当前位置:文档之家› 正渗透膜分离技术

正渗透膜分离技术

正渗透膜分离技术
正渗透膜分离技术

正渗透膜分离技术

研究背景

随着世界人口数量的迅速增长和矿物燃料的急剧消耗,水资源和能源已成为地球上两种至关重要的资源。水资源匮乏和能源危机困扰着全球许多不同的团体。据报导,世界上至少十二亿的人缺乏洁净安全的饮用水,有二十六亿的人缺少足够多的环境卫生设备。

膜技术是近几十年迅速发展起来的高效分离技术,因其节能、高效、经济、简单方便、无二次污染等一系列优点,在水处理中已被广泛地用于苦咸水淡化、海水淡化、工业给水处理、纯水及超纯水制备、废水处理、污水回用等。作为一种低能耗、低污染的绿色技术,新型的膜分离技术,正渗透(Forward osmosis,FO),在供水和产能方面拥有着巨大的潜能,甚至在食品加工行业、医药行业也有很好的应用前景,正逐渐成为人们关注和研究的热点。

膜分离技术

作为一种广泛应用的分离技术,膜处理的分离原理主要是在常温下使溶质和溶剂通过半渗透膜,达到分离、浓缩和纯化的目的,在这个过程中,驱动力一般为压力驱动或电位驱动。该技术的特点有以下几个方面:

(1)膜分离过程在常温下进行分离。

(2)膜分离过程无相变化。

(3)膜分离技术的适用范围较广。

(4)膜分离效率高,分离效果好。

(5)膜分离技术采用装置简单,操作方便。

通常来说,膜分离技术,能够对不同的微粒、分子、离子进行有效的分离,膜材料亦丰富为醋酸纤维素(CA)、聚丙烯腈(PAN)、聚酰胺(PA)、聚砜(PS)、聚丙烯(PP)、聚偏氟乙烯(PVDF)、陶瓷膜等。

常见水处理膜分离技术主要有以下几类:

(1)微滤(MF):由0.01~0.2 MPa的外加压力作为驱动力。膜的微孔直径处于微米范围,可截留粒径为0.1~10μm的悬浮物颗粒、纤维等。

(2)超滤(UF):超滤以0.1~1.0 MPa左右的压力差为推动力。分离膜的孔径在

0.0015~0.02μm之间。

(3)反渗透(RO):以1~70MPa左右的压力差为推动力。

(4)纳滤(NF):由0.5~1.5MPa的外加压力作为驱动力。

正渗透

在正渗透中,用于分离的驱动力主要为FO膜两侧的汲取液和原料液之间的渗透压差,使水从原料液(较低渗透压)一侧自发传递到汲取液(较高渗透压)。不同于传统的靠压力驱动的膜分离技术,比如微滤、超滤、纳滤与反渗透等,正渗透由于运行的原理不同,因此有着独有的优势,例如施加较低或不施加压力,导致更低的能耗,降低运行成本;正渗透的分离能力强,对污染物有着较高的截留率;正渗透污染几乎为可逆污染,因而清洗效率高;正渗透的膜装置组成简单,操作容易等。在众多领域内,正渗透近几十年来均有着广泛的应用,特别的,在一些重要领域如海

水淡化、水处理,食品加工和利用渗透发电等方面表现出良好的应用前景,是目前世界膜分离领域研究的热点之一。

正渗透汲取液

在正渗透中,汲取液是不可缺少的关键组成部分,用作汲取液的溶质叫做汲取溶质。当为正渗透应用选择理想的汲取液时,有以下三个主要的选择标准:

(1)汲取液应该具有相对较高的渗透压,保证FS和DS之间有足够的渗透压差,使正渗透顺利进行;

(2)被稀释的汲取液应该能方便且经济地与渗透水进行分离并且能够重复使用,易于回收利用;

(3)汲取溶质在正渗透过程中应产生尽量低的内部浓差极化。有研究表明,汲取液的扩散系数、粘度和粒子尺寸远远影响着正渗透的内部浓差极化。

正渗透浓差极化

浓差极化现象是压力驱动和渗透压驱动过程一个非常正常也是不可避免的现象,在渗透压驱动膜过滤过程中,浓差极化是由于不对称膜两侧驱动液和污水的浓度不同造成的,在正渗透过程中,外部浓差极化(ECP)和内部浓差极化(ICP)均会发生,正常情况下,ECP发生在密实的活性层表面,而ICP则发生在支撑层里面。其中起主要作用的是内浓差极化。

渗透汽化技术

渗透汽化技术(PV)的应用 杨丽琴、阴秋萍 摘要:综述了渗透汽化膜传递理论研究的现状,叙述了渗透汽化膜分离技术的基本原理及传质过程的机理,叙述了渗透汽化过程的进展,叙述了渗透汽化分离水中微量有机物及其在化工生产上的应用进行了介绍. 关键词:渗透汽化;传递理论;原理;膜组件;脱水膜;应用 1 引言 渗透汽化(pervaporation,简称PV)是一种新型膜分离技术。该技术用于液体混合物的分离,其突出的优点是能够以低的能耗实现蒸馏、萃取、吸收等传统方法难以完成的分离任务。它特别适用于蒸馏法难以分离或不能分离的近沸点、恒沸点混合物以及同分异构体的分离;对有机溶剂及混合溶剂中微量水的脱除及废水中少量有机污染物的分离具有明显的技术上和经济上的优势;还可以同生物及化学反应耦合,将反应生成物不断脱除,使反应转化率明显提高。所以,渗透汽化技术在石油化工、医药、食品、环保等工业领域中具有广阔的应用前景及市场。它是目前处于开发期和发展期的技术,国际学术界的专家们称之为21世纪最有前途的高技术之一。 2 渗透汽化膜分离技术 2. 1 基本原理 渗透汽化是利用致密高聚物膜对液体混合物中组分的溶解扩散性能的不同实现组分分离的一种膜过程(如图1-1所示)。液体混合物原料经加热器加热到一定温度后,在常压下送入膜分离器与膜接触,在膜的下游侧用抽真空或载气吹扫的方法维持低压。渗透物组分在膜两侧的蒸汽分压差(或化学位梯度)的作用下透过膜,并在膜的下游侧汽化,被冷凝成液体而除去。不能透过膜的截留物流出膜分离器。 2. 2 PV膜过程的特点 (1) PV最突出的特点是分离系数大,单级即可达到很高的分离效果; (2) PV分离过程不受组分汽.液平衡的限制,适用于精馏等传统方法难以分离的近沸物和恒沸物的分离;

正渗透膜分离技术

正渗透膜分离技术 研究背景 随着世界人口数量的迅速增长和矿物燃料的急剧消耗,水资源和能源已成为地球上两种至关重要的资源。水资源匮乏和能源危机困扰着全球许多不同的团体。据报导,世界上至少十二亿的人缺乏洁净安全的饮用水,有二十六亿的人缺少足够多的环境卫生设备。 膜技术是近几十年迅速发展起来的高效分离技术,因其节能、高效、经济、简单方便、无二次污染等一系列优点,在水处理中已被广泛地用于苦咸水淡化、海水淡化、工业给水处理、纯水及超纯水制备、废水处理、污水回用等。作为一种低能耗、低污染的绿色技术,新型的膜分离技术,正渗透(Forward osmosis,FO),在供水和产能方面拥有着巨大的潜能,甚至在食品加工行业、医药行业也有很好的应用前景,正逐渐成为人们关注和研究的热点。 膜分离技术 作为一种广泛应用的分离技术,膜处理的分离原理主要是在常温下使溶质和溶剂通过半渗透膜,达到分离、浓缩和纯化的目的,在这个过程中,驱动力一般为压力驱动或电位驱动。该技术的特点有以下几个方面: (1)膜分离过程在常温下进行分离。 (2)膜分离过程无相变化。 (3)膜分离技术的适用范围较广。 (4)膜分离效率高,分离效果好。 (5)膜分离技术采用装置简单,操作方便。 通常来说,膜分离技术,能够对不同的微粒、分子、离子进行有效的分离,膜材料亦丰富为醋酸纤维素(CA)、聚丙烯腈(PAN)、聚酰胺(PA)、聚砜(PS)、聚丙烯(PP)、聚偏氟乙烯(PVDF)、陶瓷膜等。 常见水处理膜分离技术主要有以下几类: (1)微滤(MF):由0.01~0.2 MPa的外加压力作为驱动力。膜的微孔直径处于微米范围,可截留粒径为0.1~10μm的悬浮物颗粒、纤维等。 (2)超滤(UF):超滤以0.1~1.0 MPa左右的压力差为推动力。分离膜的孔径在 0.0015~0.02μm之间。 (3)反渗透(RO):以1~70MPa左右的压力差为推动力。 (4)纳滤(NF):由0.5~1.5MPa的外加压力作为驱动力。 正渗透 在正渗透中,用于分离的驱动力主要为FO膜两侧的汲取液和原料液之间的渗透压差,使水从原料液(较低渗透压)一侧自发传递到汲取液(较高渗透压)。不同于传统的靠压力驱动的膜分离技术,比如微滤、超滤、纳滤与反渗透等,正渗透由于运行的原理不同,因此有着独有的优势,例如施加较低或不施加压力,导致更低的能耗,降低运行成本;正渗透的分离能力强,对污染物有着较高的截留率;正渗透污染几乎为可逆污染,因而清洗效率高;正渗透的膜装置组成简单,操作容易等。在众多领域内,正渗透近几十年来均有着广泛的应用,特别的,在一些重要领域如海

反渗透膜分离制高纯水实验

一、实验目的: (1)熟悉反渗透法制备超纯水的工艺流程; (2)掌握反渗透膜分离原理及操作技能; (3)了解测定反渗透膜分离的主要工艺参数; (4)掌握利用电导法确定盐浓度的方法。 二、实验原理 工业化应用的膜分离包括微滤(Microfiltration,MF)、超滤(Ultrafiltration, UF)、纳滤(Nanofiltration, NF)、反渗透(RO)、渗透汽化(Pervaporation, PV)和气体分离(Gas Separation, GS)等。根据分离对象和要求,选用不同的膜过程。 图1 膜截留示意图 反渗透膜通常认为是表面致密的无孔膜,可截留1-10?小分子物质,反渗透膜能截留水体中绝大多数的溶质。反渗透净水就是以压力为推动力,利用反渗透膜只能透过水而不能透过溶质的选择透过性,从含有多种无机物、有机物和微生物的水体中,提取纯净水的物质分离过程。其原理如图1。 图2 反渗透与渗透现象 如图(a)所示,用半透膜将纯水与咸水分开,则水分子将从纯水一侧通过膜向咸

水一侧透过,结果使咸水一侧的液位上升,直到某一高度,此所谓渗透过程。如图(b)所示,当渗透达到动态平衡状态时,半透膜两侧存在一定的水位差或压力差,此为指定温度下溶液的渗透压N。如图(c)所示,当咸水一侧施加的压力P大于该溶液的渗透压N,可迫使渗透反向,实现反渗透过程。此时,在高于渗透压的压力作用下,咸水中水的化学位升高,超过纯水的化学位,水分子从咸水一侧反向地通过膜透过到纯水一侧,使咸水得到淡化,这就是反渗透脱盐的基本原理。 通常,膜的性能是指膜的物化稳定性和膜的分离透过性。膜的物化稳定性的主要指标是:膜材料、膜允许使用的最高压力、温度范围、适用的PH范围,以及对有机溶剂等化学药品的抵抗性等。膜的分离透过性指在特定的溶液系统和操作条件下,脱盐率、产水流量和流量衰减指数。根据膜分离原理,温度、操作压力、给水水质、给水流量等因素将影响膜的分离性能。 三、实验内容 反渗透膜是实现反渗透的过程的关键,要求具有较好的分离透过性和物化稳定性。反渗透膜的分离透过性可用以下几个参数来描述: 1.溶质分离率(脱盐率)R 式中, 2.溶剂透过速率(水通量)J w 式中,

反渗透膜分离设备的技术优势

反渗透膜分离设备的技术优势 2020年8月27日

为保证我国经济的可持续发展,缓解当代水资源短缺,大力发展海水淡化技术产业来解决淡水资源问题已迫在眉睫。传统的方法具有很多劣势。而膜分离具有高效节能、选择性好、无相态和化学变化及可以在常温下操作等优点,是继蒸馏法后的又一项重要技术。主要包括反渗透膜法、电渗析法和纳滤膜法。这里主要介绍目前使用广泛的反渗透膜法。 反渗透膜分离设备法是一种高效节能技术,它是利用选择性半透膜,孔径为0.1—1nm,通常运行切割的分子量<500,能截留盐或小分子量有机物,使水通过。较之传统的蒸馏法,具有起动产水迅速、尺寸紧凑、重量轻、全电力操作能耗少、性能稳定、不用防结垢化学剂,操作过程中,无需相变、无需热液等优点。更加节能,工程造价和运行成本持续降低,其发展速度远远快于蒸馏法。但其缺点是操作压力大,膜组件易受到污染,进料液浓度有限制以及浓缩液的二次污染等问题。 德兰梅勒反渗透膜分离技术,简称RO技术。反渗透技术是近几年来才在我国发展起来的一项现代高新技术。按各种物料的不同渗透压,对某种溶液使用大于渗透压的反渗透方法,达到对溶液进行分离提取、纯化和浓缩的目的。反渗透设备技术是当今节能、效率高的膜分离技术。 德兰梅勒利用膜分离技术为生物制药、食品饮料、发酵行业、农产品深加工、植物提取、石油石化、环保水处理、空气除尘、化工等行业提供分离、纯化、浓缩的综合解决方案,满足不同客户的高度差

异化需求。帮助客户进行生产工艺的上下游技术整合与创新,帮助企业节省投资、降低运行费用、减少单位消耗、提供产品质量、清洁生产环境,助力企业产业升级。

渗透汽化膜分离技术

蒸汽渗透膜分离技术 清华大学膜技术工程研究中心北京清源洁华膜技术有限公司 2015年10月

1. ,概要 北京清源洁华膜技术有限公司成立于2013年,公司以清华大学膜技术工程研究中心渗透汽化膜等专利技术为基础,从事渗透汽化、汽体渗透、透醇膜、超滤膜、纳滤膜等的研发生产。 北京清源洁华膜技术有限公司主要发起人全部毕业于清华大学,分别具有几十年的膜性能研发生产、化工工艺开发设计、化工设备加工制造、化工装置及企业生产管理经验,对国家环境保护工作的紧迫性及膜分离技术的先进性共同认知促成大家走到了一起。 汽体渗透和渗透汽化膜分离技术是近二十年来发展起来的一种高新技术,依据溶解扩散分离原理,依靠有机汽体和空气各组分在膜中的溶解与扩散速度不同的性质来实现分离的新型膜分离技术,以混合物中组分分压差为分离推动力,有机汽体透过膜、空气不能透过膜。该技术具有高效、低能耗、操作安全等优点,与传统油汽回收技术相比,具有明显的技术上和经济上的优势。 北京清源洁华膜技术有限公司作为清华大学膜技术工程中心生产、实验基地,拥有三项国家发明专利,分别是:一种渗透汽化优先透醇沸石填充硅橡胶复合膜的制备方法(专利号:ZL 2008 1 0105405.6;专利有效期:2008年4月30日至2028年4月29日)、一种渗透汽化汽油脱硫用互穿网络膜的制备方法(专利号:ZL 2010 1 0282031.2;专利有效期:2010年9月14日至2030年9月13日)、二氮杂萘聚醚砜酮类聚合物平板超滤膜及其制备方法(专利证书号:ZL 2007 1 0177247.0;专利有效期:2007年11月13日至2027年11月12日)。 2.项目背景 清华大学膜技术工程研究中心深知国际竞争的残酷性和中国人拥有该先进技术自主产权的重要性,是国内最早开展渗透汽化和汽体渗透膜技术研究单位。在国家的支持下,本研究中心先后承担了国家自然科学基金“七五”重大项目“膜分离与分离膜”、“八五”重点项目“新型膜分离过程的应用基础研究”、“九五”国家重点科技攻关“渗透汽化透水膜及其过程关键技术开发”研究以及国家“十五”“863”项目“渗透汽化膜材料及其应用”研究,取得了醇、酯、酮脱水等16项小试研究成果和苯脱水、碳六油脱水两项工业中试研究成果,建立了年生产能力10万平方米的渗透汽化膜生产线,在广东、山东、江苏、浙江、四川等地相继建成了30

“反渗透膜分离制高纯水实验”实验报告

化工专业实验报告“反渗透膜分离制高纯水实验”实验报告 学生姓名: 班级:工艺一班 学号: 实验组号: 同组姓名: 实验时间: 2011年10月26 撰写实验报告时间:2011年 11月 11日

1实验目的 (1)熟悉反渗透法制备超纯水的工艺流程; (2)掌握反渗透膜分离的操作技能; (3)了解测定反渗透膜分离的主要工艺参数。 2 实验原理 反渗透膜通常认为是表面致密的无孔膜,可截留1-10?小分子物质,反渗透膜能截留水体中绝大多数的溶质。反渗透净水就是以压力为推动力,利用反渗透膜只能透过水而不能透过溶质的选择透过性,从含有多种无机物、有机物和微生物的水体中,提取纯净水的物质分离过程。其原理如图1。 图1 反渗透与渗透现象 如图(a)所示,用半透膜将纯水与咸水分开,则水分子将从纯水一侧通过膜向咸水一侧透过,结果使咸水一侧的液位上升,直到某一高度,此所谓渗透过程。如图(b)所示,当渗透达到动态平衡状态时,半透膜两侧存在一定的水位差或压力差,此为指定温度下溶液的渗透压N。如图(c)所示,当咸水一侧施加的压力P大于该溶液的渗透压N,可迫使渗透反向,实现反渗透过程。此时,在高于渗透压的压力作用下,咸水中水的化学位升高,超过纯水的化学位,水分子从咸水一侧反向地通过膜透过到纯水一侧,使咸水得到淡化,这就是反渗透脱盐的基本原理。 通常,膜的性能是指膜的物化稳定性和膜的分离透过性。膜的物化稳定性的主要指标是:膜材料、膜允许使用的最高压力、温度范围、适用的PH范围,以及对有机溶剂等化学药品的抵抗性等。膜的分离透过性指在特定的溶液系统和操作条件下,脱盐率、产水流量和流量衰减指数。根据膜分离原理,温度、操作压力、给水水质、给水流量等因素将影响膜的分离性能。 3实验装置与设备 3.1 实验流程 本装置采用反渗透膜过滤与离子交换技术相结合,以城市自来水为原料,制备超纯水供实验室特殊分析使用,出水水质可自动检测,装置操作简单,稳定性好,具有很高的实用价值。

纳滤反渗透膜分离实验上课讲义

纳滤反渗透膜分离实 验

化工原理实验报告学院:专业:班级:

三、实验装置 本实验装置均为科研用膜,透过液通量和最大工作压力均低于工业现场实际使用情况,实验中不可将膜组件在超压状态下工作。主要工艺参数如表1-1 膜组件膜材料膜面积/m2最大工作压力/Mpa 纳滤(NF)芳香聚纤胺0.4 0.7 反渗透(RO) 芳香聚纤胺0.4 0.7 表1-1膜分离装置主要工艺参数 反渗透可分离分子量为100级别的离子,学生实验常取0.5%浓度的硫酸钠水溶液为料液,浓度分析采用电导率仪,即分别取各样品测取电导率值,然后比较相对数值即可(也可根据实验前做得的浓度-电导率值标准曲线获取浓度值)。 图1-1膜分离流程示意图 1-料液灌;2-低压泵;3-高压泵;4-预过滤器;5-预过滤液灌;6-配液灌;7-清液灌; 8-浓液灌;9-清液流量计;10-浓液流量计;11-膜组件;12-压力表;13-排水阀

图1 电导率与溶液浓度关系曲线 电导率与溶液浓度模型:C= 0.6253k - 0.0195 式中k为电导率,单位ms/cm;C为溶液浓度,单位×10-3g/cm3。 ① 原料液浓度C0=0.6253*6.07-0.0195=3.776071*10-3(g/cm3)=0.026584561 kmol/m3 透过液浓度C P=0.6253*0.13-0.0195=0.061789*10-3(g/cm3)=0.000435011 kmol/m3 浓缩液浓度C R=0.6253*6.99-0.0195= 4.351347*10-3(g/cm3)= 0.030634659 kmol/m3 ② 原料液浓度C0=0.6253*5.95-0.0195= 3.701035*10-3(g/cm3) =0.026056287 kmol/m3 透过液浓度C P=0.6253*0.07-0.0195=0.024271*10-3(g/cm3) =0.000170874 kmol/m3 浓缩液浓度C R=0.6253*7.26-0.0195= 4.520178*10-3(g/cm3) =0.031823275 kmol/m3 (2)膜组件性能表征: 利用公式:

渗透汽化膜分离项目简介

膜法有机气体回收项目 XXX技术工程中心 2015年11月

1. ,概要 北京清源洁华膜技术有限公司(以下简称清源洁华)成立于2013年,公司以清华大学膜技术工程研究中心渗透汽化膜等专利技术为基础,从事渗透汽化、汽体渗透、透醇膜、超滤膜、纳滤膜等的研发生产。 清源洁华主要发起人全部毕业于清华大学,分别具有几十年的膜性能研发生产、化工工艺开发设计、化工设备加工制造、化工装置及企业生产管理经验,对国家环境保护工作的紧迫性及膜分离技术的先进性共同认知促成大家走到了一起。 汽体渗透和渗透汽化膜分离技术是近二十年来发展起来的一种高新技术,依据溶解扩散分离原理,依靠有机汽体和空气各组分在膜中的溶解与扩散速度不同的性质来实现分离的新型膜分离技术。其中膜法有机气体回收是以混合物中组分分压差为分离推动力,有机汽体透过膜、空气不能透过膜。该技术具有高效、低能耗、操作安全等优点,与传统油汽回收技术相比,具有明显的技术上和经济上的优势。 清源洁华作为清华大学膜技术工程中心生产、实验基地,拥有三项国家发明专利,分别是:一种渗透汽化优先透醇沸石填充硅橡胶复合膜的制备方法;一种渗透汽化汽油脱硫用互穿网络膜的制备方法;二氮杂萘聚醚砜酮类聚合物平板超滤膜及其制备方法等。 2.项目背景 清华大学膜技术工程研究中心深知国际竞争的残酷性和中国人拥有该先进技术自主产权的重要性,是国内最早开展渗透汽化和汽体渗透膜技术研究单位。在国家的支持下,本研究中心先后承担了国家自然科学基金“七五”重大项目“膜分离与分离膜”、“八五”重点项目“新型膜分离过程的应用基础研究”、“九五”国家重点科技攻关“渗透汽化透水膜及其过程关键技术开发”研究以及国家“十五”“863”项目“渗透汽化膜材料及其应用”研究,取得了醇、酯、酮脱水等16项小试研究成果和苯脱水、碳六油脱水两项工业中试研究成果。在渗透汽化膜制备、膜组件设计、膜工艺等方面申请专利10多项,形成了完整的具有我国自主知识产权的专有技术,代表着我国渗透汽化和汽体渗透膜技术的先进水平。

正渗透技术处理水和废水

正渗透技术处理水和废水 1 引言 膜分离技术由于出水水质高、设备简单易操作、能耗相对较低、适应性强等特点,在水处理领域获得越来越多的关注.目前应用于水处理领域的几种膜分离技术.其中微滤(microfiltration,MF)、超滤(ultrafiltration,UF)、纳滤(nanofiltration,NF)和反渗透(reverse osmosis,RO)由机械压力驱动传质过程,是水和废水处理的常规技术.其他膜技术,如温度差驱动的膜蒸馏技术(membrane distillation,MD),电场驱动的电渗析技术(electro-dialysis,ED),一些由化学反应驱动的膜吸收技术(membrane absorption,MA)等也成为水处理领域的新型技术.正渗透(forward osmosis,FO)是一种由渗透压(浓度差)驱动的新型膜技术.可用于海水脱盐、废水处理等方面. FO膜是一种渗透膜.名义孔径在1 nm以下,用于截留溶解性离子和盐类等物质,与RO 相当.但与RO相比,FO无需外加机械压力,具有低压操作、低膜污染、高截留的优点,近年来在水处理领域受到较多关注. 2 FO原理(Basic principle of FO) FO膜是一种选择性渗透膜,膜的一侧是低渗透压的待处理水,另一侧是高渗透压的汲取液,水分子透过FO膜从低渗透压侧扩散到高渗透压侧,从而实现水与杂质的分离(图 1).该过程的驱动力是膜两侧溶液的渗透压差,不需外界提供压力. 图 1 FO工艺的原理示意图 2.1 FO应用与运行效果 2.1.1 海水(浓盐水)脱盐 FO已被用于含盐废水、含盐地下水、盐湖水和海水的脱盐.大多数为实验室规模的小试研究,汲取液采用难挥发性(NaCl,Na2SO4,MgSO4等)或挥发性(NH3/CO2和NH4HCO3)盐溶液.其中Zhao等进行的盐湖水脱盐,回收率达到70%.McGinnis等采用中试规模的FO处理高盐水(TDS>70,000 ppm),回收率达到60%,与蒸发浓缩技术相当,出水水质达标(美国宾州

纳滤反渗透膜分离

纳滤反渗透膜分离实验指导书

纳滤反渗透膜分离实验 一、实验目的 1.了解膜的结构和影响膜分离效果的因素,包括膜材质、压力和流量等。 2.了解膜分离的主要工艺参数,掌握膜组件性能的表征方法。 二、基本原理 2.1膜分离简介 膜分离是以对组分具有选择性透过功能的膜为分离介质,通过在膜两侧施加(或存在)一种或多种推动力,使原料中的某组分选择性地优先透过膜,从而达到混合物的分离,并实现产物的提取、浓缩、纯化等目的的一种新型分离过程。其推动力可以为压力差(也称跨膜压差)、浓度差、电位差、温度差等。膜分离过程有多种,不同的过程所采用的膜及施加的推动力不同,通常称进料液流侧为膜上游、透过液流侧为膜下游。 微滤(MF)、超滤(UF)、纳滤(NF)与反渗透(RO)都是以压力差为推动力的膜分离过程,当膜两侧施加一定的压差时,可使一部分溶剂及小于膜孔径的组分透过膜,而微粒、大分子、盐等被膜截留下来,从而达到分离的目的。 四个过程的主要区别在于被分离物粒子或分子的大小和所采用膜的结构与性能。微滤膜的孔径范围为0.05~10μm,所施加的压力差为0.015~0.2MPa;超滤分离的组分是大分子或直径不大于0.1μm 的微粒,其压差范围约为0.1~0.5MPa;反渗透常被用于截留溶液中的盐或其他小分子物质,所施加的压差与溶液中溶质的相对分子质量及浓度有关,通常的压差在2MPa左右,也有高达10MPa的;介于反渗透与超滤之间的为纳滤过程,膜的脱盐率及操作压力通常比反渗透低,一般用于分离溶液中相对分子质量为几百至几千的物质。 2.2纳滤和反渗透机理 对于纳滤,筛分理论被广泛用来分析其分离机理。该理论认为,膜表面具有无数个微孔,这些实际存在的不同孔径的孔眼像筛子一样,截留住分子直径大于孔径的溶质和颗粒,从而达到分离的目的。应当指出的是,在有些情况下,孔径大小是物料分离的决定因数;但对另一些情况,膜材料表面的化学特性却起到了决定性的截留作用。如有些膜的孔径既比溶剂分子大,又比溶质分子大,本不应具有截留功能,但令人意外的是,它却仍具有明显的分离效果。由此可见,膜的孔径大小和膜表面的化学

渗透汽化论文(渗透汽化膜分离技术的进展及应用)

渗透汽化膜分离技术的进展及应用 摘要: 综述了渗透汽化膜传递理论研究的现状, 分析了各种模型的特点, 并就渗透汽化膜传递理论的研究方向提出了建议。叙述了渗透汽化过程的新进展,并着重介绍了它在石化中的四方面应用,即(1) 有机溶剂及混合溶剂的脱水;(2) 废水处理及溶剂回收;(3) 有机混合物的分离;(4) 化学反应过程中溶剂的脱水。 关键词:渗透汽化;传递理论;模型;膜组件;脱水膜 前言 渗透汽化(Pervaporation, 简称PV ) 是用于液体混合物分离的一种新型膜技术。自80年代以来, 渗透汽化技术得到了很大的发展, 目前世界范围内有100 多套工业装置。然而, 渗透汽化膜分离的机理由于涉及到渗透物和膜的结构和性质, 渗透物组分之间、渗透物与膜之间复杂的相互作用, 涉及到化学、化工、材料、非晶态物理、统计学等学科的交叉, 研究工作的难度较大, 认识也不够深入。也提出了几种描述渗透汽化膜传递机理的模型, 其中主要有溶解扩散膜型和孔流模型[1]。膜技术作为一种高新技术,近30 多年来获得了极为迅速的发展,已在石油化工、海运、冶金、电子、轻工、纺织、食品、医疗卫生、生化制药、环保、航天等领域内广泛应用,形成了独立的新兴技术产业。据专家断言:“今后,谁掌握了膜技术,谁就掌握了石油化工技术的未来”。 1 渗透汽化过程传递机理 1.1溶解扩散模型 溶解扩散模型认为PV 传质过程分为三步: 渗透物小分子在进料侧膜面溶解(吸 附) ; 在活度梯度的作用下扩散过膜; 在透过侧膜面解吸(汽化)。 在PV 的典型操作条件下, 第三步速度很快, 对整个传质过程影响不大。而第一步的溶解过程和第二步的扩散过程不仅取决于高聚物膜的性质和状态, 还和渗透物分子的性质、渗透物分子之间及渗透物分子和高聚物材料之间的相互作用密切相关。因而溶解扩散模型最终归结到对第一步和第二步, 即渗透物小分子在膜中的溶解过程和扩散过程的描述。一般研究者都认为PV 过程的溶解过程达到了平衡[2]。对于这种考虑, 可以通过Henry 定律(对渗透物小分子和膜材料之间无相互作用力的理想情形) 或双方吸收模型(对渗透物小分子和膜材料之间存在较弱相互作用力的情形)或Flory-Huggins 模型(对渗透物小分子和膜材料之间存在较强相互作用力的情形) 计算得到渗透物小分子在膜表面的溶解度。近年来,Doong 等考虑到组分在膜中混合焓变、自由体积焓变、相互作用焓变和弹性焓变对总溶解焓变的影响, 提出了一个更为复杂的计算进料侧膜面组份活度的方法。 但实验发现, PV 过程的溶解过程并非总能达到平衡, 而是取决于溶解速度和扩散速度的相对大小[3]。余立新等通过实验发现了非平衡溶解过程的存在, 并提出了非平衡溶解扩散

反渗透膜分离制高纯水实验报告

反渗透膜分离制高纯水实验报告 反渗透(Reverse Osmosis, RO )技术是20世纪60年代发展起来的以压力为驱动力的膜分离技术,它借助外加压力的作用使溶液中的溶剂透过半透膜而阻留某些溶质,是一种分离、浓缩和提纯的有效手段。由于反渗透技术具有无相变、组件化、流程简单、操作方便、耗费低等特点,在诸多水处理技术中,反渗透被认为是最先进的方法之一,发展十分迅速,已广泛应用于海水、苦咸水淡化、工业污水处理、纯水和超纯水制备领域。高纯水主要在电子工业、医药工业以及实验室分析使用,按国标GB/T11446.1-1997规定, 电子级水分为四级,即EW-I 、EW-II 、EW-III 和EW-IV ,其电阻率指标分别为≥18cm M ?Ω、≥15cm M ?Ω、≥12cm M ?Ω、≥0.5cm M ?Ω。

一.实验目的 (1)熟悉反渗透法制备超纯水的工艺流程; (2)掌握反渗透膜分离原理及操作技能; (3)了解测定反渗透膜分离的主要工艺参数; (4)掌握利用电导法确定盐浓度的方法。 二.实验原理 工业化应用的膜分离包括微滤(Microfiltration,MF)、超滤(Ultrafiltration, UF)、纳滤(Nanofiltration, NF)、反渗透(RO)、渗透汽化(Pervaporation, PV)和气体分离(Gas Separation, GS)等。根据分离对象和要求,选用不同的膜过程。 图1 膜截留示意图 反渗透膜通常认为是表面致密的无孔膜,可截留1-10?小分子物质,反渗透膜能截留水体中绝大多数的溶质。反渗透净水就是以压力为推动力,利用反渗透膜只能透过水而不能透过溶质的选择透过性,从含有多种无机物、有机物和微生物的水体中,提取纯净水的物质分离过程。其原理如图1。 图2 反渗透与渗透现象 如图(a)所示,用半透膜将纯水与咸水分开,则水分子将从纯水一侧通过膜向咸水一侧透过,结果使咸水一侧的液位上升,直到某一高度,此所谓渗透过程。如图(b)所示,当渗透达到动态平衡状态时,半透膜两侧存在一定的水位差或压力差,此为指定温度下溶液的渗透压N。如图(c)所示,当咸水一侧施加的压MF UF NF R O 分散 颗粒 高分 子 离解 酸 二价盐、 糖 未离解 酸 一价盐

渗透汽化膜应用

有机汽体渗透分离膜 技术及工业应用 北京清源洁华膜技术有限公司 2015年9月

北京清源洁华膜技术有限公司座落在北京市平谷区兴谷开发区,是平谷区重点工业企业和北京市高新技术企业。公司以清华大学膜技术工程研究中心渗透汽化膜等专利技术为基础,从事渗透汽化、汽体渗透、透醇膜、超滤膜、纳滤膜等的研发生产。 北京清源洁华膜技术有限公司主要发起人全部毕业于清华大学,分别具有几十年的膜性能研发生产、化工工艺开发设计、化工设备加工制造、化工装置及企业生产管理经验,对国家环境保护工作的紧迫性及膜分离技术的先进性共同认知促成大家走到了一起。 膜分离技术被认为是21世纪最有发展前途的新技术之一,其中气体膜分离技术由于Prism 中空纤维氮氢分离器的问世,取得了空前的发展。气体膜分离技术与传统的吸附冷冻、冷凝分离相比,具有节能、高效、操作简单、使用方便、不产生二次污染并可回收有机溶剂的优点,已广泛用于空气分离富氧、富氮技术、天然气中脱碳、合成氨中的一氧化碳和氢气的比例调节等领域。 北京清源洁华膜技术有限公司作为清华大学膜技术工程中心生产、实验基地,拥有三项国家发明专利,分别是:一种渗透汽化优先透醇沸石填充硅橡胶复合膜的制备方法(专利号:ZL 2008 1 0105405.6;专利有效期:2008年4月30日至2028年4

月29日)、一种渗透汽化汽油脱硫用互穿网络膜的制备方法(专利号:ZL 2010 1 0282031.2;专利有效期:2010年9月14日至2030年9月13日)、二氮杂萘聚醚砜酮类聚合物平板超滤膜及其制备方法(专利证书号:ZL 2007 1 0177247.0;专利有效期:2007年11月13日至2027年11月12日)。 有机蒸汽膜法回收技术是上世纪八十年代兴起的新型膜分离技术,是气体分离膜应用的一个分支,依据溶解扩散分离原理,依靠有机汽体和空气各组分在膜中的溶解与扩散速度不同的性质来实现分离的新型膜分离技术,以混合物中组分分压差为分离推动力,有机汽体透过膜、空气不能透过膜。在化学、石化工业和医药工业中从废气中分离和回收有机蒸汽,炼油领域中分离有机蒸汽等应用越来越广泛。 有机蒸汽膜分离原理示意图: 用烷烃与空气混合气为介质测试有机蒸汽分离膜,分离膜对不同分子量的烃选择分离性能不同:

水处理中正渗透膜分离技术的应用

水处理中正渗透膜分离技术的应用 摘要:渗透(osmosis)是一种仅依靠渗透压驱动的分离过程,基于渗透现象发展起来的正渗透膜分离技术,目前该技术在国际都得到了广泛的应用。本文章综述了水处理中正渗透膜分离技术应用过程的基本原理、应用现状以及水处理正渗透膜分离技术的应用领域,并对未来水处理中正渗透膜分离技术的应用方向提出了展望。希望在未来其技术能得到更加广泛的应用与发展。 关键词:正渗透应用水处理膜分离技术 一、前言 20世纪60年代起,对膜分离技术从实验室研究已经进入到了工业行业的实际应用,直至现在,它已应用到水处理,食品加工,制药工程,医学以及能源等不同的领域。正渗透(Forward osmosis,FO)是一种不需外加压力做驱动力,而仅依靠渗透压驱动的膜分离过程。正渗透膜分离技术与外加压力驱动的膜分离技术最大的区别就是正渗透膜分离技术不需要外加压力或在较低的外加压力下运行,并且膜污染情况相对较轻,在持续长时间运行后无需清洗。水处理中正渗透膜分离技术目前在国际上诸如美国、新加坡、欧洲等国家和地区已得到大量研究和应用。 二、水处理中正渗透膜分离技术的基本原理 正渗透是浓度驱动型的膜过程,它依靠选择性渗透膜两侧的渗透压差为驱动力来自发的实现水在膜中的传递。也就是指水从较高水化学势(或较低渗透压)一侧区域通过选择透过性膜流向较低水化学势(或较高渗透压)—侧区域的过程。在具有选择透过性膜的两侧分别放置两种具有不同渗透压的溶液,一种为具有较低渗透压的原料液(Feed solution),另一种为具有较高渗透压的驱动液(Draw solution),正渗透正是应用了膜两侧溶液的渗透压差作为驱动力,才使得水能自发地从原料液一侧透过选择透过性膜到达驱动液—侧。当对渗透压高的一侧溶液施加一个小于渗透压差的外加压力的时候,水仍然会从原料液压一侧流向驱动液—侧,这种过程叫做压力阻尼渗透(Pressure-retarded osmosis,PRO)。压力阻尼渗透的驱动力仍然是渗透压,因此它也是一种正渗透过程。水处理中正渗透膜分离技术应用正是基于这种原理。 三、水处理正渗透膜分离技术应用现状 正渗透膜过程,具有三低优势,即低压操作,低能耗和低污染,在水处理领域已得到了一定的应用。但是国内并不多见其应用报道,所以说应用不是很多,尽管如此,这一技术仍然具有很大的应用价值和光明的应用前景。如果要大范围普及正渗透膜分离技术,仍需做很多努力。包括了我国对正渗透膜分离技术研究不多,特别是在水处理应用上缺乏经验参数,这需要进行大量的实验,从而积累经验;目前所拥有的正渗透膜性能太低,品种不全、不优;缺少既经济又高效的汲取液体系和汲取液再浓缩途径。 鉴于水处理正渗透膜分离技术仍存在比较多的问题,在今后的研究和应用方面应该从这些方面的着手突破,极大推动正渗透技术在水处理中的广泛应用,以促进新一代水处理工艺的高效发展。总之,对水处理正渗透膜分离技术的研究,都应该围绕如何提高正渗透过程的水回收率、如何提高正渗透过程中的分离效率、以及如何降低正渗透过程的运行成本等方面进行。 四、水处理中正渗透膜分离技术应用领域

反渗透膜分离技术在城市污水处理中的应用

反渗透膜分离技术在城市污 水处理中的应用 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

摘要 国内外反渗透膜技术的发展概况,然后详细论述了反渗透膜分离技术。通过介绍反渗透的基本原理、反渗透装置型式、基本流程,以美国和日本采用反渗透处理生活污水为例,探讨了反渗透膜分离技术在城市污水处理中的应用情况,最后就其发展方向作出了初步地归纳和展望。 关键词:城市污水处理,膜分离技术,反渗透膜,实际应用,前景展望

引言 近来,物理化学处理技术、光照射技术及膜过滤技术已形成三大水处理技术。在这些技术中引人注目的是膜分离法污水处理技术[1]。膜分离是通过膜对混合物中各组分的选择渗透作用的差异,以外界能量或化学位差为推动力对双组分或多组分混合物的气体或液体进行分离、分级、提纯和富集的方法。而反渗透膜分离技术作为当今世界水处理先进的技术,具有清洁、高效、无污染等优点,已在海水淡化、城市给水处理、纯水和超纯水制备、城市污水处理及利用、工业废水处理、放射性废水处理等方面得到广泛的应用。 膜分离技术作为新的分离净化和浓缩方法,与传统分离操作(如蒸发、萃取、沉淀、混凝和离子交换树脂等)相比较,过程中大多无相变化,可以在常温下操作,具有能耗低、效率高、工艺简单、投资小等特点。膜分离技术应用到污水处理领域,形成了新的污水处理方法,它包含微滤(MF)、超滤(UF)、渗析(D)、电渗析(ED)、纳滤(NF)、和反渗透(RO)等,本文仅对反渗透(RO)膜法对城市污水处理技术进行探讨。

一、反渗透膜发展概况 膜广泛的存在于自然界中,特别是生物体内。人类对于膜现象的研究源于1748年,但是人类对它的认识和研究则较晚。1748年,Abbe Nollet观察到水可以通过覆盖在装有酒精溶液瓶口的猪膀肌进入瓶中时,发现了渗透现象。然而认识到膜的功能并用于为人类服务,却经历了200多年的漫长过程。人们对膜进行科学研究则是近几十年来的事。其发展的历史大致为;30年代微孔过滤;40年代透析;50年代电渗析;60年代反渗透;70年代超滤和液膜;80年代气体分离;90年代渗透汽化[2]。 在国外,其发展概况为:1953年美国的Reid 提出从海水和苦盐水中获得廉价的淡水的反渗透研究方案,1960年美国的Sourirajan 和Leob 教授研制出新的不对称膜,从此RO作为经济的淡化技术进入了实用和装置的研究阶段。20世纪70年代初期开始用RO法处理电镀污水,首先用于镀镍污水的回收处理,此后又应用于处理镀铬、镀铜、镀锌等漂洗水以及混合电镀污水。1965年英国首先发表了用半透膜处理电泳涂料污水的专利。此后美国P.P.G公司提出用UF和RO的组合技术处理电泳涂料污水,并且实现了工业化。1972-1975年J J .Porter 等人用动态膜进行染色污水处理和再利用实验。1983年L.Tinghuis等人发表了用RO法处理染料溶液的研究结果。30年来,反渗透(RO)技术先后在含油、脱脂废水、纤维工业废水、造纸工业废水、放射性废水等工业水处理、苦咸水淡化、纯水和高纯水制备、医药工业和特殊的化工过程和高层建筑废水等各类污水处理中得到了广泛的应用。尤其是近几年,一些新型的膜法污水处理技术逐一问世,如膜蒸馏、液膜、膜生化反应器、控制释放膜、膜分相、膜萃取等[3]。 在我国,膜技术的发展是从1958年离子交换膜研究开始的。1958年开始进行离子交换膜的研究,并对电渗析法淡化海水展开了试验研究;1965年开始对反渗透膜进行探索,1966年上海化工厂聚乙烯异相离子交换膜正式投产,为电渗析工业应用奠定了基础。1967年海水淡化会战对我国膜科学技术的进步起了积极的推动作用。1970年代相继对电渗析、反渗透、超滤和微滤膜及组件进行研究开发,1980年代进入推广应用阶段。1980年代中期我国气体分离膜的研究取得长足进步,1985年中国科学院

渗透汽化膜分离法脱除汽油中有机硫化物的应用

渗透汽化膜分离法在脱除汽油中有机硫化物的应用 王雪1013207077 化学工艺13级博 渗透汽化技术又称渗透蒸发(Pervaporation,简称PV)技术作为一项新兴膜分离技术,以其高效、经济、安全、清洁等优点,在石油化工、医药、食品、环保等领域广泛应用,成为目前膜分离研究领域的热点之一。该技术用于液体混合物的分离,其突出的优点是能够以低的能耗实现蒸馏、萃取、吸附等传统方法难于完成的分离任务。它特别适用于蒸馏法难以分离或不能分离的近沸点、恒沸点混合物及同分异构体的分离;对有机溶剂及混合溶剂中微量水的脱除及废水中少量有机污染物的分离具有明显的技术和经济优势。 一、基本原理 渗透汽化是利用膜对液体混合物中各组分的溶解扩散性能的不同,实现组分分离的一种膜过程,见图1(a)。在渗透汽化过程中,料液侧(膜上游侧)通过加热提高待分离组分的分压,膜下游侧通常与真空泵相连,维持很低的组分分压,在膜两侧组分分压差的推动下,各组分选择性地通过膜表面进行扩散,并在膜下游侧汽化,最后通过冷凝的方式移出1。有机溶剂脱水渗透汽化分离的原理见图1(b)。 图1(a)Schematic diagram of pervaporation process2 图1 (b)有机溶剂脱水渗透汽化分离的原理

二、渗透汽化膜 1.有机膜 渗透汽化的主要作用元件是渗透汽化膜,膜的性能对渗透汽化过程有决定性的影响。渗透汽化膜按照功能可分为亲水膜、亲有机物膜和有机物分离膜3种。亲水膜又称为优先透水膜,其活性分离层又含有一定亲水性基团的高分子材料制成,具有一定的亲水性。目前应用最广泛的亲水性商品膜是GFT膜,其分离层是聚乙烯醇。在全球商业化的渗透汽化装置中,约90%的GFT膜都是由德国预案GFT公司及其相关单位开发的。目前已有相关学者开始研究亲水性膜在火箭燃料肼、不对称二甲肼和甲肼脱水过程中的应用3456。亲有机物膜又称优先透有机物膜,通常由低极性、地比表面积和溶解度参数小的聚合物(如聚乙烯、聚丙烯、有机硅聚合物、含氟聚合物、纤维素衍生物和聚苯醚等材料)制成。尽管亲有机物膜在渗透汽化膜分离过程中具有非常高的潜在应用价值,且世界范围内对该膜已有广泛研究,但目前能实现工业化应用的还很少。有机物分离膜可适用的分离体系多且性质差异大,膜材料的选择没有普遍规律,必须针对分离体系的物理化学性质进行选择和设计,主要有芳烃-烷烃分离膜、醇-醚分离膜以及同分异构体分离膜。 2.无机膜 相对于有机膜,无机膜具有优良的热稳定性、化学稳定性、机械稳定性、耐酸碱、微生物侵蚀和耐氧化性等优点。这些优点使无机膜的发展备受科技界的重视,具有非常广阔的应用前景7。无机膜按材料可分为陶瓷膜、合金膜、高分子金属配合物膜、分子筛膜和玻璃膜等。多孔无机膜的制备方法主要有:固态粒子烧结法、溶胶-凝胶(Sol-Gel)法、阳极氧化法、薄膜沉积法、分相法和水热合成法等。已经商品化的多孔膜主要是超滤和微滤膜,其制备方法以粒子烧结法和Sol-Gel法为主。粒子烧结法制备的膜孔径范围一般在0.1~10μm,适应于微孔过滤。目前已开发的商品化微滤膜主要有氧化铝膜、氧化钛膜和氧化锆膜。 Sol-Gel技术可以制备超滤范围的小孔径膜,目前采用该技术制备的已经商品化的超滤膜有氧化铝膜、氧化钛膜、氧化硅膜和氧化锆膜8。近年来,有关Sol-Gel 技术的研究主要集中在制备孔径小于2 nm的纳滤膜和气体分离膜。分子筛膜作为无机膜的一种,具有良好的热稳定性、化学稳定性和分离选择性。通过调节硅铝比可以调节分子筛膜的亲疏水性,如高硅铝比的MFI分子筛膜具有很强的疏水性,而低硅铝比的A分子筛膜具有很强的亲水性。另外,分子筛本身具有催化活性,通过分子筛膜可以从分子水平上实现分离和催化一体化;同时由于分子筛的孔径尺寸一定,所以在催化反应中具有择形性。这些优越性使得分子筛膜具有良好的应用前景。分子筛膜的种类很多,根据不同的应用目的选择不同的制备方法,其制备方法主要有原位水热合成法910、二次生长法1112131415、嵌入法1617和

反渗透膜分离设备特点和适用范围

反渗透膜分离设备特点和适用范围

反渗透膜分离设备是将原水经过精细过滤器、颗粒活性碳过滤器、压缩活性碳过滤器等,再通过泵加压,利用孔径为 1/10000μm(相当于大肠杆菌大小的1/6000,病毒的1/300)的反渗透膜(RO膜),使较高浓度的水变为低浓度水,反渗透简介同时将工业污染物、重金属、细菌、病毒等大量混入水中的杂质全部隔离,从而达到饮用规定的理化指标及卫生标准,产出至清至纯的水。 反渗透膜分离设备是一种现代新型的纯净水处理技术。通过反渗透元件来提高水质的纯净度,清除水中含有的杂质和盐。我们日常所饮用的纯净水都是经过反渗透设备处理的,水质清澈。 反渗透膜分离设备特点: 1、经CAD设计,技术先进,性能可靠、水力性能优良; 2、脱盐率高,使用寿命长,运行成本低廉; 3、采用全自动预处理系统,实现无人化操作; 4、全自动电控程序,还可选配触摸屏操作,使用方便; 5、前置预处理保护装置,确保高压泵及反渗透膜不受硬物损坏; 6、产品水,浓缩水各设有流量计,以监视并调节运行出水量及系统回收率;

7、灵敏的高压、低压开关;防止在异常状况下对设备的损坏,确保系统的正常运转; 8、先进的膜保护系统定时冲洗膜表面,降低污染速度,延长膜使用寿命; 9、完全根据用户要求,进行合理的设计。 反渗透膜分离设备适用范围: 1、纯净水生产厂纯净水制备 2、食品行业原料配制用水 如添加剂的勾兑、配料、汤料或汁液的配比等,可改善口感、抑制有机物滋生,提高产品保存期限 3、乳品、饮料、制酒行业用水制备 建议采用双级反渗透装置,防止因水中异物导致口感不佳,大限度的提高产品品质,抑制有机物繁殖,提高产品保存期限 4、化工行业用水 用于化工原料液的配比,化工产品制造,化工循环水等,有效防止因水中离子超标而造成的附加化学反应和品质偏差。

纳滤反渗透膜分离实验

纳滤反渗透膜分离实验

————————————————————————————————作者:————————————————————————————————日期:

化工原理实验报告 学院: 专业: 班级: 姓名学号实验组号实验日期指导教师成绩 实验名称纳滤反渗透膜分离实验 一、实验目的 1.了解膜的结构和影响膜分离效果的因素,包括膜材质、压力和流量等。 2.了解膜分离的主要工艺参数,掌握膜组件性能的表征方法。 二、实验原理 1.膜分离简介 膜分离是以对组分具有选择性透过功能的膜为分离介质,通过在膜两侧施加(或存在)一种或多种推动力,使原料中的某组分选择性地优先透过膜,从而达到混合物的分离,并实现产物的提取、浓缩、纯化等目的的一种新型分离过程。其推动力可以为压力差(也称跨膜压差)、浓度差、电位差、温度差等。膜分离过程有多种,不同的过程所采用的膜及施加的推动力不同,通常称进料液流侧为膜上游、透过液流侧为膜下游。 微滤(MF)、超滤(UF)、纳滤(NF)与反渗透(RO)都是以压力差为推动力的膜分离过程,当膜两侧施加一定的压差时,可使一部分溶剂及小于膜孔径的组分透过膜,而微粒、大分子、盐等被膜截留下来,从而达到分离的目的。 四个过程的主要区别在于被分离物粒子或分子的大小和所采用膜的结构与性能。微滤膜的孔径范围为0.05~10μm,所施加的压力差为0.015~0.2MPa;超滤分离的组分是大分子或直径不大于0.1μm的微粒,其压差范围约为0.1~0.5MPa;反渗透常被用于截留溶液中的盐或其他小分子物质,所施加的压差与溶液中溶质的相对分子质量及浓度有关,通常的压差在2MPa左右,也有高达10MPa的;介于反渗透与超滤之间的为纳滤过程,膜的脱盐率及操作压力通常比反渗透低,一般用于分离溶液中相对分子质量为几百至几千的物质。 2.纳滤和反渗透机理 对于纳滤,筛分理论被广泛用来分析其分离机理。该理论认为,膜表面具有无数个微孔,这些实际存在的不同孔径的孔眼像筛子一样,截留住分子直径大于孔径的溶质和颗粒,从而达到分离的目的。应当指出的是,在有些情况下,孔径大小是物料分离的决定因数;但对另一些情况,膜材料表面的化学特性却起到了决定性的截留作用。如有些膜的孔径既比溶剂分子大,又比溶质分子大,本不应具有截留功能,但令人意外的是,它却仍具有明显的分离效果。由此可见,膜的

相关主题
文本预览
相关文档 最新文档