当前位置:文档之家› 数字信号处理—基于计算机的方法答案(精品)

数字信号处理—基于计算机的方法答案(精品)

数字信号处理—基于计算机的方法答案(精品)
数字信号处理—基于计算机的方法答案(精品)

现代数字信号处理仿真作业

现代数字信号处理仿真作业 1.仿真题3.17 仿真结果及图形: 图 1 基于FFT的自相关函数计算

图 3 周期图法和BT 法估计信号的功率谱 图 2 基于式3.1.2的自相关函数的计算

图 4 利用LD迭代对16阶AR模型的功率谱估计16阶AR模型的系数为: a1=-0.402637623107952-0.919787323662670i; a2=-0.013530139693503+0.024214641171318i; a3=-0.074241889634714-0.088834852915013i; a4=0.027881022353997-0.040734794506749i; a5=0.042128517350786+0.068932699075038i; a6=-0.0042799971761507 + 0.028686095385146i; a7=-0.048427890183189 - 0.019713457742372i; a8=0.0028768633718672 - 0.047990801912420i a9=0.023971346213842+ 0.046436389191530i; a10=0.026025963987732 + 0.046882756497113i; a11= -0.033929397784767 - 0.0053437929619510i; a12=0.0082735406293574 - 0.016133618316269i; a13=0.031893903622978 - 0.013709547028453i ; a14=0.0099274520678052 + 0.022233240051564i; a15=-0.0064643069578642 + 0.014130696335881i; a16=-0.061704614407581- 0.077423818476583i. 仿真程序(3_17): clear all clc %% 产生噪声序列 N=32; %基于FFT的样本长度

数字信号处理试卷及详细答案

数 字信号处理试卷答案 完整版 一、填空题:(每空1分,共18分) 1、 数字频率ω是模拟频率Ω对采样频率s f 的归一化,其值是 连续 (连续还是离散?)。 2、 双边序列z 变换的收敛域形状为 圆环或空集 。 3、 某序列的DFT 表达式为∑-==1 0)()(N n kn M W n x k X ,由此可以看出,该序列时域的长度为 )1()(n N h n h --= ,此时对应系统的频率响应,则其对应的相位函数 为ωω?21)(--=N 。 8、请写出三种常用低通原型模拟滤波器 巴特沃什滤波器 、 切比雪夫滤波器 、 椭圆滤波器 。 二、判断题(每题2分,共10分) 1、 模拟信号也可以与数字信号一样在计算机上进行数字信号处理,只要加一道采样的工序就可 以了。 (╳) 2、 已知某离散时间系统为)35()]([)(+==n x n x T n y ,则该系统为线性时不变系统。(╳)

3、 一个信号序列,如果能做序列的傅里叶变换(DTFT ),也就能对其做DFT 变换。(╳) 4、 用双线性变换法进行设计IIR 数字滤波器时,预畸并不能消除变换中产生的所有频率点的非 线性畸变。 (√) 5、 阻带最小衰耗取决于窗谱主瓣幅度峰值与第一旁瓣幅度峰值之比。 (╳) 三、(15分)、已知某离散时间系统的差分方程为 系统初始状态为1)1(=-y ,2)2(=-y ,系统激励为)()3()(n u n x n =, 试求:(1)系统函数)(z H ,系统频率响应)(ωj e H 。 ??? ???=+=-241()2(2(2121c c y zi zi 解之得 31=c ,42-=c , 故系统零输入响应为: k zi k y )2(43)(-= 0≥k 系统零状态响应为 即 3 21528123)(-+--+-=z z z z z z z Y zs 对上式取z 反变换,得零状态响应为 )(])3(2 15)2(823[)(k k y k k zs ε+-=

数字信号处理答案解析

1-1画出下列序列的示意图 (1) (2) (3) (1) (2)

(3) 1-2已知序列x(n)的图形如图1.41,试画出下列序列的示意图。 图1.41信号x(n)的波形 (1)(2)

(3) (4) (5)(6) (修正:n=4处的值为0,不是3)(修正:应该再向右移4个采样点)1-3判断下列序列是否满足周期性,若满足求其基本周期 (1) 解:非周期序列; (2) 解:为周期序列,基本周期N=5; (3)

解:,,取 为周期序列,基本周期。 (4) 解: 其中,为常数 ,取,,取 则为周期序列,基本周期N=40。 1-4判断下列系统是否为线性的?是否为移不变的? (1)非线性移不变系统 (2) 非线性移变系统(修正:线性移变系统) (3) 非线性移不变系统 (4) 线性移不变系统 (5) 线性移不变系统(修正:线性移变系统)1-5判断下列系统是否为因果的?是否为稳定的? (1) ,其中因果非稳定系统 (2) 非因果稳定系统 (3) 非因果稳定系统 (4) 非因果非稳定系统

(5) 因果稳定系统 1-6已知线性移不变系统的输入为x(n),系统的单位脉冲响应为h(n),试求系统的输出y(n)及其示意图 (1) (2) (3) 解:(1) (2) (3)

1-7若采样信号m(t)的采样频率fs=1500Hz,下列信号经m(t)采样后哪些信号不失真? (1) (2) (3) 解: (1)采样不失真 (2)采样不失真 (3) ,采样失真 1-8已知,采样信号的采样周期为。 (1) 的截止模拟角频率是多少? (2)将进行A/D采样后,的数字角频率与的模拟角频率的关系如何? (3)若,求的数字截止角频率。 解: (1) (2) (3)

现代数字信号处理复习题

现代数字信号处理复习题 一、填空题 1、平稳随机信号是指:概率分布不随时间推移而变化的随机信号,也就是说,平稳随机信号的统计特性与起始 时间无关,只与时间间隔有关。 判断随机信号是否广义平稳的三个条件是: (1)x(t)的均值为与时间无关的常数:C t m x =)( (C 为常数) ; (2)x(t)的自相关函数与起始时间无关,即:)(),(),(ττx i i x j i x R t t R t t R =+=; (3)信号的瞬时功率有限,即:∞<=)0(x x R D 。 高斯白噪声信号是指:噪声的概率密度函数满足正态分布统计特性,同时其功率谱密度函数是常数的一类噪 声信号。 信号的遍历性是指:从随机过程中得到的任一样本函数,好象经历了随机过程的所有可能状态,因此,用一个 样本函数的时间平均就可以代替它的集合平均 。 广义遍历信号x(n)的时间均值的定义为: ,其时间自相关函数的定义为: 。 2、连续随机信号f(t)在区间上的能量E 定义为: 其功率P 定义为: 离散随机信号f(n)在区间 上的能量E 定义为: 其功率P 定义为: 注意:(1)如果信号的能量0

数字信号处理试题及答案

1、)125.0cos()(n n x π=的基本周期是 16 。 2、一个序列 )(n x 的离散傅里叶变换的变换定义为 ∑-=-= 1 0/2)()(N n N nk j e n x k X π 3、对于M 点的有限长序列,频域采样不失真恢复时域序列的条件是频域采样点数N 不小于M 4、有界输入一有界输出的系统称之为 稳定系统 三、填空题(本大题10分,每小题2分) 1、在对连续信号进行频谱分析时,频谱分析范围受 采样 速率的限制。 2、 ? ∞ ∞ -=ωωδd ( 1 。 3、对于一个系统而言,如果对于任意时刻0n ,系统在该时刻的响应仅取决于在时刻及其以前的输入,则称该系统为 因果 系统。。 4、对一个LSI 系统而言,系统的输出等于输入信号与系统单位采样响应的线性 卷积 。 5、假设时域采样频率为32kHz ,现对输入序列的32个点进行DFT 运算。此时,DFT 输出的各点频率间隔为 1000 Hz 。 四、计算题(本大题20分) 某两个序列的线性卷积为 ) 5(3)3(2)2(2)1()() ()()(-+-+-+-+=*=n n n n n n x n h n y l δδδδδ计算这两个序列的4点圆周卷积。 解:将序列)(rL n y l +的值列在表中,求n =0,1,2,3时这些值的和。只有序列)(n y l 和)4(+n y l 在30≤≤n 区间内有非零值,所以只需列 将30≤≤n 各列内的值相加,有)()(n h n y =④ )3(2)2(2)1(4)()(-+-+-+=n n n n n x δδδδ 五、分析推导题(本大题12分) 如果)(n x 是一个周期为N 的周期序列,则它也是周期为2N 的周期序列, 把 )(n x 看作周期为N 的周期序列,其DFT 为)(1k X ,再把)(n x 看作周 期为2N 的周期序列,其DFT 为)(2 k X ,试利用)(1k X 确定)(2k X 。 解: ∑ -== 1 1)()(N n nk N W n x k X ∑-== 1 20 22)()(N n nk N W n x k X 令n m 2=,则N M 2= ∑ -== 1 22)2 ( )(N m k m M W m x k X = )2/(1k X 六、证明题(本大题18分) 一个有限冲击响应滤波器,它的单位采样相应 )(n h 的长度为 )12(+N 。如果)(n h 为实偶序列,证明系统函数的零点对于单位圆成镜 像对出现。 证: )(n h 是偶序列,所以)()(n h n h -= ?? ? ??=z H z H 1)( ??? ? ??=-θ θ ρ ρj j e H e H 1)( 又因为)(n h 是实序列,故有)()(* * z H z H = ??? ? ??=-θ θ ρ ρ j j e H e H 1)1 ( * 所以 ??? ? ??=θ θ ρρj j e H e H 1)(* 当θ ρj e z =时 ()0)(== θ ρj e H z H 当θ ρ j e z 1 = 时 ()00 )1 ( )(* * ====θ θ ρρ j j e H e H z H 七、综合题(本大题20分) 已知连续时间信号)16000cos()(t t x a π=,用6000/1=T 对 其采样。 (1)求最小采样频率; (2)图示其频谱特性; (3)分析其频谱是否有混叠。 解:(1)信号的最高频率 π 160000=Ω, ππ12000/2==ΩT s (2) (3)πππ32000212000/20=Ω<==ΩT s 没有满足奈奎斯特定理,频谱有混叠。

(完整版)数字信号处理教程程佩青课后题答案

第一章 离散时间信号与系统 2.任意序列x(n)与δ(n)线性卷积都等于序列本身x(n),与δ(n-n 0)卷积x(n- n 0),所以(1)结果为h(n) (3)结果h(n-2) (2 (4) 3 .已知 10,)1()(<<--=-a n u a n h n ,通过直接计算卷积和的办法,试确定 单位抽样响应为 )(n h 的线性移不变系统的阶跃响应。 4. 判断下列每个序列是否是周期性的,若是周期性的,试确定其周期: ) 6 ()( )( )n 313 si n()( )()8 73cos( )( )(πππ π-==-=n j e n x c A n x b n A n x a 分析: 序列为)cos()(0ψω+=n A n x 或)sin()(0ψω+=n A n x 时,不一定是周期序列, n m m m n n y n - - -∞ = - ? = = ≥ ∑ 2 3 1 2 5 . 0 ) ( 0 1 当 3 4 n m n m m n n y n 2 2 5 . 0 ) ( 1 ? = = - ≤ ∑ -∞ = - 当 a a a n y n a a a n y n n h n x n y a n u a n h n u n x m m n n m m n -= = ->-= = -≤=<<--==∑∑--∞ =---∞=--1)(11)(1) (*)()(1 0,)1()()()(:1 时当时当解

①当=0/2ωπ整数,则周期为0/2ωπ; ②; 为为互素的整数)则周期、(有理数当 , 2 0Q Q P Q P =ωπ ③当=0/2ωπ无理数 ,则)(n x 不是周期序列。 解:(1)014 2/3 πω=,周期为14 (2)06 2/13 πω= ,周期为6 (2)02/12πωπ=,不是周期的 7.(1) [][]12121212()()() ()()()[()()]()()()()[()][()] T x n g n x n T ax n bx n g n ax n bx n g n ax n g n bx n aT x n bT x n =+=+=?+?=+ 所以是线性的 T[x(n-m)]=g(n)x(n-m) y(n-m)=g(n-m)x(n-m) 两者不相等,所以是移变的 y(n)=g(n)x(n) y 和x 括号内相等,所以是因果的。(x 括号内表达式满足小于等于y 括号内表达式,系统是因果的) │y(n)│=│g(n)x(n)│<=│g(n)││x(n)│x(n)有界,只有在g(n)有界时,y(n)有界,系统才稳定,否则系统不稳定 (3)T[x(n)]=x(n-n0) 线性,移不变,n-n0<=n 即n0>=0时系统是因果的,稳定 (5)线性,移变,因果,非稳定 (7)线性,移不变,非因果,稳定 (8)线性,移变,非因果,稳定 8.

数字信号处理试题和答案 (1)

一. 填空题 1、一线性时不变系统,输入为x(n)时,输出为y(n);则输入为2x(n)时,输出为2y(n) ;输入为x(n-3)时,输出为y(n-3) 。 2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号最高频率f max关系为:fs>=2f max。 3、已知一个长度为N的序列x(n),它的离散时间傅立叶变换为X(e jw),它的N点离散傅立叶变换X(K)是关于X(e jw)的N 点等间隔采样。 4、有限长序列x(n)的8点DFT为X(K),则X(K)= 。 5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的交叠所产生的现象。 6.若数字滤波器的单位脉冲响应h(n)是奇对称的,长度为N,则它的对称中心是(N-1)/2 。 7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较窄,阻带衰减比较小。 8、无限长单位冲激响应(IIR)滤波器的结构上有反馈环路,因此是递归型结构。 9、若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 8 。 10、用窗函数法设计FIR数字滤波器时,过渡带的宽度不但与窗的类型有关,还与窗的采样点数有关 11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列的主值区间截断,而周期序列可以看成有限长序列的周期延拓。 12.对长度为N的序列x(n)圆周移位m位得到的序列用x m (n)表示,其数学表达式为 x m (n)= x((n-m)) N R N (n)。 13.对按时间抽取的基2-FFT流图进行转置,并将输入变输出,输出变输入即可得到按频率抽取的基2-FFT流图。 14.线性移不变系统的性质有交换率、结合率和分配律。 15.用DFT近似分析模拟信号的频谱时,可能出现的问题有混叠失真、泄漏、栅栏效应和频率分辨率。

数字信号处理习题及答案

==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV ==================第一章 时域离散时间信号与系统================== 1. ①写出图示序列的表达式 答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15} 2. ①求下列周期 ②判断下面的序列是否是周期的; 若是周期的, 确定其周期。 (1)A是常数 8ππn 73Acos x(n)??? ? ??-= (2))8 1 (j e )(π-=n n x 解: (1) 因为ω= 73π, 所以314 π2=ω, 这是有理数, 因此是周期序列, 周期T =14。 (2) 因为ω= 81, 所以ω π2=16π, 这是无理数, 因此是非周期序列。 ③序列)Acos(nw x(n)0?+=是周期序列的条件是是有理数2π/w 0。 3.加法 乘法 序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。 移位 翻转:①已知x(n)波形,画出x(-n)的波形图。 ② 尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。 卷积和:①h(n)*求x(n),其他0 2 n 0n 3,h(n)其他03n 0n/2设x(n) 例、???≤≤-=???≤≤= ②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n ) x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)

现代数字信号处理期末复习

“现代数字信号处理”复习思考题 变换 1. 给出DFT的定义和主要性质。 2. DTFT与DFT之间有什么关系? 3. 写出FT、DTFT、DFT的数学表达式。 离散时间系统分析 1. 说明IIR滤波器的直接型、级联型和并联型结构的主要特点。 2. 全通数字滤波器、最小相位滤波器有何特点? 3. 线性相位FIR滤波器的h(n)应满足什么条件?其幅度特性如 何? 4. 简述FIR离散时间系统的Lattice结构的特点。 5. 简述IIR离散时间系统的Lattice结构的特点。 采样 1.抽取过程为什么要先进行滤波,此滤波器应逼近什么样的指标? 维纳滤波 1.画出Wiener滤波器结构,写出平稳信号下的滤波方程,导出Wiener-Hopf方程。 2.写出最优滤波器的均方误差表示式。 3.试说明最优滤波器满足正交性原理,即输出误差与输入信号正交。4.试说明Wiener-Hopf方程和Yule-Walker方程的主要区别。 5.试说明随机信号的自相关阵与白噪声的自相关阵的主要区别。

6.维纳滤波理论对信号和系统作了哪些假设和限制? 自适应信号处理 1.如何确定LMS算法的值,值与算法收敛的关系如何? 2.什么是失调量?它与哪些因素有关? 3.RLS算法如何实现?它与LMS算法有何区别? 4.什么是遗忘因子,它在RLS算法中有何作用,取值范围是多少?5.怎样理解参考信号d(n)在自适应信号处理处理中的作用?既然他是滤波器的期望响应,一般在滤波前是不知道的,那么在实际应用中d(n)是怎样获得的,试举两个应用例子来加以说明。 功率谱估计 1. 为什么偏差为零的估计不一定是正确的估计? 2. 什么叫一致估计?它要满足哪些条件? 3. 什么叫维拉-辛钦(Wiener-Khinteche)定理? 4. 功率谱的两种定义。 5. 功率谱有哪些重要性质? 6. 平稳随机信号通过线形系统时输入和输出之间的关系。 7. AR模型的正则方程(Yule-Walker方程)的导出。 8. 用有限长数据估计自相关函数的估计质量如何? 9. 周期图法谱估计的缺点是什么?为什么会产生这些缺点? 10. 改进的周期图法谱估计有哪些方法?它们的根据是什么? 11. 既然隐含加窗有不利作用,为什么改进周期图法谱估计是还要 引用各种窗?

数字信号处理期末试卷(含答案)

数字信号处理期末试卷(含答案) 填空题(每题2分,共10题) 1、 1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再 进行幅度量化后就是 信号。 2、 2、 )()]([ωj e X n x FT =,用)(n x 求出)](Re[ωj e X 对应的序列 为 。 3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 的N 点等间隔采样。 4、)()(5241n R x n R x ==,只有当循环卷积长度L 时,二者的循环卷积等于线性卷积。 5、用来计算N =16点DFT ,直接计算需要_________ 次复乘法,采用基2FFT 算法,需要________ 次复乘法,运算效率为__ _ 。 6、FFT 利用 来减少运算量。 7、数字信号处理的三种基本运算是: 。 8、FIR 滤波器的单位取样响应)(n h 是圆周偶对称的,N=6, 3)3()2(2 )4()1(5 .1)5()0(======h h h h h h ,其幅 度特性有什么特性? ,相位有何特性? 。 9、数字滤波网络系统函数为 ∑=--= N K k k z a z H 111)(,该网络中共有 条反馈支路。 10、用脉冲响应不变法将)(s H a 转换为)(Z H ,若)(s H a 只有单极点k s ,则系统)(Z H 稳定的条件是 (取s T 1.0=)。 一、 选择题(每题3分,共6题) 1、 1、 )6 3()(π-=n j e n x ,该序列是 。 A.非周期序列 B.周期 6π = N C.周期π6=N D. 周期π2=N 2、 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。 A.a Z < B.a Z ≤ C.a Z > D.a Z ≥ 3、 3、 对)70() (≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y , 19,1,0),()()( =?=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f , n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。 A.70≤≤n B.197≤≤n C.1912≤≤n D.190≤≤n 4、 4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可 能的少,应使DFT 的长度N 满足 。 A.16>N B.16=N C.16

现代数字信号处理习题

1.设()u n 是离散时间平稳随机过程,证明其功率谱()w 0S ≥。 证明:将()u n 通过冲激响应为()h n 的LTI 离散时间系统,设其频率响应()w H 为 ()001,w -w w 0, w -w w H w ???? 输出随机过程()y n 的功率谱为()()()2y S w H w S w = 输出随机过程()y n 的平均功率为()()()00201 1r 022w w y y w w S w dw S w dw π π π+?-?= =?? 当频率宽度w 0???→时,上式可表示为()()()01 r 00y S w w π =?≥ 由于频率0w 是任意的,所以有()w 0 S ≥ 3、已知:状态方程 )()1,()1()1,()(1n n n n x n n F n x ν-Γ+--=观测方程 )()()()(2n n x n C n z ν+= )()]()([111n Q n n E H =νν )()]()([222n Q n n E H =νν 滤波初值 )]0([)|0(0x E x =ξ } )]]0([)0()]][0([)0({[)0(H x E x x E x E P --= 请简述在此已知条件下卡尔曼滤波算法的递推步骤。 解:步骤1 状态一步预测,即 1 *11)|1(?)1,()|(N n n C n x n n F n x ∈--=--∧ ξξ 步骤2 由观测信号z(n)计算新息过程,即 1*11)|(?)()()|(?)()(M n n C n x n C n z n z n z n ∈-=-=--ξξα 步骤3 一步预测误差自相关矩阵 N N H H C n n n Q n n n n F n P n n F n n P *1)1,()1()1,() 1,()1()1,()1,(∈-Γ--Γ+---=- 步骤4 新息过程自相关矩阵M M H C n Q n C n n P n C n A *2)()()1,()()(∈+-= 步骤5 卡尔曼增益M N H C n A n C n n P n K *1)()()1,()(∈-=- 或 )()()()(1 2n Q n C n P n K H -= 步骤6 状态估计 1*1)()()|(?)|(?N n n C n n K n x n x ∈+=-αξξ 步骤7 状态估计自相关矩阵 N N C n n P n C n K I n P *)1,()]()([)(∈--= 或 )()()()]()()[1,()]()([)(2n K n Q n K n C n K I n n P n C n K I n P H H +---= 步骤8 重复步骤1-7,进行递推滤波计算 4、经典谱估计方法:

数字信号处理习题及答案

三、计算题 1、已知10),()(<<=a n u a n x n ,求)(n x 的Z 变换及收敛域。 (10分) 解:∑∑∞ =-∞ -∞=-= = )()(n n n n n n z a z n u a z X 1 111 )(-∞=--== ∑ az z a n n ||||a z > 2、设)()(n u a n x n = )1()()(1--=-n u ab n u b n h n n 求 )()()(n h n x n y *=。(10分) 解:[]a z z n x z X -=? =)()(, ||||a z > []b z a z b z a b z z n h z H --=---= ?=)()(, ||||b z > b z z z H z X z Y -= =)()()( , |||| b z > 其z 反变换为 [])()()()()(1n u b z Y n h n x n y n =?=*=- 3、写出图中流图的系统函数。(10分) 解:2 1)(--++=cz bz a z H 2 1124132)(----++= z z z z H 4、利用共轭对称性,可以用一次DFT 运算来计算两个实数序列的DFT ,因而可以减少计算量。设都是N 点实数序列,试用一次DFT 来计算它们各自的DFT : [])()(11k X n x DFT = []) ()(22k X n x DFT =(10分)。 解:先利用这两个序列构成一个复序列,即 )()()(21n jx n x n w +=

即 [][])()()()(21n jx n x DFT k W n w DFT +== []()[]n x jDFT n x DFT 21)(+= )()(21k jX k X += 又[])(Re )(1n w n x = 得 [])(})({Re )(1k W n w DFT k X ep == [] )())(()(2 1*k R k N W k W N N -+= 同样 [])(1 })({Im )(2k W j n w DFT k X op == [] )())(()(21*k R k N W k W j N N --= 所以用DFT 求出)(k W 后,再按以上公式即可求得)(1k X 与)(2k X 。 5、已知滤波器的单位脉冲响应为)(9.0)(5n R n h n =求出系统函数,并画出其直接型 结构。(10分) 解: x(n) 1-z 1-z 1-z 1-z 1 9.0 2 9.0 3 9.0 4 9.0 y(n) 6、略。 7、设模拟滤波器的系统函数为 31 11342)(2+-+=++=s s s s s H a 试利用冲激响应不变法,设计IIR 数字滤波器。(10分) 解 T T e z T e z T z H 31111)(-------=

现代信号处理大作业题目+答案

研究生“现代信号处理”课程大型作业 (以下四个题目任选三题做) 1. 请用多层感知器(MLP )神经网络误差反向传播(BP )算法实现异或问题(输入为[00;01;10;11]X T =,要求可以判别输出为0或1),并画出学习曲线。其中,非线性函数采用S 型Logistic 函数。 2. 试用奇阶互补法设计两带滤波器组(高、低通互补),进而实现四带滤波器组;并画出其频响。滤波器设计参数为:F p =1.7KHz , F r =2.3KHz , F s =8KHz , A rmin ≥70dB 。 3. 根据《现代数字信号处理》(姚天任等,华中理工大学出版社,2001)第四章附录提供的数据(pp.352-353),试用如下方法估计其功率谱,并画出不同参数情况下的功率谱曲线: 1) Levinson 算法 2) Burg 算法 3) ARMA 模型法 4) MUSIC 算法 4. 图1为均衡带限信号所引起失真的横向或格型自适应均衡器(其中横向FIR 系统长M =11), 系统输入是取值为±1的随机序列)(n x ,其均值为零;参考信号)7()(-=n x n d ;信道具有脉冲响应: 1 2(2)[1cos( )]1,2,3()20 n n h n W π-?+=?=???其它 式中W 用来控制信道的幅度失真(W = 2~4, 如取W = 2.9,3.1,3.3,3.5等),且信道受到均 值为零、方差001.02 =v σ(相当于信噪比为30dB)的高斯白噪声)(n v 的干扰。试比较基 于下列几种算法的自适应均衡器在不同信道失真、不同噪声干扰下的收敛情况(对应于每一种情况,在同一坐标下画出其学习曲线): 1) 横向/格-梯型结构LMS 算法 2) 横向/格-梯型结构RLS 算法 并分析其结果。

(完整版)数字信号处理试卷及答案

江 苏 大 学 试 题 课程名称 数字信号处理 开课学院 使用班级 考试日期

江苏大学试题第2A页

江苏大学试题第3A 页

江苏大学试题第页

一、填空题:(每空1分,共18分) 8、 数字频率ω是模拟频率Ω对采样频率s f 的归一化,其值是 连续 (连续还是离散?)。 9、 双边序列z 变换的收敛域形状为 圆环或空集 。 10、 某序列的DFT 表达式为∑-== 10 )()(N n kn M W n x k X ,由此可以看出,该序列时域的长度为 N , 变换后数字频域上相邻两个频率样点之间的间隔是 M π 2 。 11、 线性时不变系统离散时间因果系统的系统函数为2 52) 1(8)(22++--=z z z z z H ,则系统的极点为 2,2 1 21-=-=z z ;系统的稳定性为 不稳定 。系统单位冲激响应)(n h 的初值4)0(=h ; 终值)(∞h 不存在 。 12、 如果序列)(n x 是一长度为64点的有限长序列)630(≤≤n ,序列)(n h 是一长度为128点的有限长 序列)1270(≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为 64+128-1=191点 点的序列,如果采用基FFT 2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为 256 点。 13、 用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换 关系为T ω = Ω。用双线性变换法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之 间的映射变换关系为)2tan(2ωT = Ω或)2 arctan(2T Ω=ω。 当线性相位FIR 数字滤波器满足偶对称条件时,其单位冲激响应)(n h 满足的条件为)1()(n N h n h --= ,

《数字信号处理》第三版答案(非常详细完整)

答案很详细,考试前或者平时作业的时候可以好好研究,祝各位考试 成功!! 电子科技大学微电子与固体电子学钢教授著 数字信号处理课后答案 1.2 教材第一章习题解答 1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。 解: ()(4)2(2)(1)2()(1)2(2)4(3) 0.5(4)2(6) x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+- 2. 给定信号:25,41()6,040,n n x n n +-≤≤-?? =≤≤??? 其它 (1)画出()x n 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。 解: (1)x(n)的波形如题2解图(一)所示。 (2) ()3(4)(3)(2)3(1)6() 6(1)6(2)6(3)6(4) x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-

(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。 (4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。 (5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如 5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。 (1)()()2(1)3(2)y n x n x n x n =+-+-; (3)0()()y n x n n =-,0n 为整常数; (5)2()()y n x n =; (7)0()()n m y n x m ==∑。 解: (1)令:输入为0()x n n -,输出为 '000' 0000()()2(1)3(2) ()()2(1)3(2)() y n x n n x n n x n n y n n x n n x n n x n n y n =-+--+---=-+--+--= 故该系统是时不变系统。 12121212()[()()] ()()2((1)(1))3((2)(2)) y n T ax n bx n ax n bx n ax n bx n ax n bx n =+=++-+-+-+- 1111[()]()2(1)3(2)T ax n ax n ax n ax n =+-+- 2222[()]()2(1)3(2)T bx n bx n bx n bx n =+-+- 1212[()()][()][()]T ax n bx n aT x n bT x n +=+ 故该系统是线性系统。

12《现代数字信号处理》课程复习...

2012《现代数字信号处理》课程复习... “现代数字信号处理”复习思考题变换 1. 2. 3. 给出DFT的定义和主要性质。DTFT与DFT 之间有什么关系?写出FT、DTFT、DFT的数学表达式。离散时间系统分析 1. 说明IIR滤波器的直接型、级联型和并联型结构的主要特点。2. 全通数字滤波器、最小相位滤波器有何特点? 3. 线性相位FIR滤波器的h(n)应满足什么条件?其幅度特性如何? 4. 简述FIR离散时间系统的Lattice结构的特点。 5. 简述IIR离散时间系统的Lattice结构的特点。采样1.抽取过程为什么要先进行滤波,此滤波器应逼近什么样的指标?维纳滤波1.画出Wiener滤波器结构,写出平稳信号下的滤波方程,导出Wiener-Hopf方程。2.写出最优滤波器的均方误差表示式。3.试说明

最优滤波器满足正交性原理,即输出误差与输入信号正交。4.试说明Wiener-Hopf方程和Yule-Walker方程的主要区别。5.试说明随机信号的自相关阵与白噪声的自相关阵的主要区别。6.维纳滤波理论对信号和系统作了哪些假设和限制?自适应信号处理1.如何确定LMS算法的?值,?值与算法收敛的关系如何?2.什么是失调量?它与哪些因素有关?3.RLS 算法如何实现?它与LMS算法有何区别?4.什么是遗忘因子,它在RLS算法中有何作用,取值范围是多少?5.怎样理解参考信号d(n)在自适应信号处理处理中的作用?既然他是滤波器的期望响应,一般在滤波前是不知道的,那么在实际应用中d(n)是怎样获得的,试举两个应用例子来加以说明。功率谱估计 1. 为什么偏差为零的估计不一定是正确的估计? 2. 什么叫一致估计?它要满足哪些条件? 3. 什么叫维拉-辛钦

数字信号处理》试题库答案

1、一线性时不变系统,输入为x (n)时,输出为y (n);则输入为2x (n)时,输出为2y(n) ;输入为x (n-3)时,输出为y(n-3) ________________________________ 。 2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号最咼频率f max关系为:fS> = 2f max 。 3、已知一个长度为N的序列x(n),它的离散时间傅立叶变换为X(e jw),它的N点 离散傅立叶变换X ( K是关于X (e jw)的_N ________ 点等间隔采样。 4、有限长序列x(n)的8点DFT为X ( K),则X (K) = _________ 。 5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的交叠 所产生的混叠_________ 现象。 6、若数字滤波器的单位脉冲响应h(n)是奇对称的,长度为N,贝陀的对称中心是(N-1)/2_______ 。 7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波 器的过渡带比较窄,阻带衰减比较小。 8、无限长单位冲激响应(IIR )滤波器的结构上有反馈环路,因此是递归型结构。 9、若正弦序列x(n)=sin(30n n /120)是周期的,则周期是N二8 。 10、用窗函数法设计FIR数字滤波器时,过渡带的宽度不但与窗的类型有关,还与窗的采样点数有关 11、DFT与DFS有密切关系,因为有限长序列可以看成周期序列的主值区间截断,而周期序列可以看成有限长序列的周期延拓。 12、对长度为N的序列x(n)圆周移位m位得到的序列用Xn(n)表示,其数学表达式为x m(n)= x((n-m)) N R(n)。 13、对按时间抽取的基2-FFT流图进行转置,并将输入变输出,输出变输入即可得到按频率抽取的基 2-FFT流图。 14、线性移不变系统的性质有交换率、结合率和分配律。

数字信号处理期末试卷(含答案)全

数字信号处理期末试卷(含答案 ) 一、单项选择题 ( 在每小题的四个备选答案中,选出一个正确答案,并将正确答 案的序号填在括号内。 1.若一模拟信号为带限,且对其抽样满足奈奎斯特采样定理,则只要将抽样信号 通过 ( ) 即可完全不失真恢复原信号。 A. 理想低通滤波器 B. 理想高通滤波器 C. 理想带通滤波器 D. 理想带阻滤波器2.下列系统(其中 y(n) 为输出序列, x(n) 为输入序列)中哪个属于线性系统? ( ) A.y(n)=x 3(n) B.y(n)=x(n)x(n+2) C.y(n)=x(n)+2 D.y(n)=x(n 2) 3..设两有限长序列的长度分别是 M与 N,欲用圆周卷积计算两者的线性卷积,则圆周卷积的长度至少应取 ()。 A. M+N B.M+N-1 C.M+N+1 D.2(M+N) 4.若序列的长度为 M,要能够由频域抽样信号 X(k) 恢复原序列,而不发生时域混叠现象,则频域抽样点数 N 需满足的条件是 ( ) 。 A.N≥M B.N≤M C.N≤2M D.N≥ 2M 5. 直接计算 N点 DFT所需的复数乘法次数与 ()成正比。 A.N B.N2 C.N 3 D.Nlog2N 6. 下列各种滤波器的结构中哪种不是FIR 滤波器的基本结构 ()。 A. 直接型 B.级联型 C.并联型 D.频率抽样型 7. 第二种类型线性FIR 滤波器的幅度响应H(w)特点 ( ): A关于 w 0 、、 2 偶对称 B 关于w 0 、、 2 奇对称 C 关于w 0 、 2偶对称关于 w 奇对称 D 关于w 0 、 2奇对称关于 w 偶对称 8. 适合带阻滤波器设计的是:() A h( n )h( N1n ) N为偶数 B h( n )h( N1n ) N为奇数 C h( n ) h( N 1 n ) N为偶数

数字信号处理习题及答案

数字信号处理习题及答案

==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV ==================第一章 时域离散时间信号与系统================== 1. ①写出图示序列的表达式 答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15} 2. ①求下列周期 ) 5 4sin( )8 sin( )4() 51 cos()3() 54sin()2() 8sin( )1(n n n n n πππ π -

②判断下面的序列是否是周期的; 若是周期的, 确定其周期。 (1) A是常数 8ππn 73Acos x(n)???? ? ?-= (2))8 1 (j e )(π-=n n x 解: (1) 因为ω=73π, 所以3 14 π2=ω, 这是有理数, 因此是周期序列, 周期T =14。 (2) 因为ω=81, 所以ω π 2=16π, 这是无理数, 因此是非周期序列。 ③序列)Acos(nw x(n)0 ?+=是周期序列的条件是是有理数2π/w 0 。 3.加法 乘法 序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。 移位 翻转:①已知x(n)波形,画出x(-n)的波形图。 ② 尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。

相关主题
文本预览
相关文档 最新文档