当前位置:文档之家› 分段函数可导性的一种简便判别法

分段函数可导性的一种简便判别法

分段函数可导性的一种简便判别法
分段函数可导性的一种简便判别法

分段函数的单调性1(含答案)

分段函数单调性 1.设函数若f(a)=a,则实数a的值为() A.±1 B.﹣1 C.﹣2或﹣1 D.±1或﹣2 2.已知函数f(x)=是定义域上的单调函数,则a的取值 范围是() A.(1,+∞)B.[2,+∞)C.(1,2) D.(1,2] 3.已知函数在(﹣∞,+∞)上单调递减,则a的取值范围是() A.(0,1) B.(0,)C.D. 4.若函数f(x)=是R上的单调函数,则实数a的取值范围是() A.[0,2) B. C.[1,2]D.[0,1] 5.已知函数f(x)=若f(2﹣a2)>f(a),则实数a的取值范围 是() A.(﹣∞,﹣1)∪(2,+∞)B.(﹣1,2)C.(﹣2,1)D.(﹣∞,﹣2)∪(1,+∞) 6.已知f(x)=是(﹣∞,+∞)上的增函数,那么实数a的取值范围是() A.(0,3) B.(1,3) C.(1,+∞)D.

7.设a>0且a≠1,若f(x)=为一分段函数,且在R上为增函 数,则实数a的取值范围. 8.若函数y=,则函数的单调增区间为. 分段函数单调性答案 1.设函数若f(a)=a,则实数a的值为() A.±1 B.﹣1 C.﹣2或﹣1 D.±1或﹣2 【解答】解:由题意知,f(a)=a; 当a≥0时,有,解得a=﹣2,(不满足条件,舍去); 当a<0时,有,解得a=1(不满足条件,舍去)或a=﹣1. 所以实数a 的值是:a=﹣1. 故选B. 2.已知函数f(x)=是定义域上的单调函数,则a的取值 范围是() A.(1,+∞)B.[2,+∞)C.(1,2) D.(1,2] 【解答】解:因为f(x)是定义域R上的单调函数,所以a应满足: ,解得:1<a≤2,故选D. 3.已知函数在(﹣∞,+∞)上单调递减,则a的取值范围是() A.(0,1) B.(0,)C.D. 【解答】解:由已知,f1(x)=(2a﹣1)x+7a﹣2在(﹣∞,1)上单减,∴2a

(完整版)定义法判断函数的单调性

2.1定义判别法 使用函数单调性定义进行解题是一个重点,也是一个难点。关键在于对函数单调性定义的理解。掌握这一方法有利于形成解题思路。函数的单调性定义: 一般的,设函数)(x f 的定义域为I : 1)、如果对于定义域I 内某个区间D 上的任意两个自变量21,x x ,当21x x <时都有)()(21x f x f <.那么就说)(x f 为D 上的增函数; 2)、如果对于定义域I 内某个区间D 上的任意两个自变量21,x x ,当21x x <时都有)()(21x f x f >,那么就说D x f 为)(上的减函数。 例1:已知βα、是方程)(01442R k kx x ∈=--的两个不等实根,函数1 2)(2+-=x k x x f 的定义域为[]βα,,判断函数)(x f 在定义域内的单调性,并证明。 证:令144)(2--=kx x x g ,则函数图象为开口向上的抛物线。 设βα≤<≤21x x ,则01440144222121≤--≤--kx x kx x , ; 将上述两个式子相加得: 02)(4)(4212221≤-+-+x x k x x , 由均值不等式,可得 2221212x x x x +≤; 02 1)(22121<-+-∴x x k x x , 则[]) 1)(1(22)()(1212)()(222121211221122212+++-+-=+--+-=-x x x x x x k x x x k x x k x x f x f 又02 12)(22)(21212121>+-+>+-+x x x x k x x x x k ,

所以0)()(12>-x f x f ,故)(x f 在区间[]βα,上是增函数。 例2、求证x x x f -+=2)(在??? ? ?∞-47,上为增函数。 解:取2121212122)()()(4 7x x x x x f x f x x ---+-=-≤<,则, 分子、分母同时乘以2122x x -+-,得 2121212122) 122)(()()(x x x x x x x f x f -+---+--=-, 由2 12,212,02121≥->-<-x x x x ,所以0)()(21<-x f x f , 函数在??? ? ?∞-47,为单调递增函数。 从上面两个例子可以看出,在应用定义判别法的时候,首先取定定义域中不等两点,对其函数值作差,判断其大小。但是,在做题过程中,不乏对不等式的灵活应用,因此,需熟练掌握一些常用的不等式。 知识链接: 常用的基本不等式 (1)、设R b a ∈、 ,则0)(022≥-≥b a a ,(当且仅当b a a ==,0时取等号)。 (2)、设R b a ∈、,则2 222222,2??? ??+≥+≥+b a b a ab b a (当且仅当b a =时取等号)。 (3)、设R c b a ∈、、,则ca bc ab c b a ++≥++222; ()32222c b a c b a ++≥++ (当且仅当c b a ==时取等号)。 (4)、均值不等式: a 、设)0(∞+∈,、 b a ,则ab b a ≥+2 (当且仅当b a =时取等号)。

函数单调性的判定方法

函数单调性的判定方法 1.判断具体函数单调性的方法 对于给出具体解析式的函数,由函数单调性的定义出发,本文列举的判断函数单调性的方法有如下几种: 1.1 定义法 首先我们给出单调函数的定义。一般地,设f 为定义在D 上的函数。若对任何1x 、 D x ∈2,当21x x <时,总有 (1))()(21x f x f ≤,则称f 为D 上的增函数,特别当成立严格不等)()(21x f x f <时,称f 为D 上的严格增函数; (2))()(21x f x f ≥,则称f 为D 上的减函数,特别当成立严格不等式)()(21x f x f > 时,称f 为D 上的严格减函数。 给出函数单调性的定义,我们就可以利用函数单调性的定义来判定及证明函数的单调性。用单调性的定义判断函数单调性的方法叫定义法。利用定义来证明函数 )(x f y =在给定区间D 上的单调性的一般步骤: (1)设元,任取1x ,D x ∈2且21x x <; (2)作差)()(21x f x f -; (3)变形(普遍是因式分解和配方); (4)断号(即判断)()(21x f x f -差与0的大小); (5)定论(即指出函数 )(x f 在给定的区间D 上的单调性)。 例1.用定义证明)()(3R a a x x f ∈+-=在),(+∞-∞上是减函数。 证明:设1x ,),(2+∞-∞∈x ,且21x x <,则

).)(()()()(212 221123132323121x x x x x x x x a x a x x f x f ++-=-=+--+-=- 由于04 3)2(2 2221212221>++ =++x x x x x x x ,012>-x x 则0))(()()(212 2211221>++-=-x x x x x x x f x f ,即)()(21x f x f >,所以)(x f 在() +∞∞-,上是减函数。 例2.用定义证明函数x k x x f + =)()0(>k 在),0(+∞上的单调性。 证明:设1x 、),0(2+∞∈x ,且21x x <,则 )()()()(221121x k x x k x x f x f +-+ =-)()(2 121x k x k x x -+-= )( )(211221x x x x k x x -+-=)()(212121x x x x k x x ---=))((2 12121x x k x x x x --=, 又210x x <<所以021<-x x ,021>x x , 当1x 、],0(2k x ∈时021≤-k x x ?0)()(21≥-x f x f ,此时函数)(x f 为减函数; 当1x 、),(2+∞∈k x 时021>-k x x ?0)()(21<-x f x f ,此时函数)(x f 为增函数。 综上函数x k x x f + =)()0(>k 在区间],0(k 内为减函数;在区间),(+∞k 内为增函数。 此题函数)(x f 是一种特殊函数(对号函数),用定义法证明时通常需要进行因式分解,由于k x x -21与0的大小关系)0(>k 不是明确的,因此要分段讨论。 用定义法判定函数单调性比较适用于那种对于定义域内任意两个数21,x x 当 21x x <时,容易得出)(1x f 与)(2x f 大小关系的函数。在解决问题时,定义法是最直 接的方法,也是我们首先考虑的方法,虽说这种方法思路比较清晰,但通常过程比较繁琐。 1.2 函数性质法 函数性质法是用单调函数的性质来判断函数单调性的方法。函数性质法通常与我

30分段函数单调性问题

专题30、分段函数单调性 【例1】已知函数(2)1,1()log ,1a a x x f x x x --≤?=?>?,若()f x 在(,)-∞+∞单调递增,则实数的取值范围是_________ 【答案】(2,3] 【解析】若()f x 在(,)-∞+∞单调递增,则在R 上任取12x x <,均有12()()f x f x <,在任取中就包含12,x x 均在同一段取值的情况,所以可得要想在R 上单调增,起码每一段的解析式也应当是单调 递增的,由此可得 201a a ->??>? ,但仅仅满足这个条件是不够的。还有一种取值可能为12,x x 不在同一段取值,若也满足12x x <,均有12()()f x f x <,通过作图可发现需要左边函数的最大值不大于右边函数的最小值,代入1x =,有左段右端,即21log 103a a a --≤=?≤,综上所述可得(2,3]a ∈。 【例2】已知函数2,1()2ln ,1 x e ax x f x a x x ?-≤=?+>?在定义域(,)-∞+∞上是单调增函数,则实数a 的取值范围 是( ) .,2e A ??-∞ ??? .,3e B ??+∞???? .,32e e C ?????? .(,)32e e D 【答案】C 【解析】由于函数2,1()2ln ,1 x e ax x f x a x x ?-≤=?+>?在定义域(,)-∞+∞上是单调增函数,2a e a ≥-,解得 a ≤

【例6】已知函数()1()1,22 x f x x =?-

分段函数单调性及其应用

分段函数单调性及其应用 基本理论 函数???>≤=a x x f a x x f x f ),(,),()(2 1在R 上单调递增,则)(x f 满足两个条件: (1) )(1x f 在],(a -∞上单调递增,)(2x f 在),(+∞a 上单调递增; (2) ).()(21a f a f ≤ 数学应用 1.(直接应用)已知???≥<+-=1,log ,1,4)13()(x x x a x a x f a 是),(+∞-∞上的减函数,则a 的取值范围是________________. 变式拓展:1.1若函数x a x x x f 2)(+-=在R 上单调递增,求实数a 的取值范围. 1.2已知函数.,1)(2R a a x x x f ∈+-+=求)(x f 得最小值.

2(从反方向角度考查) 设???>-≤+-=, 1,1,1,)(2x ax x ax x x f 若存在2121,,x x R x x ≠∈,使得)()(21x f x f =成立,求实数a 的取值范围. 3(从数列问题函数化角度考查) 设数列)(7, ,7,4)2(*N n n a n n n a a n ∈?? ?<+≥++-=是递增数列,则实数a 的取值范围是_______________. 4.(从“间断点”处回归函数考查) 已知函数)(0,)3()4(,0),1()(22222R a x a x a a x x a k x k x f ∈?????<-+-+≥-+=.若对任意的非零实数1x ,都存在唯一的非零实数2x ,使得)()(21x f x f =成立,求实数k 的取值范围.

高中数学函数单调性的判断方法

高中数学函数单调性的判断方法 单调性是函数的重要性质,它在数学中有许多应用,如我们常用求函数单调性的方法求函数的值域。那么,有哪些求函数单调性的方法呢? 方法一:定义法 对于函数f(x)的定义域I 内某个区间A 上的任意两个值12,x x (1)当12x x <时,都有12()()f x f x <,则说f(x)在这个区间上是增函数; (2)若当12x x <时,都有12()()f x f x >,则说f(x) 在这个区间上是减函数。 例如:根据函数单调性的定义,证明:函数 在 上是减函数。 要证明函数f (x )在定义域内是减函数,设任意1212,x x R x x ∈<且,则33221221212121()()()()f x f x x x x x x x x x -=-=-++,12x x <因为 210x x ->所以,且在1x 与2x 中至少有一个不为 0,不妨设20x ≠,那么222222121123()24 x x x x x x x ++=++0>,12()()f x f x >所以,故 ()f x 在 (,)-∞+∞上为减函数。 方法二:性质法 除了用基本初等函数的单调性之外,利用单调性的有关性质也能简化解题. 若函数f(x)、g(x)在区间B 上具有单调性,则在区间B 上有: 1. f(x)与c?f(x)当c >0具有相同的单调性,当c <0具有相反的单调性; 2.当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数; 3.当f(x)、g(x)都是增(减)函数,则f(x)?g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数; 例如,已知f (x )在R 上是减函数,那么-5f (x )为____函数。 这道题很简单,我们根据单调性的性质,很容易就能判断它是增函数。 方法三:同增异减法(处理复合函数的单调性问题) 对于复合函数y =f [g(x)]满足“同增异减”法(应注意内层函数的值域), 可令 t =g(x),则三个函数 y =f(t)、t =g(x)、y =f [g(x)]中, 若有两个函数单调性相同,则第三个函数为增函数;

高中数学-分段函数的几种常见题型及解法

分段函数常见题型及解法 【解析】 3 ?求分段函数的最值 4x 3 (x 0) 例3?求函数f(x) x 3 (0 x 1)的最大值 x 5 (x 1) 分段函数是指自变量在两个或两个以上不同的范围内 有不同的对应法则的函数 它是一个函数,却又常常被学生误认为是几个函数 ;它的定义域是各段函数定义域的并 集,其值域也是各段函数值域的并集 ?由于它在理解和掌握函数的定义、函数的性质等知 识的程度的考察上有较好的作用 ,时常在高考试题中“闪亮”登场,笔者就几种具体的题 型做了一些思考,解析如下: 1 ?求分段函数的定义域和值域 例1.求函数f(x) 值域? 【解析】 2x 2 x [ 1,0]; 1 x x (0,2);的定义域、 3 x [2,); 作图, 利用“数形结合”易知f (x)的定义域为 [1,),值域为(1,3]. 2 ?求分段函数的函数值 |x 1| 2,(|x| 例2 . ( 05年浙江理)已知函数 f(x) 1 1 x 2 (|x| 1) 1) 求f[? 因为 f(i) 11 1| 2 所以 f[f(b] f( 1 4 1 ( i) 2 13

【解析】当 X 0 时,f max (X ) f(0) 3,当 0 X 1 时,f max (X ) f(1) 4, 当 X 1 时, X 5 15 4,综上有 f max (x) 4. 4 ?求分段函数的解析式 例4 .在同一平面直角坐标系中,函数y f (X )和y g(X )的图象关于直线 y X 对 称,现将y g(x)的图象沿x 轴向左平移2个单位,再沿y 轴向上平移1个单位,所得 的图象是由两条线段组成的折线(如图所示) ,则函数f (x)的表达式为() 5 ?作分段函数的图像 例5?函数y e IM |X 1|的图像大致是() 2x 2 (1 X 0) A. f(x) 2 X 2 (0 X 2) 2x 2 (1 X 0) B. f(x) 2 X 2 (0 X 2) 2x 2 (1 X 2) C. f(x) X 2 1 ( 2 X 4) 2x 6 (1 X 2) D. f(x) X 2 3 (2 X 4) 【解析】 将其图象沿X 轴向右平移2个单位, 再沿y 轴向下 平移 1 个单位 得解析式为y 今(x 2) 1 1 4 1 f(x) 2x 2 (x [ 1,0]),当 x [0,1]时, y 2x 1,将其图象沿x 轴向右平移2 个单位,再沿y 轴向下平移 1个单位, 得解析式y 2(x 2) 1 1 2x 4, 所以 f(x) 2x 2 (x [0,2]) 综上可得f(x) 2x 2 ( 1 x 0) ■2 2 (0 x 2) 故选A 当 X [ 2,0]时,y 1 x 1

高一数学中函数的单调性4种求法

高一数学中函数的单调 性4种求法 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高一数学中函数的单调性非常重要,分析函数的单调性方法有:定义法,图像法,性质法,复合法.下边结合例题加以说明: 1.定义法 例题已知函数y=x^3-x在(0,a]上是减函数,在[a,+)上是增函数,求a的值。 解分析函数在R+上的单调性 任取x1>x2>0 Y1-Y2=(X1^3-X2^3)-(X1-X2)=(X1-X2)(X1^2+X1X2+X2^2)-(X1-X2) =(X1-X2)(X1^2+X1X2+X2^2-1) 令y1-y2>0 所以 X1^2+X1X2+X2^2-1>0 因为X1^2+X1X2+X2^2-1>X2^2+X2X2+X2^2-1=3X2^2-1 当3X2^2-1>=0时即X2^2>=1/3 X2>=根号3/3时 y1-y2>0 函数是递增的 同理当3X1^2-1<=0时即X1<=根号3/3时 y1-y2<0 函数是递减的 故函数在R+上的增区间为[根号3/3,+)减区间为(0,根号3/3) 因此 a=根号3/3 一般情况下,用定义求函数的单调区间就是求出使y1-y2>0(<0)的x1,x2的取值范围,要变换不等式,求出x1和x2的范围,就可求出函数的单调区间。 2.图像法 例题求y=x+3/x-1的单调区间 解函数定义域为(-,1)并(1,+) Y=X+3/X-1=X-1+4/X-1=1+4/X-1 由图像可知函数在(-,1)和(1,+0)上递减。 函数的图像是解决这类问题的关键。 3.性质法 性质:增+增=增减+减=减

判断函数单调性的常见方法

判断函数单调性的常见方法 一、函数单调性的定义: 一般的,设函数y=f(X)的定义域为A,I?A,如对于区间内任意两个值X1、X2, 1)、当X1X2时,都有f(X1)>f(X2),那么就说y=f(x)在区间I上是单调减函数,I称为函数的单调减区间。 二、常见方法: Ⅰ、定义法:定义域判断函数单调性的步骤 ①取值: 在函数定义域的某一子区间I内任取两个不等变量X1、X2,可设X1

=(x1-x2)(x12+x22+x1x2+1) =(x1-x2)[﹙x1+1/2x2﹚2+1+3/4x22] ∵x1、x2?(-∞,+∞),x10 故f(x1)-f(x2)<0,即f(x1)

分段函数练习题

1、分段函数 1、已知函数)(x f =267,0,100,, x x x x x ++<≥????? ,则 )1()0(-+f f =( ) A . 9 B . 71 10 C . 3 D . 1110 提示:本题考查分段函数的求值,注意分段函数分段求。 解析:0代入第二个式子,-1代入第一个式子,解得)1()0(-+f f =3,故正确答案为C. 90 2、函数||x y x x =+的图象为下图中的( ) 提示:分段函数分段画图。 解析:此题中x ≠0,当x>0时,y=x+1,当x<0时,y=x-1, 故正确答案为C. 120 3、下列各组函数表示同一函数的是( ) ①f(x)=|x|,g(x)=???<-≥) 0()0(x x x x ②f(x)=242--x x ,g(x)=x+2 ③f(x)=2x ,g(x)=x+2 ④f(x)=1122-+-x x ,g(x)=0 ,x ∈{-1,1} A.①③ B.① C.②④ D.①④ 提示:考察是否是同一函数即考察函数的三要素:定义域、值域、对应关系,此题应注意分段函数分段解决。 解析:此题中①③正确,故正确答案为A. 120 4、设()1232,2()log 1,2 x e x f x x x -?

证明函数单调性的方法总结

证明函数单调性的方法总结 导读:1、定义法: 利用定义证明函数单调性的一般步骤是: ①任取x1、x2∈D,且x1 ②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等); ③依据差式的符号确定其增减性. 2、导数法: 设函数y=f(x)在某区间D内可导.如果f′(x)>0,则f(x)在区间D内为增函数;如果f′(x) 注意:(补充) (1)若使得f′(x)=0的x的值只有有限个, 则如果f ′(x)≥0,则f(x)在区间D内为增函数; 如果f′(x) ≤0,则f(x)在区间D内为减函数. (2)单调性的判断方法: 定义法及导数法、图象法、 复合函数的单调性(同增异减)、 用已知函数的单调性等 (补充)单调性的有关结论 1.若f(x),g(x)均为增(减)函数, 则f(x)+g(x)仍为增(减)函数. 2.若f(x)为增(减)函数, 则-f(x)为减(增)函数,如果同时有f(x)>0,

则 为减(增)函数, 为增(减)函数 3.互为反函数的两个函数有相同的单调性. 4.y=f[g(x)]是定义在M上的函数, 若f(x)与g(x)的'单调性相同, 则其复合函数f[g(x)]为增函数; 若f(x)、g(x)的单调性相反, 则其复合函数f[g(x)]为减函数.简称”同增异减” 5. 奇函数在关于原点对称的两个区间上的单调性相同; 偶函数在关于原点对称的两个区间上的单调性相反. 函数单调性的应用 (1)求某些函数的值域或最值. (2)比较函数值或自变量值的大小. (3)解、证不等式. (4)求参数的取值范围或值. (5)作函数图象. 【证明函数单调性的方法总结】 1.函数单调性的说课稿 2.高中数学函数的单调性的教学设计 3.导数与函数的单调性的教学反思

函数单调性方法和各种题型

(一)判断函数单调性的基本方法 Ⅰ、定义法: 定义域判断函数单调性的步骤:取值、作差(或商)变形、定号、判断。例1:已知函数f(x)=x3+x,判断f(x)在(-∞,+∞)上的单调性并证明 Ⅱ、直接法(一次函数、二次函数、反比例函数的单调可直接说出): 在公共区间内,增函数+增函数=增函数,减函数+减函数=减函数 例2:判断函数y=-x+1+1/x在(0,+∞)内的单调性 Ⅲ、图像法: 说明:⑴单调区间是定义域的子集 ⑵定义x 1、x 2 的任意性 ⑶代数:自变量与函数值同大或同小→单调增函数 自变量与函数相对→单调减函数 例3:y=|x2+2x-3| 练习:

(二) 函数单调性的应用 Ⅰ、利用函数单调性求连续函数的值域(最值) 根据增函数减函数的定义我们可得到如下结论: (1)若 f(x)在某定义域[a,b]上是增函数,则当x=a 时, f(x) 有最小值f(a),当 x=b 时, f(x)有最大值 f(b)。 (2)若 f(x)在某定义域[a,b]上是减函数,则当x=a 时, f(x) 有最大值f(a),当 x=b 时, f(x)有最小值 f(b)。 例1:求下列函数的值域 (1)y=x 2-6x+3, x ∈[-1,2] (2)y=-x 2+2x+2, x ∈[-1,4] 练习题: 1.已知函数f(x)在区间[a,c]上单调减小,在区间[c,b]上单调增加,则f(x)在 [a,b]上的最小值是 ( ) 2.数f(x)=4x 2-mx+5在区间[-2,+∞)上是增函数,则f(1)的取值范围是 ( ) 3、( )有函数13+--=x x y 存在、最大值、最小值都不,最小值、最大值,最小值、最大值,最小值、最大值D C B A 4 -44 -00 4 4、](()()的值域为 时,函数当1435,02+-=∈x x x f x ()()][()()]()][5,5,323205,0f c D f f C f f B f f A 、、、、、????? ? ??????????? ?? 5、求函数y=-x-6+ 的值域 x -1

函数的单调性 知识点与题型归纳

1.理解函数的单调性、最大值、最小值及其几何意义. 2.会运用基本初等函数的图象分析函数的性质. ★备考知考情 1.函数的单调性是函数的一个重要性质,是高考的热点,常见问题有:求单调区间,判断函数的单调性,求参数的取值,利用函数单调性比较数的大小,以及解不等式等.客观题主要考查函数的单调性,最值的确定与简单应用. 2.题型多以选择题、填空题的形式出现,若与导数交汇命题,则以解答题的形式出现. 一、知识梳理《名师一号》P15 注意: 研究函数单调性必须先求函数的定义域, 函数的单调区间是定义域的子集 单调区间不能并! 知识点一函数的单调性 1.单调函数的定义 1

2 2.单调性、单调区间的定义 若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间. 注意: 1、《名师一号》P16 问题探究 问题1 关于函数单调性的定义应注意哪些问题? (1)定义中x 1,x 2具有任意性,不能是规定的特定值. (2)函数的单调区间必须是定义域的子集; (3)定义的两种变式: 设任意x 1,x 2∈[a ,b ]且x 1-f x f x x x ? f (x )在[a ,b ]上是增函数;

3 1212 ()() 0-<-f x f x x x ? f (x )在[a ,b ]上是减函数. ②(x 1-x 2)[f (x 1)-f (x 2)]>0?f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0?f (x )在[a ,b ]上是减函数. 2、《名师一号》P16 问题探究 问题2 单调区间的表示注意哪些问题? 单调区间只能用区间表示,不能用集合或不等式表示; 如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 知识点二 单调性的证明方法:定义法及导数法 《名师一号》P16 高频考点 例1 规律方法 (1) 定义法: 利用定义证明函数单调性的一般步骤是: ①任取x 1、x 2∈D ,且x 10,则f (x )在区间D 内为增函数;如果f ′(x )<0,则f (x )在区间D 内为减函数. 注意:(补充) (1)若使得f ′(x )=0的x 的值只有有限个,

判断函数单调性的常用方法

判断函数单调性的常用方法 一、定义法 设x1,x2是函数f(x)定义域上任意的两个数,且x1<x2,若f(x1)<f(x2),则此函数为增函数;反知,若f(x1)>f(x2),则此函数为减函数. 【例1】 证明:当0>x 时,)1ln(x x +>。 证明:令01111)()1ln()(>+=+-='+-=x x x x f x x x f 所以,当0>x 时,0)(>'x f ,所以)(x f 为严格递增的 0)01ln(0)0()(=+-=>?f x f ,所以)1ln(x x +>。 二、性质法 除了用基本初等函数的单调性之外,利用单调性的有关性质也能简化解题. 若函数f(x)、g(x)在区间B 上具有单调性,则在区间B 上有: ⑴ f(x)与f(x)+C (C 为常数)具有相同的单调性; ⑵ f(x)与c?f(x)当c >0具有相同的单调性,当c <0具有相反的单调性; ⑷当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数; ⑸当f(x)、g(x)都是增(减)函数,则f (x)?g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数; 三、同增异减法 是处理复合函数的单调性问题的常用方法. 对于复合函数y =f [g(x)]满足“同增异减”法(应注意内层函数的值域),可令 t =g(x),则三个函数 y =f(t)、t =g(x)、y =f [g(x)]中,若有两个函数单调性相同,则第三个函数为增函数;若有两个函数单调性相反,则第三个函数为减函数. 注:(1)奇函数在对称的两个区间上有相同的单调性,偶函数在对称的两个区间上有相反的单调性; (2)互为反函数的两个函数有相同的单调性; (3)如果f(x)在区间D 上是增(减)函数,那么f(x)在D 的任一子区间上也是增(减)函数. 设单调函数)(x f y =为外层函数,)(x g y =为内层函数 (1) 若)(x f y =增,)(x g y =增,则))((x g f y =增. (2) 若)(x f y =增,)(x g y =减,则))((x g f y =减. (3) 若)(x f y =减,)(x g y =减,则))((x g f y =增. (4) 若)(x f y =减,)(x g y =增,则))((x g f y =减.

(完整版)复合函数单调性的判定方法

复合函数单调性的判定方法 定理设y=f(u),u∈(m,n),u=g(x),x∈(a,b).(1)若y=f(u)是(m,n)上的减函数,则y=f[g(x)]的增减性与g(x)的增减性相反;(2)若y=f(u)是(m,n)上的增函数,则y=f[g(x)]的增减性与g(x)的增减性相同. 证明:(1)若g(x)在(a,b)上是增函数,任取a<x 1<x 2 <b, 则有m<g(x 1)<g(x 2 )<n,由f(u)在(m,n)上是减函数得f[g(x 1 )] >f[g(x 2 )],故f[g(x)]在(a,b)上是减函数.若g(x)在(a,b)上是减函数,同理可证f[g(x)]在(a,b)上是增函数. (2)若g(x)在(a,b)上是增函数,任取a<x 1<x 2 <b,则有m <g(x 1)<g(x 2 )<n,由f(u)在(m,n)上是增函数,得f[g(x 1 )]< f[g(x 2 )],所以f[g(x)]在(a,b)上是增函数.若g(x)在(a,b)上是减函数,同理可证f[g(x)]在(a,b)上是减函数. 由此定理可知,复合函数单调性的判定是以简单函数的单调性为基础,而中学数学中的简单函数均是初等函数,因此熟悉各种初等函数的单调性是判定复合函数单调性的基础.若能对各种初等函数的图象了如指掌,则对复合函数的单调性的判定将大有裨益.我们就可借助初等函数的图象确定它的单调性,判定它的单调区间和函数值域,再利用上述定理就很容易判定复合函数的单调性. 例1讨论函数f(x)=log 0.5 (x2+4x+4)的单调性.解 f(x)的定义域为(-∞,-2)∪(-2,+∞).f(x)可视为 y=log 0.5 u与u=x2+4x+4复合而成.u的图象是以x=-2为对称轴,开口向上的抛物线,在(-∞,-2)上为减函数,在(-2,+ ∞)上为增函数.又y=log 0.5 u在其定义域上是减函数,故f(x)在(-∞,-2)上是增函数,在(-2,+∞)上是减函数.例2试求函数f(x)=2x2的单调区间. 解函数f(x)=2x2可视为f(u)=2u与u=x2复合而成.函数u =x2在(-∞,0]上为减函数,在[0,+∞)上为增函数,且u≥0.函数f(u)=2u在u≥0时为增函数.所以,f(x)在(-∞,0]上为减函数.在[0,+∞)上为增函数. 推论由有限个简单函数复合而成的多重复合函数,若在所讨论的区间内每个简单函数均有意义,且均为严格单调函数.当其中减函数的个数是偶数时,则复合函数是增函数;当减函数的个数是奇数时,则复合函数是减函数.

判断函数可导性的步骤【微积分】

《判断函数在x=x。处可导性的步骤》 利用知识:左右导数。 本人正读高中,知能浅薄,自行探究,若有疏漏请见谅。 【第一步】~~将原函数化成当x <x。与x>x。的"分段函数".(像y=x2这样,分段之后两个式子一样的也要写出来); 【第二步】~~将这两个式字都化成两个等价的、可用公式方便地求导的式子.(若原本很完美就省略这步); 【第三步】~~根据求导公式对每个式子进行求导。求导过程中,只着手式子,不用看定义域怎样。定义域照抄下来; 【第四步】 分类讨论···㈠若此时y′为常数,则比较y′左是否等于y′右······························?如果y′左=y′右=这个常数,则说y=f(x)在x=x。处可导····················?如果y′左≠y′右,则说y=f(x)在x=x。处不可导 ···㈡若此时y′为含x代数式,则看当把x=x。代入时有无意义··············?有意义,则代入x=x。后比较y′左与y′右·····①相同,可导②不相同,不可导···············?无意义,不可导。 【【例题演示】】 第一题 ··············判断y=|X|在x=0处是否可导.·············· 【第一步】y=|X|等价于y=-x x<0 y=x x>0 【第二步】省略 【第三步】y′=(|X|)′等价于y′左= -1 x<0 y′右= 1 x>0 【第四步】 其为常数,又由于两个常数不等,即左右导数不等,所以y=|X|在x=0处是否不可导。 第二题 ··············判断y=x2在x=0处是否可导····(X的平方)············ 【第一步】y=x2等价于 y=x2 x<0 y=x2 x>0

第2讲 分段函数及函数的单调性

第二讲 分段函数及函数的单调性 一.分段函数 若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数. 分段函数无论分成几段,都是一个函数,不要误解为是“由几个函数组成”.求分段函数的函数值,如果自变量的范围不确定,要分类讨论. 常见的命题类型有: (1)分段函数的函数求值问题; (2)分段函数的自变量求值问题; (3)分段函数与函数性质、方程、不等式问题. 二.函数的单调性 1.单调性的定义 自左向右看图象是 __________ 自左向右看图象是_________ 如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)_______,区间D 叫做函数y =f (x )的___________. 2.函数的最值 题型一分段函数的函数求值(域)问题

1.已知函数f (x )=? ???? log 2x ,x >0,3x +1,x ≤0,则f ????f ????14的值是________. 2. 若函数f (x )= x 2+1,x ≤1lg x ,x >1,则f (f (10))=( ) A .lg101 B .2 C .1 D .0 3.设定义在N 上的函数f (x )满足f (n )=???-+)] 18([13 n f f n ),2000(),2000(>≤n n 试求f (2002)的值. 4.设函数f (x )=????? 1x , x >1, -x -2,x ≤1,则f (f (2))=________,函数f (x )的值域是________. 题型二 分段函数的自变量求值问题 1.已知f (x )=?? ? x 1 2 ,x ∈[0,+∞), |sin x |,x ∈??? ?-π2,0,若f (a )=1 2 ,则a =________. 2.已知函数f (x )=? ???? 2x -2,x ≤0, -log 3x ,x >0,且f (a )=-2,则f (7-a )=( ) A .-log 37 B .-34 C .-5 4 D .-7 4 3.已知函数f (x )=? ???? (a -1)x +1,x ≤1,a x -1,x >1,若f (1)=1 2,则f (3)=________. 题型三 分段函数与函数性质、方程、不等式问题. 1.已知函数f (x )=????? x 2 +2ax ,x ≥2, 2x +1,x <2, 若f (f (1))>3a 2,则a 的取值范围是________. 2.已知函数f (x )=?? ?<-≥-), 2(2 ), 2(2 x x x 则f (lg30-lg3)=___________________; 不等式xf (x -1)<10的解集是___________________. 题型四.常见函数的单调性 一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、正弦函数、余弦函数、正切函数的单调性、单调区间。 题型五.判定函数的调性 1.f(x)图像 如图所示,请写出f(x)的单调区间

判断函数单调性地常用方法

1 江北观音桥步行街阳光城16楼A3/A4 判断函数单调性的常用方法 一、定义法 设x1,x2是函数f(x)定义域上任意的两个数,且x1<x2,若f(x1)<f(x2),则此函数为增函数;反知,若f(x1)>f(x2),则此函数为减函数. 【例1】 证明:当0>x 时,)1ln(x x +>。 证明:令01111)() 1ln()(>+=+- ='+-=x x x x f x x x f 所以,当0>x 时,0)(>'x f ,所以)(x f 为严格递增的 0)01ln(0)0()(=+-=>?f x f ,所以)1ln(x x +>。 二、性质法 除了用基本初等函数的单调性之外,利用单调性的有关性质也能简化解题. 若函数f(x)、g(x)在区间B 上具有单调性,则在区间B 上有: ⑴ f(x)与f(x)+C (C 为常数)具有相同的单调性; ⑵ f(x)与c?f(x)当c >0具有相同的单调性,当c <0具有相反的单调性; ⑷当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数; ⑸当f(x)、g(x)都是增(减)函数,则f(x)?g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数; 三、同增异减法 是处理复合函数的单调性问题的常用方法. 对于复合函数y =f [g(x)]满足“同增异减”法(应注意层函数的值域),可令 t =g(x),则三个函数 y =f(t)、t =g(x)、y =f [g(x)]中,若有两个函数单调性相同,则第三个函数为增函数;若有两个函数单调性相反,则第三个函数为减函数. 注:(1)奇函数在对称的两个区间上有相同的单调性,偶函数在对称的两个区间上有相反的单调性; (2)互为反函数的两个函数有相同的单调性; (3)如果f(x)在区间D 上是增(减)函数,那么f(x)在D 的任一子区间上也是增(减)函数. 设单调函数)(x f y =为外层函数,)(x g y =为层函数 (1) 若)(x f y =增,)(x g y =增,则))((x g f y =增.

函数单调性的判定方法(高中数学).docx

v1.0可编辑可修改 函数单调性的判定方法 学生:日期 ;课时:教师: 1.判断具体函数单调性的方法 定义法 一般地,设 f 为定义在D上的函数。若对任何x1、x2 D ,当 x1x2时,总有 (1) f ( x1 ) f (x2 ) ,则称 f 为D上的增函数,特别当成立严格不等 f (x1 ) f ( x2 ) 时,称 f 为D上的严格增函数; (2) f (x1) f ( x2 ) ,则称 f 为D上的减函数,特别当成立严格不等式 f ( x1) f (x2 ) 时,称 f 为D上的严格减函数。 利用定义来证明函数y f ( x) 在给定区间 D 上的单调性的一般步骤: ( 1)设元,任取x1,x2 D 且 x1x2; (2)作差f (x1) f (x2); (3)变形(普遍是因式分解和配方); ( 4)断号(即判断 f ( x1 ) f ( x2 ) 差与0的大小); ( 5)定论(即指出函数 f (x)在给定的区间D上的单调性)。 例 1. 用定义证明 )3 f x x a a R ,) 上是减函数。 (() 在( 证明:设 x1,x2(,) ,且 x1x2,则 f ( x1 ) f (x2 )x13 a ( x23a)x23x13( x2x1 )( x12x22x1 x2 ). 由于 x12x22x1 x2(x1x2)23 x220 , x2x10 24 则 f (x1 ) f ( x2 )( x2x1 )( x12x22x1 x2 )0 ,即f ( x1) f ( x2 ) ,所以 f (x) 在,上是减函数。

v1.0可编辑可修改 例 2. 用定义证明函数 f ( x)x k 0)在 (0,) 上的单调性。 ( k x 证明:设 x1、 x2 (0,) ,且x1x2,则 f ( x1 ) f (x2 )( x1k ) ( x2k )(x1x2 ) ( k k ) x1x2x1x2 (x1x2 ) k( x 2 x 1 ) ( x1x 2 ) k( x 1 x 2 ) ( x1x2)( x1 x2 k ) ,x1x2x1 x2x1 x2 又 0 x1x2所以 x1x20 , x1 x20 , 当 x1、x2(0,k ] 时x1x2k0 f ( x1 ) f (x2 )0 ,此时函数f ( x) 为减函数;当 x1、x2( k ,) 时x1x2k0 f ( x1 ) f ( x2 )0 ,此时函数 f (x) 为增函数。 综上函数 f ( x)x k (k0) 在区间(0,k ] 内为减函数;在区间 (k , ) 内为增函数。x 此题函数 f ( x) 是一种特殊函数(对号函数),用定义法证明时通常需要进行因式分解,由于x1 x2k 与0的大小关系 ( k0) 不是明确的,因此要分段讨论。 用定义法判定函数单调性比较适用于那种对于定义域内任意两个数x1 , x2当 x1x2时,容易得出 f ( x1 ) 与f( x2 ) 大小关系的函数。在解决问题时,定义法是最直接的方法,也是我们首先考虑的方法,虽说这种方法思路比 较清晰,但通常过程比较繁琐。 函数性质法 函数性质法是用单调函数的性质来判断函数单调性的方法。函数性质法通常与我们常见的简单函数的单调性 结合起来使用。对于一些常见的简单函数的单调性如下表: 函数函数表达式单调区间特殊函数图像 一当 k0 时,y在R上是增函数; 次 函y kx b(k0) 0 时,y在R上是减函数。 数当 k

相关主题
文本预览
相关文档 最新文档