当前位置:文档之家› 运用“对称性”解决高中物理力学问题

运用“对称性”解决高中物理力学问题

运用“对称性”解决高中物理力学问题
运用“对称性”解决高中物理力学问题

龙源期刊网 https://www.doczj.com/doc/117076012.html,

运用“对称性”解决高中物理力学问题

作者:刘利平

来源:《知识窗·教师版》2017年第12期

摘要:力学是高中物理的教学重点与难点。如何学好物理力学知识,并有效地解决在物理学习中遇到的力学难题,学生需要准确运用对称性。

关键词:对称性高中物理力学

物理学存在许多守恒定律,如能量守恒、动量守恒等定律,这是因为物理规律具有多种对称性的特点。要想高效准确地解决高中物理力学难题,学生就需要合理地运用对称性知识。如在解答物理质量分布不均匀、抛物体运动、特殊类碰撞等问题时,学生均需要借助对称性知识的运用。

一、物理质量分布不均匀问题的解决

在解决不对称问题上,学生依然可以利用对称性知识解答。对于那些拥有对称性特征的物体来说,其自身的平衡能力很强,符合受外力或力矩对称的作用表现。因此,求解物体重心位置时,面对质量分布且形状均为重心对称的物体时,可知重心位置位于其几何中心,此类求解较为简单。但面对一些质量均匀分布,几何形状不对称的物体计算中心位置时,我们可以采取“割补结合”的方式,将之转化为对称问题来解决。如一根形状为圆台形的木杆,质量分布均匀,如图1所示。AB为中轴线,CD为与中轴线互相垂直且经过木杆重心的直线,若顺CD将木杆锯开,并对比两部分重力大小,可通过对称性分析此试题,详细分析过程,如图2所示。

G1、G2分别为ECDF与CPQD的重心位置,分别作出与其有关的辅助线MN、CR、DS,使图形CMND和CRSD在直线CD上互相对称,这样就可以得出两者重力是同等大小。

接下来,比较剩余部分,G3为阴影图形EMNF的重心位置,在图形CMND外,将阴影部分CPR与DSQ组合,获得重心位置G4,可得OG3>OG4。因此,根据力矩平衡原理可知:

G3×OG3 = G4×OG4,可知G4>G3,得知G2>G1。由此可见,怎样确定被锯开后两部分的重心位置,即为怎样确定重力大小的本质,因为直接确定两个圆台重心位置的比较困难,所以重新构造该图形的对称性,可以有效解决此类问题。

二、抛体运动问题的解决

物体质量不均匀问题的解决需要运用对称性,抛体运动问题的解决也需要运用对称性。抛体运动主要分为平抛和斜抛两种运动,经过对比发现,前者更简单,后者则稍显复杂。为检测学生对力学知识的掌握程度,教师可以斜抛相关运动作为主要问题,用对称性思维分析此类问题,斜抛运动可拆分为两个直线对称的平抛运动,呈竖直状态于最高点,然后运用力学运动规律,便可解题。如平行板电容器中存在竖直向下的匀强电场F,电量与质量分别为+q与m,粒

高中物理二十四种模型

高中物理二十四种模型 ⒈"质心"模型:质心(多种体育运动).集中典型运动规律.力能角度. ⒉"绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题. ⒊"挂件"模型:平衡问题.死结与活结问题,采用正交分解法,图解法,三角形法则和极值法. ⒋"追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理方法(参照物变换法.守恒法)等. ⒌"运动关联"模型:一物体运动的同时性.独立性.等效性.多物体参与的独立性和时空联系. ⒍"皮带"模型:摩擦力.牛顿运动定律.功能及摩擦生热等问题. ⒎"斜面"模型:运动规律.三大定律.数理问题. ⒏"平抛"模型:运动的合成与分解.牛顿运动定律.动能定理(类平抛运动). ⒐"行星"模型:向心力(各种力).相关物理量.功能问题.数理问题(圆心.半径.临界问题). ⒑"全过程"模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法. ⒒"人船"模型:动量守恒定律.能量守恒定律.数理问题. ⒓"子弹打木块"模型:三大定律.摩擦生热.临界问题.数理问题. ⒔"爆炸"模型:动量守恒定律.能量守恒定律. ⒕"单摆"模型:简谐运动.圆周运动中的力和能问题.对称法.图象法. ⒖"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应用. ⒗"电路的动态变化"模型:闭合电路的欧姆定律.判断方法和变压器的三个制约问题. ⒘"磁流发电机"模型:平衡与偏转.力和能问题.

⒙"回旋加速器"模型:加速模型(力能规律).回旋模型(圆周运动).数理问题. ⒚"对称"模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性. ⒛电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平面导轨.竖直导轨等,处理角度为力电角度.电学角度.力能角度. 21.电磁场中的"双电源"模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律. 22.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题. 23."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题. 24.远距离输电升压降压的变压器模型.

高级高中物理力学实验专题汇总

高级高中物理力学实验 专题汇总 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

实验一研究匀变速直线运动 考纲解读 1.练习正确使用打点计时器.2.会计算纸带上各点的瞬时速度.3.会利用纸带计算加速度.4.会用图象法探究小车速度与时间的关系,并能根据图象求加速度. 基本实验要求 1.实验器材 电火花计时器(或电磁打点计时器)、一端附有滑轮的长木板、小车、纸带、细绳、钩码、刻度尺、导线、电源、复写纸片. 2.实验步骤 (1)按照实验原理图所示实验装置,把打点计时器固定在长木板无滑轮的一端,接好电源; (2)把一细绳系在小车上,细绳绕过滑轮,下端挂合适的钩码,纸带穿过打 点计时器,固定在小车后面; (3)把小车停靠在打点计时器处,接通电源,放开小车; (4)小车运动一段时间后,断开电源,取下纸带; (5)换纸带反复做三次,选择一条比较理想的纸带进行测量分析. 3.注意事项 (1)平行:纸带、细绳要和长木板平行. (2)两先两后:实验中应先接通电源,后让小车运动;实验完毕应先断开电源,后取纸带. (3)防止碰撞:在到达长木板末端前应让小车停止运动,防止钩码落地和小车与滑轮相撞. (4)减小误差:小车的加速度宜适当大些,可以减小长度的测量误差,加速 度大小以能在约50 cm的纸带上清楚地取出6~7个计数点为宜. 规律方法总结 1.数据处理 (1)目的 通过纸带求解运动的加速度和瞬时速度,确定物体的运动性质等. (2)处理的方法 ①分析物体的运动性质——测量相邻计数点间的距离,计算相邻计数点距离 之差,看其是否为常数,从而确定物体的运动性质. ②利用逐差法求解平均加速度

完整word版,高中物理重要二级结论(全)

物理重要二级结论 一、静力学 1.几个力平衡,则任一力是与其他所有力的合力平衡的力。 三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。 2.两个力的合力:2121F F F F F +≤≤- 方向与大力相同 3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即 γ βαsin sin sin 321F F F == 4.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。 5.物体沿倾角为α的斜面匀速下滑时, μ= tan α 6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。 7.绳上的张力一定沿着绳子指向绳子收缩的方向。 8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G 。 9 .已知合力不变,其中一分力F 1大小不变,分析其大小,以及另一分力F 2。 用“三角形”或“平行四边形”法则 二、运动学 1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动) 时间等分(T ): ① 1T 内、2T 内、3T 内· ·····位移比:S 1:S 2:S 3=12:22:32 ② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3 ③ 第一个T 内、第二个T 内、第三个T 内···的位移之比: S Ⅰ:S Ⅱ:S Ⅲ=1:3:5 ④ΔS=aT 2 S n -S n-k = k aT 2 a=ΔS/T 2 a =( S n -S n-k )/k T 2 位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n = ② 经过1S 0时、2 S 0时、3 S 0时···时间比: ) ::3:2:1n Λn ::3:2:1ΛF 已知方向 F 2的最小值 F 2的最小值 F 2的最小值 F 2

高中物理中及对称性模型

对称性模型 由于物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称现象普遍存在于各种物理现象和物理规律中,应用这种对称性它不仅能帮助我们认识和探索物质世界的某些规律,而且也能帮助我们去求解某些具体的物理问题,这种思维方法在物理学中为对称法,利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问题的实质,出奇制胜,快捷简便地解决问题。 对称法作为一种具体的解题方法,虽然高考命题没有单独正面考查,但是在每年的高考命题中都有所渗透和体现。从侧面体现考生的直观思维能力和客观的猜想推理能力。所以作为一种重要的物理思想和方法,相信在今后的高考命题中必将有所体现。 在高中物理模型中,有很多运动模型有对称性,如(类)竖直上抛运动的对称性,简谐运动中的对称性,电路中的对称性,带电粒子在匀强磁场中匀速圆周运动中几何关系的对称性. 简谐运动的对称性是指振子经过关于平衡位置对称的两位置时,振子的位移、回复力、加速度、动能、势能、速度、动量等均是等大的(位移、回复力、加速度的方向相反,速度动量的方向不确定)。运动时间也具有对称性,即在平衡位置对称两段位移间运动的时间相等。(从某点到达最大位置和从最大位置再回到这一点所需要的时间相等、从某点向平衡位置运动的时间和它从平衡位置运动到这一点的对称点所用的时间相等). 现将对称模型分为空间对称模型和时间对称模型 1、空间对称模型 例1:如图1所示:在离地高度是h,离竖直光滑的墙是 s处,有一个弹性小 1 球以初速度 v正对着墙水平抛出,与墙发生弹性碰撞后落到地面上,求小球落地 点与墙的距离。 【解析】:小球与墙的碰撞是弹性碰撞,碰撞前后 的动量对于墙面的的法线是对称的。如墙的另一面同一高 度有一个弹性小球以相同的速度与墙碰撞,由于对称性, 它的轨迹与小球的实际轨迹是对称的。因此碰前的轨迹与碰

(word完整版)高一物理力学分析习题及答案.docx

高一物理力学 受力分析 1 如图 2-1-7 所示,甲、乙球通过弹簧连接后用绳悬挂于天花板,丙、丁球通过细绳连接后也用绳悬挂天花板.若都在 A 处剪断细绳,在剪 断瞬间,关于球的受力情况,下 面说法中正确的是( ) A .甲球只受重力作用 B .乙球只受重力作用 C .丙球受重力和绳的拉力作用 D .丁球只受重力作用 图 2-1-7 分析:当在 A 处剪断时两球看作一个整体,整体加速度为 g ,此时弹簧中的力不变,对 A B 球都会有力的作用故 A B 错,绳在松弛状态不能提供力,假设绳中有拉力,则丁的加速度会大于 g 而丙的加速度会小于 g ,则两球会相互靠近,绳则松弛,假设不成立,故绳中无拉力 2.如图 2-2-8所示,物体 a 、b 和 c 叠放在水平桌面上,水平力 F b 、F c =10N =5N 分别作用于物体 b 、 c 上, a 、b 和 c 仍保持静止.以 F 1、 F 2 、F 3 分别表示 a 与 b 、 b 与 c 、c 与桌面间的静摩擦力的大小,则( ) A . F 1 , F 2 ,F 3 =5N =0 =5N F b a B .F 1=5N , F 2 =5N ,F 3=0 b C . F 1 ,F 2 ,F 3 F c c =0 =5N =5N 图 D . F 1 ,F 2 ,F 3 =5N 2-2-8 =0 =10N 分析:(分析方法从简单到复杂)因为 a 、b 、c 均保持静止,故加速度,合外力都为 0。先分析 a 只受 b 对 a 的支持力,以及重力故 F1=0,再分析 b , b 受到重力、 a 对 b 的压力、 c 对 b 的支持力、 Fb 、以及 c 对 b 的摩擦力, c 对 b 的摩擦力为水平方向,故需水平方向的力来平衡,故 F2=Fb=5,方向向右。同理在对 c 分析 3 如图 2-2-1 所示, A 、B 两物体叠放在水平面上,水平力 F 作用在 A 上,使两者 一起向右作匀速直线运动,下列判断正确的是( ) A .A 、 B 间无摩擦力 A B .A 对 B 的静摩擦力大小为 F ,方向向右 C .B 对地面的动摩擦力的大小为 F ,方向向右 B D .B 受到了向右的静摩擦力和向左的滑动摩擦力 分析:两者一起向右作匀速直线运动,则加速度都为 0,处于平衡 图 2-2-1 状态。对 A 分析, A 受到重力、 B 对 A 的支持力、 F 、及 B 对 A 的 静摩擦力且等于 F ,方向向左, A 对 B 则向右。同理在对 B 分析 4 如图 2-2-2 示,物体 A 、B 在力 F 作用下一起以相同速率沿 F 方向匀速运动, 关于物体 A 所受的摩擦力,下列说法中正确的是( ) F .甲、乙两图中 A 均受摩擦力,且方向均与 F 相同 A 均受摩擦力,且方向均与 F 相反 A .甲、乙两图中 A B F B 甲 图 2-2-2 F A B 乙

高中物理奥赛解题方法七 对称法

七、对称法 方法简介 由于物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称现象普遍存在于各种物理现象和物理规律中。应用这种对称性它不仅能帮助我们认识和探索物质世界的某些基本规律,而且也能帮助我们去求解某些具体的物理问题,这种思维方法在物理学中称为对称法。利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问题的实质,出奇制胜,快速简便地求解问题。 赛题精析 例1:沿水平方向向一堵竖直光滑的墙壁抛出一个弹性小球A ,抛出点离水平地面的高度为h ,距离墙壁的水平距离为s ,小球与墙壁发生弹性碰撞后,落在水平地面上,落地点距墙壁的水平距离为2s ,如图7—1所示。求小球抛出时的初速度。 解析:因小球与墙壁发生弹性碰撞,故与墙壁碰撞前后入射速度与反射速度具有对称性,碰撞后小球的运动轨迹与无墙壁阻挡时小球继续前进的轨迹相对称,如图7—1—甲所示,所以小球的运动可以转换为平抛运动处理,效果上相当于小球从A′点水平抛出所做的运动。 根据平抛运动的规律: 2 x v t 1 y gt 2 = ? ? ? = ?? 因为抛出点到落地点的距离为3s ,抛出点的高度为h ,代入后可解得: v0 例2:如图7—2所示,在水平面上,有两个竖直光滑墙壁A和B ,间距为d ,一个小球以初速度v0从两墙正中间的O点斜向上抛出,与A和B各发生一次碰撞后正好落回抛出点O ,求小球的抛射角θ。

解析:小球的运动是斜上抛和斜下抛等三段运动组成,若按顺序求解则相当复杂,如果视墙为一平面镜,将球与墙的弹性碰撞等效为对平面镜的物、像移动,可利用物像对称的规律及斜抛规律求解。 物体跟墙A 碰撞前后的运动相当于从O ′点开始的斜上抛运动,与B 墙碰后落于O 点相当于落到O ″点,其中O 、O ′关于A 墙对称,O 、O ″对于B 墙对称,如图7—2—甲所示,于是有: 020x v cos t 1y v sin t gt 2 =θ????=θ?-??,落地时x 2d y 0=??=? 代入可解得:sin2θ = 202gd v 所以,抛射角θ =1 2arcsin 202gd v 例3:A 、B 、C 三只猎犬站立的位置构成一个边长为 a 的正三角形,每只猎犬追捕猎物的速度均为v ,A 犬想追 捕B 犬,B 犬想追捕C 犬,C 犬想追捕A 犬,为追捕到猎 物,猎犬不断调整方向,速度方向始终“盯”住对方,它们 同时起动,经多长时间可捕捉到猎物? 解析:以地面为参考系,三只猎犬运动轨迹都是一条复杂的曲线,但根据对称性,三只猎犬最后相交于三角形的中心点,在追捕过程中,三只猎犬的位置构成三角形的形状不变,以绕点旋转的参考系来描述,可认为三角形不转动,而是三个顶点向中心靠近,所以只要求出顶点到中心运动的时间即可。 由题意作图7—3 ,设顶点到中心的距离为s ,则由已知条件得: a 由运动合成与分解的知识可知,在旋转的参考系中顶点向中心运动的速度为: v ′= vcos30° 由此可知三角形收缩到中心的时间为:t =s v '=2a 3v (此题也可以用递推法求解,读者可自己试解。) 例4:如图7—4所示,两个同心圆代表一个圆形槽,质量为m ,内外半径几乎同为R 。槽内A 、B 两处分别放有一个质量也为m 的小球,AB 间的距离为槽的直径。不计

【名师精品】高中物理经典题库-力学实验题30个

力学实验题集粹(30个) 1.(1)用螺旋测微器测量某金属丝的直径,测量读数为0.515mm,则此时测微器的可动刻度上的A、B、C刻度线(见图1-55)所对应的刻度值依次是________、________、________. 图1-55 (2)某同学用50分度游标卡尺测量某个长度L时,观察到游标尺上最后一个刻度刚好与主尺上的6.2cm刻度线对齐,则被测量L=________cm.此时游标尺上的第30条刻度线所对应的主尺刻度值为________cm.2.有一个同学用如下方法测定动摩擦因数:用同种材料做成的AB、BD平面(如图1-56所示),AB面为一斜面,高为h、长为L1.BD是一足够长的水平面,两面在B点接触良好且为弧形,现让质量为m的小物块从A点由静止开始滑下,到达B点后顺利进入水平面,最后滑到C点而停止,并测量出BC=L2,小物块与两个平面的动摩擦因数相同,由以上数据可以求出物体与平面间的动摩擦因数μ=________. 图1-56 3.在利用自由落体来验证机械能守恒定律的实验中,所用的打点计时器的交流电源的频率为50Hz,每4个点之间的时间间隔为一个计时单位,记为T.在一次测量中,(用直尺)依次测量并记录下第4点、第7点、第10点、第13点及模糊不清的第1点的位置,用这些数据算出各点到模糊的第1点的距离分别为d1=1.80cm、d2=7.10cm、d3=15.80cm、d4=28.10cm.要求由上述数据求出落体通过与第7点、第10点相应位置时的即时速度v1、v2.注意,纸带上初始的几点很不清楚,很可能第1点不是物体开始下落时所打的点.v1、v2的计算公式分别是:v1=________,v2=________,它们的数值大小分别是v1=________,v2=________.4.某同学在测定匀变速运动的加速度时,得到了几条较为理想的纸带,已在每条纸带上每5个打点取好一个计数点,即两计数之间的时间间隔为0.1s,依打点先后编为0,1,2,3,4,5.由于不小心,纸带被撕断了,如图1-57所示,请根据给出的A、B、C、D四段纸带回答(填字母) 图1-57 (1)在B、C、D三段纸带中选出从纸带A上撕下的那段应该是________. (2)打A纸带时,物体的加速度大小是________m/s2. 5.有几个登山运动员登上一无名高峰,但不知此峰的高度,他们想迅速估测出高峰的海拔高度,但是他们只带了一些轻质绳子、小刀、小钢卷尺、可当作秒表用的手表和一些食品,附近还有石子、树木等.其中一个人根据物理知识很快就测出了海拔高度.请写出测量方法,需记录的数据,推导出计算高峰的海拔高度的计算式.6.如图1-58中A、B、C、D、E、F、G为均匀介质中一条直线上的点,相邻两点间的距离都是1cm,如果波沿它们所在的直线由A向G传播,已知波峰从A传至G需要0.5s,且只要B点振动方向向上,D点振动方向就向下,则这列波的波长为________cm,这列波的频率为________Hz.

简谐运动的对称性

简谐运动的对称性 在高中物理模型中,有很多运动模型有对称性,如(类)竖直上抛运动的对称性,简谐运动中的对称性,电路中的对称性,带电粒子在匀强磁场中匀速圆周运动中几何关系的对称性. 简谐运动的对称性是指振子经过关于平衡位置对称的两位置时,振子的位移、回复力、加速度、动能、势能、速度、动量等均是等大的(位移、回复力、加速度的方向相反,速度动量的方向不确定)。运动时间也具有对称性,即在平衡位置对称两段位移间运动的时间相等。(从某点到达最大位置和从最大位置再回到这一点所需要的时间相等、从某点向平衡位置运动的时间和它从平衡位置运动到这一点的对称点所用的时间相等).理解好对称性这一点对解决有关问题很有帮助。 下面我们分别从五个方面说明对称性在简谐运动中的应用: 一、运动时间的对称性 例1.如下图所示,一个质点在平衡位置O点附近做简谐运动,若从O开始计时,经过3s质点第一次过M点;再继续运动,又经过2s它第二次经过M点;则该质点第三次经过M点所需要的时间是() A. 8s B. 4s C. 14s D. s 3 10 【解析】设图中a、b两点为质点运动过程中的最大位移处,若开始计时时刻质点从O点向右运动, O→M运动过程历时3s,M→b→M过程历时2s,由运动时间的对称性知: s 16 T,s4 4 T = = 质点第三次经 过M点所需时间:△s 14 s2 s 16 s2 T t= - = - =,故C正确;若开始计时时刻质点从O点向左运动,O →a→O→M,运动过程历时3s,M→b→M过程历时2s,有: s 3 16 T,s4 4 T 2 T = = + ,质点第三次经过M 点所需时间: △ s 3 10 s2 s 3 16 s2 T t= - = - = ,故D正确,应选CD。 二、速度的对称性 例2.做简谐运动的弹簧振子,其质量为m,运动过程中的最大速率为v,从某一时刻算起,在半个周 期内() A. 弹力做的功一定为零 B. 弹力做的功可能是0到 2 mv 2 1 之间的某一值 C. 弹力的冲量一定为零 D. 弹力的冲量可能是0到2mv之间的某一值 【解析】由速度的对称性知,无论从什么时刻开始计时,振子半个周期后的速度与原来的速度大小 相等,方向相反。由动能定理知,半个周期内弹力做的功为零,A正确;半个周期内振子速度变化量的 最大值为2mv。由动量定理知,弹力的冲量为0到2mv之间的某一值,故D正确,应选AD。 三、位移的对称性 例3.一弹簧振子做简谐动动,周期为T,则下列说法中正确的是()

高一物理力学受力分析专题(精选)

受力分析练习: 1.画出静止物体A 受到的弹力:(并指出弹力的施力物) 2.画出物体A 受到的摩擦力,并写出施力物:(表面不光滑) B A A 静止不动 A 向右匀速 A 沿着斜面向上运动 A 相对斜面静止 A 沿着斜面向下运动 A 匀速下滑

3:对下面物体受力分析: 1)重新对1、2两题各物体进行受力分析(在图的右侧画)2)对物体A进行受力分析(并写出各力的施力物) 3)对水平面上物体A和B进行受力分析,并写出施力物(水平面粗糙) 4)分析A和B物体受的力分析A和C受力(并写出施力物) A沿着水平面向左运动A沿着墙向上运动A 沿着水平面向右运动 A、B相对地面静止 A与皮带一起向右匀速运动 A、B一起向右匀速运动 A、B一起向右加速运动 A、B相对地面静止 木块A沿斜面匀速上滑 A、B相对地面静止A、 B、C一起向右加速运动 A、B一起向右加速运动 物体静止不动 A 在水平力F作用下A、B沿桌面匀速运动,

思路点拨 1、如图所示,质量为m=2kg 的物体在水平力F=80N 作用下静止在竖直墙上,物体与墙面之间的动摩擦因数为0.5,用二力平衡知识可知物体受到的摩擦力大小为______N ,弹力大小为________N 。(g=10N/kg ) 2、如图所示,在水平面上向右运动的物体,质量为20kg ,物体与水平面间1.0=μ,在运动过程中,物体还到一个水平向左的大小为F =10N 的拉力的作用,则物体受到的滑动摩擦力大小为______N ,方向_______。(g=10N/kg ) 3、如图,A 和B 在水平力F 作用下,在水平面上向右做匀速直线运动。试分析A 、B 物体 所受的力,并指出B 所受的每一力的反作用力。 基础训练 1、如图所示的物体A ,放在粗糙的斜面上静止不动,试画出A 物体受力的示意图,并标出个力的名称。 2、重G =5N 的木块在水平压力F 作用下,静止在竖直墙面上,则木块所受的静摩擦力f = N ;若木块与墙面间的动摩擦因数为μ=0.4,则当压力F N = N 时木块可沿墙面匀速下滑。 3、如图(1)人和木板的质量分别为m 和M ,不计滑轮质量及滑轮与绳之间的摩擦,保持系统静止 时,求人对绳子的拉力T 2=? 4、如图所示,物体A 沿倾角为θ 的斜面匀速下滑.求摩擦力及动摩擦因数。 5、如图所示,重G 1=600N 的人,站在重G 2=200N 的吊篮中,吊篮用一根不计质量的软绳悬挂,绳绕过不计质量和摩擦的定滑轮,一端拉于人的手中。当人用力拉绳,使吊篮匀速上升时,绳的拉力T 及人对吊篮底部的压力N ’多大? 6、两个大人和一个小孩沿河岸拉一条小船前进,两个大人的拉力分别为F 1=400N 和F 2=320N ,它们的方向如图所示.要使船在河流中间行驶,求小孩对船施加的最小的力。 7、如图所示,质量为m 的物体放在水平面上,在外力F 的作用下物体向右作匀速直线运动,求物体与平面间的摩擦力系数。 F

高中物理力学实验专题训练(有答案)

力学实验专题训练 2017、04 1.在“验证动量守恒定律”的实验中,气垫导轨上放置着带有遮光板的滑块A、B,遮光板的宽度相同,测得的质量分别为m1和m2.实验中,用细线将两个滑块拉近使轻弹簧压缩,然后烧断细线,轻弹簧将两个滑块弹开,测得它们通过光电门的时间分别为t1、t2. (1)图22⑴为甲、乙两同学用螺旋测微器测遮光板宽度d时所得的不同情景。由该图可知甲同学测得的示数为mm,乙同学测得的示数为mm。 (2)用测量的物理量表示动量守恒应满足的关系式: 被压缩弹簧开始贮存的弹性势能P E 2.为验证“动能定理”,某同学设计实验装置如图5a所示,木板倾斜构成固定斜面,斜面B处装有图b所示的光电门. (1)如图c所示,用10分度的游标卡尺测得挡光条的宽度d= (2)装有挡光条的物块由A处静止释放后沿斜面加速下滑,读出挡光条通过光电门的挡光时间t,则物块通过B处时的速度为________ (用字母d、t表示); (3)测得A、B两处的高度差为H、水平距离L.已知物块与斜面间的动摩擦因数为μ,当地的重力加速度为g,为了完成实验,需要验证的表达式为_______________ _.(用题中所给物理量符号表示) 3.在“验证机械能守恒定律”的实验中,小明同学利用传感器设计实验:如图10甲所示,将质量为m、直径为d的金属小球在一定高度h由静止释放,小球正下方固定一台红外线计时器,能自动记录小球挡住红外线的时间t,改变小球下落高度h,进行多次重复实验.此方案验证机械能守恒定律方便快捷. (1)用螺旋测微器测小球的直径如图乙所示,则小球的直径d=________mm; (2)为直观判断小球下落过程中机械能是否守恒,应作下列哪一个图象________; A.h-t图象 B.h-1 t图象 C.h-t2图象 D.h- 1 t2图象 甲 0123401234 5 45 5 45 可动刻度 固 定 刻 度 固 定 刻 度

高中物理重要二级结论全

精心整理 物理重要二级结论(全) 一、静力学 1.几个力平衡,则任一力是与其他所有力的合力平衡的力。 三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。 γ sin 3 F = 9.已知合力不变,其中一分力F1大小不变,分析其大小,以及另一分力F2。 用“三角形”或“平行四边形”法则 二、运动学 1 时间等分(T):①1T内、2T内、3T内······位移比:S1:S2:S3=12:22:32 F2

②1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3 ③第一个T 内、第二个T 内、第三个T 内···的位移之比: S Ⅰ:S Ⅱ:S Ⅲ=1:3:5 ④ΔS=aT 2S n -S n-k =kaT 2 a=ΔS/T 2 a=(S n -S n-k )/kT 2 位移等分(S 0):①1S 0处、2S 0处、3S 0处···速度比:V 1:V 2:V 3:···V n = ②经过1S 0时、2S 0时、3S 0时···时间比: t 0as v t 2=o 002 at t v s +=9.匀加速直线运动位移公式:S=At+Bt 2式中a=2B (m/s 2)V 0=A (m/s ) 10.追赶、相遇问题 )::3:2:1n Λn ::3:2:1Λ

匀减速追匀速:恰能追上或恰好追不上V 匀=V 匀减 V 0=0的匀加速追匀速:V 匀=V 匀加时,两物体的间距最大S max = 同时同地出发两物体相遇:位移相等,时间相等。 A 与 B 相距△S ,A 追上B :S A =S B +△S ,相向运动相遇时:S A =S B +△S 。 11.小船过河: 3 4 5. α

北京高中物理知识点总结

北京高中物理知识点总结 高考物理公式及知识点大全 一、直线运动 1)匀变速直线运动 1.平均速度V平=x/t(定义式) 2.有用推论Vt2-V o2=2as 3.中间时刻速度Vt/2=V平=(Vt+V o)/2 4.末速度Vt=V o+at 5.中间位置速度Vs/2=[(V o2+Vt2)/2]1/2 6.位移s=V平t=V ot+at2/2=Vt/2t 7.加速度a=(Vt-V o)/t (以V o为正方向,a与V o同向(加速)a>0;a与V o反向(减速)则a<0) 8.实验用推论Δs=aT2 (Δs为连续相邻相等时间(T)内位移之差) 9.主要物理量及单位:初速度(V o):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t):秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。 注:(1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-V o)/t只是测量式,不是决定式; (4)其它相关内容:质点、位移和路程、参考系、时间与

时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。 2)自由落体运动 1.初速度V o=0 2.末速度V=gt 3.下落高度h=gt2/2(从V o位置向下计算) 4.推论V2=2gh 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=9.8m/s2&asymp;10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 3)竖直上抛运动 1.位移s=V ot-gt2/2 2.末速度V=V o-gt (g=9.8m/s2&asymp;10m/s2) 3.有用推论Vt2-V o2=-2gs 4.上升最大高度Hm=V o2/2g(抛出点算起) 5.往返时间t=2V o/g (从抛出落回原位置的时间) 注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值; (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性; (3)上升与下落过程具有对称性,如在同点速度等值反向

高中物理力学受力分析专题

高中物理力学受力分析专题 (一)受力分析 物体之所以处于不同的运动状态,是由于它们的受力情况不同.要研究物体的运动,必须分析物体的受力情况.正确分析物体的受力情况,是研究力学问题的关键,是必须掌握的基本功. 如何分析物体的受力情况呢主要依据力的概念、从物体所处的环境(有多少个物体接触)和运动状态着手,分析它与所处环境的其它物体的相互联系;一般采取以下的步骤分析: 1.确定所研究的物体,然后找出周围有哪些物体对它产生作用. 采用隔离法分析其他物体对研究对象的作用力,不要找该物体施于其它物体的力,譬如所研究的物体叫A,那么就应该找出“甲对A”和“乙对A”及“丙对A”的力……而“A对甲”或“A对乙”等的力就不是A所受的力.也不要把作用在其它物体上的力错误地认为通过“力的传递”作用在研究对象上. 2.要养成按步骤分析的习惯. 先画重力:作用点画在物体的重心. 次画接触力(弹力和摩擦力):绕研究对象逆时针(或顺时针)观察一周,看对象跟其他物体有几个接触点(面),对每个接触点(面)若有挤压,则画出弹力,若还有相对运动或趋势,则画出摩擦力.要熟记:弹力的方向一定与接触面或接触点的切面垂直,摩擦力的方向一定沿着接触面与物体相对运动(或趋势)方向相反。分析完一个接触点(面)后再依次分析其他的接触点(面). 再画其他场力:看是否有电、磁场力作用,如有则画出场力. 3.受力分析的注意事项: 初学者对物体进行受力分析时,往往不是“少力”就是“多力”,因此在进行受力分析时应注意以下几点: (1) 只分析研究对象所受的力,不分析研究对象对其他物体所施加的力。 (2) 每分析一个力,都应找到施力物体,若没有施力物体,则该力一定不存在.这是防止“多力”的有效 措施之一。检查一下画出的每个力能否找出它的施力物体,特别是检查一下分析的结果,能否使对象与题目所给的运动状态(静止或加速)相一致,否则,必然发生了多力或漏力现象. (3) 合力和分力不能同时作为物体受到的力。 (4)只分析根据力的性质命名的力(如重力、弹力、摩擦力),不分析根据效果命名的力(如下滑力、上升 力等)。 (二)受力分析练习: 1。画出物体A受到的弹力:(并指出弹力的施力物)

高中物理竞赛方法集锦对称法7

高中物理竞赛方法集锦对称法7 方法简介 由于物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称现象普遍存在于各种物理现象和物理规律中. 应用这种对称性它不仅能关心我们认识和探究物质世界的某些差不多规律,而且也能关心我们去求解某些具体的物理咨询题,这种思维方法在物理学中称为对称法. 利用对称法分析解决物理咨询题,能够幸免复杂的数学演算和推导,直截了当抓住咨询题的实质,出奇制胜,快速简便地求解咨询题. 赛题精析 例1:沿水平方向向一堵竖直光滑的墙壁抛出一个弹性小球A , 抛出点离水平地面的高度为h ,距离墙壁的水平距离为s , 小球与 墙壁发生弹性碰撞后,落在水平地面上,落地点距墙壁的水平距离 为2s ,如图7—1所示. 求小球抛出时的初速度. 解析:因小球与墙壁发生弹性碰撞, 故与墙壁碰撞前后入射速 度与反射速度具有对称性, 碰撞后小球的运动轨迹与无墙壁阻挡时 小球连续前进的轨迹相对称,如图7—1—甲所示,因此小球的运动可 以转换为平抛运动处理, 成效上相当于小球从A ′点水平抛出所做 的运动. 依照平抛运动的规律:?? ???==2021gt y t v x 因为抛出点到落地点的距离为3s ,抛出点的高度为h 代入后可解得:h g s y g x v 2320== 例2:如图7—2所示,在水平面上,有两个竖直光滑墙壁A 和 B ,间距为d , 一个小球以初速度0v 从两墙正中间的O 点斜向上抛 出, 与A 和B 各发生一次碰撞后正好落回抛出点O , 求小球的抛 射角θ. 解析:小球的运动是斜上抛和斜下抛等三段运动组成, 假设按顺 序求解那么相当复杂,假如视墙为一平面镜, 将球与墙的弹性碰撞等 效为对平面镜的物、像移动,可利用物像对称的规律及斜抛规律求解. 物体跟墙A 碰撞前后的运动相当于从O ′点开始的斜上抛运动,与B 墙碰后落于O 点相当于落到O ″点,其中O 、O ′关于A 墙对称,O 、O ″关于B 墙对称,如图7—2—甲所示,因此有 ? ??==?????-==0221sin cos 200y d x gt t v y t v x 落地时θθ 图7—1

高中物理力学实验专题

高中力学实验专题 高中物理《考试说明》中确定的力学实验有:研究匀变速直线运动、探究弹力和弹簧伸长的关系、验证力的平行四边形定则、验证牛顿运动定律、探究动能定理、验证机械能守恒定律。其中有四个实验与纸带的处理有关,可见力学实验部分应以纸带的处理,打点计时器的应用为核心来展开复习。近几年力学实验中与纸带处理相关的实验、力学创新实验是高考的热点内容,以分组或演示实验为背景,考查对实验方法的领悟情况、灵活运用学过的实验方法设计新的实验是高考实验题的新趋势。要求考生掌握常规实验的数据处理方法,能将课本中分组实验和演示实验的实验原理、实验方法迁移到新的背景中,深刻理解物理概念和规律,并能灵活运用,要求考生有较强的创新能力。 在复习过程中,应以掌握常规实验原理、实验方法、规范操作程序、数据处理方法等为本,同时从常规实验中,有意识的、积极的提取、积累一些有价值的方法。逐步过渡到灵活运用学过的实验方法设计新的实验。 (一)打点计时器系列实验中纸带的处理 1.纸带的选取:一般实验应用点迹清晰、无漏点的纸带中选取有足够多点的一段作为实验纸带。在“验证机械能守恒定律”实验中还要求纸带包含第一、二点,并且第一、二两点距离接近2.0mm 。 2.根据纸带上点的密集程度选取计数点。打点计时器每打n 个点取一个计数点,则计数点时间间隔为n 个打点时间间隔,即T=0.02n (s )。一般取n =5,此时T=0.1s 。 3.测量计数点间距离。为了测量、计算的方便和减小偶然误差的考虑,测量距离时不要分段测量,尽可能一次测量完毕,即测量计数起点到其它各计数点的距离。如图所示,则由图可得: 1s S I =,12s s S II -=,23s s S III -=,34s s S IV -=,45s s S V -=,56s s S VI -=

物理解题技巧高中对称法

物理解题技巧高中对称法 物理解题技巧高中自然界和自然科学中,普遍存在着优美和谐的对称现象.对称性就是事物在变化时存在的某种不变性.物理中对称现象比比皆是,对称的结构、对称的作用、对称的电路、对称的物和像等等.一般情况下对称表现为研究对象在结构上的对称性、物理过程在时间上和空间上的对称性、物理量在分布上的对称性及作用效果的对称性等.利用对称性解题时有时能一眼看出答案,大大简化解题步骤.从科学思维方法的角度来讲,对称性最突出的功能是启迪和培养学生的直觉思维能力.用对称性解题的关键是敏锐地看出并抓住事物在某一方面的对称性,这些对称性往往就是通往答案的捷径. 静力学问题解题的思路和方法 确定研究对象:并将“对象”隔离出来-。必要时应转换研究对象。这种转换,一种情况是换为另一物体,一种情况是包括原“对象”只是扩大范围,将另一物体包括进来。 分析“对象”受到的外力,而且分析“原始力”,不要边分析,边处理力。以受力图表示。 根据情况处理力,或用平行四边形法则,或用三角形法则,或用正交分解法则,提高力合成、分解的目的性,减少盲目性。 对于平衡问题,应用平衡条件∑F=0,∑M=0,列方程求解,而后讨论。 认识物体的平衡及平衡条件 对于质点而言,若该质点在力的作用下保持静止或匀速直线运

动,即加速度为零,则称为平衡,欲使质点平衡须有∑F=0。若将各力正交分解则有:∑FX=0,∑FY=0。 这里应该指出的是物体在三个力(非平行力)作用下平衡时,据∑F=0可以引伸得出以下结论: 这三个力矢量组成封闭三角形。 任何两个力的合力必定与第三个力等值反向。 对物体受力的分析及步骤 明确研究对象 分析物体或结点受力的个数和方向,如果是连结体或重叠体,则用“隔离法” 作图时力较大的力线亦相应长些 每个力标出相应的符号(有力必有名),用英文字母表示 用正交分解法解题列动力学方程 受力不平衡时 一些物体的受力特征:轻杆或弹簧对物体可以有压力或者拉力。绳子或橡皮筋可受拉力不能受压力,同一绳放在光滑滑轮或光滑挂钩上,两侧绳子受力大小相等,当三段以上绳子在交点打结时,各段绳受力大小一般不相等。 受力分析步骤: 判断力的个数并作图:重力;接触力(弹力和摩擦力);场力(电场力、磁场力) 判断力的方向:

高中物理受力分析中常见模型

╰ α 高中物理知识归纳 ----------------------------力学模 型及方法 1.连接体模型是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。 解决这类问题的基本方法是整体法和隔离法。 整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程 隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。 2斜面模型(搞清物体对斜面压力为零的临界条件) 斜面固定:物体在斜面上情况由倾角和摩擦因素决定 μ=tgθ物体沿斜面匀速下滑或静止μ> tgθ物体静止于斜面 μ< tgθ物体沿斜面加速下滑a=g(sinθ一μcosθ) 3.轻绳、杆模型 绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。 杆对球的作用力由运动情况决定 只有θ=arctg(g a)时才沿杆方向 最高点时杆对球的作用力;最低点时的速度?,杆的拉力? 若小球带电呢? 假设单B下摆,最低点的速度V B=R 2g?mgR=2 2 1 B mv E m L · m2 m1 F B A F1 F2 B A F

整体下摆2mgR=mg 2R +'2 B '2A mv 2 1mv 21+ ' A ' B V 2V = ? 'A V = gR 53 ; ' A ' B V 2V ==gR 25 6> V B =R 2g 所以AB 杆对B 做正功,AB 杆对A 做负功

F m 若V0

高中物理力学实验完美知识点版本

常用实验原理设计方法 1.控制变量法:如验证牛顿第二定律的实验中加速度、力和质量的关系控制。 2.等效替代法:某些量不易测量,可以用较易测量的量替代,从而简化实验。如验证碰撞中的动量守恒的实验中,速度的测量就转化为对水平位移的测量。 3.理想模型法:用伏安法测电阻时,选择了合适的内外接方法,一般就忽略电表的非理想性。4.比值定义法:用两个基本的物理量的“比”来定义一个新的物理量的方法。如①物质密度②电阻③场强④磁通密度⑤电势差等。 5.微量放大法:微小量不易测量,勉强测量误差也较大,实验时常采用各种方法加以放大。卡文迪许测定万有引力恒量,采用光路放大了金属丝的微小扭转。 6.模拟法:当实验情景不易创设或根本无法创设时,可以用物理模型或数学模型等效的情景代替,“描绘电场中的等势线”的实验就是用电流场模拟静电场。 实验一:验证力的合成 [实验原理] 此实验是要用互成角度的两个力与一个力产生相同的效果(即:使橡皮条在某一方向伸长一定的长度),看其用平行四边形定则求出的合力与这一个力是否在实验误差允许范围内相等,如果在实验误差允许范围内相等,就验证了力的平行四边形定则。 [实验器材] 木板一块,白纸,图钉若干,橡皮条一段,细绳,弹簧秤两个,三角板,刻度尺,量角器。 [实验步骤] 1.用图钉把一张白纸钉在水平桌面上的方木板上。 2.用图钉把橡皮条的一端固定在板上的A点,用两条细绳套结在橡皮条的另一端。 3.用两个弹簧秤分别钩住细绳套,互成角度地拉橡皮条,使橡皮条伸长,结点到达某一位置O。 4.用铅笔描下结点O的位置和两条细绳套的方向,并记录弹簧秤的读数。在白纸上按比例作出两个弹簧秤的拉力F1和F2的图示,利用刻度尺和三角板根椐平行四边形定则求出合力F。 5.只用一个弹簧秤,通过细绳套把橡皮条的结点拉到与前面相同的位置O,记下弹簧秤的读数和细绳的方向。按同样的比例用刻度尺从O点起做出这个弹簧秤的拉力F'的图示。 6.比较F'与用平行四边形定则求得的合力F,在实验误差允许的范围内是否相等。 7.改变两个分力F1和F2的大小和夹角。再重复实验两次,比较每次的F与F'是否在实验误差允许的范围内相等。 [注意事项] 1.用弹簧秤测拉力时,应使拉力沿弹簧秤的轴线方向,橡皮条、弹簧秤和细绳套应位于与纸面平行的同一平面内。 2.同一次实验中,橡皮条拉长后的结点位置O必须保持不变。

相关主题
文本预览
相关文档 最新文档