当前位置:文档之家› 一类非线性偏微分方程弱解的存在性

一类非线性偏微分方程弱解的存在性

一类非线性偏微分方程弱解的存在性
一类非线性偏微分方程弱解的存在性

一类非线性偏微分方程弱解的存在性

摘要:解的存在性和正则性是偏微分方程研究的重要课题.古典解往往难以直接到达,数学上定义了可微性弱一点的强解和弱解,并发展了先求证强解或弱解的存在性,在利用先验估计提升正则性的方法.该文将证明一类非线性偏微分方程弱解的存在性.

关键词:Banach不动点定理弱解存在性非线性偏微分方程

偏微分方程理论的归纳与总结

偏微分方程基本理论的归纳与总结 偏微分方程是储存自然信息的载体,自然现象的深层次性质可以通过数学手段从方程中推导出来.最为一种语言,微分方程在表达自然定律方面比文字具有更强的优越性.微分方程是一个庞大的体系,它的基本问题就是解的存在性和唯一性.该学科的主要特征是不存在一种可以统一处理大多数偏微分方程的适定性问题的普适的方法和理论.这是与常微分方程有显著差异的地方.这种特性使得我们将方程分为许多种不同类型,这种分类的依据主要来自数学与自然现象这两个方面.从数学的角度,方程的类型一般总是对应于一些普遍的理论和工具.换句话讲,如果能建立一个普遍性的方法统一处理一大类方程问题,那么这个类型就被划分出来.而从自然现象的角度,我们又可以根据不同的运动类型以及性质将方程进行分类.当然这两种方式常常不能截然区分,通常它们是相互关联的,这就造成方程的概念有许多重叠现象. 根据数学的特征,偏微分方程主要被分为五大类,它们是: (1)线性与拟微分方程,研究这类方程的主要工具是Fourier分析方法; (2)椭圆型方程,它的方法是先验估计+泛函分析手段; (3)抛物型方程,主要是Galerkin方法,算子半群,及正则性估计; (4)双曲型方程,对应于Galerkin方法; (5)一阶偏微分方程,主要工具是数学分析方法. 从自然界的运动类型出发,偏微分方程可分为如下几大类: (1)稳态方程(非时间演化方程); (2)耗散型演化方程,这类方程描述了时间演化过程中伴有能量损耗与补充的自然运动.相变与混沌是它们的主要内容; (3)保守系统,如具有势能的波方程.该系统控制的运动是与外界隔离的,及无能量输入,也无能量损耗.行波现象与周期运动是它们的主要特征; (4)守恒律系统,这类方程是一阶偏微分方程组,它们与保守系统具有类似的性质,可视为物质流的守恒.激波行为是由守恒律系统来控制. 下面具体来介绍三类经典方程: 三类典型方程:椭圆型方程,抛物型方程,双曲型方程,即偏微分方程模型的建立,解问题的解法以及三类典型方程的基本理论. 关于三类典型方程定解问题的解题方法,它们主要是分离变量法、积分变换法、特征线法、球面平均法、降维法和Green 函数方法. 关于三类典型方程的基本理论——极值原理和能量估计,并由此给出了解的唯一性和稳定性的相关结论. 具体来说,关于二阶线性椭圆形方程,我们研究它的古典解和弱解.前者主要介绍了基本解、调和函数的基本性质、Green 函数、极值原理、最大模估计、能量方法和变分原理;而后者的研究则需要知道Sobolev空间的相关知识再加以研究;关于二阶线性抛物型方程,主要研究它的Fourier 变换、特殊的求解方法、基本解、方程式和方程组的最大值原理以及最大模估计、带有非经典边界条件和非局部项的方程式的最大值原理及能量方法;关于二阶线性双曲型方程,主要研究初值问题的求解方法、初值问题的能量不等式与解的适定性、以及混合问题的能量模估计与解的适定性. 椭圆、抛物和双曲这三类线性偏微分方程解的适定性问题,它们分别以拉普拉斯方程、热传导方程和波动方程作为代表.具体地说,对于某些规则的求解区域试图求出满足特定线性偏微分方程和定解条件的具体解,这就决定了存在性问题;再利用方程本身所具有的特殊性质,将证明所求解是唯一的,也就解决了唯一性问题;关于连续依赖性问题,需要在不同函数空

差分方程的解法

第三节 差分方程常用解法与性质分析 1、常系数线性差分方程的解 方程)(...110n b x a x a x a n k k n k n =+++-++ ( 8) 其中k a a a ,...,,10为常数,称方程(8)为常系数线性方程。 又称方程0...110=+++-++n k k n k n x a x a x a (9) 为方程(8)对应的齐次方程。 如果(9)有形如 n n x λ=的解,带入方程中可得: 0 ...1110=++++--k k k k a a a a λλλ (10) 称方程(10)为方程(8)、(9)的特征方程。 显然,如果能求出(10)的根,则可以得到(9)的解。 基本结果如下: (1) 若(10)有k 个不同的实根,则(9)有通解: n k k n n n c c c x λλλ+++=...2211, (2) 若(10)有m 重根λ,则通解中有构成项: n m m n c n c c λ)...(121----+++

(3)若(10)有一对单复根 βαλi ±=,令:?ρλi e ±=, αβ?βαρarctan ,22=+=,则(9)的通解中有构成项: n c n c n n ?ρ?ρsin cos 21--+ (4) 若有m 重复根:βαλi ±=,φρλi e ±=,则(9)的通项中有成 项: n n c n c c n n c n c c n m m m m n m m ?ρ?ρsin )...(cos )...(1221121---++---+++++++ 综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k 个独立的任意常数。通解可记为:-n x 如果能得到方程(8)的一个特解:*n x ,则(8)必有通解: =n x -n x +* n x (11) (1) 的特解可通过待定系数法来确定。 例如:如果)(),()(n p n p b n b m m n =为n 的多项式,则当b 不是特征 根时,可设成形如)(n q b m n 形式的特解,其中)(n q m 为m 次多项式;如 果b 是r 重根时,可设特解:r n n b )(n q m ,将其代入(8)中确定出系 数即可。

差分方程模型的理论和方法

差分方程模型的理论和方法 第一节 差分 一、 基本概念 1、差分算子 设数列{}n x ,定义差分算子n n n x x x -=??+1:为n x 在n 处的向 前差分。 而1--=?n n n x x x 为n x 在n 处的向后差分。 以后我们都是指向前差分。 可见n x ?是n 的函数。从而可以进一步定义n x ?的差分: n n x x 2)(?=?? 称之为在n 处的二阶差分,它反映的是的增量的增量。 类似可定义在n 处的k 阶差分为: ))((1n k n k x x -??=? 2、差分算子 、不变算子、平移算子 记n n n n x Ix x Ex ==+,1,称E 为平移算子,I 为不变算子 。 则有:n n n n x I E Ix Ex x )(-=-=? I E -=?∴ 由上述关系可得: i n k i i k i k n i k i i k i k n k n k x C x E C x I E x +=-=-∑∑-=-=-=?00)1()1()( (1) 这表明n x 在n 处的k 阶差分由n x 在k n n n ++....1,,处的取值所线性决定。 反之, 由 n n n x x x -=?+1 得 n n n x x x ?+=+1: n n n n x x x x +-=?++1222,得:n n n n x x x x 2122?++-=++, 这个关系表明:第n+2项可以用前两项以及相邻三项增量的增量来表现和计算。即一个数列的任意一项都可以用其前面的k 项和包括这项在内的k+1 项增量的增量的增量……..第k 层增量所构成。 …….. ,)1(1 0k n i n k i i k i k n k x x C x ++-=-+-=?∑得: n k i n k i i k i k k n x x C x ?+--=+-=-+∑1 0)1( (2)

第九章 非线性偏微分方程

第九章 非线性偏微分方程 前面几章索研究的偏微分方程都是线性的,但在实际工程级数及自然科学中索遇到的方程大多都是非线性的,在有些情况下,人们为了研究方便,对问题补充了一些附加的条件或略去一些次要的项,才得到线性方程。在这一章内,我们将从一个具体问题出发引入非线性偏微分方程的概念,然后重点讨论两类重要的非线性方程。 §9.1 极小曲面问题 在第八章内已经说过,求解一个边值问题可以转化成求它所对应的一个泛函的最小值(当然,一般说来变分问题的解只是原边值问题的弱解)。其实,在数学里也已证明了相反的结论,即在一定条件下一个变分问题的解必满足一个微分方程。在这一节内,我们以极小曲面问题为例说明这个事实。 设Ω是平面上有界区域,它的边界?Ω是充分光滑的,其方程为: (),(), x x s y y s ==00s s ≤≤ 其中00(0)(),(0)()x x s y y s ==即?Ω是一条闭曲线。现在在?Ω上给定一条空间曲线l (即作一条空间曲线l ,使它到Ω所在平面的投影为?Ω): 0(),:(),0,(),x x s l y y s s s u s ?=??=≤≤??=? (9.1) 这里0(0)()s ??=。所谓极小曲面问题就是要确定一张定义在Ω上的曲

面S ,使得 (1)S 以l 为周界; (2)S 的表面积在所有以l 为周界的曲面中是最小的。 假定空间曲面的方程为 (,)v v x y = 则由微积分学可知,这个曲面的表面积为 ()J v =?? (9.2) 于是上述极小曲面问题就变成求一个函数u ,使得 (1)由(,)u u x y =所表示的曲面以l 为周界,即 1(),u C u ??Ω∈Ω=,或者说,u M ?∈, 其中M ?由(8.7)给出; (2)()min ()v M J u J v ? ∈= (9.3) 这是一个变分问题。 如何求出变分问题(9.3)的解?我们先来看看假若u M ?∈是(9.3) 的解,那么u 必需满足什么样的条件。为此,在0M 任取一个元素v , 即任取0v M ∈,即1(),0v C v ?Ω∈Ω=。对任意(,),u v M ?εε∈-∞+∞+∈,记 ()()j J u v εε=+ (9.4) 其中()J u 由(9.2)确定,从(9.2)可知()j ε是定义在R 上的一个可微函数,由于u 是(9.3)的解,所以对任意R ε∈处取得最小值,故 (0)0j '= (9.5) 不难看出

差分方程的解法

1、常系数线性差分方程的解 方程 a 0x n k a 1x n k 1 ... a k x n b(n) 其中 a 0 , a 1,..., a k 为常数,称方程( 8)为常系数线性方程。 又称方程 a 0x n k a 1x n k 1 ... a k x n 为方程( 8)对应的齐次方程。 第三节 差分方程常用解法与性质分析 9) n 如果( 9)有形如 x n 的解, 带入方程中可得: k k 1 a 0 a 1 ... a k 1 a k 0 10) 称方程( 10)为方程( 8)、 9)的特征方程。

n n n c 1 1 c 2 2 ... c k k , 若(10) 有 m 重根 ,则通解中有构成项: (c 1 m 1 n c 2 n ... c m n ) 显然, 如果能求出( 10)的根,则可以得到( 9)的解。 基本结果如下: 1) 若(10) 有 k 个不同的实根,则( 9)有通解:

(3)若(10)有一对单复根 综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k 个独立的任意常数。通解可记为:X n 如果能得到方程(8)的一个特解:X n ,则(8)必有通解: * X n X n + 焉 (11) (1)的特解可通过待定系数法来确定。 例如:如果b (n )bk m (n ), pMn )为门的多项式,则当b 不是特征 根 时,可设成形如 bq m (n ) 形式的特解,其中 q m (n ) 为m 次多项式;如 果b 是 r 重根时,可设特解:b n n r q m (n ) ,将其代入(8)中确定出系 数即可。 arcta n — ,则(9) 的通解中有构成项: C l n . cos n C 2 sin (4)若有 m 重复根: i e ,则 (9)的通项中有成 项: cos n (C m 1 C m 2 n m 1 、 n ? c 2m n ) sin n

C++实现 牛顿迭代 解非线性方程组

C++实现牛顿迭代解非线性方程组(二元二次为例) 求解{0=x*x-2*x-y+0.5; 0=x*x+4*y*y-4; }的方程 #include #include #define N 2 // 非线性方程组中方程个数、未知量个数#define Epsilon 0.0001 // 差向量1范数的上限 #define Max 100 // 最大迭代次数 using namespace std; const int N2=2*N; int main() { void ff(float xx[N],float yy[N]); //计算向量函数的因变量向量yy[N] void ffjacobian(float xx[N],float yy[N][N]); //计算雅克比矩阵yy[N][N] void inv_jacobian(float yy[N][N],float inv[N][N]); //计算雅克比矩阵的逆矩阵inv void newdundiedai(float x0[N], float inv[N][N],float y0[N],float x1[N]); //由近似解向量x0 计算近似解向量x1 float x0[N]={2.0,0.25},y0[N],jacobian[N][N],invjacobian[N][N],x1[N],errornorm; int i,j,iter=0; //如果取消对x0的初始化,撤销下面两行的注释符,就可以由键盘x读入初始近似解向量for( i=0;i>x0[i]; cout<<"初始近似解向量:"<

差分方程的解法

差分方程常用解法 1、 常系数线性差分方程的解 方程)(...110n b x a x a x a n k k n k n =+++-++ (1) 其中k a a a ,...,,10为常数,称方程(1)为常系数线性方程。 又称方程0...110=+++-++n k k n k n x a x a x a (2) 为方程(1)对应的齐次方程。 如果(2)有形如n n x λ=的解,代入方程中可得: 0...1110=++++--k k k k a a a a λλλ (3) 称方程(3)为方程(1)、(2)的特征方程。 显然,如果能求出方程(3)的根,则可以得到方程(2)的解。 基本结果如下: (1) 若(3)有k 个不同的实根,则(2)有通解: n k k n n n c c c x λλλ+++=...2211, (2) 若(3)有m 重根λ(即m 个根均为λ),则通解中有构成项: n m m n c n c c λ)...(121----+++

(3)若(3)有一对单复根 βαλi ±=,令:?ρλi e ±=, αβ ?βαρarctan ,22=+=,则(2)的通解中有构成项: n c n c n n ?ρ?ρsin cos 21- -+ (4) 若有m 重复根:βαλi ±=,φρλi e ±=,则(2)的通项中有构 成项: n n c n c c n n c n c c n m m m m n m m ?ρ?ρsin )...(cos )...(1221121---++---+++++++ 综上所述,由于方程(3)恰有k 个根,从而构成方程(2)的通解中必有k 个独立的任意常数。通解可记为:-n x 如果能得到方程(1)的一个特解:*n x ,则(1)必有通解: =n x -n x +* n x (4) 方程(4) 的特解可通过待定系数法来确定。 例如:如果)(),()(n p n p b n b m m n =为n 的m 次多项式,则当b 不是特征根时,可设成形如)(n q b m n 形式的特解,其中)(n q m 为n 的m 次多 项式;如果b 是r 重特征根时,可设特解:r n n b )(n q m ,将其代入(1) 中确定出系数即可。

非线性方程的解法

20世纪60年代中期以后,发展了两种求解非线性方程组(1)的新方法。一种称为区间迭代法或称区间牛顿法,它用区间变量代替点变量进行区间迭代,每迭代一步都可判断在所给区间解的存在惟一性或者是无解。这是区间迭代法的主要优点,其缺点是计算量大。另一种方法称为不动点算法或称单纯形法,它对求解域进行单纯形剖分,对剖分的顶点给一种恰当标号,并用一种有规则的搜索方法找到全标号单纯形,从而得到方程(1)的近似解。这种方法优点是,不要求f(□)的导数存在,也不用求逆,且具有大范围收敛性,缺点是计算量大 编辑摘要 目录 ? 1 正文 ? 2 牛顿法及其变形 ? 3 割线法 ? 4 布朗方法 ? 5 拟牛顿法 ? n个变量n个方程(n >1)的方程组表示为 (1) 式中?i(x1,x2,…,x n)是定义在n维欧氏空间R n的开域D上的实函数。若?i中至少有一个非 线性函数,则称(1)为非线性方程组。在R n中记?= 则(1)简写为?(尣)=0。若存在尣*∈D,使?(尣*)=0,则称尣*为非线性方程组的解。方程组(1)可能有一个解或多个解,也可能有无穷多解或无解。对非线性方程组解的存在性的研究远不如线性方程组那样成熟,现有的解法也不象线性方程组那样有效。除极特殊的方程外,一般不能用直接方法求得精确解,目前主要采用迭代法求近似解。根据不同思想构造收敛于解尣*的迭代序列{尣k}(k=0,1,…),即可得到求解非线性方程组的各种迭代法,其中最著名的是牛顿法。 牛顿法基本思想是将非线性问题逐步线性化而形成如下迭代程序:

(2) 式中 是?(尣k)的雅可比矩阵,尣0是方程(1)的解尣*的初始近似。 这个程序至少具有2阶收敛速度。由尣k算到尣k+的步骤为:①由尣k算出?(尣k)及 ;②用直接法求线性方程组的解Δ尣k;③求 。 由此看到迭代一次需计算n个分量函数值和n2个分量偏导数值,并求解一次n阶线性方程组。 为了评价非线性方程组不同迭代法的优劣,通常用效率作为衡量标准,其中P为迭 代法的收敛阶,W为每迭代步计算函数值?i及偏导数值的总个数(每迭代步中求一次逆的工作量相同,均不算在W 内)。效率e越大表示此迭代法花费代价越小,根据效率定义, 牛顿法(2)的效率为。 牛顿法有很多变形,如当奇异或严重病态时,可引进阻尼因子λk,得到阻尼牛顿法,即

差分方程的解法(终审稿)

差分方程的解法 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

第三节 差分方程常用解法与性质分析 1、常系数线性差分方程的解 方程)(...110n b x a x a x a n k k n k n =+++-++ ( 8) 其中k a a a ,...,,10为常数,称方程(8)为常系数线性方程。 又称方程0...110=+++-++n k k n k n x a x a x a (9) 为方程(8)对应的齐次方程。 如果(9)有形如 n n x λ=的解,带入方程中可得: 0 ...1110=++++--k k k k a a a a λλλ(10) 称方程(10)为方程(8)、(9)的特征方程。 显然,如果能求出(10)的根,则可以得到(9)的解。 基本结果如下: (1) 若(10)有k 个不同的实根,则(9)有通解: n k k n n n c c c x λλλ+++=...2211, (2) 若(10)有m 重根λ,则通解中有构成项:

(3)若(10)有一对单复根 βαλi ±=,令:?ρλi e ±=, αβ ?βαρarctan ,22=+=,则(9)的通解中有构成项: (4) 若有m 重复根:βαλi ±=,φρλi e ±=,则(9)的通项中有成项: n n c n c c n n c n c c n m m m m n m m ?ρ?ρsin )...(cos )...(1221121-- -++---+++++++ 综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k 个独立的任意常数。通解可记为:-n x 如果能得到方程(8)的一个特解:*n x ,则(8)必有通解: =n x -n x +* n x (11) (1) 的特解可通过待定系数法来确定。 例如:如果 )(),()(n p n p b n b m m n =为n 的多项式,则当b 不是特征根时,可设成形如)(n q b m n 形式的特解,其中)(n q m 为m 次多项式;如果b 是r 重根时, 可设特解:r n n b )(n q m ,将其代入(8)中确定出系数即可。 2、差分方程的z 变换解法

偏微分方程理论的归纳与总结

偏微分方程是储存自然信息地载体,自然现象地深层次性质可以通过数学手段从方程中推导出来.最为一种语言,微分方程在表达自然定律方面比文字具有更强地优越性.微分方程是一个庞大地体系,它地基本问题就是解地存在性和唯一性.该学科地主要特征是不存在一种可以统一处理大多数偏微分方程地适定性问题地普适地方法和理论.这是与常微分方程有显著差异地地方.这种特性使得我们将方程分为许多种不同类型,这种分类地依据主要来自数学与自然现象这两个方面.从数学地角度,方程地类型一般总是对应于一些普遍地理论和工具.换句话讲,如果能建立一个普遍性地方法统一处理一大类方程问题,那么这个类型就被划分出来.而从自然现象地角度,我们又可以根据不同地运动类型以及性质将方程进行分类.当然这两种方式常常不能截然区分,通常它们是相互关联地,这就造成方程地概念有许多重叠现象. 根据数学地特征,偏微分方程主要被分为五大类,它们是: 线性与拟微分方程,研究这类方程地主要工具是分析方法; 椭圆型方程,它地方法是先验估计泛函分析手段; 抛物型方程,主要是方法,算子半群,及正则性估计; 双曲型方程,对应于方法; 一阶偏微分方程,主要工具是数学分析方法. 从自然界地运动类型出发,偏微分方程可分为如下几大类: 稳态方程(非时间演化方程); 耗散型演化方程,这类方程描述了时间演化过程中伴有能量损耗与补充地自然运动.相变与混沌是它们地主要内容;文档收集自网络,仅用于个人学习 保守系统,如具有势能地波方程.该系统控制地运动是与外界隔离地,及无能量输入,也无能量损耗.行波现象与周期运动是它们地主要特征;文档收集自网络,仅用于个人学习 守恒律系统,这类方程是一阶偏微分方程组,它们与保守系统具有类似地性质,可视为物质流地守恒.激波行为是由守恒律系统来控制.文档收集自网络,仅用于个人学习 下面具体来介绍三类经典方程: 三类典型方程:椭圆型方程,抛物型方程,双曲型方程,即偏微分方程模型地建立,解问题地解法以及三类典型方程地基本理论.文档收集自网络,仅用于个人学习 关于三类典型方程定解问题地解题方法,它们主要是分离变量法、积分变换法、特征线法、球面平均法、降维法和函数方法.文档收集自网络,仅用于个人学习 关于三类典型方程地基本理论——极值原理和能量估计,并由此给出了解地唯一性和稳定性地相关结论. 具体来说,关于二阶线性椭圆形方程,我们研究它地古典解和弱解.前者主要介绍了基本解、调和函数地基本性质、函数、极值原理、最大模估计、能量方法和变分原理;而后者地研究则需要知道空间地相关知识再加以研究;关于二阶线性抛物型方程,主要研究它地变换、特殊地求解方法、基本解、方程式和方程组地最大值原理以及最大模估计、带有非经典边界条件和非局部项地方程式地最大值原理及能量方法;关于二阶线性双曲型方程,主要研究初值问题地求解方法、初值问题地能量不等式与解地适定性、以及混合问题地能量模估计与解地适定性.文档收集自网络,仅用于个人学习 椭圆、抛物和双曲这三类线性偏微分方程解地适定性问题,它们分别以拉普拉斯方程、热传导方程和波动方程作为代表.具体地说,对于某些规则地求解区域试图求出满足特定线性偏微分方程和定解条件地具体解,这就决定了存在性问题;再利用方程本身所具有地特殊性质,将证明所求解是唯一地,也就解决了唯一性问题;关于连续依赖性问题,需要在不同函数空间中考虑,我们将在连续函数空间和平方可积函数空间中分别讨论解关于输入数据地连续依赖性问题文档收集自网络,仅用于个人学习 学习偏微分方程理论以及偏微分方程分析是研究其它一切地基础.首先有必要解释一下

(整理)偏微分方程相关材料翻译

目录 前言vii 1 应用与方法概述 1 1.1 什么是偏微分方程1 1.2 求解并解释偏微分方程7 2傅里叶级数17 2.1 周期函数18 2.2 傅里叶级数26 2.3 以任意数为周期的函数的傅里叶级数38 2.4 半幅展开:余弦级数和正弦级数50 2.5 均方逼近和帕塞瓦尔恒等式53 2.6 傅里叶级数的复数形式60 2.7 受迫振动69 收敛性的补充内容 2.8 傅里叶级数表示定理的证明77 2.9 一致收敛性和傅里叶级数85 2.10 狄利克雷判别法和傅里叶级数的收敛性94 3 直角坐标中的偏微分方程103 3.1 物理和工程中的偏微分方程104 3.2 建模2 弦振动和波动方程109 3.3 一维波动方程的求解:分离变量法114 3.4 达朗贝尔方法126 3.5 一维热传导方程135 3.6 棒中的热传导:各种边界条件146 3.7 二维波动方程和热传导方程155 3.8 直角坐标中的拉普拉斯方程163 3.9 泊松方程:特征函数展开法170 3.10 诺伊曼条件和罗宾条件180 3.11 最大值原理187 4 极坐标与柱面坐标中的偏微分方程193

4.1 各个坐标系中的拉普拉斯算子194 4.2 圆膜的振动:对称情况198 4.3 圆膜的振动:一般情况207 4.4 圆域中的拉普拉斯方程216 4.5 圆柱体中的拉普拉斯方程228 4.6 亥姆霍兹方程和泊松方程231 关于贝塞尔函数的补充内容 4.7 贝塞尔方程和贝塞尔函数237 4.8 贝塞尔级数展开248 4.9 贝塞尔函数的积分公式和渐近式261 5球面坐标中的偏微分方程269 5.1 问题和方法概述270 5.2 对称狄利克雷问题274 5.3 球面调和函数和一般狄利克雷问题281 5.4 亥姆霍兹方程及其在泊松方程、热传导方程和波动方程中的应用291 关于贝塞尔函数的补充内容 5.5 勒让德微分方程300 5.6 勒让德多项式和勒让德级数展开308 5.7 连带勒让德函数和连带勒让德级数展开319 6施图姆-刘维尔理论及其在工程中的应用325 6.1 正交函数326 6.2 施图姆-刘维尔理论333 6.3 悬链346 6.4 四阶施图姆-刘维尔理论353 6.5 梁的弹性振动和屈曲360 6.6 双调和算子371 6.7 圆板的振动377 7傅里叶变换及其应用389 7.1 傅里叶积分表示390 7.2 傅里叶变换398 7.3 傅里叶变换法411

第四章 差分方程方法

第四章 差分方程方法 在实际中,许多问题所研究的变量都是离散的形式,所建立的数学模型也是离散的,譬如,像政治、经济和社会等领域中的实际问题。有些时候,即使所建立的数学模型是连续形式,例如像常见的微分方程模型、积分方程模型等等,但是,往往都需要用计算机求数值解。这就需要将连续变量在一定条件下进行离散化,从而将连续型模型转化为离散型模型,因此,最后都归结为求解离散形式的差分方程解的问题。关于差分方程理论和求解方法在数学建模和解决实际问题的过程中起着重要作用。 下面就不同类型的差分方程进行讨论。所谓的差分方程是指:对于一个数列{}n x ,把数列中的前1+n 项()n i x i ,2,1,0=关联起来所得到的方程。 4.1常系数线性差分方程 4.1.1 常系数线性齐次差分方程 常系数线性齐次差分方程的一般形式为 02211=+?+++---k n k n n n x a x a x a x (4.1) 其中k 为差分方程的阶数,()k i a i ,,2,1 =为差分方程的系数,且()n k a k ≤≠0。对应的代数方程 02211=++++--k k k k a a a λλλ (4.2) 称为差分方程的(4.1)的特征方程,其特征方程的根称为特征根。 常系数线性齐次差分方程的解主要是由相应的特征根的不同情况有不同的形式。下面分别就特征根为单根、重根和复根的情况给出差分方程解的形式。 1. 特征根为单根 设差分方程(4.1)有k 个单特征根 k λλλλ,,,,321 ,则差分方程(4.1)的通解为 n k k n n n c c c x λλλ+++= 2211, 其中k c c c ,,,21 为任意常数,且当给定初始条件 ()0i i x x = ()k i ,,2,1 = (4.3) 时,可以惟一确定一个特解。 2. 特征根为重根 设差分方程(4.1)有l 个相异的特征根()k l l ≤≤1,,,,321λλλλ ,重数分别为 l m m m ,,,21 且k m l i i =∑=1 则差分方程(4.1)的通解为

基于Matlab的牛顿迭代法解非线性方程组

基于Matlab 实现牛顿迭代法解非线性方程组 已知非线性方程组如下 2211221212 10801080x x x x x x x ?-++=??+-+=?? 给定初值0(0,0)T x =,要求求解精度达到0.00001 首先建立函数F(x),方程组编程如下,将F.m 保存到工作路径中: function f=F(x) f(1)=x(1)^2-10*x(1)+x(2)^2+8; f(2)=x(1)*x(2)^2+x(1)-10*x(2)+8; f=[f(1) f(2)]; 建立函数DF(x),用于求方程组的Jacobi 矩阵,将DF.m 保存到工作路径中: function df=DF(x) df=[2*x(1)-10,2*x(2);x(2)^2+1,2*x(1)*x(2)-10]; 编程牛顿迭代法解非线性方程组,将newton.m 保存到工作路径中: clear; clc x=[0,0]'; f=F(x); df=DF(x); fprintf('%d %.7f %.7f\n',0,x(1),x(2)); N=4; for i=1:N y=df\f'; x=x-y; f=F(x); df=DF(x); fprintf('%d %.7f %.7f\n',i,x(1),x(2)); if norm(y)<0.0000001 break ; else end end

运行结果如下: 0 0.0000000 0.0000000 1 0.8000000 0.8800000 2 0.9917872 0.9917117 3 0.9999752 0.9999685 4 1.0000000 1.0000000

非线性偏微分方程 偏微分方程数值方法

非线性偏微分方程偏微分方程数值方法非线性偏微分方程偏微分方程数值方 法 非线性偏微分方程定义:各阶微分项有次数高于一的,该微分方程即为非线性微分方程 (一)主要研究内容 非线性偏微分方程是现代数学的一个重要分支,无论在理论中还是在实际应用中,非线性偏微分方程均被用来描述力学、控制过程、生态与经济系统、化工循环系统及流行病学等领域的问题。利用非线性偏微分方程描述上述问题充分考虑到空间、时间、时滞的影响,因而更能准确的反映实际。本方向主要研究非线性偏微分方程、H-半变分不等式、最优控制系统的微分方程理论及其在电力系统的应用。 1.非线性偏微分方程的研究:我们主要研究偏微分方程解的存在唯一性(和多解性)及稳定性;偏微分方程的初值问题、初边值问题的整体解(包括周期解和概周期解)的存在性及渐近性;平衡解的存在性,尤其是当问题依赖于某些参数时平衡解的分叉结构,以及平衡解的稳定性问题;非线性方程的数值解。 2.H-半变分不等式的研究:建立具有极大单调算子扰动的多值(S)型和伪单调型映象的广义度理论,广义不动点指标理论和具有非凸、不可微泛函的非线性发展型H-半变分不等式理论,由此来研究含间断项的非线性偏微分方程。 3.最优控制系统的微分方程理论及其在电力系统的应用:主要研究与电力生产有关的控制系统的理论和应用。首先提出了对Banach空间中抽象非线性发展方程所描述的最优控制系统的研究。引进非光滑分析,研究最优控制系统的微分方程,利用变分不等式理论研究多值问题、数值计算等,所获理论成果应用于电力系统的

许多最优控制问题(如:电力系统励磁调节器传递函数的辨识、牛顿最优潮流的数学模型等)。 (二)研究方向的特色 1.变分不等式理论与能量泛函的凸性密切相关,由于现代科学技术的需要,特别是研究自由边界和固体力学问题的需要,传统的方法往往都无法解决这类问题,人们对H-半变分不等式进行研究,研究涉及现代分析及应用、偏微分方程以及科学计算等众多领域中亟待解决和发展的重要课题。 2.该研究是现代数学与电力生产的交叉学科研究课题,它对电力生产及管理有着十分重要的理论指导意义和实际应用价值,为控制系统设计、分析和计算都可提供一些重要的理论依据。在应用数学学科的这一研究领域中本课题属于国内外前沿性研究工作。 (三)可取得的突破 1.深入研究空间、时间、时滞对解的性质的影响,诸如静态解、周期解的存在性、解的存在性、渐近性等问题;寻求它们在含间断项的非线性偏微分方程方面的突破。 2.寻求和发现新的处理非单调、非凸不可微能量泛函的方法(如建立Ishikawa 迭代序列收敛准则),建立发展型方程G-收敛准则,寻求可行的光滑方法将算子方程光滑化,创建新的先验估计方法。 3.应用现代数学所获得的理论,研究最有控制系统的微分方程,为控制系统设计、分析和计算提供一些重要的理论依据和方法。 1747年,法国的达朗贝尔等由弦振动的研究而开创偏微分方程论。 1760~1761年,法国的拉格朗日系统地研究了变分法及其在力学上的应用。 随机微分方程数值解

第六章 非线性微分方程和稳定性

第六章 非线性微分方程和稳定性 [教学目标] 1. 理解解的稳定性、零解稳定性及零解渐进稳定性的概念。 2. 掌握平面初等奇点的分类方法。 3. 了解拟线性近似决定微分方程组的稳定性及用李雅谱若夫第二方法判别稳定性的方法。 4. 了解周期解和极限环的概念。 [教学重难点] 奇点的分类与相应零解的稳定性。 [教学方法] 讲授,实践。 [教学内容] 解的稳定性定义,相平面、相轨线与相图;平面自治系统的性质,奇点的分类及相应零解的稳定性;拟线性近似,李雅谱若夫第二方法判别稳定性,周期解和极限环的概念。 [考核目标] 1.奇点的分类及相应零解的稳定性。 2.李雅谱若夫第二方法判别稳定性。 3.会求周期解和极限环。 §6.1 相平面、相轨线与相图 把xoy 平面称为平面自治系统 ? ??==),(),(y x Q y y x P x (6.1) 的相平面. 把(6.1)式的解(),()x x t y y t ==在xoy 平面上的轨迹称为(6.1)式的轨线或相轨线. 轨线族在相平面上的图象称为(6.1)式的相图. 注意:在上述概念中,总是假设(6.1)式中的函数(,),(,)P x y Q x y 在区域)(||,|:|+∞≤<

下面讨论二阶线性系统???????+=+=y a x a dt dx y a x a dt dx 22211211 (6.2) 奇点(0,0)附近轨线的分布:上述系统写成向量形式为方程组)0(det d d ≠=A AX X t 它存在线性变换TX X =~,可化成标准型X J X ~d ~d =t 由A 的特征根的不同情况,方程的奇点可能出现四种类型:结点型,鞍点型,焦点型,中心型. 1.结点型 如果在某奇点附近的轨线具有如图5-1的分布情形,我们就称这奇点为稳定结点.因此,当μ<λ<0时,原点O 是 ?????==y t y x t μλd d d dx (6.3) (5.4)式的稳定结点. 图 6-1 图 6-2 如果在某奇点附近的轨线具有如图5-2的分布情形,我们就称这奇点为不稳定结点.因此,当μ>λ>0时,原点O 是(5.4)的不稳定结点. 如果在奇点附近的轨线具有如图5-3和图5-4的分布,就称这奇点为临界结点.

偏微分方程理论的归纳与总结

偏微分方程理论的归纳与 总结 Prepared on 22 November 2020

偏微分方程基本理论的归纳与总结 偏微分方程是储存自然信息的载体,自然现象的深层次性质可以通过数学手段从方程中推导出来.最为一种语言,微分方程在表达自然定律方面比文字具有更强的优越性.微分方程是一个庞大的体系,它的基本问题就是解的存在性和唯一性.该学科的主要特征是不存在一种可以统一处理大多数偏微分方程的适定性问题的普适的方法和理论.这是与常微分方程有显着差异的地方.这种特性使得我们将方程分为许多种不同类型,这种分类的依据主要来自数学与自然现象这两个方面.从数学的角度,方程的类型一般总是对应于一些普遍的理论和工具.换句话讲,如果能建立一个普遍性的方法统一处理一大类方程问题,那么这个类型就被划分出来.而从自然现象的角度,我们又可以根据不同的运动类型以及性质将方程进行分类.当然这两种方式常常不能截然区分,通常它们是相互关联的,这就造成方程的概念有许多重叠现象. 根据数学的特征,偏微分方程主要被分为五大类,它们是: (1)线性与拟微分方程,研究这类方程的主要工具是Fourier分析方法; (2)椭圆型方程,它的方法是先验估计+泛函分析手段; (3)抛物型方程,主要是Galerkin方法,算子半群,及正则性估计; (4)双曲型方程,对应于Galerkin方法; (5)一阶偏微分方程,主要工具是数学分析方法. 从自然界的运动类型出发,偏微分方程可分为如下几大类: (1)稳态方程(非时间演化方程);

(2)耗散型演化方程,这类方程描述了时间演化过程中伴有能量损耗与补充的自然运动.相变与混沌是它们的主要内容; (3)保守系统,如具有势能的波方程.该系统控制的运动是与外界隔离的,及无能量输入,也无能量损耗.行波现象与周期运动是它们的主要特征; (4)守恒律系统,这类方程是一阶偏微分方程组,它们与保守系统具有类似的性质,可视为物质流的守恒.激波行为是由守恒律系统来控制. 下面具体来介绍三类经典方程: 三类典型方程:椭圆型方程,抛物型方程,双曲型方程,即偏微分方程模型的建立,解问题的解法以及三类典型方程的基本理论. 关于三类典型方程定解问题的解题方法,它们主要是分离变量法、积分变换法、特征线法、球面平均法、降维法和Green函数方法. 关于三类典型方程的基本理论——极值原理和能量估计,并由此给出了解的唯一性和稳定性的相关结论. 具体来说,关于二阶线性椭圆形方程,我们研究它的古典解和弱解.前者主要介绍了基本解、调和函数的基本性质、Green函数、极值原理、最大模估计、能量方法和变分原理;而后者的研究则需要知道Sobolev空间的相关知识再加以研究;关于二阶线性抛物型方程,主要研究它的Fourier变换、特殊的求解方法、基本解、方程式和方程组的最大值原理以及最大模估计、带有非经典边界条件和非局部项的方程式的最大值原理及能量方法;关于二阶线性双曲型方程,主要研究初值问题的求解方法、初值问题的能量不等式与解的适定性、以及混合问题的能量模估计与解的适定性.

第一章非线性动力学分析方法

第一章非线性动力学分析方法(6学时) 一、教学目标 1、理解动力系统、相空间、稳定性的概念; 2、掌握线性稳定性的分析方法; 3、掌握奇点的分类及判别条件; 4、理解结构稳定性及分支现象; 5、能分析简单动力系统的奇点类型及分支现象。 二、教学重点 1、线性稳定性的分析方法; 2、奇点的判别。 三、教学难点 线性稳定性的分析方法 四、教学方法 讲授并适当运用课件辅助教学 五、教学建议 学习本章内容之前,学生要复习常微分方程的内容。 六、教学过程

本章只介绍一些非常初步的动力学分析方法,但这些方法在应用上是十分有效的。 相空间和稳定性 一、动力系统 在物理学中,首先根据我们面对要解决的问题划定系统,即系统由哪些要素组成。再根据研究对象和研究目的,按一定原则从众多的要素中选出最本质要素作为状态变量。然后再根据一些原理或定律建立控制这些状态变量的微分方程,这些微分方程构成的方程组通常称为动力系统。研究这些微分方程的解及其稳定性以及其他性质的学问称为动力学。 假定一个系统由n 个状态变量1x ,2x ,…n x 来描述。有时,每个状态变量不但是时 间t 的函数而且也是空间位置r 的函数。如果状态变量与时空变量都有关,那么控制它们变化的方程组称为偏微分方程组。这里假定状态变量只与时间t 有关,即X i =X i (t),则控制它们的方程组为常微分方程组。 ),,,(2111 n X X X f dt dX ???=λ ),,,(2122 n X X X f dt dX ???=λ (1.1.1) … ),,,(21n n n X X X f dt dX ???=λ 其中λ代表某一控制参数。对于较复杂的问题来说,i f (i =l ,2,…n)一般是{}i X 的非线性函数,这时方程(1.1.1)就称为非线性动力系统。由于{}i f 不明显地依赖时间t ,故称方程组(1.1.1)为自治动力系统。若{}i f 明显地依赖时间t ,则称方程组为非自治动力系统。非自治动力系统可化为自治动力系统。

第六章 非线性微分方程和稳定性

第六章 非线性微分方程和稳定性 研究对象 二阶驻定方程组(自治系统) ?????? ?==),(),(y x Y dt dy y x X dt dx 1 基本概念 1)稳定性 考虑方程组 ),(x f x t dt d = (6.1) 其中 ???? ? ?? ??=n x x x 21x ,??? ??????? ? ??=dt dx dt dx dt dx dt d n 21x ,? ?????? ??=),,,;(),,,;(),,,;()(21212211n n n n x x x t f x x x t f x x x t f x f 。 总假设),(x f t 在D I ?上连续,且关于x 满足局部李普希兹条件,R I ?,区域 n R D ?,00=),(t f ,∑== n i i x 1 2x 。 如果对任意给定的0>ε,存在0)(>εδ(一般ε与0t 有关),使得当任一0x 满足 δ≤0x 时,方程组(6.1)满足初始条件00)(x x =t 的解)(t x ,均有εx <)(t 对一切0 t t ≥成立,则称方程组(6.1)的零解0=x 为稳定的。 如果方程组(6.1)的零解0=x 稳定,且存在这样的00>δ,使当00δ

相关主题
文本预览
相关文档 最新文档