当前位置:文档之家› 一元函数的连续与极限极限的概念

一元函数的连续与极限极限的概念

一、多元函数、极限与连续解读

一、多元函数、极限与连续 ㈠二元函数 1 .二元函数的定义:设 D 是平面上的一个点集,如果对于每个点 P (x,y)∈ D ,变量按照 一定法则总有确定的值与它对应,则称是变量 x 、y 的二元函数(或点 P 的函数),记为 (或),点集 D 为该函数的定义域, x 、y 为自 变量,为因变量,数集为该函数值域。由此也可定义三元函数以及三元以上的函数。二元函数的图形通常是 一张曲面。例如是球心在原点,半径为 1 的上半球面。 ㈡二元函数的极限 ⒈设函数 f(x,y)在开区域(或闭区域) D 内有定义, 是 D 的内点或边界点,如果对于任意给定的正数,总存在正 数,使得对于适合不等式的一切点 ,都有成立,则称常数 A 为函数f(x,y)当 时的极限,记作或, 这里 。为了区别一元函数的极限,我们把二元函数的极限叫做二重极限。

⒉注意:二重极限存在是指沿任意路径趋于,函数 都无限接近 A 。因此,如果沿某一特殊路径,例如沿着一 条定直线或定曲线趋于时,即使函数无限接近于某一确定值,我们也不能由此判定函数的极限存在。 ㈢多元函数的连续性 1 .定义:设函数 f(x,y)在开区间(或闭区间) D 内有定 义,是 D 的内点或边界点且。如果 ,则称函数 f(x,y)在点连续。如果函数 f(x,y)在开区间(或闭区间) D 内的每一点连续,那么就称函数 f(x,y)在 D 内连续,或者称 f(x,y)是 D 内的连续函数。 2 .性质 ⑴一切多元初等函数在其定义域内是连续的; ⑵在有界闭区域 D 上的多元连续函数,在 D 上一定有最大值和最小值; ⑶在有界闭区域 D 上的多元连续函数,如果在 D 上取两个不同的函数值,则它在 D 上取得介于这两

对函数极限相关性质的理解及应用1111

对函数极限相关性质的理解及应用 定西师范高等专科学校 数学系 数学教育专业 09级3班 程艳君 摘 要:函数极限的概念和存在条件是我们理解函数极限和判断函数极限是否存在的主要依据,函数的极限在数学分析中占有十分重要的地位,因此,较为复杂函数极限的计算也是我们学者应该掌握的。本文浅略地介绍了函数极限的概念和存在条件,函数极限的性质以及两个重要极限在计算比较复杂的函数极限中的应用。 关键词:函数极限;重要极限;四则运算;迫敛法。 引 言: 函数极限是数学分析的重要概念,它贯彻于整个数学分析中,函数极限理论是研究函数连续、导数、积分、级数等的基本工具,而一些较为复杂的函数极限计算又在解决实际问题中是必不可少的。本文最主要介绍函数极限的概念和函数极限存在的条件,还有两个重要函数极限、迫敛法和四则运算法在解较复杂函数极限中的应用。 1 . 函数的极限和极限存在的条件 1.1 函数的极限 1.1.1 x 趋于∞+时函数的极限 设函数f 定义在 ),[∞a 上,类似于数列的情形,我们研究当自变量x 趋于∞+时,对应的函数值能否无限的接近于某个正数A 。例如,对于函数x x f 1)(=,从图像上可见,当x 无限的增大时,函数值无限的接近于0;而对于函数 x crc x g tan )(=,则当x 趋于∞+时函数值无限的接近于2 π。我们称这两个函数当x 趋于∞+时有极限。一般地,当x 趋于∞+ 时函数的极限饿精确定义如下: 设f 为定义在),[∞a 上的函数,A 为定数。若对任给的0>ε,存在正数M(a ≥),使得当M x >时有ε<-a x f )(,则称函数f 当x 趋于∞+时以A 为极限,记作

函数极限的定义的多种表达

函数极限的定义 林芳 20101101903 数学科学学院 2010级(1)班 指导教师 韩刚 摘要 极限是数分中的重要内容,用定义证明极限类型题都要用到它。本文就给出二十四个函数极限的定义。 关键词 极限 1函数在一点的极限的定义 1.1函数在0x 点的极限的定义 设函数f(x)在0x 点的附近(但可能除掉点本身)有定义,又设A 是一个定数。如果对任意给定的ε>0,一定存在δ>0,使得当0<0x x -<δ时,总有A x f -)(<ε,我们就称A 是函数在点0x 的极限,记为 A x f x x =→0 )(lim , 或者记为 f(x)→A(x 0x →). 这时也称函数f(x)在0x 点极限存在,其极限值是A. 1.2函数在点0x 右侧的极限的定义 设函数f(x)在(0x ,η+0x )内有定义,η是一个确定的正数,又设A 是一个定数。如果对任意给定的ε>0,总存在δ>0,当0

我们就称A 是函数f(x)在点x 0的右极限,记为 0)(lim +→x x x f =A 或f(x 0+0)=A 或 f(x)→A (x 0x →+0) 这时也称函数f(x)在点0x 右极限存在。 1.3函数在0x 点左侧的极限的定义 设函数f(x)在(00,x x η-)内有定义,η是一个确定的正数,又设A 是一个定数。如果对任意给定的ε>0,总存在δ>0,当0<δ<-x x 0时,有A x f -)(<ε,我们就称A 是函数f(x)在点的左极限,记为 0)(lim -→x x x f =A 或 f(00-x )=A 或 f(x))0(0-→→x x A 这时也称函数f(x)在0x 点左极限存在. 2函数在无限远处的极限 2.1函数在无限远处极限的定义 若对任意给定的ε>0,存在X>0,当X x >时,总有ε<-A x f )(,我们说A 是f(x)在无限远处的极限,或者说A 是当x 的极限时)(x f ∞→,记为 ) ()()()(lim ∞→→=∞=∞→x A x f A f A x f x 或 这时也称函数f(x)在无限远处极限存在 2.2函数在正无限远处的极限的定义

函数极限概念

引言 在数学分析中,极限的概念占有主要的低位并以各种形式出现而贯穿全部内容,同时极限概念与方法是近代微积分的基础. 因此掌握好极限的求解方法是学习数学分析和微积分的关键一环.本文主要对一元函数极限定义和它的求解方法进行了归纳总结,并在具体求解方法中就其中要注意的细节和技巧做了说明, 以便于我们了解函数的各种极限以及对各种极限进行计算.求函数极限的方法较多,但每种方法都有其局限性, 都不是万能的, 对某个具体求极限的问题,我们应该选择合适的方法. 一、函数极限概念 定义1[]1 设f 为定义在[)+∞,a 上的函数,A 为定数.若对任给的ε>0,存在 正数M (a ≥),使得当M x >时有 ()f x A ε-<, 则称函数f 当x 趋于+∞时以A 为极限,记作 lim ()x f x A →+∞ = 或()().f x A x →→+∞ 定义2[]1 (函数极限的ε-δ定义)设函数f 在点 0x 的某个空心邻域0 U (0x ;'δ)内有定义,A 为定数。若对任给的ε>0,存在正数δ(<'δ),使得当0<0x x δ-<时有 ()f x A ε-<, 则称函数f 当x 趋于0x 时以A 为极限,记作 lim ()x f x A →∞ =或0()()f x A x x →→. 定理1[]1 设函数f 在0'0(,)U x δ+(或00(;')U x δ-)内有定义,A 为实数。若 对任给的0ε>,存在正数'()δδ<,使得当00x x x δ<<+(或00x x x δ-<<)时有 ()f x A ε-<, 则称数A 为函数f 当x 趋于0x +(或0x -)时的右(左)极限,记作

函数极限的综合分析与理解

函数极限的综合分析与理解 PB 王欣 极限可以与很多的数学问题相联系。例如,导数从根本上是求极限;函数连续首先要求函数在某一点的左极限等于右极限。有鉴于函数极限的重要性,结合自己的学习心得,笔者写下了此文。其目的在于归纳和总结解决函数极限问题的实用方法和技巧,以期对函数极限问题的学习有所帮助。 一、函数极限的定义和基本性质 函数极限可以分成x →0x ,x →∞两类,而运用ε-δ定义更多的见诸于已知极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以0x x →的极限为例,()x f 在点0x 以A 极限的定义是:,0,0>?>?δε使当δ<-<00x x 时,有()().f x A A ε-<为常数问题的关键在于找到符合定义要求的δ,在这一过程中会用到一些不等式技巧,例如放缩法等。 函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。如函数极限的唯一性(若0 lim x x →存在,则在该点的极限是唯一的)可以体现在用海涅定理证明()x f 在0x 处的极限不存在。即如果()A x f n →,()B x f n →'(0',x x x n n n →∞→和), 则()x f 在0x 处的极限不存在。 运用函数极限的性质可以方便地求出一些简单函数的极限值。例如对于有理分式()()() x Q x P x f =(()()x Q x P ,均为多项式,()0≠x Q )。设()x P 的次数为n ,()x Q 的次数为m , 当∞→x 时,若m n <,则()0→x f ;若m n =,则()→x f ()x P 与()x Q 的最高次项系数之比;若 m n >,则()∞→x f 。 000()()(()0)()P x f x Q x Q x →→≠0当x x 时,。 二、运用函数极限的判别定理 最常用的判别定理包括单调有界定理和夹挤定理,在运用它们去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值,参见附例2。二是应用夹挤定理的关键是找到极限值相同的函数()x g 与()x h ,并且要满足()()()x h x f x g ≤≤,从而证明或求得函数()x f 的极限值。

对函数极限概念的理解

对函数极限概念的理解 函数极限概念,不易理解。由于极限概念具有高度的抽象性,因此,令人很难快速正确理解和掌握极限数学语言的真正内涵,以致于学完了极限,极限的意识还很薄弱。因此,要抓住理解的关键,我们体会,宜抓住以下三点: (一)将“任意近处”的描绘性语言,转化为可进行量化比较的准确表达 考察数集X={x},若在点x0的任意近处包含有X中异于x0的x的值,则点x0称为这数集的聚点。 为着要更准确地表达这定义,我们引入点x0的邻域的概念:以点x0为中心的开区间(x0?δ,x0+δ)称为点x0的邻域。下边我们将聚点做可进行量化比较的准确表达:若在点x0的任一邻域内包含X中异于x0的x的值,则x0是数集X的聚点。关于“任一邻域”,δ=1cm算不算“任一邻域”?不算。只能说它是“任一邻域”之一部分而不是全部;δ=1mm算不算“任一邻域”?不算。只能说它是“任一邻域”之一部分而不是全部;δ=1nm算不算“任一邻域”?不算。只能说它是“任一邻域”之一部分而不是全部;……,点x0的邻域可以无穷小。因此,“任一邻域”是一个无穷集。 对聚点x0本身来说,可以属于X,或不属于X。也就是说x0在X上可以有定义或无定义。x0在X上无定义时,它的邻域也存在,叫做空心领域。 (二)注意函数f(x)在x接近于x0时的性态。 设在区域X内给定函数f(x),且x0是X的聚点。这函数f(x)在x接近于x0时的性态是值得注意的。相对于自变量x,通过法则f,得到f(x),若出现了f(x)无限趋近于数A的性态,或者叫做f(x)与数A的差距无限小的性态,则可类似于x0的邻域δ,把ε看作A的邻域, 而把这种性态更准确地表达为:Ⅰf(x)- AⅠ<ε(ε是任一大于零的数)。这个表达就具备了可 进行量化比较性。 (三)δ与ε的关系 从x与f(x)的关系看,前者为因,后者为果。但是从x0的邻域δ与A的邻域ε的关系看,则是前者依赖后者,总是要先给定任一ε>0,而后求那个能保证ε成立的δ。即δ的几何空 间受ε的几何空间的约束。既然f(x)无限趋近于数A的性态,可更准确地表达为:Ⅰf(x)- A Ⅰ<ε(ε是任一大于零的数),那么,使Ⅰf(x)- AⅠ<ε(ε是任一大于零的数)成立的δ应是什么样呢?也就是如何依赖Ⅰf(x)- AⅠ<ε求δ呢?具体过程如下: 将Ⅰf(x)- AⅠ变形:Ⅰf(x)- AⅠ=MⅠx-x0Ⅰ,其中M是一个与x无关的常量。 再取δ=ε M ,则当0<Ⅰx-x0Ⅰ<δ时,有0<Ⅰx-x0Ⅰ<ε M ,整理为00能求出δ>0,只须Ⅰx-x 0Ⅰ<δ能使Ⅰf(x)- AⅠ<ε(式中的x取自X 内且异于x0)成立,则称当x趋向于x0时(或在x0)函数f(x)以数A为极限。 记成:lim x→ x0 f x=A

第一章 函数、极限与连续

第一章 函数、极限与连续 (一) 1.区间[)+∞,a 表示不等式( ) A .+∞<

函数的极限及函数的连续性典型例题

函数的极限及函数的连续性典型例题 一、重点难点分析: ① 此定理非常重要,利用它证明函数是否存在极限。 ② 要掌握常见的几种函数式变形求极限。 ③ 函数 f(x)在 x=x 0 处连续的充要条件是在 x=x 0 处左右连续。 ④ 计算函数极限的方法,若在 x=x 0 处连续,则 ⑤ 若函数在 [a,b] 上连续,则它在 [a,b] 上有最大值,最小值。 二、典型例题 例 1 .求下列极限 解:由 可知 x 2+mx+2 含有 x+2 这个因式, ∴ x=-2 是方程 x 2+mx+2=0 的根, ∴ m=3 代入求得 n=-1。 求 m,n 。 ① ④ ④ ③ ③ ② 解析:① 例 2.已知

的连续性。 解析:函数的定义域为(-∞,+∞),由初等函数的连续性知,在非分界点处 函数是连续的, 从而 f(x)在点 x=-1 处不连续。 ∴ f(x) 在 (- ∞,-1),(- 1,+∞) 上连续, x=-1 为函数的不连续点。 , (a,b 为常数 ) 。 试讨论a,b 为何值时,f(x)在 x=0 处连续。 例 3 .讨论函数 例 4 .已知函数 , ∴ f(x)在 x=1 处连续。 解析: ∴ a=1, b=0 。 例 5 .求下列函数极限 ① ② 解析:① ②

要使 存在,只需 ∴ 2k=1 ,故 时, 存在。 例7.求函数 在 x=-1 处左右极限,并说明在 x=-1 处是否有极限? ,∴ f(x)在 x=-1处极限不存在。 三、训练题: 2. 的值是 3. 已知 ,则 = ,2a+b=0,求 a 与 b 的值。 ,求 a 的值。 5.已知 参考答案:1. 3 2. 3. 4. a=2, b=-4 5. a=0 例 6 .设 ,问常数k 为何值时,有 存在? 解析:∵ 4.已知 解析:由 1.已知

(整理)多元函数的极限与连续习题.

多元函数的极限与连续习题 1. 用极限定义证明:14)23(lim 1 2=+→→y x y x 。 2. 讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。 (1)y x y x y x f +-=),(; (2) y x y x y x f 1s i n 1s i n )(),(+=; (3) y x y x y x f ++=23 3),(; (4) x y y x f 1 s i n ),(=。 3. 求极限 (1)2 20 ) (lim 22 y x x y x y +→→; (2)1 1lim 2 2 220 0-+++→→y x y x y x ; (3)2 20 01 sin )(lim y x y x y x ++→→; (4)22220 0) sin(lim y x y x y x ++→→。 4. 试证明函数?? ???=≠+=0 0)1ln(),(x y x x xy y x f 在其定义域上是连续的。

1. 用极限定义证明:14)23(lim 2 1 2=+→→y x y x 。 因为1,2→→y x ,不妨设0|1|,0|2|<-<-y x , 有54|2||42||2|<+-≤+-=+x x x , |22123||1423|2 2 -+-=-+y x y x |1|2|2|15|1|2|2||2|3-+-<-++-≤y x y x x |]1||2[|15-+-?ε,要使不等式 ε<-+-<-+|]1||2[|15|1423|2 y x y x 成立 取}1,30 min{ ε δ=,于是 0>?ε, 0}1,30 min{ >=?ε δ,),(y x ?:δδ<-<-|1|,|2|y x 且 )1,2(),(≠y x ,有ε<-+|1423|2 y x ,即证。 2. 讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。 (1)y x y x y x f +-= ),(; 1lim lim 00=+-→→y x y x y x , 1l i m l i m 00-=+-→→y x y x x y , 二重极限不存在。 或 0l i m 0=+-=→y x y x x y x , 3 1l i m 20-=+-=→y x y x x y x 。

高数8多元函数的极限与连续

二元函数的极限 二元极限存在常用夹逼准则证明 例1 14)23(lim 2 12=+→→y x y x 例2 函数?? ???+=01sin 1sin ),(,x y y x y x f .00=≠xy xy ,在原点(0,0)的极限是0. 二元极限不存在常取路径 例3 证明:函数)),(,,00)(()y (442≠+=y x y x y x x f 在原点(0,0)不存在极限. 与一元函数极限类似,二元函数极限也有局部有限性、极限保序性、四则运算、柯西收敛准则等. 证明方法与一元函数极限证法相同,从略. 上述二元函数极限)(lim 0 0y x f y y x x ,→→是两个自变量x 与y 分别独立以任意方式无限趋近于0x 与0y .这是个二重极限. 二元函数还有一种极限: 累次极限 定义 若当a x →时(y 看做常数),函数)(y x f ,存在极限,设当b y →时,)(y ?也存在极限,设 B y x f y a x b y b y ==→→→)(lim lim )(lim ,?, 则称B 是函数)(y x f ,在点)(b a P ,的累次极限.同样,可定义另一个不同次序的累次极限,即 C y x f b y a x =→→)(lim lim ,. 那么二重极限与累次极限之间有什么关系呢?一般来说,它们之间没有蕴含关系. 例如: 1)两个累次极限都存在,且相等,但是二重极限可能不存在. 如上述例3. 2)二重极限存在,但是两个累次极限可能都不存在. 如上述的例2. 多重极限与累次极限之间的关系 定理 若函数)(y x f ,在点),000(y x P 的二重极限与累次极限(首先0→y ,其次0→x )都存在,则 )(lim lim (lim 0 000y x f y x f y y x x y y x x ,),→→→→=. 二元函数的连续性 定理 若二元函数)(P f 与()P g 在点0P 连续,则函数)()(P g P f ±,)()(P g P f ,) ()(P g P f (0)(0≠P g )都在点0P 连续

大学高等数学函数极限和连续

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),

则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x ∈X 2.初等函数:

数列与函数的极限公式概念

极限与连续 一、数列的极限定义: 1、给定数列{},如果当n 无限增大时,其通项无限趋过于某个常数A ,则称数列{}以A 为极限,记作: =A 或者 (n ) 2、当数列{}以实数A 为极限时,称数列{}收敛于A ,否则称数列{}发散。 二、数列极限的性质: 1)极限的惟一性:若数列收敛,则其极限惟一,若 =a ,则 =a 2)有界性:收敛数列必有界. (数列有界是数列收敛的必要非充分条件) 3)数列的极限:如数列:ΛΛ,1 2,,432,322,212++n n 则它的极限为3 即:3121 lim 2lim )12(lim =+=++=++∞→∞→∞→n n n n n n n 三、几个需要记忆的常用数列的极限 01lim =∞→n n 11lim =+∞→n n n 0lim =∞→n n q )1(

?极限运算法则: 设limf(x)=A,limg(x)=B,则 1)lim[f(x)]=A B 2)lim[f(x)g(x)]=AB 3)当B时,lim= 4)lim[cf(x)]=climf(x) (c为常数) 5)lim[f(x)= [limf(x)(k为常数) ?小结 ..:.当,时,有= ?复合函数运算法则:= ?数列的夹逼准则:设有3个数列{}{}{},满足条件: 1)(n=1,2,…); 2)==a,则数列{}收敛,且=a ?函数夹逼准则:设函数f(x),g(x),h(x)在点的某去心邻域内有定义,且满足条件: 1)g(x)f(x)h(x); 2)=A,. 则极限存在且等于A. ?单调有界准则:单调有界数列必有极限.即单调增加有上界的数列必有极限;即单调减少有下界的数列必有极限. ?两个重要的极限: ?重要极限Ⅰ:=1

(整理)多元函数的极限与连续

数学分析 第16章多元函数的极限与连续计划课时: 1 0 时

第16章 多元函数的极限与连续 ( 1 0 时 ) § 1 平面点集与多元函数 一. 平面点集: 平面点集的表示: ),(|),{(y x y x E =满足的条件}. 余集c E . 1. 常见平面点集: ⑴ 全平面和半平面 : }0|),{(≥x y x , }0|),{(>x y x , }|),{(a x y x >, }|),{(b ax y y x +≥等. ⑵ 矩形域: ],[],[d c b a ?, 1||||),{(≤+y x y x }. ⑶ 圆域: 开圆 , 闭圆 , 圆环,圆的一部分. 极坐标表示, 特别是 }cos 2|),{(θθa r r ≤和}sin 2|),{(θθa r r ≤. ⑷ 角域: }|),{(βθαθ≤≤r . ⑸ 简单域: -X 型域和-Y 型域. 2. 邻域: 圆邻域和方邻域,圆邻域内有方邻域,方邻域内有圆邻域. 空心邻域和实心邻域 , 空心方邻域与集 }||0 , ||0|),{(00δδ<-<<-

(完整版)高等数学函数的极限与连续习题精选及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴ ()12 ++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以() x f 与() x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1) 1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2 x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

高等数学函数极限与连续习题及答案

高等数学函数极限与连续习题及答案 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴()12 ++=x x x f 与 ()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与 ()x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1)1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点.

函数极限的定义与基本性质

函数极限的定义与基本性质 本章主要阐述函数的定义与基本性质,其中,最为重要的函数的极限的模型来自于对自由落体运动,由平均速度, h gt h t g 2 221)(21-+(1) 求解瞬时速度,也就是说要考察上述函数(1)中h (注意,t 是固定的),当h 无限变小时,它的变化趋势,也就是看它是否无限接近于一个数。 首先看到,这个函数在0=h 是没有定义的,但至少在包含0的一个开区间(0点除外)有定义,h 不等于0的时候,有 gh gt h gt h t g 2 121)(2122+=-+ 当{}h 很小的时候,左边的函数值与右边的函数值的差也很小,而且当h 无限接近于0的时候,左边的函数值也无限接近于gt 。 接下来,把“接近”、“无限”等语言精确化,便得到我们所要的函数极限概念的定义: 1.1定义: 设)(x f 在0x 点附近(除0x 点以外)有定义,A 是一定数,若对任意给定的0>ε,存在0>δ,当δ<-<00x x 的时候,有 ε<-A x f )(, 则称A 是函数)(x f 当x 趋于0x 的时候的极限,记为 A x f x x =→)(lim 0 或者记为: A x f →)( (0x x →)

1.2 定理: 若 B x g x x A x f x x =→=→)(lim ,)(lim 00,则 (1) B A x g x f x x ±=±→))()((lim 0 (2) B A x g x f x x ?=?→))()((lim 0 (3)B A x g x f x x =→)()(lim 0 1.3 推论: 若 A x f x x =→)(lim 0,c 为常数,则 []cA x cf x x =→)(lim 0 1.4 局部有界性定理: 若 A x f x x =→)(lim 0 ,则存在0>δ,使得)(x f 在 ),(),(0000δδ+?-x x x x 上有界。 1.5 局部保号性定理: A x f x x =→)(lim 0 >0, 则存在0>δ,当δ<-<00x x 的时候, 有: 02)(>> A x f 1.6定理: 若 0)(lim 0=→x f x x ,且存在0>δ,)(x g 在),(),(0000δδ+?-x x x x 上有界,则 0)()(lim 0 =→x g x f x x

二元函数的极限与连续5页word文档

§2.3 二元函数的极限与连续 定义设二元函数在点的某邻域内有意义, 若存在 常数A,,当(即)时,都有 则称A是函数当点趋于点时的极限,记作 或 或或。必须注意这个极限值与点趋于点的方式无关,即不论P 以什么方 向和路径(也可是跳跃式地,忽上忽下地)趋向。只要P与充分接近, 就能 使与A 接近到预先任意指定的程度。注意:点P趋于点点方式可有无穷多 种,比一元函数仅有左,右两个单侧极限要复杂的多(图8-7)。 图8-7 同样我们可用归结原则,若发现点P按两个特殊的路径趋于点时,极限 存在,但不相等, 则可以判定在该点极限不存在。这是判断多元函数极限不 存在的重要方法之一。 一元函数极限中除了单调有界定理外,其余的有关性质和结论, 在二

元函数极 限理论中都适用,在这里就不一一赘述了。 例如若有, 其中 求多元函数的极限, 一般都是转化为一元函数的极限来求, 或利用夹逼定理 来计算。例4 求。解由于 而,根据夹逼定理知 ,所以 例5求(a≠0)。解。例6求。解由于且 ,所以根据夹逼定理知 . 例7 研究函数在点处极限是否存在。解当x2+y2≠0时,我们研究函数,沿x→0,y=kx→0这一方式趋于 (0,0)的极限,有,。很显然,对于不同的k值,可得到不同的极

限值,所以极限不存在,但 。注意:的区别, 前面两个求极限方式的 本质是两次求一元函数的极限, 我们称为累次极限, 而最后一个是求二元函数的 极限,我们称为求二重极限。 例8 设函数。它关于原点的两个累次极限都不存在,因 为对任何,当时,的第二项不存在极限;同理对任何 时,的第 一项也不存在极限,但是, 由于, 因此 由例7知, 两次累次极限存在, 但二重极限不存在。由例8可知,二重极限存 在,但二个累次极限不存在。我们有下面的结果: 定理1若累次极限和二重极限 都存在,则 三者相等(证明略)。推论若存在但

极限的概念_函数的连续性详解

第二章.极限概念 函数的连续性 对于函数的概念,我们总是能够从日常直观出发,就能很好地加以理解,因为毕竟因果关系的观念在我们的意识当中是非常深根蒂固的。那么要真正严格地理解极限的观念,就不是那么自然的了。 对于极限的观念,最为关键的问题是,如何定量地加以描述,并把这种描述作为一般的判别标准。 这个问题实际上困扰了人们几百年,一直到19世纪才加以解决的。 数列的极限描述(数列存在极限判别定理,定义法、柯西法、子数列法、夹逼法、单调有界法) 设存在一个数列,也就是一个数值的集合,这个集合的元素可以一个一个的数出来,同时每一个元素都可以加上唯一的标志,而自然数是最为适宜作这件工作的。比如说,把一个数列写成这样的样子:,....,,321a a a ,或者简单地记成{}a n 。 观察这个数列取值变化, 有的数列变化具有下面的变化规律: 对于数列,....,,321a a a ,假设存在一个确定的常数a ,现在我们考虑变量a a n -(显然这是一个反映数列数值变化的,随着n 而发生变化的变量。),如果我们任意找到一个数ε,无论它的数值有多么大或者多么小,我们总是能够在这个数列当中找到一个元素a N ,使得在这个a N 元素后面的所有的数列元素,都使得相应的变量a a n -的值小于ε, 换一句话来说,对于任意的ε,总是存在一个N ,当n>N 时, 总是有ε <-a a n 成立 这时我们就把a 称为数列,...,,321a a a 的极限。并且称数列 ,....,,321a a a 收敛于极限a 。我们使用记号a a n n =∞→lim 来表示该数列极限。 否则我们就说数列{}a n 是发散的。

函数极限与连续

第三节函数极限与连续 一、函数极限内容网络图 二、内容与要求 1. 理解函数极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系. 2. 掌握函数极限的性质及四则运算法则

3. 掌握函数极限存在的夹逼准则,并会利用它求极限,掌握利用两个重要极限求极限的方法. 4. 理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限. 5. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 6. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 重点函数极限的性质及四则运算法则、初等函数的连续性、闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理) 难点函数极限的概念、函数极限的性质、无穷大的概念,掌握无穷小的比较方法、用等价无穷小求极限. 三、概念、定理的理解与典型错误分析 1.函数极限的概念 定义1.10 。 定义1.11 把1中“”换成“”。 定义1.12 把1中“”换成“”。 定理1.4 且 定义1.13 设在的某空心邻域内有定义,若存在一个常数A, ,都有。 定义1.14 设在的某左半邻域内有定义,若存在一个常数A,时,都有。

此时也可用记号或表示左极限值A,因此可写成 定义1.15设在的某右半邻域内有定义,若存在一个常数 ,当时,都有。此时也可用或 表示右极限。因此可写成。 定理 1.5 且 该定理是求分界点两侧表达式不同的分段函数在该分界点极限是否存在的方法,而如果在的左右极限存在且相等,则在该点的极限存在,否则不存在。 定义1.16时,都有。此时称时,是无穷大量。 而,只要把公式中“”改成“”,,只要把上式中“”改成“”。 定义1.17 。当时,都有。 读者同理可给出定义。 注:(常数)与的区别,前者是表明函数极限存在,后者指函数极限不存在,但还是有个趋于无穷大的趋势。因此,给它一个记号,但还是属于极限不存在之列,以后,我们说函数极限存在,指的是函数极限值是个常数。 定义1.18 。称当是无穷小量。这里的可以是常数,也可以 是。 定理1.6 。 其中。 定义1.19 若时,都有,称时是有界量。

江苏省江阴高级中学高中数学教案:极限的概念

极 限 的 概 念 教学目的:理解数列和函数极限的概念; 教学重点:会判断一些简单数列和函数的极限; 教学难点:数列和函数极限的理解 教学过程: 一、实例引入: 例:战国时代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭。”也就是说一根长为一尺的木棒,每天截去一半,这样的过程可以无限制地进行下去。(1)求第n 天剩余的木棒长度n a (尺),并分析变化趋势;(2)求前n 天截下的木棒的总长度n b (尺),并分析变化趋势。 观察以上两个数列都具有这样的特点:当项数n 无限增大时,数列的项n a 无限趋近于某个常数A (即A a n -无限趋近于0)。n a 无限趋近于常数A ,意指“n a 可以任意地靠近A ,希望它有多近就有多近,只要n 充分大,就能达到我们所希望的那么近。”即“动点n a 到A 的距离A a n -可以任意小。 二、新课讲授 1、数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于..... 某个常数A (即A a n -无限趋近于0) ,那么就说数列}{n a 的极限是A ,记作 A a n n =∞ →lim 注:①上式读作“当n 趋向于无穷大时,n a 的极限等于A ”。“n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思。A a n n =∞ →lim 有时也记作当n →∞时,n a →A ②引例中的两个数列的极限可分别表示为_____________________,____________________ ③思考:是否所有的无穷数列都有极限? 例1:判断下列数列是否有极限,若有,写出极限;若没有,说明理由 (1)1, 21,31,…,n 1,… ;(2)21,32,43,…,1 +n n ,…;

函数、极限、连续重要概念公式定理

一、函数、极限、连续重要概念公式定理 (一)数列极限的定义与收敛数列的性质 数列极限的定义:给定数列{}n x ,如果存在常数A ,对任给0ε>,存在正整数N ,使当n N >时,恒有 n x A ε-<,则称A 是数列{}n x 的当n 趋于无穷时的极限,或称数列{}n x 收敛于A ,记为lim n n x A →∞ =.若 {}n x 的极限不存在,则称数列{}n x 发散. 收敛数列的性质: (1)唯一性:若数列{}n x 收敛,即lim n n x A →∞ =,则极限是唯一的. (2)有界性:若lim n n x A →∞ =,则数列{}n x 有界,即存在0M >,使得对n ?均有n x M ≤. (3)局部保号性:设lim n n x A →∞ =,且()00A A ><或,则存在正整数N ,当n N >时,有()00n n x x ><或. (4)若数列收敛于A ,则它的任何子列也收敛于极限A . (二)函数极限的定义 (三)函数极限存在判别法 (了解记忆) 1.海涅定理:()0 lim x x f x A →=?对任意一串0n x x →()0,1,2, n x x n ≠=,都有 ()lim n n f x A →∞ =. 2.充要条件:(1)()()0 lim ()lim lim x x x x x x f x A f x f x A +- →→→=?==; (2)lim ()lim ()lim ()x x x f x A f x f x A →∞ →+∞ →-∞ =?==.

3.柯西准则:()0 lim x x f x A →=?对任意给定的0ε>,存在0δ>,当 100x x δ<-<,200x x δ<-<时,有()()12f x f x ε-<. 4.夹逼准则:若存在0δ>,当00x x δ<-<时,有)()()x f x x ?φ≤≤(,且0 lim ()lim (), x x x x x x A ?φ→→==则0 lim ()x x f x A →=. 5.单调有界准则:若对于任意两个充分大的1212,,x x x x <,有()()12f x f x <(或()()12f x f x >),且存在常数M ,使()f x M <(或()f x M >),则()lim x f x →+∞ 存在. (四)无穷小量的比较 (重点记忆) 1.无穷小量阶的定义,设lim ()0,lim ()0x x αβ==. (1)若() lim 0() x x αβ=,则称()x α是比)x β(高阶的无穷小量. (2)() lim ,())() x x x x ααββ=∞若则是比(低阶的无穷小量. (3)() lim (0),())() x c c x x x ααββ=≠若则称与(是同阶无穷小量. (4)() lim 1,())() x x x x ααββ=若则称与(是等价的无穷小量,记为()()x x αβ~. (5)() lim (0),0,())() k x c c k x x k x ααββ=≠>若则称是(的阶无穷小量 2.常用的等价无穷小量 (命题重点,历年必考) 当0x →时, sin arcsin tan ~,arctan ln(1)e 1x x x x x x x ????? ?? ? +?-?? () 21 1cos ~2(1)1~x x x x ααα-+-是实常数 (五)重要定理 (必记容,理解掌握) 定理1 0 00lim ()()()x x f x A f x f x A -+→=?==. 定理2 0 lim ()()(),lim ()0x x x x f x A f x A a x a x →→=?=+=其中. 定理3 (保号定理):0 lim (),0(0),0x x f x A A A δ→=>设又或则一个,当 000(,),()0(()0)x x x x x f x f x δδ∈-+≠><且时,或. 定理4 单调有界准则:单调增加有上界数列必有极限;单调减少有下界数列必有极限. 定理5 (夹逼定理):设在0x 的领域,恒有)()()x f x x ?φ≤≤(,且 lim ()lim (),x x x x x x A ?φ→→==则0 lim ()x x f x A →=.

相关主题
文本预览
相关文档 最新文档