当前位置:文档之家› 函数列与函数项级数一致收敛性解析

函数列与函数项级数一致收敛性解析

函数列与函数项级数一致收敛性解析
函数列与函数项级数一致收敛性解析

第十三章函数列与函数项级数

§1 一致收敛性

(一) 教学目的:

掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法.

(二) 教学内容:

函数序列与函数项级数一致收敛性的定义;函数序列与函数项级数一致收敛性判别的柯西准则;函数项级数一致收敛性的魏尔斯特拉斯判别法.

基本要求:

1)掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法.

(2) 较高要求:掌握狄利克雷判别法和阿贝尔判别法.

2、教学基本要求:理解并掌握函数列与函数项级数的概念及一致收敛的概念和性质;掌

握函数项级数的几个重要判别法,并能利用它们去进行判别;掌握一致收敛函数列与函数项级数的极限与和函数的连续性,可积性,可微性,并能应用它们去解决问题。3、教学重点难点:重点是函数列一致收敛的概念、性质;难点是一致收敛性的概念、判

别及应用。

(三) 教学建议:

(1) 要求学生必须掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项

级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别

法.

(2) 对较好学生可要求他们掌握狄利克雷判别法和阿贝尔判别法.

————————————————————一函数列及其一致收敛性

对定义在区间I 上的函数列E x x f n ∈},)({,设 E x ∈0,若数列 })({0x f n 收敛,则称函数列})({x f n 在点0x 收敛,0x 称为函数列})({x f n 收敛点;若数列 })({0x f n 发散,则称函数列})({x f n 在点0x 发散。

使函数列})({x f n 收敛的全体收敛点集合称为函数列})({x f n 收敛域( 注意定义域与收敛域的区别 )。

若函数列})({x f n 在数集E D ?上每一点都收敛,则称函数列})({x f n 在数集D 上收敛,这时D 上每一点x ,都有函数列的一个极限值

)()(lim x f x f n n =∞

与之对应,由这个对应关系所确定的函数,称为函数列})({x f n 的极限函数。

逐点收敛 ( 或称为“点态收敛” )的“N -ε”定义.

例1 对定义在) , (∞+∞-内的等比函数列)(x f n =n

x , 用“N -ε”定义

验证其收敛域为] 1 , 1 (-, 且

∞→n lim )(x f n = ∞→n lim n

x =?

??=<. 1 , 1 , 1 ||

, 0 x x

例2 )(x f n =

n

nx

sin . 用“N -ε”定义验证在) , (∞+∞-内∞→n lim )(x f n =0.

函数列的一致收敛性:

设函数列 })({x f n 在E 上收敛于 )(x f ,若对任意的0>ε ,存在自然数

)(εN N =,当 N n >时,对E 中一切 x 都有

ε<-)()(x f x f n

则称函数列)}({x f n 在E 上一致收敛于)(x f 。

注意 这里的 N 只与ε有关,与x 无关,这一点是一致收敛与逐点收敛的本质区别。

一致收敛的几何意义

对任给的ε-带 }|)(|;),({ε<-x f y y x ,总存在一个N ,N n >时,)(x f n 的图形全部落入这个ε-带内。 一致收敛情况图示

对任意0>ε,n 充分大时,)(x f n 将全部落入ε-带以内。

)}({x f n 收敛但不一致收敛的几何意义:

对任意 D x ∈, )()(lim x f x f n n =∞

→,但存在一个00>ε,对任意的N ,都可找到一

个0n ,尽管 N n >0,但 )(0x f n 总有一部分落在0ε带以外。

例 证明函数列

证明 1)函数列在 ]1,0[ 上收敛。 显然 对任意的]1,0[∈x , 0)(2

1→+=nx n

x f n

n 2)但 )(x f n 不一致收敛于0

先看一看函数列的图象(图中给出的是 n =8,20,50 的情况)

clf,x=0:1/100:1; y1=8*x./(1+64*x.^2); y2=20*x./(1+400*x.^2); y3=50*x./(1+2500*x.^2); plot(x,y1,x,y2,x,y3,'linewidth',2) hold on

plot([-0.1,1],[0,0],'b',[0,0],[-0.1,0.6],'b') axis([-0.1,1.2,-0.1,0.6])

legend('y1,n=8','y2,n=20','y3,n=50')

可以看出,对于 5.00<ε,无论 n 再大,)(x f n 的图象总有一部分落在0ε-带以外。

事实上存在 n x n 10=

, 000.

21|)()(|ε>=-x f x f n n , 所以该函数列是不一致收敛的。

例 函数列 }{n

x 在]1,0[上不一致收敛,但在 1,],0[<αα 上一致收敛。

先看看该函数列的图象

clf,x=0:1/100:1;

y1=x.^4;y2=x.^10;y3=x.^50; plot(x,y1,x,y2,x,y3,'linewidth',2)

对于10<ε,不管n 再大,n

x 的图象总有一部分落在0ε-带以外。

事实上,我们容易看出

n e n n ?→-1)11( 充分大时,3

1

)11(>-n n 所以该函数列在]1,0[上不一致收敛。

再看看该函数列在 1,],0[<αα 上的图象 clf,x=0:1/100:0.7;

y1=x.^13;y2=x.^18;y3=x.^20;

plot(x,y1,x,y2,x,y3,'b','linewidth',2),hold on plot([0,0.7],[0,0],'r',[0,0],[-0.02,0.02],'r') plot([0,0.7],[0.005,0.005],'m') axis([0,0.71,-0.01,0.02])

对任意的 0>ε,总存在N, 当 n>N 时,n

x 的图象将全部落入ε-带之内。事实上,

n n x f α≤<)(0,所以,该函数列在 1,],0[<αα 上是一致收敛。

函数项级数及其一致收敛性

定理13.1 (一致收敛的Cauchy 准则 ) 函数列 D x x f n ∈,)}({一致收敛的充分必要条件是:对任意 0>ε,存在某一自然数N ,当 N m n >, 时,对一切 D x ∈,都有

ε<-|)()(|x f x f m n

证 )? ( 利用式 .f f f f f f n m n m -+-≤-)

)? 易见逐点收敛. 设∞

→n lim )(x f n =)(x f ,……,有 2

|)()(|ε

<

-x f x f n m .

令∞→m , ? εε

<≤

-2

|)()(|x f x f n 对∈?x D 成立, 即)

(x f n ?→??→

?)(x f ,

) (∞→n ,∈x D .

定理13.2 函数列 D x x f n ∈,)}({一致收敛的充分必要条件是:

0|)()(|sup lim =-∈∞→x f x f n D

x n

推论 设在数集D 上 )(x f n →)(x f , ) (∞→n . 若存在数列}{n x ?D , 使

0 |)()(|→/-n n n x f x f , 则函数列)}({x f n 在数集D 上非一致收敛 .

应用此判断函数列)}({x f n 在数集D 上非一致收敛时, 常作辅助函数

=)(x F n )(x f n ―)(x f 取在}{n x 为数集D 上的最值点.

例7 对定义在区间] 1 , 0 [上的函数列

??

?

?

?

?

???≤<=≤<-≤≤=. 11 , 0), , 2 , 1 ( , 121 ,22,210 , 2)(22

x n n n x n x n n n x x n x f n

证明: ∞

→n lim )(x f n =0, 但在] 1 , 0 [上不一致收敛.

证 10≤

->x n , 就有)(x f n =0. 因此, 在] 1 , 0 (上有

)(x f =∞

→n lim )(x f n =0. 0)0(=n f , ? )0(f =∞

→n lim )0(n f =0.

于是, 在] 1 , 0 [上有 )(x f =∞

→n lim )(x f n =0. 但由于

021|)()(|max ]1,0[→/=??

?

??=-∈n n f x f x f n n x , ) (∞→n , 因此 , 该函数列在] 1 , 0 [上不一致收敛.

例 判别下面函数列在区间 ]1,0[ 上的一致收敛性 1) }1{

x

n nx

++ 2) })1({n x nx -

解 1) x x

n 1nx

lim )(=++=∞→n x f

n

x n x x x x n nx x f x f n 2

|1)1(|sup |1|

sup |)()(|sup ≤+++=-++=-

0|)()(|sup lim =-∞

→x f x f n n

所以,函数列}1{

x

n nx

++在区间 ]1,0[ 上一致收敛。

2)?????≠=-==-=∞

→∞→0,0)]1([lim 0

,0)1(lim )(x x n x x x nx x f n n n n

n 求极大点方法可求得

1

)1

11(|)1(|sup |)()(|sup ++-=-=-n n n n x nx x f x f 01|)()(|sup lim ≠=

-∞→e

x f x f n n 函数列 })1({n

x nx - 在 ]1,0[ 上不一致收敛。

例 )(x f n 2

22

2x n xe

n -=. 证明在R 内 )(x f n →0, 但不一致收敛.

证 显然有)(x f n →0, |)()(|x f x f n -= )(x f n 在点 n x =

n

21 处取得极大值

022121

→/=??

?

??-ne n f n ,) (∞→n . )}({x f n 不一致收敛. 例6 2

21)(x

n x

x S n +=

. 证明在) , (∞+∞-内)(x S n ?→??→

?0, ) (∞→n .

证 易见 ∞

→n lim .0)()(==x S x S n 而

n

nx x n n x n x x S x S n 21

)(1||2211|||)()(|222≤+?=+=

- 在) , (∞+∞-内成立.

? ……

二 函数项级数及其一致收敛性

我们知道,有限个函数的和函数的性质是通过每个相加的函数的性质去认识的,有限个连续函数的和是连续的;有限个可微函数的和是可微的,且和的导数等于每个函数的导数的和;有限个可积函数的和是可积的,且和的积分等于每个函数积分的和。现在要问:是否可以从级数每一项所具有的连续性、可微性与可积性,而得出和函数的连续性、可微性与可积性呢?一般来说,这是不行的!

例 讨论

∑∞

=1

n n

x

的收敛域

由几何级数的敛散性, 1||

=1

n n

x

收敛, 1||≥x 时

∑∞

=1

n n

x

发散, 所以

∑∞

=1

n n

x

的收敛

域为 )1,1(-

例 讨论级数 ∑∞

=1

2

sin n n n x

收敛域

22

1

|sin |n n x n ≤, 所以级数 ∑∞

=1

2sin n n n x 收敛域为 ),(∞+-∞ 一致收敛性概念

例 函数项级数 ∑∞

=--+

2

1)(n n n

x x

x 每一项 在 ]1,0[ 上都是连续的, 而其部分和为

n n x x S =)( ,从而

??

?=<≤==∞

→.

1,1,

10,0)(lim )(x x x S x S n n

在]1,0[上却是不连续的。 clf, x=0:1/100:1; n=2:2:8;

y1=x.^2;y2=x.^4;y3=x.^6;y4=x.^100; plot(x,y1,x,y2,x,y3,'b',x,y4,'r','linewidth',2)

那么在什么条件下,由级数每一项所具有的某种性质(如连续性、可积性、可微性),就可推出和函数也具有这种性质?这需要一个重要的概念-一致收敛性。

函数级数一致收敛判别法:

定理13.3 (柯西准则) 函数级数

∑∞

=1

)(n n

x u

在区间I 一致收敛 ?

I x N p N n N ∈?∈?>?>?,,,,0ε 有

ε<-+|)()(|x S x S n p n 或

ε<++++|)()()(|1x u x u x u n m m

定理13.4 函数项级数

∑∞

=1

)(n n

x u

在D 上一致收敛于)(x S 的充分必要条件是:

0|)()(|sup lim =-∈∞→x S x S n D

x n

例 讨论函数级数 ∑∞

=++-1

1

)1(n n n n x n x 在区间 ]1,1[- 上的一致收敛性 01

2|11|

|

1

21|||1

1

1

21→+<++-+=++-++++-+=-+++++++++n p n x n x p n x p n x n x n x S S p n n p n p n n n n p n

所以, 函数级数 ∑∞

=++-1

1

)1(

n n n n x n x 在区间 ]1,1[- 上一致收敛性 一般来说, 柯西准则用起来不大方便, 下面给出一个较简便的判别方法 定理13.5 ( Weierstrass 判别法) 设级数

∑)(x u

n

定义在区间D 上, ∑n M 是收敛的

正项级数.若当n 充分大时, 对∈?x D 有||)(x u n n M ≤, 则

在D 上一致收敛 .

证 , |)(| )(

1

1

1

1

∑∑∑∑==+=++=+=≤≤p i p

i i n p i i n i n p

i i

n M M x u x u

然后用Cauchy 准则.

亦称此判别法为优级数判别法. 称满足该定理条件的正项级数∑n

M

是级数

∑)(x u

n

的一

个优级数. 于是Th 4 可以叙述为: 若级数

∑)(x u

n

在区间D 上存在优级数 , 则级数

∑)(x u n

在区间D 上一致收敛 . 应用时, 常可试取|})({|sup x u M n D

x n ∈=.但应注意, 级数∑)(x u

n

在区间D 上不存在优级数 , ?/ 级数∑)(x u n 在区间D 上非一致收敛.

注意区分用这种控制方法判别函数列和函数项级数一致收敛性的区别所在. 例 证明

∑∞

=+1

2

41n x n x

在R 上一致收敛. 因为∑∞

==≤+122

22421,21

||2|||1|

n n n x n x x n x 收敛, 由M 判别法∑∞

=+12

41n x n x 在R 上一致收敛.

凡是M 判别法判别的必然是绝对收敛, 一致收敛的, 对于条件收敛级数, 不能用M 判别法判定. 下面介绍两个条件收敛, 一致收敛的判别法

定理13.6 (阿贝尔判别法) 若函数列 })({x a n 在区间I 单调一致有界, 且函数级数

∑∞

=1

)(n n

x b

在区间I 一致收敛, 则函数级数∑∞

=1

)()(n n n x b x a 在区间I 一致收敛.

注意两个定理的条件的区别.

定理13.7 (狄里克雷判别法) 若函数列 })({x a n 在区间I 单调递减一致收敛于0, 且函数级数

∑∞

=1

)(n n

x b

的部分和函数列 )}({x B n 在区间I 一致有界, 则函数级数∑∞

=1

)()(n n n x b x a 在

区间I 一致收敛.

例10 几何级数

∑∞

=0

n n

x

在区间] , [a a -)10(<

致收敛.

证 在区间] , [a a -上 , 有

011sup |)()(|sup ],[],[→-=--=---a a a

x x S x S n

n a a n a a , ) (∞→n .

?

一致收敛 ;

而在区间) 1 , 1(-内 , 取∈+=

1

n n

x n ) 1 , 1(-, 有 ∞→??? ??+=+-

??? ??+≥-=----1

)1,1()1,1(1111 1sup |)()(|sup n n

n n n n n n

n n n x x x S x S , ) (∞→n .

?

非一致收敛.( 亦可由通项n

n x x u =)(在区间) 1 , 1(-内非一致收敛于零?

非一致收敛.)

几何级数

∑∞

=0

n n

x

虽然在区间) 1 , 1(-内非一致收敛, 但在包含于) 1 , 1(-内的任何闭区间

上却一致收敛. 我们称这种情况为“闭一致收敛”. 因此 , 我们说几何级数

∑∞

=0

n n

x

在区间

) 1 , 1(-内闭一致收敛 .

例12 判断函数项级数 ∑∞

=i n n nx 2sin 和 ∑∞

=i

n n nx

2

cos 在R 内的一致收敛性 . 例13 设) , 2 , 1 ( )( =n x u n 是区间] , [b a 上的单调函数. 试证明 :

若级数 ∑)(a u n

与∑)(b u n 都绝对收敛, 则级数∑)(x u n 在区间] , [b a 上绝对并一致收

敛 .

留为作业. |)(||)(| |)(|b u a u x u n n n +≤.……

例14 判断函数项级数∑++-1

)() 1(n n

n n n x 在区间] 1 , 0 [上的一致收敛性.

解 记n

n n n n x x v n x u ??

?

??+=-=1)( , ) 1()(. 则有 1)级数∑)(x u n 收敛;

2) 对每个∈x ] 1 , 0 [, )(x v n ↗;

3)e n x x v n

n ≤??

?

??+=1|)(| 对 ?∈x ] 1 , 0 [

和n ?成立. 由Abel 判别法,

在区间] 1 , 0 [上一致收敛.

例15 设数列}{n a 单调收敛于零 . 试证明 : 级数

∑nx a

n

cos 在区间] 2 , [απα-

)0(πα<<上一致收敛.

证 在] 2 , [απα-上有

212

sin

21 21|2sin |21 212sin 2) 21

sin(

|cos |1

+≤+≤-+=∑=αx x x

n kx n

k . 可见级数

∑nx cos 的部分和函数列在区间] 2 , [απα-上一致有界 . 取

nx x u n cos )(= , n n a x v =)( . 就有级数∑)(x u n 的部分和函数列在区间] 2 , [απα-上

一致有界, 而函数列)}({x v n 对每一个∈x ] 2 , [απα-单调且一致收敛于零.由Dirichlet 判别法,级数

∑nx a

n

cos 在区间] 2 , [απα-上一致收敛.

其实 , 在数列}{n a 单调收敛于零的条件下, 级数

∑nx a

n

cos 在不包含

) , 2 , 1 , 0 ( 2 ±±=k k π的任何区间上都一致收敛.

函数项级数的一致收敛性共8页word资料

第三节 函数项级数的一致收敛性 本节将讨论函数项级数有关性质。 定义 1 设 )(1x u ,)(2x u ,……,)(x u n ,……,是集合E 上的函数列,我们称形为 )(1x u +)(2x u +……+)(x u n +…… 为E 上的函数项级数,简记为∑∞ =1 )(n n x u 。其中)(x u n 称为第n 项. )(x u k +)(1x u k ++……+)(x u n +……也记为∑∞ =k n n x u )(. 记号中n 可以用其它字母 代之. 同研究常数项级数一样,我们类似可以定义其收敛性。 定义 2 设∑∞ =1)(n n x u 是集合E 上的函数项级数,记 ∑==n i i n x u x S 1 )()(=)(1x u +)(2x u +……+)(x u n , 它称为级数∑∞ =1 )(n n x u 的部分和函数(严格地说是前n 项部分和函数). {})(x S n 称为∑∞ =1 )(n n x u 的部分和函数列。 如果{})(x S n 在0x 点收敛,我们也说∑∞ =1 )(n n x u 在0x 点收敛或称0x 为该级数 的收敛点。 如果|)(|1 ∑∞ =n n x u 在0x 点收敛,我们称∑∞ =1 )(n n x u 在0x 点绝对收敛。非常容易证 明绝对收敛一定收敛。 {})(x S n 的收敛域也称为该级数的收敛域。如果{})(x S n 在0x 点不收敛,

我们说∑∞ =1 )(n n x u 在0x 点发散。 如果{})(x S n 在D 上点态收敛于)(x S ,我们称∑∞ =1 )(n n x u 在D 上点态收敛于 )(x S . )(x S 称为该级数的的和函数。)()()(x S x S x R n n -=称为该级数关于前 n 项部分和的余项. {})(x R n 称为该级数的余项函数列. 如果{})(x S n 在D 上一致收敛于)(x S ,我们称∑∞ =1)(n n x u 在D 上一致收敛于 )(x S , 或∑∞ =1 )(n n x u 在D 上一致收敛. 如果{})(x S n 在D 上内闭一致收敛于)(x S ,我们称∑∞ =1 )(n n x u 在D 上内闭一致收敛. 用N -ε的进行叙述将是: 设∑∞ =1)(n n x u 是D 上函数项级数,)(x S 是D 上函数。 若对任意ε>0,总存 在一个正数正数N (只能依赖于ε,绝对不依赖于x ),当N n >时,对一切的D x ∈,总有 ε<-∑=|)()(|1x S x u n i i , 则称该函数项级数在D 上一致收敛于)(x S . 同样一致收敛一定点态收敛. 例 1 定义在(—∞,+∞)上的函数项级数(几何级数) ΛΛΛΛ+++++=∑∞ =-n n n x x x x 21 1 1 的部分和函数是x x x S n n --=11)( .显然当|x |<1时

复变函数项级数

§4.2 复变函数项级数 教学目的:1.理解复变函数项级数收敛的概念,掌握其收敛的常用 判别法,以及收敛复函数项级数的和函数的基本性质. 2. 能正确灵活运用相关定理判断所给级数的敛散性. 3.掌握幂级数收敛半径的计算公式、幂级数的运算性质以及幂级数和函数的解析性,能灵活正确求出所给级 数的收敛半径;能用 1 (1)1n n z z z ∞ ==<-∑将简单函数表示为级数. 教学重点:掌握阿贝尔定理以及级数收敛半径的计算方法;能用间 接法和 01 (1)1n n z z z ∞ ==<-∑求函数的幂级数展式. 教学难点:正确利用 1 (1)1n n z z z ∞ ==<-∑求函数的幂级数展式. 教学方法:启发式讲授与指导练习相结合 教学过程: §4.2.1 复变函数项级数 设{()n f z }是定义在平面点集E 上的一列复变函数,(书上为其中各项在区域D 内有定义,)则式子: 12()()()n f z f z f z ++++L L 称为E 上的复函数项级数,记为 1 ()n n f z ∞ =∑. 【定义】※设1 ()n n f z ∞ =∑是定义在E 上的复函数项级数, ()S z 是E

的一个复函数,如果对E 内的某一点0z ,极限 00lim ()() n n S z S z →∞ =存在,则称复变函数项级数在0z 收敛.若对E 上的每一点z E ∈,都有级数 1 ()n n f z ∞ =∑收敛, 则它的和一定是一个z 的函数()S z ,则称 1 ()n n f z ∞ =∑在E 上收敛于()S z ,此时()S z 也称为1 ()n n f z ∞ =∑在E 上的 和函数.记为1 ()()n n S z f z ∞ == ∑或者()lim ()n n S z S z →∞ =, {}()n S z 称为 1 ()n n f z ∞ =∑的部分和函数列. §4.2.2 幂级数 1.【幂级数的定义】通常把形如: 20 010200 () ()()n n n C z z C C z z C z z ∞ =-=+-+-∑ 0()n n C z z ++-+L L 的复函数项级数称为(一般)幂级数, 其中0C ,1C ,L n C ,L .和0z 都 是复常数, 分别称为幂级数 () n n n C z z ∞ =-∑的系数与中心点. 若00z =, 则幂级数0 () n n n C z z ∞ =-∑可简化为 n n n c z ∞ =∑(标准幂级

函数项级数的一致收敛性精选

函数列与函数项级数 §1. 函数项级数的一致收敛性 1. 讨论下列函数序列在所示区域的一致收敛性: ⑴ ()n f x =(,);x ∈-∞+∞ ⑵ ()sin ,n x f x n = i) (,),x l l ∈- ii) (,);x ∈-∞+∞ ⑶ (),1n nx f x nx = + (0,1);x ∈ ⑷ 1(),1n f x nx =+ i) [,),0,x a a ∈+∞> ii) (0,);x ∈+∞ ⑸ 22 33(),1n n x f x n x =+ i) [,),0,x a a ∈+∞> ii) (0,);x ∈+∞ ⑹ (),1n nx f x n x =++ [0,1];x ∈ ⑺ (),1n n n x f x x =+ i) [0,],1,x b b ∈< ii) [0,1];x ∈ iii) [,),1;x a a ∈+∞> ⑻ 2(),n n n f x x x =- [0,1];x ∈ ⑼ 1(),n n n f x x x +=- [0,1];x ∈ ⑽ ()ln ,n x x f x n n = (0,1);x ∈ ⑾ 1()ln(1),nx n f x e n -=+ (,);x ∈-∞+∞

⑿ 2 ()(),x n n f x e --= i) [,],x l l ∈- ii) (,)x ∈-∞+∞ . 2. 设()f x 定义于(,)a b ,令 [()]()n nf x f x n = (1,2,)n =???. 求证:{()}n f x 在(,)a b 上一致收敛于()f x . 3. 参数α取什么值时, (),nx n f x n xe α-= 1,2,3,n =??? 在闭区间[0,1]收敛?在闭区间[0,1]一致收敛?使10lim ()n n f x dx ->∞?可在积分号下取极 限? 4. 证明序列2()nx n f x nxe -=(1,2,)n =???在闭区间[0,1]上收敛,但 1 1 00lim ()lim ().n n n n f x dx f x dx ->∞->∞≠?? 5. 设{()}n f x 是[,]a b 上的连续函数列,且{()}n f x 在[,]a b 一致收敛于()f x ;又 [,]n x a b ∈(1,2,)n =???,满足0lim n n x x ->∞=,求证 0lim ()().n n n f x f x ->∞ = 6. 按定义讨论下列函数项级数的一致收敛性: ⑴ 0 (1), [0,1];n n x x x ∞=-∈∑ ⑵ 12 21(1), (,)(1) n n n x x x -∞=-∈-∞+∞+∑. 7. 设()n f x (1,2,)n =???在[,]a b 上有界,并且{()}n f x 在[,]a b 上一致收敛,求证: ()n f x 在[,]a b 上一致有界. 8. 设()f x 在(,)a b 内有连续的导数()f x ',且 1()[()()],n f x n f x f x n =+- 求证:在闭区间[,]αβ()a b αβ<<<上,{()}n f x 一致收敛于()f x '. 9. 设1()f x 在[,]a b 上黎曼可积,定义函数序列

10函数项级数和幂级数 习题课

111 第十章 函数项级数习题课 一、 主要内容 1、基本概念 函数列(函数项级数)的点收敛、一致收敛、内闭一致收敛、绝对收敛、和函数 幂级数的收敛半径、收敛区间、收敛域 2、一致收敛性 A 、 函数列{()}n f x 一致收敛性的判断: (1)定义:用于处理已知极限函数的简单函数列的一致收敛性 (2)Cauchy 收敛准则:用于抽象、半抽象的函数列的一致收敛性的判断 (3)确界(最大值方法):||()()||0n f x f x -→ (4)估计方法:|()()|0n n f x f x a -≤→ (5)Dini-定理:条件1)闭区间[,]a b ;2)连续性;3)关于n 的单调性 注、除Cauchy 收敛准则外,都需要知道极限函数,因此,在判断一致收敛性时,一般应先利用点收敛性计算出极限函数。 注、定义法、确界方法和估计方法的本质是相同,定义方法通常处理抽象的对象,估计方法是确界方法的简化形式,估计方法处理较为简单的具体的对象,确界方法是通过确界的计算得到较为精确的估计,通常用于处理具有一般结构的具体的函数列,也可以用于非一致收敛性的判断。 注、Dini 定理中,要验证的关键条件是关于n 的单调性,定理中相应的条件为“对任意固定的x [,]a b ∈,{()}n f x 作为数列关于n 是单调的”,注意到收敛或一致收敛与函数列前面的有限项没有关系,上述条件也可以改为“存在N ,当n>N 时”条件成立即可,但是,要注意N 必须是与x 无关的,即当n>N 时,对所有任意固定的x [,]a b ∈,{()}n f x 关于n 单调,因此,此时的单调性也称为对n 的单调性关于x 一致成立。 非一致收敛性的判断 (1)定义 (2)Cauchy 收敛准则 (3)确界法:存在n x ,使得||()()||n n n f x f x -不收敛于0 (4)和函数连续性定理 (5)端点发散性判别法:{()}n f x 在c 点左连续,{()}n f c 发散,则{()}n f x 在

函数列与函数项级数

Ch 13 函数列与函数项级数 ( 1 2 时 ) § 1 一致收敛性( 6 时 ) 一. 函数列及极限函数:对定义在区间I 上的函数列)}({x f n ,介绍概念: 收敛点,收敛域( 注意定义域与收敛域的区别 ),极限函数等概念. 逐点收敛 ( 或称为“点态收敛” )的“N -ε”定义. 例1 对定义在) , (∞+∞-内的等比函数列)(x f n =n x , 用“N -ε”定义 验证其收敛域为] 1 , 1 (-, 且 ∞→n lim )(x f n = ∞→n lim n x =? ??=<. 1 , 1 , 1 || , 0 x x 例2 )(x f n =n nx sin . 用“N -ε”定义验证在) , (∞+∞-内∞→n lim )(x f n =0. 例3 考查以下函数列的收敛域与极限函数: ) (∞→n . ⑴ )(x f n =x x x x n n n n --+-. )(x f n →,sgn x R ∈x . ⑵ )(x f n =1 21+n x . )(x f n →,sgn x R ∈x . ⑶ 设 ,,,,21n r r r 为区间] 1 , 0 [上的全体有理数所成数列. 令 )(x f n =???≠∈=. ,,, ] 1 , 0 [ , 0, ,,, , 12121n n r r r x x r r r x 且 )(x f n →)(x D , ∈x ] 1 , 0 [. ⑷ )(x f n =2 22 2x n xe n -. )(x f n →0, R ∈x .

156 ⑸ )(x f n =?? ? ? ? ? ???≤≤<≤-<≤--+ . 121 , 0 ,2121 ,42,210 ,41 11x x x x x n n n n n n n 有)(x f n →0, ∈x ] 1 , 0 [, ) (∞→n . ( 注意 ? ≡1 1)(dx x f n .) 二. 函数列的一致收敛性: 问题: 若在数集D 上 )(x f n →)(x f , ) (∞→n . 试问: 通项)(x f n 的解析性质是否必遗传给极限函数)(x f ? 答案是否定的. 上述例1、例3⑴⑵说明连续性未能遗传,而例3⑶说明可积性未能遗传. 例3⑷⑸说明虽然可积性得到遗传, 但 ∞ →n lim () ? ?∞ →≠1 1 0)(lim )(dx x f dx x f n n n . 用函数列的极限表示函数是函数表达的一种重要手段. 特别是表达非初等函数的一 种手段. 对这种函数, ∞ →n lim )(x f n 就是其表达式.于是,由通项函数的解析性质研究极限 函数的解析性质就显得十分重要. 那末, 在什么条件下通项函数的解析性质能遗传给极 限函数呢? 一个充分条件就是所谓“一致收敛”. 一致收敛是把逐点收敛加强为所谓 “整体收敛”的结果. 定义 ( 一致收敛 ) 一致收敛的几何意义. Th1 (一致收敛的Cauchy 准则 ) 函数列}{n f 在数集D 上一致收敛,? N , 0?>?ε, , , N n m >?? ε<-n m f f . ( 介绍另一种形式ε<-+n p n f f .) 证 )? ( 利用式 .f f f f f f n m n m -+-≤-)

幂级数求和函数方法概括与总结

幂级数求和函数方法概括与总结

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3 )n u x n =是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++ ∈ 为定义在E 上的函数项级数,简记为1 ()n n u x ∞=∑ 。 2、具有下列形式的函数项级数 2 00102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-+ +-+ ∑

幂级数求和函数方法概括与总结

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3)n u x n =L 是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++∈L L 为定义在E 上的函数项级数,简记为1()n n u x ∞ =∑ 。 2、具有下列形式的函数项级数 200102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-++-+∑L L

第十三章函数列和函数项级数

第十三章 函数列与函数项级数 目的与要求:1.掌握函数序列与函数项级数一致收敛性的定义,函数列与函数项级数一致收敛性判别的柯西收敛准则,函数项级数一致收敛性的判别法. 2. 掌握一致收敛函数序列与函数项级数的连续性、可积性、可微性的结论. 重点与难点:本章重点是函数序列与函数项级数一致收敛性的定义,判别法和性质;难点则是利克雷判别法和阿贝尔判别法. 第一节 一致收敛性 我们知道,可以用收敛数列(或级数)来表示或定义一个数,在此,将讨论如何用函数列(或函数项级数)来表示或定义一个函数. 一 函数列及其一致收敛性 设 ,,,,21n f f f (1) 是一列定义在同一数集E 上的函数,称为定义在E 上的函数列.也可简记为: }{n f 或 n f , ,2,1=n . 设E x ∈0,将0x 代入 ,,,,21n f f f 得到数列 ),(,),(),(00201x f x f x f n (2) 若数列(2)收敛,则称函数列(1)在点0x 收敛,0x 称为函数列(1)的收敛点. 若数列(2)发散,则称函数列(2)在点0x 发散. 若函数列}{n f 在数集E D ?上每一点都收敛,则称}{n f 在数集D 上收敛.

这时对于D x ∈?,都有数列)}({x f n 的一个极限值与之对应,由这个对应法则就确定了D 上的一个函数,称它为函数列}{n f 的极限函数.记作f .于是有 )()(lim x f x f n n =∞ →, D x ∈,或 )()(x f x f n →)(∞→n ,D x ∈. 函数列极限的N -ε定义是: 对每一个固定的D x ∈,对0>?ε,0>?N (注意:一般说来N 值的确定与ε和x 的值都有关),使得当N n >时,总有 ε<-)()(x f x f n . 使函数列}{n f 收敛的全体收敛点的集合,称为函数列}{n f 的收敛域. 例1 设n n x x f =)(, ,2,1=n 为定义在),(∞-∞上的函数列,证明它的收敛域是]1,1(-,且有极限函数 ? ??=<=1,11 ,0)(x x x f (3) 证明:因为定义域为),(∞-∞,所以根据数列收敛的定义可以将),(∞-∞分为四部分 (i) 10<ε(不妨设1<ε),当10<时,就有ε<-)()(x f x f n . (ii)0=x 和1=x 时,则对任何正整数n ,都有 ε<=-0)0()0(f f n ,ε<=-0)1()1(f f n . (iii) 当1>x 时,则有)(∞→+∞→n x n , (iv) 当1-=x 时,对应的数列为 ,1,1,1,1--,它显然是发散的. 这就证得{}n f 在]1,1(-上收敛,且有(3)式所表示的极限函数.所以函数列{}n x 在区

第十二讲函数列与函数项级数

第十二讲函数列与函数项级数 12 . 1 函数列与函数项级数的收敛与一致收敛 一、函数列 (一)函数列的收敛与一致收敛 1 .逐点收敛 函数列(){}I x x f n ∈,,若对I x ∈?,数列(){}x f n 都收敛,则称函数列在区间 I 上逐点收敛,记 ()()I x x f x f n n ∈=∞ →,lim ,称()x f 为(){}x f n 的极限函数.简记为 ()()()I x n x f x f n ∈∞→→, 2 .逐点收敛的N -ε定义 对I x ∈? ,及 0>?ε,()0,>=?εx N N ,当N n > 时,恒有()()ε<-x f x f n 3 .一致收敛 若函数列(){}x f n 与函数()x f 都定义在区间 I 上,对 0,0>?>?N ε,当N n > 时,对一切I x ∈恒有()()ε<-x f x f n ,则称函数列(){}x f n 在区间 I 上一致收敛于()x f .记为()()()I x n x f x f n ∈∞→?, . 4 .非一致收敛 00>?ε,对N n N >?>?0,0,及I x ∈?0,使得 ()()0000ε≥-x f x f n 例 12 . 1 证明()n n x x f =在[]1,0逐点收敛,但不一致收敛. 证明:当[]1,0∈x 时,()0lim lim ==∞ →∞ →n x n n x x f ,当1=x 时,()11lim =∞ →n n f ,即极限函数 为()[)???=∈=1 ,11,0,0x x x f .但 ()x f n 非一致收敛,事实上,取031 0>=ε。对0>?N ,取 N N n >+=10,取()1,02101 0∈? ? ? ??=n x · 此时()()00002100ε>==-n x x f x f n , 即()()()[]1,0,∈∞→≠>x n x f x f n 5 .一致收敛的柯西准则 函数列(){}x f n 在 I 上一致收敛?对 0,0>?>?N ε,当 n , m > N 时,对一切I x ∈,

函数项级数一致收敛性的判别法

函数项级数一致收敛性的判别法 摘 要 函数项级数是数学分析中的重点和难点,因此讨论和分析它的性质和判别方法显得尤为重要,本文给出了函数项级数的定义以及函数项级数一致收敛性的判别定理,并用之来解决函数项级数一致收敛性的一些问题比较容易. 关键词 函数项级数;一致收敛性;判别法. 中图分类号 O173.1 Function Seies Convergence Criterion Abstrac t :Function is a mathematical analysis of series of focus and difficult, so the discussion and analysis of its nature and it is particularly important to identify methods.In this paper, the definition of Function series and uniform convergence of Function series of discriminant theorem,and used to solve the series of uniform convergence of Function of some of the problems is easier. Key words :Function series; Uniform convergence of; Discriminance 1 引言及预备知识 如果函数项级数具有一致收敛性,函数项级数的和函数或余和易于求得,判别它的一致收敛性可应用一致收敛定义,如果很难求得它的和函数或余和,就根据函数自身的结构,找到判别一致收敛性的判别法. 定义1.1[1] 设()12(),,u x u x …()n u x ,…是一列定义在D 上的函数,把这些函数的各项用加号连接起来的表达式 ()()12u x u x ++…+()n u x +…或()1n n u x ∞ =∑, (1) 称为函数项级数.a D ?∈ 函数级数在a 对应一个数值级数 1 ()U n a ∞ =∑ =12()()u a u a ++...+()n u a +. (2) 它的敛散性可用数值级数敛散性的判别法判别,若级数(2)收敛,则称a 是函数级数(1)的收敛点;若级数(2)发散,则称a 是函数级数(1)的发散点. 定义 1.2[1] 函数项级数(1)的收敛点的集合,称为函数项级数(1)的收敛域,若收敛域是一个区间,则称此区间是函数项级数的收敛区间. 定义 1.3[1] 设数集E 为函数项级数()1 n n u x ∞ =∑的收敛域,则对每个x E ∈记S(x)= ()1 n n u x ∞=∑称S(x)为函数项级数()1 n n u x ∞ =∑的和函数.

函数列与函数项级数

第十三章 函数列与函数项级数 §1 一致收敛性 (一) 教学目的: 掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法. (二) 教学内容: 函数序列与函数项级数一致收敛性的定义;函数序列与函数项级数一致收敛性判别的柯西准则;函数项级数一致收敛性的魏尔斯特拉斯判别法. 基本要求: 1)掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致 收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法. (2) 较高要求:掌握狄利克雷判别法和阿贝尔判别法. (三) 教学建议: (1) 要求学生必须掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项 级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法. (2) 对较好学生可要求他们掌握狄利克雷判别法和阿贝尔判别法. ———————————————————— 一 函数列及其一致收敛性 对定义在区间I 上的函数列E x x f n ∈},)({,设 E x ∈0,若数列 })({0x f n 收敛,则称函数列})({x f n 在点0x 收敛,0x 称为函数列})({x f n 收敛点;若数列 })({0x f n 发散,则称函数列})({x f n 在点0x 发散。 使函数列})({x f n 收敛的全体收敛点集合称为函数列})({x f n 收敛域( 注意定义域与收敛域的区别 )。 若函数列})({x f n 在数集E D ?上每一点都收敛,则称函数列})({x f n 在数集D 上收敛,这时D 上每一点x ,都有函数列的一个极限值

幂级数概念

§ 11. 3 幂 级 数 一、函数项级数的概念 函数项级数: 给定一个定义在区间I 上的函数列{u n (x )}, 由这函数列构成的表达式 u 1(x )+u 2(x )+u 3(x )+ ? ? ? +u n (x )+ ? ? ? 称为定义在区间I 上的(函数项)级数, 记为∑∞ =1)(n n x u . 收敛点与发散点: 对于区间I 内的一定点x 0, 若常数项级数∑∞ =1 0)(n n x u 收敛, 则称 点x 0是级数∑∞ =1)(n n x u 的收敛点. 若常数项级数∑∞ =1 0)(n n x u 发散, 则称 点x 0是级数∑∞ =1 )(n n x u 的发散点. 收敛域与发散域: 函数项级数∑∞ =1)(n n x u 的所有收敛点的全体称为它的收敛域, 所 有发散点的全体称为它的发散域. 和函数: 在收敛域上, 函数项级数∑∞ =1)(n n x u 的和是x 的函数s (x ), s (x )称为函数项级数∑∞=1 )(n n x u 的和函数, 并写成∑∞ ==1 )()(n n x u x s . ∑u n (x )是∑∞ =1 )(n n x u 的简便记法, 以下不再重述. 在收敛域上, 函数项级数∑u n (x )的和是x 的函数s (x ), s (x )称为函数项级数∑u n (x )的和函数, 并写成s (x )=∑u n (x ). 这函数的定义就是级数的收敛域, 部分和: 函数项级数∑∞ =1)(n n x u 的前n 项的部分和记作s n (x ), 函数项级数∑u n (x )的前n 项的部分和记作s n (x ), 即 s n (x )= u 1(x )+u 2(x )+u 3(x )+ ? ? ? +u n (x ).

函数列与函数项级数

第十三章函数列与函数项级数 教学目的:1.使学生理解怎样用函数列(或函数项级数)来定义一个函数;2.掌握如何利用函数列(或函数项级数)来研究被它表示的函数的性质。 教学重点难点:本章的重点是函数列一致收敛的概念、性质;难点是一致收敛的概念、判别及应用。 教学时数:20学时 § 1 一致收敛性 一. 函数列及极限函数:对定义在区间I上的函数列,介绍概念:收敛点,收敛域(注意定义域与收敛域的区别),极限函数等概念. 逐点收敛 ( 或称为“点态收敛” )的“ ”定义. 例1 对定义在 内的等比函数列, 用“”定义验证其收敛域为 , 且 例2 .用“”定义验证在内. 例3 考查以下函数列的收敛域与极限函数: . ⑴. .

⑵. . ⑶设 为区间上的全体有理数所成数列. 令 , . ⑷. , . ⑸ 有 , , . (注意.) 二. 函数列的一致收敛性: 问题: 若在数集D上, . 试问: 通项 的解析性质是否必遗传给极限函数 ? 答案是否定的. 上述例1、例3⑴⑵说明连续性未能遗传,而例3⑶说明可积性未能遗传. 例3⑷⑸说明虽然可积性得到遗传, 但 . 用函数列的极限表示函数是函数表达的一种重要手段. 特别是表达非初等 函数的一种手段. 对这种函数, 就是其表达式.于是,由通项函数的解 析性质研究极限函数的解析性质就显得十分重要. 那末, 在什么条件下通项函

数的解析性质能遗传给极限函数呢? 一个充分条件就是所谓“一致收敛”. 一致收敛是把逐点收敛加强为所谓“整体收敛”的结果. 定义( 一致收敛 ) 一致收敛的几何意义. Th1 (一致收敛的Cauchy准则 ) 函数列 在数集D上一致收敛, , . ( 介绍另一种形式.) 证 ( 利用式) ,……,有 易见逐点收敛. 设 , 对D成立, . 令 , ,D. 即 推论1 在D上 , ,. D , 推论2 设在数集D上, . 若存在数列 使, 则函数列 在数集D上非一致收敛时, 常选为函数 ―在数集D上的最值点. . 证明函数列在R内一致收敛. 例4

关于数项级数敛散性的判定

关于数项级数敛散性的判定 1、问题的提出 数项级数敛散性的判别问题,是数学分析的一个重要部分.数项级数,从形式上看,就是无穷多个项的代数和,它是有限项代数和的延伸,因而级数的敛散性直接与数列极限联系在一起,其判别方法多样,技巧性也强,有时也需要多种方法结合使用,同时,无穷级数已经渗透到科学技术的很多领域,成为数学理论和应用中不可缺少的工具,所以研究数项级数的判定问题是很重要的. 2、熟练掌握并准确应用级数的概念、性质和判定定理 2.1数项级数收敛的定义 数项级数 ∑∞ =1 n n u 收敛?数项级数 ∑∞ =1 n n u 的部分和数列{}n S 收敛于S . 这样数项级数的敛散性问题就可以转化为部分和数列{} n S 的极限是否存在的问题的讨论,但由于求数列前n 项和的问题比较困难,甚至可能不可求,因此,在实际问题中,应用定义判别的情况较少. 2.2数项级数的性质 (1)若级数 ∑∞ =1n n u 与 ∑∞ =1 n n v 都收敛,则对任意常数c,d, 级数 ∑∞ =+1 )(n n n dv cu 亦收敛,且 ∑∑∑∞ =∞ =∞ =+=+1 1 1)(n n n n n n n v d u c dv cu ;相反的,若级数∑∞ =+1 )(n n n dv cu 收敛,则不能够推出级数∑∞ =1 n n u 与 ∑∞ =1 n n v 都收敛. 注:特殊的,对于级数 ∑∞ =1n n u 与 ∑∞ =1 n n v ,当两个级数都收敛时, ∑∞ =±1 )(n n n v u 必收敛;当其中一个 收敛,另一个发散时, ∑∞ =±1 )(n n n v u 一定发散;当两个都发散时,∑∞ =±1 )(n n n v u 可能收敛也可能发散. 例1 判定级数∑∞ =+1)5131(n n n 与级数∑∞ =+1)21 1(n n n 的敛散性. 解:因为级数∑∞ =131n n 与级数∑∞=15 1n n 收敛,故级数∑∞ =+1)51 31(n n n 收敛.

幂级数求和函数方法概括与汇总

幂级数求和函数方法概括与汇总

————————————————————————————————作者:————————————————————————————————日期:

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3 )n u x n =是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++ ∈ 为定义在E 上的函数项级数,简记为1 ()n n u x ∞=∑ 。 2、具有下列形式的函数项级数 2 00102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-+ +-+ ∑

数项级数和函数项级数及其收敛性的判定

学号 数项级数和函数项级数及其收敛性的判定 学院名称:数学与信息科学学院 专业名称:数学与应用数学 年级班别: 姓名: 指导教师: 2012年5月

数项级数和函数项级数及其收敛性的判定 摘要 本文主要对数项级数中的正项级数与函数项级数收敛性判定进行研究,总结了正项级数和函数项级数一致收敛的部分判别法,并且介绍两种特别判别法:导数判别法和对数判别法。 关键词:数项级数;正项级数;函数项级数;一致收敛性;导数判别法;对数判别法. Several series and Function of series and the judgment of their convergence Abstract In this paper, the author mainly discusses two series: Several series of positive series and Function of series. Summarizing the positive series and function of the part of the uniform convergence series discriminant method .And it presents two special discriminant method: derivative discriminant method and logarithmic discriminant method. Keywords Several series; Positive series; Function of series; uniform convergence; derivative discriminant method; logarithmic discriminant method 前 言 在数学分析中,数项级数和函数级数是全部级数理论的基础,而且数项级数中的正项级数和函数级数是基本的,同时也是十分重要的两类级数。判别正项级数和函数级数的敛散性是研究级数的主要问题,并且在实际中的应用也比较广泛,如正项级数的求和问题等。所以探讨正项级数和函数级数敛散性的判别法对于研究级数以及对于整个数学分析的学习与理解都有重要的作用。 1 正项级数及其收敛性 一系列无穷多个数123,,,,, n u u u u 写成和式 123n u u u u +++ + 就称为无穷级数,记为1 n n u ∞ =∑。如果()0,1,2,3, n u n ≥=,那么无穷级数1 n n u ∞ =∑,就称为正项 级数。

函数项级数的一致收敛性与非一致收敛性判别法归纳

函数项级数的一致收敛性与非一致收敛性判别法归纳 一 定义 引言 设函数列{}n f 与函数f 定义在同一数集D 上,若对任给的正数ε,总存在某一正数N ,使得当N n >时,对一切D x ∈,都有 ()()ε<-x f x f n 则称函数列{}n f 在上一致收敛于()x f ,记作 ()()x f x f n →→ ()∞→n ,D x ∈ 设()x u n 是定义在数集E 上的一个函数列,表达式 ()()(),21 ++++x u x u x u n E x ∈ ) 1(称为定义在E 上的函数项级数,简记为()x u n n ∑∞ =1 或()x u n ∑;称 ()()x u x S n k k n ∑==1 , E x ∈, ,2,1=n )2( 为函数项级数)1(的部分和函数列. 设数集D 为函数项级数∑∞ =1 )(n n x u 的收敛域,则对每个D x ∈,记∑∞ ==1 )()(n n x u x S ,即 D x x S x S n n ∈=∞ →),()(lim ,称)(x S 为函数项级数∑∞ =1 )(n n x u 的和函数,称) ()()(x S x S x R n n -=为函数项级数∑)(x u n 的余项. 定义1]1[ 设{})(x S n 是函数项级数∑)(x u n 的部分和函数列,若{})(x S n 在数集D 上一致收敛于函数)(x S ,或称函数项级数∑)(x u n 在D 上一致收敛于)(x S ,或称∑)(x u n 在D 上一致收敛. 由于函数项级数的一致收敛性是由它的部分和函数列来确定,所以可以根据函数列一

第十章 函数项级数

1 第十章函数项级数 § 1 函数项级数的一致收敛性(1) 一、本次课主要内容 点态收敛,函数项级数收敛的一般问题。 二、教学目的与要求 使学生理解怎样用函数列(或函数项级数)来定义一个函数,掌握如何利用函 数列(或函数项级数)来研究被它表示的函数的性质。 三、教学重点难点 函数列一致收敛的概念、性质 四、教学方法和手段 课堂讲授、提问、讨论;使用多媒体教学方式。 五、作业与习题布置 P68 1(5)(7)

2 一. 函数列及极限函数:对定义在区间I上的函数列,介绍概念: 收敛点,收敛域(注意定义域与收敛域的区别),极限函数等概念. 1.逐点收敛 ( 或称为“点态收敛” )的“ ”定义. 例1 对定义在 内的等比函数列, 用“”定义验 证其收敛域为 , 且 例2 .用“”定义验证在内. 例3 考查以下函数列的收敛域与极限函数: . (1). . (2). (3)设 为区间上的全体有理数所成数列. 令 , . (4). , . (5) 有, , . (注意 .) 二. 函数列的一致收敛性:

3 问题: 若在数集D上, . 试问: 通项 的解析性质 是否必遗传给极限函数 能遗传,而例3⑶说明可积性未能遗传. 例3⑷⑸说明虽然可积性得到遗传, 但 . 的一种手段. 对这种函数, 就是其表达式.于是,由通项函数的解析性质研 究极限函数的解析性质就显得十分重要. 那末, 在什么条件下通项函数的解析性质 能遗传给极限函数呢? 一个充分条件就是所谓“一致收敛”. 一致收敛是把逐点收 敛加强为所谓“整体收敛”的结果. 定义( 一致收敛 ) 一致收敛的几何意义. 在数集D上一致收敛, Th1 (一致收敛的Cauchy准则 ) 函数列 , . ( 介绍另一种形式.) 证 ( 利用式) ,……,有. 易见逐点收敛. 设 令 , 推论1 在D上 , ,. D , 使 推论2 设在数集D上, . 若存在数列 在数集D上非一致收敛 . 应用系2 判断函数列 ―在数集D上的最值点. . 证明函数列在R内一致收敛. 例4

相关主题
文本预览
相关文档 最新文档