外力作用发生变形时,分子链段要沿着外力方向伸展与外力相适应,因而在材料内部产生内应力。但是链段的热运动又可以使某些链缠结散开,以至于分子链之间可以产生小的相对滑移;同时链段运动也会调整构象使分子链逐渐地回复到原来蜷曲状态,从而使内应力逐渐地消除掉。(当温度远小于Tg时,链段运动的能力很弱,应力松弛非常慢;当温度太高时,应力松弛过程进行太迅速。只有在Tg温度附近几十度的范围内,应力松弛现象才比较明显)。滞后:聚合物在交变应力作用下形变落后于应力变化的现象;产生原因:链段的运动受到内摩擦阻力作用的结果,当外力变化时,链段的运动受到内摩擦阻力的作用跟不上外力的变化,所以形变总是落后于应力,滞后了一个相位差δ。(外力作用频率适中,链段一方面可以运动,但又不能完全跟上应力的变化,这时滞后现象才能充分体现出来)力学损耗或内耗:在有滞后现象存在时,由于形变的发展落后于应力的变化,当第一周期的形变还没有完全恢复时,材料又会受到第二个周期应力的作用,因此每个周期都会有一部分弹性储能没有释放出来,这部分能量最终转变为热能,以热量的形式释放出来,造成损耗。影响因素:1温度a温度低,分子运动弱,不运动摩擦消耗能量小,内耗小.b温度高,分子运动快,应变跟得上应力变化,δ小,内耗小.c温度适中,跟不上应力变化, δ大,内耗大.2频率a频率快,分子运动跟不上应力的交换频率,摩擦消耗能量小,内耗小b频率很慢,应变跟得上应力变化, δ小,内耗小c频率适中,分子可以运动但跟不上应力频率变化, δ大,内耗大.3次级运动的影响:次级运动越多,所做的功可以通过次级运动耗散掉.时温等效原理:对于同一个力学松弛过程,既可以在较高温度和较短的外力作用时间下表现出来,也可以在较低温度和较长的外力作用时间下表 现出来。即:升高温度与延长外力作用时间对分子运动是等效的,对聚合物的粘弹性是等效的。 UNIT8.非晶态聚合物应力应变曲线:1.弹性形变区:直线斜率即为杨氏模量,此阶段普弹性,由于高分子键长键角和小运动单元的变化产生。2.屈服阶段:应变软化点,超过此点,大外力使本来冻结的链段开始运动,为大形变提供条件。3.大变形区:高弹性形变区,本质上与高弹形变一样是链段运动,它在外力作用发生。4.应变硬化区:分子链取向排列使强度提高。5.断裂。。屈服点以后,材料大变形的分子机理主要是g的链段运动,即在外力作用下,玻璃态p原来被冻结的链段开始运动,g链的伸展提供了材料的大变形,此时,p处于玻璃态,即使去除外力形变不能自动回复,只有升到 Tg以上链段运动解冻,分子链重新蜷曲,形变才可回复)。

相关主题
文本预览
相关文档 最新文档