当前位置:文档之家› CPU简介

CPU简介

CPU简介
CPU简介

intel处理器是英特尔公司开发的处理器,即为CPU

英特尔公司是全球最大的半导体芯片制造商,它成立于1968年。

70年代微处理器诞生CPU是Central Processing Unit,就是中央处理器的缩写,它是计算机中最重要的一个部分,由运算器和控制器组成。如果把计算机比作一个人,那么CPU就是他的心脏,其重要作用由此可见一斑。按照其处理信息的字长,CPU可以分为:四位微处理器、八位微处理器、十六位微处理器、三十二位微处理器以及六十四位微处理器等等。

英特尔公司Logo

成立于1968年的英特尔公司,作为全球最大的芯片制造商,同时也是计算机、网络和通信产品的领先制造商,英特尔走过了风风雨雨的38年,具有技术产品创新和领导产业发展的38年。回首过去,英特尔的产品,影响了整个IT业的发展,成就了不知多少IT界的精英和经典事件。

intel图标

1971年11月15日:世界上第一块个人微型处理器4004诞生1971年11月15日,Intel公司的工程师霍夫发明了世界上第一个商用微处理器—4004,从此这一天被当作具有全球IT界里程碑意义的日子而被永远的载入了史册。这款4位微处理器虽然只有45条指令,每秒也只能执行5万条指令,运行速度只有108KHz,甚至比不上1946年世界第一台计算机ENIAC。但它的集成度却要高很多,集成晶体管2300只,一块4004的重量还不到一盅司。这一突破性的发明最先应用于Busicom 计算器,为无生命体和个人计算机的智能嵌入铺平了道路。

4004微处理器

Busicom最初计划是需要12个定制芯片。而英特尔工程师霍夫提出了通用逻辑设备的概念,它可能是一个更出色、更高效的解决方案。正是由于他的提议才使得微处理器得以开发。起初,Busicom向英特尔支付了60000美元,获得了微处理器所有权。在认识到“大脑”芯片的无限潜力之后,英特尔提出用60000美元换回微处理器设计的所有权。Busicom同意了英特

尔的请求。1971年11月15日,英特尔面向全球市场推出了4004微处理器,每个售价为200美元。

4004微处理器

编号为4004,第一个“4”代表此芯片是客户订购的产品编号,后一个“4”代表此芯片是英特尔公司制作的第四个订制芯片。这种数字代号却延用至今。霍夫终于如愿以偿,他在世界第一个微处理器上,集成了2000多个晶体管,发明了世界第一块大规模集成电路4004,在电子计算机历史上,写下了光辉的一页。4004芯片基本具备了微处理器的特点,用它来做计算器,改变了传统计算器的形象。采用4004芯片后,再配用一块程序存储器,数据存储器,移位寄存器,再加上键盘和数码管,就构成了一台完整的微型计算机。

1972年:8008 微处理器

让英特尔以外的是推出4004芯片后,业内的反应相当平淡。一些分析家称这款芯片虽然有些意思,但4004的处理能力实在有限,还不足以引起人们的兴趣。然而,当一年后英特尔推出其8008微处理器时,业内的目光都几乎集中到了英特尔身上。8008频率为200Khz,晶体管的总数已经达到了3500个,能处理8比特的数据。更为重要的是,英特尔还首次获得了处理器的指令技术。

8008微处理器

8008微处理器

8008它的性能是4004的两倍,拥有3500晶体管数量,速度为200KHz,并且于1974年被一款名为Mark-8的设备采用,Mark-8是第一批家用计算机之一,此时台式机基本上形成了一个最初雏形。

8008芯片原本是为德克萨斯州的Datapoint公司设计的,但是这家公司最终却没有足够的财力支付这笔费用。于是双方达成协议,英特尔拥有这款芯片所有的知识产权,而且还获得了由Datapoint公司开发的指令集。这套指令集奠定了今天英特尔公司X86系列微处理器指令集的基础。

1974年:8080微处理器

在微处理器发展初期,具有革新意义的芯片非Intel8080莫属了。英特尔公司于1974年推出了这款划时代的处理器,立即引起了业界的轰动。由于采用了复杂的指令集以及40管脚封装,8080的处理能力大为提高,其功能是8008的10倍,每秒能执行29万条指令,集成晶体管数目6000,运行速度2MHz。与此同时,微处理器的优势已经被业内人士所认同,于是更多的公司开始接入这一领域,竞争开始变得日益激烈。当时与英特尔同台竞技的有RCA(美国无线电公司)、Honeywell、Fairchild、美国国家半导体公司、AMD、摩托罗拉以及Zilog公司。值得一提的是Zilog,世界上第一块4004芯片的设计者Faggin就加盟了该公司。由该公司推出的Z80微处理器比Intel8080功能更为强大,而且直到今天这款处理器仍然被尊为经典。

8080微处理器

8080微处理器

8080有幸成为了第一款个人计算机Altair的大脑。据说Altair这个名称是源自《星际旅行》电视节目中一个星际飞行计划(Starship Enterprise)的目的地名称。计算机爱好者花费395美元即可购得 Altair 套件。数月内,Altair的销售量达到数万台,造成了电脑销售历史上第一次缺货现象。这足以看出来8080对于电脑发展是具有划时代意义的。

编辑本段告别数字编号时代

1978 年:8086-8088微处理器

1978年,英特尔推出了首枚16位微处理器8086,同时生产出与之配合的数学协处理器8087,这两种芯片使用相同的指令集,以后英特尔生产的处理器,均对其兼容。趁着市场销售正好的时机,以及市场需求的提升,Intel在同一年推出了性能更出色的8088处理器。三款处理器都拥有29000只晶体管,速度可分为5MHz、8MHz、10MHz,内部数据总线(处理器内部传输数据的总线)、外部数据总线(处理器外部传输数据的总线)均为16位,地址总线为20位,可寻址1MB内存。首次在商业市场给消费者提供了更自由选择。

8088微处理器

8088微处理器

同时Intel成功将 8088 销售给 IBM全新的个人计算机部门,1981年,IBM推出的首批个人电脑机选用了英特尔8088芯片,使得8088成为了IBM 全新热销产品IBM PC的大脑。本来IBM准备采用摩托罗拉的芯片,但是最终阴差阳错,还是由8088芯片承担了这项光荣的使命。随着个人电脑的流行,英特尔也开始名扬四海。8088的大获成功使英特尔顺利跻身财富500强之列,《财富》杂志将该公司评为“七十大商业奇迹之一(Business Triumphs of the Seventies)”。事后,英特尔高度评价了与IBM这笔交易的重要性。的确,如果没有这笔交易,很可能现在芯片市场是由摩托罗拉等一统天下。

1982年:80286微处理器英特尔的最后一块16位处理器

80286微处理器

80286(也称286)是处理器进入全新技术的标准产品,具备16位字长,集成了14.3万只晶体管,具有6MHz、8MHz、10MHz、12.5 MHz四个主频的产品。286是Intel第一款具有完全兼容性的处理器,即可以运行所有针对其前代处理器编写的软件,这一软件兼容性也成为了Intel处理器家族一个恒久不变的特点。该产品发布后的6年内,全世界基于286处理器的个人计算机便达到了大约1500万台。

1985年:80386 英特尔的第一代32位处理器

80386微处理器

此后,英特尔的微处理器开始进入到了32位时代。为适应企业的全球化发展,1985年秋,英特尔再度发力,并且以一种特殊的形式在伦敦、慕尼黑、巴黎、旧金山和东京同时推出了Intel 80386处理器。这是英特尔第一款32位处理器,集成了27万5千只晶体管,超过了4004芯片的一百倍,每秒可以处理500万条指令。同时也是第一款具有“多任务”功能的处理器,所谓“多任务”就是说它可以同时处理多个程序程序的指令,这对微软的操作系统发展有着重要的影响。

80386微处理器

Intel RapidCAD 被遗忘的微处理器

还有一款微处理器被很多人忽视,这就是Intel RapidCAD。RapidCAD 是英特尔有史以来第一款为旧款个人计算机所提供的升级套件(也就是OverDrive的始祖)。原386的使用者不需要更换主机板,只要把RapidCAD 买回来将主机板上旧有的中央处理器芯片(CPU)替换掉,就可以享受接近486的运算能力。RapidCAD其实就是把486 DX芯片去掉内部高速缓存然后装入386的封装里面,RapidCAD也不支持486增加的新指令。不过由于386封装的频宽限制,RapidCAD对整体的效能提升比不上直接升级到486 DX。相同频率下,486 DX可以有比386/387快上两倍的速度,而RapidCAD在整数运算方面最多只能提升35%,在浮点运算方面,则可以提升将近70%。

Intel RapidCAD

Intel RapidCAD特殊的地方在于,它是由两颗芯片组成,缺一不可。这归咎于486 DX内建浮点运算器(FPU),而386则是将浮点运算器分开(就是387)。由于RapidCAD-1本身就含有浮点运算器(因为它就是486 DX 阉割版),根本不需要387,所以RapidCAD-2就是用来替代原来主机板上的387芯片。RapidCAD-1负责所有的运算,而RapidCAD-2则是负责假装浮点运算器,以防止旧有主机板以为没有安装浮点运算功能(尤其在执行

286/287的程序时)。市面上有时候把RapidCAD-1与RapidCAD-2分开卖,这是就是不了解RapidCAD运作方式的结果。

1989年:Intel 80486英特尔最后一款以数字为编号的处理器

1989年,英特尔发布了Intel80486处理器。486处理器是英特尔非常成功的商业项目。很多厂商也看清了英特尔处理器的发展规律,因此很快就随着英特尔的营销战而转型成功。80486处理器集成了125万个晶体管,时钟频率由25MHz逐步提升到33MHz、40MHz、50MHz及后来的100Mhz。

80486微处理器

Intel80486处理器

486处理器的应用意味着用户从此摆脱了命令形式的计算机,进入“选中并点击(point-and-click)”的计算时代。史密森学会美国历史国家博物馆的技术历史学家 David K. Allison 回忆道:“当时我拥有了彩色计算机,并且以很快的速度进行桌面排版工作。”英特尔486处理器首次采用内建的数学协处理器,将负载的数学运算功能从中央处理器中分离出来,从而显著加快了计算速度。

编辑本段走进Pentium时代

386和486推向市场后,均大获成功,英特尔在芯片领域的霸主地位日益凸现。此后,英特尔开始告别微处理器数字编号时代,进入到了Pentium 时代。

1994年3月10日:IntelPentium中央处理器芯片

1993年,英特尔发布了Pentium(俗称586)中央处理器芯片(CPU)。本来按照惯常的命名规律是80586,但是因为实际上「586」这样的数字不能注册成为商标使用,因此任何竞争对手都可以用586来扰乱消费市场。事实上在486发展末期,就已经有公司将486等级的产品标识成586来销售了。因此英特尔决定使用自创的品牌来作为新产品的商标—Pentium。

世界上第一款Pentium处理器

Pentium处理器内部结构

英特尔奔腾处理器采用了0.60微米工艺技术制造,核心由320万个晶体管组成。支持计算机更轻松的集成“现实世界”数据,如语音、声音、手写体和图片等,“奔腾”二字频繁出现在漫画和电视谈话节目中,使其在推出之后很快成为一个家喻户晓的词语。奔腾是一个划时代的产品,并且影响了PC领域十年之久,目前该“名字”依然在沿用。

Intel Pentium处理器

Intel Pentium处理器

Pentium是x86系列一大革新。其中晶体管数大幅提高、增强了浮点运算功能、并把十年未变的工作电压降至3.3V。Pentium刚推出的时候拥有浮点数除法不正确的错误(FDIV Bug),导致英特尔大量回收第一代产品(1994年十二月之前的产品),所以有FDIV Bug的微处理器所剩不多。Pentium 50Mhz也有这个FDIV错误,不过 A80501-50 只是业界样本,从来没有在市场上出现过。上图Intel Pentium 60Mhz就是整个Pentium系列第一款产品,也是含有 Bug FDIV的一款。这颗工程样品为目前世界上有在英特尔官方纪录里最早的Pentium CPU(Q0352),也是目前世界上已知仅存的一颗。

1995年3月27日,英特尔发布Pentium 120MHz处理器,采用了0.60 微米/0.35两种工艺技术,不过核心依旧由320万个晶体管组成。

1995年6月,英特尔发布Pentium 133MHz处理器,采用0.35工艺技术制造,核心提升到由330万个晶体管组成。

1995年11月1日,英特尔发布Pentium 150MHz、Pentium 166MHz、Pentium 180MHz、Pentium 200MHz四款处理器,并且采用了0.60 微米/0.35两种工艺技术,核心提升到由550万个晶体管组成。此时INTEL在以前设计基础上增加了L2 cache为256K和512K两种版本。

1996年1月4日,英特尔又发布Pentium 150MHz、Pentium 166MHz两款处理器,采用了0.35微米工艺技术,不过核心由330万个晶体管组成。

1996年6月10日,英特尔发布Pentium 200MHz处理器,采用了0.35微米工艺技术,不过核心还是由330万个晶体管组成。

1997年1月:Intel Pentium MMX中央处理器

1997年1月,Intel公司推出了Pentium MMX芯片,它在X86指令集的基础上加入了57条多媒体指令。这些指令专门用来处理视频、音频和图象数据,使CPU在多媒体操作上具有更强大的处理能力,Pentium MMX还使用了许多新技术。单指令多数据流SIMD技术能够用一个指令并行处理多个数据,缩短了CPU在处理视频、音频、图形和动画时用于运算的时间;流水线从5级增加到6级,一级高速缓存扩充为16K,一个用于数据高速缓存,另一个用于指令高速缓存,因而速度大大加快;Pentium MMX还吸收了其他CPU的优秀处理技术,如分支预测技术和返回堆栈技术。

Pentium MMX中央处理器

Pentium MMX中央处理器

Pentium MMX等于是Pentium的加强版中央处理器芯片(CPU),除了增加67个MMX(Multi-Media eXtension)指令以及64位数据型态之外之外,也将内建指令及数据暂存(Cache)从之前的8KB增加到16KB,内部工作电压降到2.8V。而英特尔之后的桌上型中央处理器皆包含了MMX指令。

1997年:Intel Pentium Overdrive

Intel Pentium Overdrive处理器

Intel Pentium OverDrive 中央处理器芯片(CPU),又是一项英特尔造福旧计算机使用者的升级选择。Pentium OverDrive 有两种,一种(不含MMX,5V)是给80486升级用的,另一种(含MMX,3.3V)是给Pentium 早期产品(Socket6, 50-66Mhz)升级的。他们都有含散热器及风扇。

Intel Pentium MMX overdrive 200

编辑本段Pentium II时代

1997-1998年:PentiumII处理器

1997年5月7日,英特尔发布Pentium II 233MHz、Pentium II 266MHz、Pentium II 300MHz三款PII处理器,采用了0.35微米工艺技术,核心提升到750万个晶体管组成。采用SLOT1架构,通过单边插接卡(SEC)与主板相连,SEC卡盒将CPU内核和二级高速缓存封装在一起,二级高速缓存的工作速度是处理器内核工作速度的一半;处理器采用了与Pentium PRO相同

的动态执行技术,可以加速软件的执行;通过双重独立总线与系统总线相连,可进行多重数据交换,提高系统性能;PentiumII也包含MMX指令集。Intel此举希望用SLOT1构架的专利将AMD等一棍打死,可没想到Socket 7平台在以AMD的K6-2为首的处理器的支持下,走入了另一个春天。而从此开始,Intel也开始走上了一条前途不明的道路,开始频繁的强行制定自己的标准,企图借此达到迅速挤垮竞争对手的目的,但市场与用户的需要使得Intel开始不断的陷入被动和不利的局面。

Pentium II处理器

Pentium II处理器

在这个时期100MHZ频率的SDR内存已经出现在市场上,但是Intel却惊人地宣布他们将放弃并行内存而主推一种名为Rambus的内存,而一时间众多大公司如西门子、HP和DELL等都投入了Rambus的门下,不过后来DDR 内存的流行也证明了Intel的失败。

1997年6月2日,英特尔发布MMX 指令技术的Pentium II 233MHz处理器,采用了0.35微米工艺技术,核心由450万个晶体管组成。

1997年8月18日,英特尔发布L2 cache为1M的Pentium II 200MHz 处理器,采用了0.35微米工艺技术,核心由550万个晶体管组成。

1998年1月26日,英特尔发布Pentium II 333MHz处理器,采用了0.35微米工艺技术,核心由750万个晶体管组成。

1998年4月15日,英特尔发布Pentium II 350MHz、Pentium II 400MHz 和第一款Celeron 266MHz处理器,此三款CPU都采用了最新0.25微米工艺技术,核心由750万个晶体管组成。

1998年8月24日,英特尔发布Pentium II 450MHz处理器,采用了0.25微米工艺技术,核心由750万个晶体管组成。

CPU发展到这个时期,就不能不说说Intel Pentium II Cerelon处理器。英特尔将Celeron处理器的L2 Cache设定为只有Pentium II的一半(也就是128KB),这样既有合理的效能,又有相对低廉的售价(有A字尾的);这样的策略一直延续到今天。不过很快有人发现,使用双Celeron的系统与双Pentium II的系统差距不大,而价格却便宜很多,结果造成了Celeron

冲击高阶市场的局面。后来英特尔决定取消Celeron处理器的SMP功能,才解决了这个问题。

Pentium II Celeron处理器

Pentium II Celeron处理器

赛扬300A,是一个让多少人闻之动容的产品,又陪伴了多少曾经年少的读者度过悠长的学生时代。赛扬300A,从某种意义上已经是Intel的第二代赛扬处理器。第一代的赛扬处理器仅仅拥有266MHz、300MHz两种版本,第一代的Celeron处理器由于不拥有任何的二级缓存,虽然有效的降低了成本,但是性能也无法让人满意。为了弥补性能上的不足,Intel终于首次推出带有二级缓存的赛扬处理器——采用Mendocino核心的Celeron300A、333、366。经典,从此诞生。

编辑本段走近Pentium III

1999年:IntelPentium III处理器

1999年2月26日,英特尔发布Pentium III 450MHz、Pentium III 500MHz 处理器,同时采用了0.25微米工艺技术,核心由950万个晶体管组成,从此INTEL开始踏上了PIII旅程。

Intel Pentium III处理器

Intel Pentium III处理器

Pentium III是给桌上型计算机的中央处理器芯片(CPU),等于是Pentium II的加强版,新增七十条新指令(SIMD,SSE)。Pentium III与Pentium II一样有 Mobile、Xeon以及Cerelon等不同的版本。Celeron系列与Pentium III最大的差距在于二级缓存,100MHz外频的Tualatin Celeron 1GHz可以轻松地跃上133MHz外频。更为重要的是,Tualatin Celeron还有很好的向下兼容性,甚至440BX主板在使用转接卡之后也有望采用该CPU,因此也成为很多升级用户的首选。

Intel Pentium III处理器

特别指出的是,Pentium III光是桌上型就拥有Katmai Slot 1 、Coppermine Slot 1以及Coppermine Socket 370等三种不同的系列。到后期,英特尔放弃插卡式界面而又回归到插槽界面(Socket 370)。socket370封装开始推出的时候,有一部分消费者舍弃了slot1平台而选择了新的处理器。新的PGA封装分为PPGA和FC-PGA两种,前者较为廉价,因而被赛扬处理器所采用,而更为昂贵的后者则被奔腾III处理器所采用。例外的是:采用Mendocino核心的赛扬处理器同时有这两种不同封装的版本。采用PPGA封装的赛扬处理器可以通过转接卡在slot1主板上使用,而采用FC-PGA封装的奔三处理器则无能为力了。

编辑本段跟随P4进入新世纪

2000年:IntelPentium 4处理器

Pentium 4相信大家都不陌生。这也是英特尔市场策略进入新纪元的开始。从P4开始,Intel已经不再每一两年就推出全新命名的中央处理器芯片(CPU),反而一再使用 Pentium 4这个名字,这个作法,导致 Pentium 4这个家族有一堆兄弟姊妹,而且这个P4家族延续了五年,这英特尔的市场策略是前所未见的。Penitum 4有分许多制程,Willamette 为P4最早的产品,其中还包括 Socket 423这个跟之后都不兼容的封装(因为接脚数不同嘛),不过正是因为不能升级而且只能使用Rambus这个怪物内存规格,所以此款销售并不怎么好。

IntelPentium 4处理器

Socket423针脚的P4处理器

Socket423是与slot1接口同样短命的一个产物,它从2000年10月推出到2001年8月仅仅使用了不到一年。多数用户最后都升级到了更成熟的socket478平台,而很多购买了socket423处理器的用户的投资都打了水漂。采用socket423接口的CPU只有一款,即Willamette核心的奔腾四处理器。最终这款处理器在市场上的销售情况远低于预期,但在同期Intel的市场份额还有所增长,奔腾四和Netburst的发布给了人们很大的鼓舞,直到今天Intel的3.8GHZ主频的处理器采用的还是这种架构。在新的处理器中还应用了一系列的新技术例如支持快速视频流编码的SSE2指令集等。

478针脚的P4处理器

随着处理器主频和内部集成晶体管数目的增加,处理器消耗的能量也开始大大增加。为了满足处理器所需要的巨大电能,因为奔腾四处理器的功率达到了72W,因此它需要在主板上附设额外的电源接口来满足处理器的供电需要,而由于发热量的增加,一个散热风扇也成了一个必需品。Intel 主推的与奔腾四搭配的平台是850平台,双通道的Rambus内存达到了前所未有的2.5GB/S的内存数据带宽,但是由于Rambus内存价格昂贵所以使得早期P4平台相当昂贵。而由于契约的限制Intel又无法使用当时已经出现在市场上的DDR内存。

尽管新的奔四处理器相当成熟,但是在市场上的销量仍然不尽如人意,主要原因就是昂贵的RDRAM内存。虽然后来Intel推出了845解决方案使得用户可以使用SDR内存,但是SDR内存的数据传输速率显然不能够让人满意。当时市场上已经出现了DDR内存,但由于协议问题Intel不能使用这种廉价的解决方案。

经过了消费者漫长的等待Intel终于和Rambus达成了协议,之后Intel 马上推出了845D和845GD两种基于DDR内存平台的芯片组。虽然DDR相对SDR数据带宽增加了一倍,但是相对于Rambus还是有所不足,直到双通道DDR内存的出现才解决了这一问题。

编辑本段HT技术下的P4处理器

2002-2004年:超线程P4处理器

2002年11月14日,英特尔在全新英特尔奔腾4处理器3.06 GHz上推出其创新超线程(HT)技术。超线程(HT)技术支持全新级别的高性能台式机,同时快速运行多个计算应用,或为采用多线程的单独软件程序提供更多性能。超线程(HT)技术可将电脑性能提升达 25%。除了为台式机用户引入超线程(HT)技术外,英特尔在推出英特尔奔腾4处理器3.06GHZ

时达到了一个电脑里程碑。这是第一款商用微处理器,运行速率为每秒30亿周期,并且采用当时业界最先进的0.13 微米制程制作。

奔腾4处理器3.06GHz

奔腾4处理器3.06GHz

英特尔发布前端总线为533MHz的Pentium 4 3.06 GHz处理器,采用了0.13微米工艺技术,提供L2 cache为512K的二级缓存,核心由5500万个晶体管组成。时隔一年,英特尔发布了支持超线程(HT)技术的P4处理器至尊版3.20 GHz。基于这一全新处理器的高性能电脑专为高端游戏玩家和计算爱好者而设计,现已由全球的系统制造商全面推出。英特尔奔腾4处理器至尊版采用英特尔的0.13微米制程构建而成,具备512 KB二级高速缓存、2MB三级高速缓存和800MHz系统总线速度。

P4处理器至尊版3.20GHz

该处理器可兼容现有的英特尔865和英特尔875芯片组家族产品以及标准系统内存。2MB三级高速缓存可以预先加载图形帧缓冲区或视频帧,以满足处理器随后的要求,使在访问内存和I/O设备时实现更高的吞吐率和更快的帧带率。最终,这可带来更逼真的游戏效果和改进的视频编辑性能。增强的 CPU性能还可支持软件厂商创建完善的软件物理引擎,从而带来栩栩如生的人物动作和人工智能,使电脑控制的人物更加形象、逼真。

半年之后,2004年6月,英特尔发布了P4 3.4GHz处理器,该处理器支持超线程(HT)技术,采用0.13 微米制程,具备 512 KB二级高速缓存、2 MB 三级高速缓存和800MHz 系统前端总线速度。

Northwood是第二代产品,采用0.13微米制程,具有电压低、体积小、温度低的优点。接着就是Prescott(0.09微米),虽然这技术很新,不过由于效能提升并不明显,而且有过热的问题。后来英特尔又推出Hyper Threading技术,大大增加工作效率,让P4又成为市场宠儿。英特尔之后又推出Extreme Edition、含有Prestonia(原本给服务器用的Xeon核心)以及Gallatin(0.13微米Northwood外频提升改良版)核心的CPU。现在市场上的高阶Pentium 4则是 Socket LGA 775的 Prescott为主。

编辑本段双核多核处理器的天下

2005-2006年:双核处理器

2005年4月,英特尔的第一款双核处理器平台包括采用英特尔955X高速芯片组、主频为 3.2 GHz 的英特尔奔腾处理器至尊版840,此款产品的问世标志着一个新时代来临了。双核和多核处理器设计用于在一枚处理器中集成两个或多个完整执行内核,以支持同时管理多项活动。英特尔超线程(HT)技术能够使一个执行内核发挥两枚逻辑处理器的作用,因此与该技术结合使用时,英特尔奔腾处理器至尊版840能够充分利用以前可能被闲置的资源,同时处理四个软件线程。

英特尔奔腾D处理器

5月,带有两个处理内核的英特尔奔腾D处理器随英特尔945高速芯片组家族一同推出,可带来某些消费电子产品的特性,例如:环绕立体声音频、高清晰度视频和增强图形功能。2006年1月,英特尔发布了Pentium D 9xx系列处理器,包括了支持VT虚拟化技术的Pentium D 960(3.60GHz)、950(3.40GHz)和不支持VT的Pentium D 945(3.4 GHz)、925(3 GHz)(注:925不支持VT虚拟化技术)和915(2.80 GHz)。

英特尔酷睿2双核处理器

英特尔酷睿2双核处理器

2006年7月,英特尔公司今天面向家用和商用个人电脑与笔记本电脑,发布了十款全新英特尔酷睿2(扣肉)双核处理器和英特尔酷睿至尊处理器。英特尔酷睿2双核处理器家族包括五款专门针对企业、家庭、工作站和玩家(如高端游戏玩家)而定制的台式机处理器,以及五款专门针对移动生活而定制的处理器。首批电脑于今天上市,八月份还将有更多的台式机和笔记本电脑推出。这些英特尔酷睿2双核处理器设计用于提供出色的能效表现,并更快速地运行多种复杂应用,支持用户改进各种任务的处理,例如:更流畅地观看和播放高清晰度视频;在电子商务交易过程中更好地保护电脑及其资产;以及提供更耐久的电池使用时间和更加纤巧时尚的笔记本电脑外形。

全新处理器可实现高达40%的性能提升,其能效比最出色的英特尔奔腾处理器高出 40%。英特尔酷睿2双核处理器包含2.91亿个晶体管。不过,Pentium D谈不上是一套完美的双核架构,Intel只是将两个完全独立的CPU

核心做在同一枚芯片上,通过同一条前端总线与芯片组相连。两个核心缺乏必要的协同和资源共享能力,而且还必须频繁地对二级缓存作同步化刷新动作,以避免两个核心的工作步调出问题。从这个意义上说,Pentium D 带来的进步并没有人们预想得那么大!(作者:中关村在线蔺晓峰 2006年11月14日)

编辑本段笔记型电脑处理器

移动式酷睿i7-双核心(6xx)/四核心(7xx/8xx/9xx)处理器

移动式酷睿i5-双核心(4xx/5xx)处理器移动式酷睿i3-双核心(3xx)处理器Pentium III Mobile Pentium 4 Mobile 区别于移动版Pentium 4 Mobile Pentium 4 最高至3.06GHz,区别与P4M 奔腾M(Pentium M)赛扬M(Celeron M)酷睿双核(Intel Core Duo)酷睿2 双核(Intel Core 2 Duo)酷睿单核(Intel Core Solo)酷睿2 单核(Intel Core 2 Solo)奔腾双核 (Intel pentium dual-core ) 凌动超低功耗处理器(Atom)赛扬双核 (Intel celeron dual-core)

编辑本段台式机处理器

Sever)至强(Xeon)安腾(Itanium)安腾2(Itanium 2)安腾3(Itanium 3)

手机cpu简介

简单点就是: 1.单、双核,是A8还是A9构架 2.多少纳米的工艺,多少平方毫米的封装面积,涉及到功耗及发热 3.主频、二级缓存和内存通道控制器的位宽等CPU参数 4.GPU的三角形输出率和像素填充率等性能 具体点可以耐心看看这段文字: 手机CPU德仪最强,英伟达次之,三星兼容性最差,高通最垃圾 首先是cpu部分,先发一组数据,芯片面积: 猎户座4210-118mm2, a5-110mm2, tegra3-89mm2, ti4430-69mm2, tegra2-49mm2。 猎户座的芯片面积最大,三星shi一样的soc能力比苹果强不了多少。芯片面积大带来的后果就是发热量非常不好控制,所以gs2区有很多人反应发热过高就是这个道理。就连四核的tegra3都会比猎户座好一些。ti4430排名第三,tegra2的芯片面积最小,因而发热量最小。 发热看完了看性能,正常来讲,芯片面积越大,性能越强。由于这几片处理器的cpu部分都是购买的armv7 cortax A9架构的授权,因此cpu架构基本是一致的,不同之处在于tegra2的内存通道控制器的位宽只有32bit,而且阉割了neon加速模块,所以在某些方面,例如软解flash和视频性能不强。其他几款cpu都拥有neon,内存位宽都为64bit(双通道和单通道的区别不是很大)(tegra3还是32bit,不过支持ddr3内存),因而在flash和视频的支持上更好。所以从解flash 的体验上来看,四核带neon,外加3.1/2.4系统gpu硬解的tegra3最强,猎户座和ti4430的效能不相伯仲。视频解码上由于猎户座和ti4430解码时调用的都是neon,解码能力不会有太大区别。所以说到最后ti4430和猎户座的体验基本不相上下,一样非常流畅。不过ti4430的芯片面积比猎户座小太多了。因此发热量比起猎户座也会好很多。所以论cpu的综合素质,ti4430在双核a9里面是最优秀的,没有之一。 再看gpu,ti4430使用的是超频版的sgx540,将原来的运行频率从200mhz提升至300mhz,当然性能提升没那么夸张,只有50%左右,不过已经强过了gefoce ulp了。power vr的gpu胜在兼容性最强,除了nv独占的游戏,所有的游戏都少不了它的数据包。而gs2上的mali400,虽然比超频版sgx540的性能还要强上大概50%,但是其支持的贴图格式单一,并且不兼容许多主流特效,造成了兼容性非常差,强大的性能反倒是转变成了发热量,并变成了累赘。所以在gpu 上,ti4430在双核中也是综合素质最高的仅输于四核的tegra3。 由于高通的8260集成了基带芯片,所以封装面积达到了出奇的196mm2。不过CPU面积大概和TI4430差不多大。由于蝎子核心的同频效能不如cortax A9核

精简8位cpu设计报告

精简8位cpu实验设计报告 实验介绍: 实验分为两个部分,第一部分为16*8 ROM 设计与仿真 第二部分为SAP-1 设计与仿真 实验流程: ①16*8 ROM 的设计与仿真 Rom16_8.VHDL LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_ARITH.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; ENTITY ROM16_8 is PORT( DATAOUT :OUT STD_LOGIC_VECTOR(7 DOWNTO 0); --Data Output ADDR :IN STD_LOGIC_VECTOR(3 DOWNTO 0); --ADDRESS CE :IN STD_LOGIC --Chip Enable ); END ROM16_8; ARCHITECTURE a OF ROM 16_8 IS BEGIN DATA<=“00001001”WHEN ADDR=“0000”AND CE=‘0’--LDA 9H “00011010”WHEN ADDR=“0001”AND CE=‘0’ELSE --ADD AH “00011011”WHEN ADDR=“0010”AND CE=‘0’ELSE --ADD BH “00101100”WHEN ADDR=“0011”AND CE=‘0’ELSE --SUB CH “11100000”WHEN ADDR=“0100”AND CE=‘0’ELSE --OUT “11110000”WHEN ADDR=“0101”AND CE=‘0’ELSE --HLT “00010000”WHEN ADDR=“1001”AND CE=‘0’ELSE “00010100”WHEN ADDR=“1010”AND CE=‘0’ELSE “00011000”WHEN ADDR=“1011”AND CE=‘0’ELSE

CPU发展史

课程名称:微机原理 报告名称: CPU 的发展历程探究 ——Intel与龙芯 姓名:王永琦 指导教师:周维民 学院:机电工程与自动化学院 CPU的发展历程探究

CPU是中央处理器(Central_Processing_Unit)的缩写,它由控制单元、逻辑单元和存储单元三大部分组成,可以进行运算、分析、判断并控制计算机各部分协调工作。随着集成电路加工工艺的进步和计算机体系结构的发展,CPU获得了迅猛的发展,并对现代信息社会产生了深远的影响,被誉为20世纪最伟大的发明之~。 在微机的各种部件中,CPU是~核心的部件,CUP的运行速度和性能在很大程度上决定了微机的整体性能。随着电子技术的发展,CPU的集成度越来越高,其运行速度也在成倍地增长,从而促进了微机技术的发展。从某种角度来讲,微机技术的发展和CPU的发展是密切相关。 计算机的发展主要表现在其核心部件——微处理器的发展上,每当~款新型的微处理器出现时,就会带动计算机系统的其他部件的相应发展,如计算机体系结构的进~步优化,存储器存取容量的不断增大、存取速度的不断提高,设备的不断改进以及新设备的不断出现等, 70年代初期,大规模集成电路技术的发展,使运算器和控制器(即CUP)能集成在一个芯片上,像这样的芯片就称为微处理器。微处理器决定了微机的型号,速度和档次。在评价微机的性能时,首先应该了解其微处理器的性能。 目前世界上能生产CPU的厂商主要有Intel、AMD、IBM、Motorola和台湾的威盛等,其中Intel占据了约75%的市场份额。按照处理信息的字长,CPU可以分为8位、16位、32位和64位等。如果把计算机比作~个人,CPU就是他的心脏,其重要作用是不言而喻的。 目前的计算机大都采用冯·诺依曼结构,即以存储程序原理为基础,由程序通过~系列的指令来实现~定的功能。CPU执行程序所需时间为: P=I×C×T 式中,I为程序编译后的机器指令数,C为执行每条机器指令所需的平均机器周期,T为每个机器周期的执行时间。P越少,CPU的性能就越好。因此,CPU 的性能与I、C和T三个因素有关。其中,T依赖于CPU硬件本身,由半导体材料和加工工艺决定,I和C则依赖于CPU软件及硬件,由计算机体系结构的设计

智能手机CPU及GPU介绍

移动设备的芯片 prajnamas发布于2011 年08 月20 日 | 1条评论 如果正在读文章的你,曾经有过配机的经历,那么对CPU、显卡、内存和硬盘这些东西一定不会陌生。事实上,移动设备(手机、平板等等)也有CPU、显卡、内存和“硬盘”这些东西,架构与电脑差距不大。 小小的手机居然放得下这么多东西?事实上,手机虽然架构与电脑完全一样,但形态上却不太一样。手机芯片集成了CPU、显卡和内存等等一系列组件,并且用最新的制程进行加工,其体积非常之小(只相当于成年人的小指指甲盖大小)。下图是iPhone 4内部的A4大小: 图上的Flash意指闪存,对移动设备而言相当于电脑的“硬盘”。A4 + 闪存的功能即相当于整个台机之上的CPU、显卡、内存、主板和硬盘集合,小小体积,巨大能量。本文主要想为大家介绍一下移动设备芯片之上的CPU与显卡,细数各家之长,让大家明白Android所用芯片与iPhone/iPad的不同。 因为这是一个产业链

移动设备明显已经成为产业链。手机的每个部件都会有相应的供应商,音频、视频、屏幕、通信、摄像头、闪存等等。芯片自然也是一样,大名鼎鼎的高通、Nvidia、德州仪器都出售移动设置芯片;而且借此东风,还活得挺好。 如果说市面上Android 机器所用的芯片着着实实花了你的眼,那么小编可以告诉您一句,其实它们都出自一家厂商。你震惊了吗?这家厂商就是过去不显水不露水的ARM,当然最近借移动设置东风,确实火了一把。 与桌面CPU不同的是,移动设备CPU只有一家寡头,那就是ARM 。它的营销模式与Intel/AMD 不一样的是,Intel/AMD 自己生产CPU然后出售;ARM 只授权核心技术,得到授权的厂商在进行深加工后自行联系芯片代工厂进行生产。得到ARM授权的厂商有但不仅限于高通、Nvidia、德州仪器、苹果、三星、LG、索尼爱立信。 所以,市面上那些乱花渐欲迷人眼的各种芯片,背后都只有一家ARM。ARM在移动设备上获得成功的原因有很多,营销模式是其一,极度省电是其二。它的计算能力或许不及 Intel/AMD的CPU那么强悍,但是移动设备更看重的是效能比(同等电量所能支持的运算),这点ARM确实远超Intel/AMD,在次世代能够成功也就是顺理成章了。 当然,ARM的成功自然也遭到了Intel的嫉妒。Intel出产了一款叫做Atom的低功耗芯片用以对抗ARM,但“得益”于自身对市场的不熟悉以及控制功耗方面不过关,至今也未能获得成功。 CPU一家独大,但显卡却是百家争鸣 相比较于ARM在CPU领域一家独大,移动设备显卡却是百家争鸣,目前数得出来的就有PowerVR系列、AMD Adreno系列、Nvidia Tegra系列以及ARM新兼并的Mali架构。 PowerVR系列是目前移动设备上占有率最大的显卡,掌权者是Imagination公司。使用PowerVR的公司数不胜数,其中就包括苹果(iPhone 4/iPad/iPad2以及即将上市的iPhone 5)和索尼(Sony的PS Vita)。事实上,苹果公司有一部分Imagination的股份。 Adreno系列显卡昔日属于AMD旗下,但在2008年已经出售给了高通。高能同时也从ARM 处得到了授权,结合两者制作出了自家的芯片MSM8x xx系列。小编会在第三节详细介绍。 而一直在桌面显卡占据半边天的Nvidia,也用从ARM处得到的授权以及自家的显卡技术,制作出了Tegra系列芯片。由于Nvidia在芯片生产上浸淫已久,其所用的制程一直领先于其它芯片厂商;但功耗却显得略高。尽管如此,它还是占领了大量Android平板。

CPU简介60232

【IT百科】之春眠不觉晓,CPU知多少?(有奖问答+科普) 问题:(提示:答案可能需要百度哦~) 要求:回答的设置回复可见,编辑无效;回答问题先写问题序号,再写答案。 1.目前,桌面级最高端的CPU是? 2.除了文中介绍的两大CPU品牌,你还知道哪些CPU品牌呢?(写出一个即可) 3. Intel至强系列处理器是什么领域的CPU 4. AMD别称是什么 5. Intel TurboBoost技术的中文名 奖励:回答正确的(只需要其中一条哦~)SP+10 首先上图0 0! (你好,我是正面照)

(你好,我是背面照) 以上这个其貌不扬的方块,就是CPU了~ CPU:是Central Processing Unit的缩写,中文名:中央处理器。虽然只是小小的薄薄的一块,但它却是一台计算机的运算核心和控制核心。大家可以把CPU比作是一个人的大脑。 CPU使用率 人的大脑同一时间思考的东西是有限的,同样,CPU的运算能力也是有限的哦。电脑在运行程序的时候,会占用到CPU的资源,而程序占用CPU资源的大小,就是我们常说的CPU使用率。CPU使用率通用办法就是调出任务管理器查看(win7系统:ctrl+shift+es c,XP系统:ctrl+alt+del)若是win7系统,还可以直接在桌面右键->小工具->CPU仪表盘来查看CPU的使用率。

任务管理器查看CPU使用率(的萌照【雾) Q:CPU占用率过高有什么坏处? A:最好不要长期停在100%,对CPU性能没影响。但是CPU占用长期保持100%会引起温度过高,会使CPU附近主版电路和芯片因温度过高起变化,甚至烧坏CPU。尤其在是在夏天,会简短CPU及主板的寿命,因此夏天要注意给CPU降温。 CPU的性能指标 我们常常听别人说,这个CPU是I7的啊!性能好强劲~那么,到底CPU的性能是怎样看的呢? 另:查看自家CPU的详细状况,请用某只名为CPU-Z的软件。

计算机硬件课程设计报告(cpu设计)

计算机硬件课程设计 设计报告 学号: 姓名:成绩: 学号: 姓名:成绩: 东南大学计算机科学与工程系 二0 10 年11 月

一、设计名称: My CPU的设计 二、本设计的主要特色: 1、熟悉挂总线的逻辑器件的特性和总线传送的逻辑实现方法。 2、掌握半导体静态存储器的存取方法。 三、设计方案: 1. 数据格式——8位二进制定点表示 2. 指令系统——CPU的指令格式尽量简单规整,这样在硬件上更加容易实现。 7条基本指令:输入/输出,数据传送,运算,程序控制。 指令格式:Array 7 6 5 4 3 2 1 0 两种寻址方式: 寄存器寻址Array 7 6 5 4 3 2 1 0 直接地址寻址,由于地址要占用一个字节,所以为双字节指令。 7条机器指令:

IN R目:从开关输入数据到指定的寄存器R目。 OUT R源:从指定的寄存器R源中读取数据送入到输出缓冲寄存器,显示灯亮。 ADD R目,R源:将两个寄存器的数据相加,结果送到R目。 JMP address : 无条件转移指令。 HALT : 停机指令。 LD R目,address : 从内存指定单元中取出数据,送到指定寄存器R 目。 ST address , R 源: 从指定的寄存器R源中取出数据,存入内存指定单元。

Address(内存地址) 3. CPU内部结构 4.数据通路设计 根据指令系统,分析出数据通路中应包括寄存器组、存储器、运算器、多路转换器等,采用单总线结构。 通用寄存器组:

运算器: 存储器: 多路转换器:

输出缓冲器: 5.控制器设计 控制通路负责整个CPU的运行控制,主要由控制单元和多路选择器MUX 完成。在每一个时钟周期的上升沿指令寄存器IR 从内存中读取指令字后,控制单元必须能够根据操作码,为每个功能单元产生相应主控制信号,以及对ALU 提供控制信号。对于不同的指令,同一个功能单元的输入不同,需要多路选择器MUX 来对数据通路中功能单元的输入进行选择。

微处理器发展史

微处理器发展史 CPU发展史 CPU也称为微处理器,微处理器的历史可追溯到1971年,当时INTEL公司推出了世界上第一台微处理器4004。 它是用于计算器的4位微处理器,含有2300个晶体管。从此以后,INTEL便与微处理器结下了不解之缘。 下面以INTEL公司的80X86系列为例介绍一下微处理器的发展历程。 1978和1979年, INTEL公司先后推出了8086和8088芯片,它们都是16位微处理器, 内含29000个晶体管,时钟频率为4.77MHz,地址总线为20位, 可使用1MB内存。它们的内部数据总线都是16位,外部数据总线8088是8位,8086是16位。

1981年 8088芯片首次用于IBMPC机中,开创了全新的微机时代。最早的i8086/8088是采用双列直插(DIP)形式封装, 从i80286开始采用方形BGA扁平封装(焊接), 从i80386开始到Pentiumpro开始采用方形PGA(插脚),1982年, INTEL推出了80286芯片,该芯片含有13.4万个晶体管,时钟频率由最初的6MHz逐步提高到20MHz。 其内部和外部数据总线皆为16位,地址总线24位,可寻址16MB内存。80286有两种工作方式:实模式 和保护模式。 1985年 INTEL推出了80386芯片,它是80X86系列中的第一种32位微处理器,内含27.5万个晶体管, 时钟频率为12.5MHz,后提高到20MHz,25MHz,33MHz。

其内部和外部数据总线都是32位,地址总线也是32位,可寻址4GB内存。 它除具有实模式和保护模式外,还增加了一种叫虚拟86的工作方式,可以通过同时模拟多个8086 处理器来提供多任务能力。 除了标准的80386芯片(称为80386DX)外,出于不同的市场和应用考虑,INTEL又陆续推出了一些 其它类型的80386芯片: 80386SX、80386SL、80386DL等。 1988年 推出的80386SX是市场定位在80286和80386DX之间的一种芯片,其与80386DX的不同在于 外部数据总线和地址总线皆与80286相同,分别是16位和24位(即寻址能力为16MB)。 1990年 推出的80386SL和80386DL都是低功耗、节能型芯片,主要用于便携机和节能型台式机。

CPU的原理介绍和如何设计和生产CPU的详细资料说明

CPU的原理介绍和如何设计和生产CPU的详细资料说明 我们都认为CPU是计算机的“大脑”,但这到底是什么意思呢?用数十亿个晶体管让你的计算机工作到底是怎么回事?在这篇文章中,我们将专注于计算机硬件设计,涵盖计算机工作原理的来龙去脉。 文章将涵盖计算机架构、处理器电路设计、超大规模集成电路(VLSI)、芯片制造和未来的计算趋势。如果你一直对处理器内部工作原理的细节感兴趣,请继续关注,因为这就是你想要了解的内容。 CPU的原理 我们将从一个非常高的层次开始,了解处理器的功能,以及各个组成部分在功能设计中是如何组合在一起的。这包括处理器内核、内存层次结构、分支预测等等。首先,我们需要知道CPU的基本定义。最简单的解释是CPU遵循一组指令,对一组输入执行某些操作。例如,可能是从内存中读取一个值,然后将其加上另一个值,最后将结果存储在不同位置的内存中。如果前一次计算的结果大于零,那么也可能是更复杂的事情,如将两个数字相除。 当你想要运行一个像操作系统或游戏这样的程序时,程序本身就是C++PU要执行的一系列指令。这些指令从内存中加载,并在一个简单的处理器上逐一执行,直到程序完成。当软件开发人员用高级语言(如C++或Python)编写程序时,处理器无法理解。它只能理解1和0,所以我们需要一种方式来表示这种格式的代码。 程序被编译成一组称为汇编语言的低级指令,作为指令集体系结构(ISA)的一部分。这是CPU用来理解和执行的一组指令。一些最常见的ISA是x86、MIPS、ARM、RISC-V 和PowerPC。就像用C++编写函数的语法与用Python编写相同函数的语法不同一样,每种ISA也有不同的语法。 这些ISA可以分为两大类:固定长度和可变长度。RISC-V ISA使用固定长度的指令,这意味着每条指令中一定数量的预定义位决定了它是哪种类型的指令。这与x86不同,x86

CPU课程设计报告

课程设计报告 课程片上计算机系统 题目 CPU模型机设计 班级 专业 学生 学号 指导教师 2014年7 月 3 日 目录: 1.课程设计的目的及要求 (3) 2.处理器的设计思想和设计内容 (3)

3.设计处理器的结构和实现方法 (3) 4.模型机的指令系统 (4) 5.处理器的状态跳转操作过程 (4) 6. CPU的Verilog代码 (7) 7. 模型机在Quartus II环境下的应用 (19) 8. 仿真波形 (19) 9. 课程设计的总结 (21) 一.课程设计的目的及要求: (一)目的: 1.掌握RISC CPU与内存数据交换的方法。 2.学会指令格式的设计与用汇编语言编写简易程序。 3.能够使用VHDL硬件描述语言在QuartusⅡ软件环境下完成CPU模型机的 设计。

(二)要求: 1.以《计算机组成与设计》书中123页的简化模型为基础更改其指令系 统,形成设计者的CPU, 2.在Quartus II环境下与主存连接,调试程序,观察指令的执行是否达 到设计构想。 二.处理器的设计思想和设计内容: 处理器的字长为16b;包括四种指令格式,格式1、格式2、格式3的指令字长度为8b,格式4的指令字长度为16b;处理器内部的状态机包括七个状态。(一)关于修改后的CPU: 一共设计25条指令,主要包括空操作指令、中断指令、加法指令、减法指令、加法指令、四种逻辑运算指令、比较、算术移位操作指令、逻辑移位操作指令、加减1指令、加减2指令、数据传输指令、转移类指令、读写指令、特权指令等等。 (二)关于RAM: 地址线设置成8bits,主存空间为4096words。 三.设计处理器的结构和实现方法: (指令格式) 格式1:寄存器寻址方式 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OP Rx Ry 空白 格式2:寄存器变址寻址方式 OP Ry 空白 格式3:立即数寻址方式 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OP I 空白 格式4:无操作数寻址方式 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OP 空白空白 格式5:直接寻址方式 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OP Addr 内存(2的12次方) 四.模型机的指令系统 CPU的指令集: 操作码OP IR(15..1 2) 指令 格式 指令的助记指令的内容

cpu发展历程

编者按:任何东西从发展到壮大都会经历一个过程,CPU能够发展到今天这个规模和成就,其中的发展史更是耐人寻味。作为电脑之“芯”的CPU也不例外,本文让我们进入时间不长却风云激荡的CPU发展历程中去。在这个回顾的过程中,我们主要叙述了目前两大CPU巨头——Intel和AMD的产品发展历程,对于其他的CPU公司,例如Cyrix 和IDT等,因为其产品我们极少见到,篇幅所限我们就不再累述了。 一、X86时代的CPU CPU的溯源可以一直去到1971年。在那一年,当时还处在发展阶段的INTEL公司推出了世界上第一台微处理器4004。这不但是第一个用于计算器的4位微处理器,也是第一款个人有能力买得起的电脑处理器!4004含有2300个晶体管,功能相当有限,而且速度还很慢,被当时的蓝色巨人IBM以及大部分商业用户不屑一顾,但是它毕竟是划时代的产品,从此以后,INTEL便与微处理器结下了不解之缘。可以这么说,CPU的历史发展历程其实也就是INTEL公司X86系列CPU 的发展历程,我们就通过它来展开我们的“CPU历史之旅”。 1978年,Intel公司再次领导潮流,首次生产出16位的微处理器,并命名为i8086,同时还生产出与之相配合的数学协处理器i8087,这两种芯片使用相互兼容的指令集,但在i8087指令集中增加了一些专门用于对数、指数和三角函数等数学计算指令。由于这些指令集应用于i8086和i8087,所以人们也这些指令集统一称之为X86指令集。虽然以后Intel又陆续生产出第二代、第三代等更先进和更快的新型

CPU,但都仍然兼容原来的X86指令,而且Intel在后续CPU的命名上沿用了原先的X86序列,直到后来因商标注册问题,才放弃了继续用阿拉伯数字命名。至于在后来发展壮大的其他公司,例如AMD和Cyrix等,在486以前(包括486)的CPU都是按Intel的命名方式为自己的X86系列CPU命名,但到了586时代,市场竞争越来越厉害了,由于商标注册问题,它们已经无法继续使用与Intel的X86系列相同或相似的命名,只好另外为自己的586、686兼容CPU命名了。1979年,INTEL公司推出了8088芯片,它仍旧是属于16位微处理器,内含29000个晶体管,时钟频率为4.77MHz,地址总线为20位,可使用1MB内存。8088内部数据总线都是16位,外部数据总线是8位,而它的兄弟8086是16位。1981年8088芯片首次用于IBM PC机中,开创了全新的微机时代。也正是从8088开始,PC机(个人电脑)的概念开始在全世界范围内发展起来。 1982年,许多年轻的读者尚在襁褓之中的时候,INTE已经推出了划时代的最新产品枣80286芯片,该芯片比8006和8088都有了飞跃的发展,虽然它仍旧是16位结构,但是在CPU的内部含有13.4万个晶体管,时钟频率由最初的6MHz逐步提高到20MHz。其内部和外部数据总线皆为16位,地址总线24位,可寻址16MB内存。从80286开始,CPU的工作方式也演变出两种来:实模式和保护模式。 Intel 80286处理器 1985年INTEL推出了80386芯片,它是80X86系列中的第一种32位

计算机CPU发展历史及其最新技术1

计算机CPU发展历史及其最新技术 班级:计科1001班姓名:周标学号:20102139 一、计算机CPU的发展历史 从20世纪70年代开始,由于集成电路的大规模使用,把本来需要由数个独立单元构成的CPU集成为一块微小但功能空前强大的微处理器时。CPU才真正在电子计算机产业中得到广泛应用。 1971年,Intel公司推出了世界上第一台真正的微处理器4004。 1978年,Intel公司生产出16位的微处理器,称之为X86指令 1981年,8088芯片首次用于IBM的PC(个人电脑Personal Computer)机中,开创了全新的微机时代。也正是从8088开始,PC的概念开始在全世界范围内发展起来。 1990年,Intel公司推出的80386 SL和80386 DL都是低功耗、节能型芯片,主要用于便携机和节能型台式机。增加了一种新的工作方式:系统管理方式。当进入系统管理方式后,CPU 就自动降低运行速度、控制显示屏和硬盘等其它部件暂停工作,甚至停止运行,进入“休眠”状态,以达到节能目的。 Pentium(奔腾)微处理器于1993年三月推出,它集成了310万个晶体管。它使用多项技术来提高cpu性能,主要包括采用超标量结构,内置应用超级流水线技术的浮点运算器,增大片上的cache容量,采用内部奇偶效验一边检验内部处理错误等。 多能奔腾(Pentium MMX)的正式名称就是“带有MMX技术的Pentium”,是在1996年底发布的。从多能奔腾开始,英特尔就对其生产的CPU开始锁倍频了,但是MMX的CPU超外频能力特别强,而且还可以通过提高核心电压来超倍频,所以那个时候超频是一个很时髦的行动。超频这个词语也是从那个时候开始流行的。 K5是AMD公司第一个独立生产的x86级CPU,发布时间在1996年。K5的性能非常一般,整数运算能力不如Cyrix的6x86,但是仍比Pentium略强,浮点运算能力远远比不上Pentium,但稍强于Cyrix。综合来看,K5属于实力比较平均的那一种产品。AMD1997年又推出了K6。K6这款CPU的设计指标是相当高的,它拥有全新的MMX指令以及64KB L1 Cache,整体性能要优于奔腾MMX,

主流手机CPU及机型介绍(多图表说明)

主流手机CPU及机型介绍 主流手机CPU及机型介绍!手机CPU生产厂商介绍!高通QSD8250、MSM8255、TI OMAP 3630、nVIDIA Tegra 2介绍。 近年来随着智能手机的不断发展,其功能越来越强大,已经能处理很多原本只能在PC端完成的事情。现在的智能手机已经算得上是一台超微型的电脑,从硬件结构上来看,CPU、内存、硬盘(存储器)、GPU等一个也不少。或许未来的某一天,我们能像电脑一样自行组装一台手机。 现在许多厂商在推广手机产品的时候都打出“这手机采用1GHz主频高性能CPU”等的宣传口号,没错,决定智能手机性能的一大因素就是他的“芯”,但并不能以主频来简单划分CPU!以下笔者将给大家介绍一下现在主流手机CPU和其相关机型,方便大家选购。

目前主流的手机CPU可以分为单核(Cortex-A8)和双核(Cortex-A9),在同一工艺和主频下,双核CPU的性能一般均比单核的强,同时在多任务方面的性能也是单核CPU所不能达到的。目前性能最强的手机CPU是三星i9100所采用的,Exynos4210,也叫猎户双核。 1.CPU生产厂商介绍 传统的桌面处理器领域只有Intel和AMD两大巨头,而在手机处理器领域则有多家厂商相互竞争,其中以高通、德州仪器、nVIDIA三家的规模和影响力最大。 高通(Qualcomm)公司以住给人的印象是在专利方面比较出名,但是随着智能手机的不断发展,其手机硬件产品也逐渐成为市场的焦点。高通公司旗下有著名的芯片组解决方案--Snapdragon,该方案结合了业内领先的3G/4G移动宽带技术与高通公司自有的基于ARM的微处理器内核、强大的多媒体功能、3D 图形功能和GPS引擎。而Snapdragon众多芯片组中MSM7227、MSM7230、QSD8250、MSM8255等产品应用在许多的热门手机上,详细内容会在后面介绍。 德州仪器(Texas Instruments),简称TI,是全球领先的半导体公司,为现实世界的信号处理提供创新的数字信号处理(DSP)及模拟器件技术。除半导体业务外,还提供包括传感与控制、教育产品和数字光源处理解决方案。德州仪器推出不少著名的手机处理器,其中以OMAP 3430和3630最为人熟悉。 nVIDIA(官方中文名称:英伟达),是一家以设计显示芯片和主板芯片组为主的半导体公司。nVIDIA亦会设计游戏机内核,例如Xbox和 PlayStation 3。

《单周期CPU设计》实验报告

《计算机组成原理与接口技术实验》 实验报告 学院名称: 学生姓名: 学号: 专业(班级): 合作者: 时间:2016 年4 月25 日 成绩: ________ 实验二: 一. 实验目的 1.掌握单周期CPU数据通路图的构成、原理及其设计方法; 2.掌握单周期CPI的实现方法,代码实现方法; 3.认识和掌握指令与CPU勺关系; 4.掌握测试单周期CPI的方法。 二. 实验内容 设计一个单周期CPU,该CPU至少能实现以下指令功能操作。需设计的指令

与格式如下:

==>算术运算指令 功能:rd Jrs + rt 。 reserved为预留部分,即未用,一般填“0 (2)addi rt , rs , immediate 功能:rt J rs + (sign-extend) immediate ;immediate 符号扩展再参加“加”运算(3) sub rd , rs , rt 完成功能:rd J rs - rt ==>逻辑运算指令 (4)ori rt , rs , immediate 功能:rt Jrs | (zero-extend) immediate ; immediate 做“ o ”扩展再参加“或”运算(5) and rd , rs , rt 功能:rd Jrs & rt ;逻辑与运算 (6)or rd , rs , rt 功能:rd Jrs | rt ;逻辑或运算。 ==>传送指令 功能:rd Jrs + $0 ; $0=$zero=0。 ==>存储器读/写指令 (8)sw rt , immediate( rs)写存储器 功能:memory[rs+ (sign-extend) immediate ] J rt ; immediate 符号扩展再 相加。

CPU的发展历程

CPU的发展历程 CPU也称为微处理器,微处理器的历史可追溯到1971年,当时INTEL公司推出了世界上第一台微处理器4004。它是用于计算器的4位微处理器,含有2300个晶体管。从此以后,INTEL便与微处理器结下了不解之缘。下面以INTEL公司的80X86系列为例介绍一下微处理器的发展历程。 1978和1979年,INTEL公司先后推出了8086和8088芯片,它们都是16位微处理器,内含29000个晶体管,时钟频率为4.77MHz,地址总线为20位,可使用1MB内存。它们的内部数据总线都是16位,外部数据总线8088是8位,8086是16位。1981年8088芯片首次用于IBMPC机中,开创了全新的微机时代。最早的i8086/8088是采用双列直插(DIP)形式封装,从i80286开始采用方形BGA扁平封装(焊接),从i80386开始到Pentiumpro开始采用方形PGA(插脚),1982年,INTEL推出了80286芯片,该芯片含有13.4万个晶体管,时钟频率由最初的6MHz逐步提高到20MHz。其内部和外部数据总线皆为16位,地址总线24位,可寻址16MB内存。80286有两种工作方式:实模式和保护模式。 1985年INTEL推出了80386芯片,它是80X86系列中的第一种32位微处理器,内含27.5万个晶体管,时钟频率为12.5MHz,后提高到20MHz,25MHz,33MHz。其内部和外部数据总线都是32位,地址总线也是32位,可寻址4GB内存。它除具有实模式和保护模式外,还增加了一种叫虚拟86的工作方式,可以通过同时模拟多个8086处理器来提供多任务能力。 除了标准的80386芯片(称为80386DX)外,出于不同的市场和应用考虑,INTEL 又陆续推出了一些其它类型的80386芯片:80386SX、80386SL、80386DL等。 1988年推出的80386SX是市场定位在80286和80386DX之间的一种芯片,其与80386DX的不同在于外部数据总线和地址总线皆与80286相同,分别是16位和24位(即寻址能力为16MB)。 1990年推出的80386SL和80386DL都是低功耗、节能型芯片,主要用于便携机和节能型台式机。80386SL与80386DL的不同在于前者是基于80386SX的,后者是基于80386DX的,但两者皆增加了一种新的工作方式:系统管理方式(SMM)。当进入系统管理方式后,CPU就自动降低运行速度、控制显示屏和硬盘等其它部件暂停工作,甚至停止运行,进入"休眠"状态,以达到节能目的。 1989年INTEL推出了80486芯片,这种芯片实破了100万个晶体管的的界限,集成了120万个晶体管。其时钟频率从25MHz逐步提高到33MHz、50MHz。80486是将80386和数学协处理器80387以及一个8KB的高速缓存集成在一个芯片内,并且在 80X86系列中首次采用了RISC技术,可以在一个时钟周期内执行一条指令。它还采用了突发总线方式,大大提高了与内存的数据交换速度。由于这些改进,80486的性能比带有80387数学协处理器的80386DX提高了4倍。 80486和80386一样,也陆续出现了几种类型。上面介绍的最初类型是80486DX。

OPPO 公司简介

OPPO 【公司简介】 OPPO是一家在全球注册,以设计、研发、生产时尚数码产品为主的大型高科技企业,拥有雄厚的研发实力,主要产品为智能手机、蓝光DVD。在品牌理念上追求“至美,所品不凡”,OPPO 的目标是成为全球知名的公司,树立中国企业在全世界健康长久的典范。 OPPO旗下手机尤其是智能手机和蓝光DVD一直引领业界潮流; X903为OPPO第一款全键盘智能手机,经典之作;Finder发布之时6.65mm机身为全球最薄的智能手机;U2为市面上首款将自拍美颜概念融入拍照的手机;Find 5为首款搭载1080P屏幕的安卓智能手机;N1为首款配备旋转摄像头的大屏拍照手机。这几款手机在业界均为高质量且对整个手机行业有较大的引领作用。 【领导人—陈明永】 中文名:陈明永 英文名:Tony Chen 国籍:中国 出生地:四川省万源市 出生日期:1969年7月3日 职业:商业,企业家 主要成就:参与创建步步高集团,OPPO创始人 1992年毕业于浙江大学信息与电子工程系 1992年8月到1995年,就职于中山小霸王电子工业公司,在公司担任助理总经理 1995年,随段永平离开小霸王,参与创建步步高公司,主要负责影音事业,包括:步步高VCD、DVD等, 1995—2000年期间,逐步带领步步高DVD成为行业巨擘。 2000年,步步高视听电子全权交由陈明永负责。

2001年, OPPO开始全球注册,设计、研发、生产时尚数码产品,旗下主营智能手机、蓝光DVD,陈明永出任 CEO; 【OPPO发展历程】 2004年,OPPO(中国)公司成立; 2005年,OPPO推出首款MP3;05年的X9,更是是国产MP3的一个奇迹,不仅仅是OPPO的开门红之作,从某种意义上说,更是国产mp3真正意义上的开门红之作,她是第一个,毫不逊色于国际大厂任何一个产品的里程碑式的经典之作; 2006年,OPPO推出首款MP4; 2008年,陈明永一次偶然华强北之行,发现当时手机市场鱼龙混杂,产品参差不齐,尤其是细节做工很是粗糙,他开始产生了想要做一款至美手机的想法;同年,OPPO进军手机市场;5月OPPO首款功能机“笑脸手机” A103问世; 2009年4月,OPPO手机外销工作正式启动;7月,OPPO移动通信荣获“全国售后服务行业十佳单位”; 2011年8月,OPPO首款全键盘智能手机X903上市,标志着OPPO正式进军智能机领域。X903项目历经三年的研发时间、三次平台切换、600余人的倾心投入。通过这款产品,OPPO对智能机市场的理解更加深刻;9月,NearMe系列产品上线,OPPO移动互

cpu的分类介绍和区别(inter系列的)

intel cpu 分类i7、i5、i3、T系列、P系列 现在市场的CPU有T系列、P系列、E系列、还有i3、i5、i7. T系列,是intel 双核,主要应用于笔记本。包括奔腾双核和酷睿双核,2以下的,比如T2140,是奔腾双核。2以上,T5800、T9600,数字越大功能越强。当然还有,酷睿双核要比奔腾双核好,奔腾的时代已经过去了。 P系列,也是inter酷睿双核的升级版,旨在减少功耗。同数字的P要好于同数字的T,比如P8600好于T8600. E系列,同T一样,是inter双核,也包括奔腾双核和酷睿双核,但是应用于台式机。 i7是inter高端产品,四核。 i5是i7的精简版。 i3是i5的精简版,严格来讲i3甚至不算4核,用的是双核的超线程模拟。 i7/i5/i3就没有分笔记本台式机了。 现在就很明了了功能i7>i5>i3>(P>T)

至于E,它是和P、T同一个时代的产物,主要看主频、缓存这些参数。 网上还有一篇很相信的介绍,先贴过来吧! P系列:笔记本的CPU,性能强于T系列 T系列:为笔记本CPU,大体为后边数字越大性能越强 Q系列:英特尔桌面平台最早推出的4核产品,不是原生4核心,相当于只是将两个酷睿双核CPU封装在一起 E系列:桌面平台CPU,由低端入门奔腾E系列至酷睿E系列中高端都有 Q是指台式的45nm和65nm酷睿四核CPU E是指台式的65nm酷睿双核CPU(如E6300)和台式的65nm的奔腾双核CPU(如E2160) P是指笔记本的45nm酷睿双核CPU(如P8400) T是指笔记本的65nm酷睿双核CPU(如T7500) 和笔记本的45nm酷睿双核CPU(如T8100) 和笔记本的65nm奔腾双核CPU(如T2300) 和笔记本的45nm奔腾双核CPU(如T3200) -------------- I3:为英特尔在明年将推出的新系列CPU,笔记本及桌面平台都有,采用最新32纳米工艺,双核的集成显示核心 I7:英特尔08年底推出的全新系列CPU(桌面平台),也是目前最高端性能最强系列(4核8线程),笔记本也有 I5:推出I7后10个月,再推出的产品,性能限次于I7,定位中高端,同样是原生4 核心,但不支持超线程,所以只有4线程,一定程度上是I7缩水版 -------------- 大体性能排列: 笔记本系列:I7>I3>P>T 桌面平台系列:I7>I5/I3>Q>E ****************************************************************** 最新酷睿i3、i5、i7处理器的区别是什么?特点?好处? Core i7

CPU设计实验报告

实验中央处理器的设计与实现 一、实验目的 1、理解中央处理器的原理图设计方法。 2、能够设计实现典型MIPS的11条指令。 二、实验要求 1、使用Logisim完成数据通路、控制器的设计与实现。 2、完成整个处理器的集成与验证。 3、撰写实验报告,并提交电路源文件。 三、实验环境 VMware Workstations Pro + Windows XP + Logisim-win-2.7.1 四、操作方法与实验步骤 1、数据通路的设计与实现 数据通路主要由NPC、指令存储器、32位寄存器文件、立即数扩展部件、ALU、数据存储器构成。其中指令存储器和数据存储器可直接调用软件库中的ROM和RAM元件直接完成,其余部件的设计如图所示: 图1.1 NPC

图1.2 32位寄存器

图1.3 立即数扩展部件 图1.4 ALU 2、控制器的设计与实现 控制器的主要设计思想如图所示 图2.1 控制器设计思想 输入 1 1 0

输出R-type ORI LW SW BEQ JUMP RegDst 1 0 0 x x x ALUSrc 0 1 1 1 0 x MemtoReg0 0 1 x x x RegWrite 1 1 1 0 0 0 MemWrite0 0 0 1 0 0 Branch 0 0 0 0 1 0 Jump 0 0 0 0 0 1 Extop x 0 1 1 1 x ALUop2 1 0 0 0 0 x ALUop1 x 1 0 0 x x ALUop0 x 0 0 0 1 x ALUop[2:0] Funct[3:0] 指令ALUctr[2:0] 111 0000 add 010 111 0010 sub 110 111 0100 and 000 111 0101 or 001 111 1010 slt 111 010 xxxx ori 001 000 xxxx Lw/sw 010 011 xxxx beq 110 表2.1 控制器设计真值表

PowerPC处理器发展历程

PowerPC处理器的发展历程 摘要:本文简述freescale的powerpc处理器的发展历程,按powerpc处理器应用领域对处理器进行了进行分类和介绍。 关键词:嵌入式处理器;powerpc;powerquicc;power qoriq 中图分类号:tp752 一般情况下的powerpc,指的是使用powerpc指令集的处理器。powerpc,最初的含义却不是power,而是performance optimized with enhanced risc;pc指的是performance computing。powerpc 系列是源自于power架构的设计,但进行了大量的改动。例如,power pc是open-endian设计,而power是大尾段设计;power pc希望提供更强的浮点处理能力和多线程处理能力。总的来说,这两种类型的cpu并没有太大的差别,power pc保留了绝大部分power指令,许多应用只要重新编译,就可以分别在两个平台上运行。 随着powerpc的发展,使用powerpc构架的处理器已经形成了庞大的家族,在通信、工控、航天国防等要求高性能和高可靠性的领域得到广泛应用。 目前,主流的powerpc处理器制造商有ibm、freescale、amcc、lsi等。而在嵌入式领域freescale的powerpc占主导地位,尤其有e2v公司对扩展温度powerpc的支持,广泛应用于航空国防领域。 1 freescale的powerpc系列 freescale公司是从motorola公司分离出来的公司,但是把motorola公司名下所有关于powerpc处理器的业务都归属到

相关主题
文本预览
相关文档 最新文档