当前位置:文档之家› 塑料齿轮疲劳寿命分析

塑料齿轮疲劳寿命分析

塑料齿轮疲劳寿命分析
塑料齿轮疲劳寿命分析

1 的疲劳破坏

疲劳是一种十分有趣的现象,当材料或结构受到多次重复变化的载荷作用后,应力值虽然始终没有超过材料的强度极限,甚至比屈服极限还低的情况下就可能发生破坏,这种在交变载荷重复作用下材料或结构的破坏现象就叫做疲劳破坏。

如图1所示,F表示齿轮啮合时作用于齿轮上的力。齿轮每旋转一周,轮齿啮合一次。啮合时,F由零迅速增加到最大值,然后又减小为零。因此,齿根处的弯曲应力or也由零迅速增加到某一最大值再减小为零。此过程随着齿轮的转动也不停的重复。应力or随时间t的变化曲线如图2所示。

图1 齿轮啮合时受力情况

图2 齿根应力随时间变化曲线

在现代工业中,很多零件和构件都是承受着交变载荷作用,工程塑料齿轮就是其中的典型零件。工程塑料齿轮因其质量小、自润滑、吸振好、噪声低等优点在纺织、印染、造纸和食品等传动载荷适中的轻工机械中应用很广。

疲劳破坏与传统的静力破坏有着许多明显的本质差别:

1)静力破坏是一次最大载荷作用下的破坏;疲劳被坏是多次反复载荷作用下产生的破坏,它不是短期内发生的,而是要经历一定的时间。

2)当静应力小于屈服极限或强度极限时,不会发生静力破坏;而交变应力在远小于静强度极限,甚至小于屈服极限的情况下,疲劳破坏就可能发生。

3)静力破坏通常有明显的塑性变形产生;疲劳破坏通常没有外在宏观的显着塑性变形迹象,事先不易觉察出来,这就表明疲劳破坏具有更大的危险性。

工程塑料齿轮的疲劳寿命,是设计人员十分关注的课题,也是与实际生产紧密相关的问题。然而,在疲劳载荷作用下的疲劳寿命计算十分复杂。因为要计算疲劳寿命,必须有精确的载荷谱,材料特性或构件的S-N曲线,合适的累积损伤理论,合适的裂纹扩展理论等。本文对工程塑料齿轮疲劳分析的最终目的,就是要确定其在各种质量情况下的疲劳寿命。通过利用有限元方法和CAE软件对工程塑料齿轮的疲劳寿命进行分析研究有一定工程价值。

2 工程塑料齿轮材料的确定

超高分子量聚乙烯(UHMWPE)是一种综合性能优异的新型热塑性工程塑料,它的分子结构与普通聚乙烯(PE)完全相同,但相对分子质量可达(1~4)×106。随着相对分子质量的大幅度升高,UHMWPE表现出普通PE所不具备的优异性能,如耐磨性、耐冲击性、低摩擦系数、耐化学性和消音性等。

UHMWPE耐磨性居工程塑料之首,比尼龙66(PA66)高4倍,是碳钢、不锈钢的7—8倍。摩擦因数仅为~,具有自润滑性,不粘附性。因此,本文选用UHMWPE 作为工程塑料齿轮材料进行研究。UHMWPE性能见表1。

由于UHMWPE导热性能较差,所以与其啮合的齿轮选用钢材料。这样导热性好、摩损小,并能弥补工程塑料齿轮精度不高的缺点。2啮合齿轮均为标准直齿圆柱齿轮,参数为:UHMWPE齿轮齿数30,钢齿轮齿数20,模数4mm,齿宽20mm,压力角取为20°。

表1 超高相对分子质量聚乙烯性能

3 UHMWPE材料齿轮疲劳分析模型的建立

齿轮在啮合过程中,轮齿如同受线载荷的悬臂梁,齿根所受的弯矩最大,因此齿根处的弯曲疲劳强度最弱。当轮齿在齿顶处啮合时,处于双对齿啮合区,此时弯矩的力臂虽然最大,但力并不是最大,因此弯矩并不是最大。根据分析,齿根所受的最大弯矩发生在齿轮啮合点位于单对齿啮合区最高点时。因此,在建立UHMWPE材料齿轮疲劳分析模型时,应该建立载荷作用于单对齿啮合区最高点。

由机械原理渐开线齿轮连续传动条件分析方法,可以得出单对齿轮啮合最高点。然后利用CAXA软件的齿轮建模功能和数据转换功能建立UHMWPE材料齿轮疲劳分析模型如图3所示。

图3 UHMWPE材料齿轮疲劳分析模型

4 利用ANSYS分析UHMWPE材料齿轮疲劳寿命

ANSYS是以有限元分析为基础的大型通用CAE软件,是世界上第一个通过

IS09001认可的有限元分析软件。因此,通过准确地建立模型、合理的网格划分与载荷施加以及边界条件设定,就能得到可靠性较好的计算结果。

对于工程塑料齿轮,由于其材料的力学性能、热性能等都与金属材料有很大区别,其失效形式及失效机理与金属齿轮也有很大区别。由于塑料齿轮的弹性模量较低,与钢齿轮啮合过程中其赫兹接触区较大,接触应力较小,一般不会出现点蚀等表面失效,所以轮齿在弯曲应力作用下疲劳断裂或折断是塑料齿轮的主要失效形式。因此主要对3种情况下的UHMWPE材料齿轮的疲劳寿命进行分析。

UHMWPE材料齿轮无缺陷情况的疲劳寿命分析

在利用ANSYS进行齿轮的疲劳分析前,需要对2啮合齿轮进行接触分析。按照上文所分析的实际接触情况,确定2齿轮单齿啮合区域最高点位置,并定义接触类型为柔体对柔体的面对面接触。

取钢齿轮啮合面为目标面,用单元Targel69来定义,取UHMWPE材料齿轮啮合面为接触面,用单元Contal71来定。可以从菜单(Main Menu> Preprocessor>Modeling> Create> Contact Pair)进入接触向导,来建立目标面接触面的“接触对”。也可以采用其他途径建立接触对,这属于ANSYS基本操作,本文不再详述。

接触对建立完成后进入静强度求解过程,主动齿轮为钢齿轮,传递力矩为6N·m,ANSYS计算所得UHMWPE材料齿轮齿根处的应力如图4所示。从应力云图中可以看出:最大应力发生在UHMWPE材料齿轮齿根处,节点号为:2279,应力值为:。

图4 UHMWPE材料齿轮齿根处应力云图

工程塑料齿轮ANSYS疲劳分析的步骤为:首先进入后处理POST1,恢复数据库,然后提取齿根最大弯曲应力处的节点应力并将其储存,并确定重复次数,最后采用Miner疲劳积累理论计算疲劳寿命并查看结果。

UHMWPE材料齿轮疲劳寿命预测需要的较关键疲劳性质是材料的S-N曲线,所研究的UHMWPE材料的S-N曲线如图5所示。

图5 UHMWPE材料S-N曲线

疲劳分析结果如图6所示。可见在文中所设定工作载荷下,该UHMWPE材料齿轮轮齿的疲劳寿命为132800次,累计疲劳系数为。

图6 无缺陷UHMwPE材料齿轮疲劳计算结果

齿问存在熔接痕时UHMWPE材料齿轮的疲劳寿命分析

UHMWPE材料齿轮注塑工艺复杂。工艺控制不当很容易产生熔接痕等注塑缺陷。因此,对存在熔接痕缺陷的UHMWPE材料齿轮进行分析,可以确定该缺陷

的不同位置对齿轮疲劳破坏的影响程度。这对工程塑料齿轮的注塑工艺,浇口位置安排等都有一定的指导意义。

在利用ANSYS分析存在熔接痕缺陷的工程塑料齿轮时,将熔接痕等效为I型裂纹问题,并采用KSCON命(Main Menu>Preprocessor> MeshShape&Size> Concentrat KPs-Create),使ANSYS自动围绕熔接痕尖端关键点生成奇异单元,然后进行分析求解。假设在两轮齿间存在一条长为的熔接痕,熔接痕位置和尺寸如图7所示。

图7 齿间熔接痕尺寸

疲劳分析结果显示:在齿间存在较小熔接痕缺陷情况下,UHMWPE材料齿轮轮齿的疲劳寿命为124600次,累计疲劳系数为。疲劳产生的位置仍未齿根处。可见,齿间存在较小熔接痕缺陷情况下,缺陷对UHMWPE齿轮疲劳寿命无较大影响。

齿根存在熔接痕时UHMWPE材料齿轮的疲劳寿命分析

假设在齿根处存在一条长为mm的熔接痕,熔接痕位置和尺寸如图9所示。

图9 齿根熔接痕尺寸

疲劳分析结果为:疲劳破坏发生在熔接痕尖端,如图10所示。齿轮轮齿的疲劳寿命仅为5631次。可见,在齿根存在较小熔接痕缺陷情况下齿轮很快进人疲劳并断裂破坏。

图l0 疲劳破坏发生位置

5 结论与展望

1)采用ANSYS有限元技术可以计算复杂边界条件下的疲劳问题,对工程塑料齿轮的疲劳寿命的确定有一定价值。

2)通过ANSYS分析得出:所研究的UHMWPE材料齿轮在无缺陷情况下的疲劳寿命远高于齿根存在熔接痕情况下的寿命。

3)当熔接痕靠近UHMWPE材料齿轮齿根处时,加载后轮齿很快进人疲劳并断裂,因此需要对注塑工艺进行优化,避免在齿轮齿根处出现熔接痕。

4)很多性能优异的工程塑料均可用作为中等载荷的齿轮材料,例如POM,PA66等,利用有限元方法校核其疲劳寿命会加快设计速度,同时也提高了可靠性。(end)

滚动轴承疲劳寿命试验台的设计毕业设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

疲劳分析方法

疲劳寿命分析方法 摘要:本文简单介绍了在结构件疲劳寿命分析方法方面国内外的发展状况,重点讲解了结构件寿命疲劳分析方法中的名义应力法、局部应力应变法、应力应变场强度法四大方法的估算原理。 疲劳是一个既古老又年轻的研究分支,自Wohler将疲劳纳入科学研究的范畴至今,疲劳研究仍有方兴未艾之势,材料疲劳的真正机理与对其的科学描述尚未得到很好的解决。疲劳寿命分析方法是疲分研究的主要内容之一,从疲劳研究史可以看到疲劳寿命分析方法的研究伴随着整个历史。 金属疲劳的最初研究是一位德国矿业工程帅风W.A.J.A1bert在1829年前后完成的。他对用铁制作的矿山升降机链条进行了反复加载试验,以校验其可靠性。1843年,英国铁路工程师W.J.M.Rankine对疲劳断裂的不同特征有了认识,并注意到机器部件存在应力集中的危险性。1852年-1869年期间,Wohler对疲劳破坏进行了系统的研究。他发现由钢制作的车轴在循环载荷作用下,其强度人大低于它们的静载强度,提出利用S-N 曲线来描述疲劳行为的方法,并是提出了疲劳“耐久极限”这个概念。1874年,德国工程师H.Gerber开始研究疲劳设计方法,提出了考虑平均应力影响的疲劳寿命计算方法。Goodman讨论了类似的问题。1910年,O.H.Basquin提出了描述金属S-N曲线的经验规律,指出:应力对疲劳循环数的双对数图在很大的应力范围内表现为线性关系。Bairstow通过多级循环试验和测量滞后回线,给出了有关形变滞后的研究结果,并指出形变滞后与疲劳破坏的关系。1929年B.P.Haigh研究缺口敏感性。1937年H.Neuber指出缺口根部区域内的平均应力比峰值应力更能代表受载的严重程度。1945年M.A.Miner 在J.V.Palmgren工作的基础上提出疲劳线性累积损伤理论。L.F.Coffin和S.S.Manson各自独立提出了塑性应变幅和疲劳寿命之间的经验关系,即Coffin—Manson公式,随后形成了局部应力应变法。 中国在疲劳寿命的分析方面起步比较晚,但也取得了一些成果。浙江大学的彭禹,郝志勇针对运动机构部件多轴疲劳载荷历程提取以及在真实工作环境下的疲劳寿命等问题,以发动机曲轴部件为例,提出了一种以有限元方法,动力学仿真分析以及疲劳分

疲劳寿命设计方法

寿命设计方法 -王光建

目录 …什么是疲劳失效 …无限寿命设计方法 ?S-N曲线(wohler curve)及疲劳极限?基于疲劳极限的评判 ?考虑平均应力的损伤修正…有限寿命设计方法 ?Miner法则(疲劳损伤线性累积) ?雨流计数法?寿命计算…疲劳寿命仿真计算 …疲劳寿命计算的不足

疲劳失效 …疲劳是一种机械损伤过程 …特点: 在这一过程中即使名义应力低于材料屈服强度;破坏前无明显塑性变形,突然发生断裂…本质: ?交变载荷+金属缺陷?金属的循环塑性变形(微观) ?疲劳一般包含裂纹萌生和随后的裂纹扩展两个过程 ?疲劳是损伤的累积 金属内部缺陷微裂纹产生裂纹扩展断裂 (晶体位错) 疲劳发生过程 …疲劳的判断: 金属材料的疲劳断裂口上,有明显的光滑区域与颗粒区域,光滑区域是疲劳断裂区,颗粒区域是脆性断裂区 粗糙的脆性断裂区 光滑的疲劳区 裂纹源

-S-N曲线(Wohler curve)及疲劳极限…S-N曲线是根据材料的疲劳强度实验数据得出的应力和疲劳寿命N的关系曲线 …S-N曲线用于描述材料的疲劳特性 σ S-N curve 1871年,Wohler首先对铁路车轴进行了系统的疲劳研究,发展了S-N曲线及疲劳极限概念

-S-N曲线(Wohler curve)及疲劳极限…疲劳极限:一般规定,循环次数107所对应的最大应力为疲劳极限 σ σ limit S-N curve

-基于疲劳极限的评判 …Alternating stress 作为判断应力 Alternating stress=(σ - σmin)/2 max …判断标准 σAlternating stress<σ limit σσ limit σ √ 2 S-N curve σ × 1

滚动轴承疲劳寿命试验台的设计

第1章绪论 1.1课题研究的目的和意义 滚动轴承是机器运转中重要的零部件,是旋转结构中的重要组成部分之一,具有承受载荷和传递动运动的作用。可是,滚动轴承是机器运转时主要故障来源之一,有数据结果分析表明:旋转机器中有35%的故障都及轴承的失效相关,轴承能够使用多久和可靠性的大小直接影响到机器系统的整体性能。为此在对轴承的加速老化试验和加速寿命试验,对于研究轴承的故障演变规律和失效原理有着很重要的意义。 在20世纪前期,Lundberg和Palmgren对5210的滚动轴承做了很多试验,根据1400多套滚子轴承、球轴承的寿命试验结果,在Weibull分布理论的基础上,通过研究得到了寿命及负载的方程式,称为L-P公式。伴随我国轴承制造技术的不断发展,轴承的几何结构和制造精度得到了相当高的提升和改进。目前,在市场上有几百种不一样型号的滚动轴承。现在的5210轴承钢的材料和制造精度比以前的要好,而且现在在材料的选择上已近不局限于轴承钢。现在生产轴承的原料包括合金钢,陶瓷,轴承钢和塑料等。为此,为了评估新材料的处理工艺,新材料和新几何结构的滚动轴承的磨损寿命,还得对滚动轴承做疲劳寿命试验。另外由于加工技术的提高和材料科学的发展,使用时润滑条件的改善,轴承能够使用的时间越来越长。来自工业和武器等方面的需求也助推了滚动轴承箱相当好的方向发展。比如发电设备,排水设备等要求轴承工作时间连续不间断的十几二十几的小时不间断的无故障运行10000-20000个小时,折算一下相当于及连续工作11-22年并且中间没有出现任何故障,即使是电动工具、一般机械和家用电器等对寿命的要求相对较低的使用场景也要求轴承无故障的间断或不间断的工作4000-8000小时。因此,在很多情况下,研究轴承的寿命必须利用加速疲劳寿命试验方法来获得轴承在高应力的疲劳寿命,并且通过加速实验的结果来估计不一样应力水平下的疲劳寿命,以减少试验时的成本和时间。

Msc.Fatigue疲劳分析实例指导教程

第三章疲劳载荷谱的统计处理 3.1 疲劳载荷谱的统计处理理论基础 3.1.1 数字化滤波 频率分析的典型参量是功率谱密度(PSD),如像确定频率为4Hz对应的幅值的均方根值,只需要求取功率谱密度下对应的3.5-4Hz之间的面积。 3.1.2 雨流计数法 循环计数法:将不规则的随机载荷-时间历程,转化为一系列循环的方法。 3.2 数据的导入与显示 (1)新建:File>New (2)导入:Tools>Fatigue Utilities>File Conversion Utilities>Covert ASCII.dac to Binary...>Single Channel(设置,注意Header Lines to skip要跳过的行数)>exit (3)查看:Tools>Fatigue Utilities>Graphic Display>Quick Look Display 1)放大:View>Window X,输入X的最值 2)读取:①左击任何位置,状态栏显示②数据轨迹:Display>Track 3)显示数据点:Display>Join Points;显示实线图:Display>Join 4)网格和可选坐标轴:Axes>Axes Type/Grid 5)显示某段时间信号的统计信息:Display>Wstats,放大 3.3 数字滤波去除电压干扰信号 (1)载荷时间历程的PSD分析 1)File>New 2)Tools>Fatigue Utilities>Advanced Load Utilities>Auto Spectral density (2)信号的滤波 1)Tools>Fatigue Utilites>Advanced Load Utilities>Fast Fourier Filtering 2)比较滤波前后结果:Tools>Fatigue Utilities>Graphic Display>Multi-file Display (3)滤波稳定性检查:比较前后PSD,多文件叠加显示 第四章应力疲劳分析 4.2 载荷谱块的创建与疲劳寿命计算 (1)创建载荷谱块:Tools>Fatigur Utility>Load Management>Add an Entry>Block program (2)疲劳分析:Tools>Fatigue Utilities>Advanced fatigue utilities>选方法 4.3 零部件疲劳分析 (1)导入有限元模型及应力结果:工具栏Import>Action、Object、Method,查看Results (2)疲劳分析 1)设置疲劳分析方法:工具栏Analysis,设置 2)设置疲劳载荷 ①创建载荷时间历程文件Loading info>Time History Manager ②将有限元分析工况与时间载荷关联:Loading Info>Load case空白>Get/Filte result...

Ncode案例

虚拟疲劳分析软件DesignLife应用案例 传统的汽车整车和零部件开发通常都通过产品在试验室中的台架耐久性试验,或试车场道路试验,以验证产品是否满足其设计目标,这一过程周期很长,成本很高,发现问题较晚。在当今的产品开发中,汽车企业越来越多地应用虚拟模拟分析技术,在实物样机出来之前就对其进行疲劳耐久性预测,在设计的早期消除不合格的设计,并通过设计比较,挑选出好的设计。实践证明,进行虚拟寿命分析,能大大加快产品的开发,减少试验的工作量,节省成本。 新一代CAE疲劳分析软件ICE-flow DesignLife是nCode公司的旗舰产品之一。它不仅继承了已经在工程上得到广泛应用的FE-Fatigue的功能特点,而且在软件的使用方便性方面也有了极大的改进。本文首先介绍虚拟寿命分析的一般步骤,然后将重点介绍在汽车零部件疲劳分析中应用DesignLife的几个案例,以帮助读者深入了解并把握虚拟疲劳分析中的一些要点和难点。 典型步骤 疲劳分析是一项较为复杂的工作,通常需要分析者对所分析的问题,以及需要从分析中获得什么样的结果有一个深刻的理解。通常所说的虚拟疲劳分析,指的是基于有限元分析结果的疲劳分析,就是将有限元分析结果,通常是应力应变结果,作为疲劳分析的一个主要输入。通过一个疲劳分析模型,计算出零部件或结构表面的疲劳寿命分布,以帮助判断设计寿命是否达到,或进行寿命优化设计。步骤如下: 1. 选择一个合适的疲劳分析模型 汽车疲劳分析中常用的分析模型有局部应力法、局部应变法、焊点疲劳分析法和焊缝疲劳分析法,另外还有较为复杂的Dang Van多轴安全因子法、振动疲劳分析和高温疲劳分析等。不同的分析方法需要不同的有限元分析结果和材料性能输入。 2. 准备有限元分析结果 一旦疲劳分析模型已经选择,那么需要什么有限元分析结果也将明确。比如,局部应力或应变法通常需要应力结果,而焊点分析法则需要焊点单元的力和力矩。有限元分析通常对每一个作用在零部件或结构中的力和力矩做单位静力线性计算,应力输出结果可以是未平均的,或已平均的节点值,或者单元值。 3. 准备载荷输入数据 使用什么载荷数据对于疲劳分析至关重要,载荷定义了汽车的使用环境,也决定了疲劳分析的结果。比如,载荷输入如果是试车场中采集的信号,那么疲劳分析结果将会是汽车在试验场中行驶的寿命,而不是在公共路面行驶的寿命。特别需要指出的是,对于汽车零部件或结构的疲劳分析,通常需要相对真实的时域载荷数据,以保证疲劳分析结果的合理性。如果无法测得实际的数据,那么多体动力学是分析载荷传递的强有力的工具。

轴承疲劳寿命3

河南科技大学 实习报告 (3) 学院_______________ 专业班级_______________ 学生姓名_______________ 指导教师_______________ ______学年第______学期

【实验名称】:滚动轴承疲劳寿命试验 【实验目的】:1、滚动轴承的疲劳寿命是轴承的一个非常重要的质量指标; 2、通过实验和现场收集有价值的数据; 3、目前,随着经济全球化,资源本地化的加剧,为了满足轴承制造商和轴承大用户对提高轴承综合质量的要求,我国轴承行业必须对轴承寿命激发试验做更多的尝试。 【实验设备】:ABLT-1A轴承寿命试验机该仪器主要用于滚动轴承疲劳寿命强化(快速)试验。由试验头、试验头座、传动系统、加载系统、润滑系统、计算机控制系统等组成。试验轴承类型:球轴承和滚子轴承 试验轴承内径:10~60mm 试验轴承转速:1000~10000r/min 最大径向加载:100KN 最大轴向加载:50KN 【实验原理和方法】:轴承的寿命与载荷间的关系可表示为下列公式: L10=(f t*C/P)ε或 L h=(106/60*n)* (f t*C/P)ε 式中: L10──基本额定寿命(106转); L h──基本额定寿命(小时h);C──基本额定动载荷,由轴承类型、尺寸查表获得;P──当量动载荷(N),根据所受径向力、轴向力合成计算;f t──温度系数,由表1查得;n──轴承工作转速(r/min);ε──寿命指数(球轴承ε=3 ,滚子轴承ε=10/3 )。 6308实验条件的确定: 额定动载荷Cr=22200N; 取当量动载荷P=6720N; 极限转速n l=14000r/min; 取实验转速n=6000r/min; 基本额定寿命:L10=(106/60*n)*(C/P)ε=100h(球轴承ε=3) 试验结果计算: 按GB/T24607-2009 按检验水平2,实验套数E=8 为布尔分布斜率:b=1.5 设K=1.4 L=K*L10b/0.10536=1.4*1001.5/0.10536=13288 T1i=(L/E)*U a=(13288/8)U a=2674 T0=1941.5=2702 T0=2702> T1i=2674 符合达到K=1.4要求,所以轴承做实验要转够194个小时。 根据GB/T24607-2009合格评定8.4.2L10t/L10h>=Z, (球轴承Z,=1.4)即为合格 【实验步骤】:1、实验分两组进行,1#~4#为第一组,5#~8#为第二组; 2、使用钢笔蘸王水溶液分别给八套轴承编上1~8等号码; 3、将编号的轴承利用工具装入工装内,再将工装装入轴承试验机内; 4、每个试验机内部可以装入四套轴承,其中两套作为对比轴承,工作环境稍好于另外两套; 5、检查一下机器是否有异常,如果无,打开试验机,开始试验,知道轴承损坏或者转够了194个小时时才停止; 6、利用计算机每隔一定的时间记录实验数据,判定轴承寿命是否具有可靠性;

车轴知识

车轴知识 车轴是机车车辆承受动载荷的关键零件,受力状态复杂,它主要承受弯曲载荷、扭转载荷或弯扭复合载荷,并可能受到一定冲击。所以,轴在工作中可因疲劳、弯曲、扭转或拉伸应力而断裂,但疲劳断裂是轴的普遍断裂形式。因此,对车轴钢材而言,主要是保证其良好的强度,特别是弯扭复合疲劳强度及韧性。为了防止其轴颈部位的迅速磨损,还应具备一定的表面硬度。 车轴的强度、韧性等性能要求须通过车轴钢材成分和热处理两方面来保证,与此同时,对钢材的冶金质量、淬透性要求等还须提出附加要求。以下仅就高速铁路用车轴材质的优化选择加以论述。 车轴钢材成分 车轴钢材成分对性能的保证包括两方面涵义,一方面指合金化问题,另方面指含碳量高低的选择。 车轴钢材的含碳量 “碳”是钢中必不可少的元素,也是影响钢材性能的重要元素。然而加碳虽然强化作用很高,但却显著降低韧性。轴类零件一般选择中碳钢。为了提高铁路行车安全性,应降低车轴钢的含碳量,在降碳的同时,可通过微合金化及热处理来提高车轴强度。 40~45钢车轴使用历史悠久,是国际上使用较多的钢种。由于其强度偏低,耐磨性差,疲劳裂纹萌生门槛值较低,使用寿命较短。但40~45钢韧脆转变温度低,加工性能好,成本低,如果能采用先进的冶炼、锻造技术和热处理工艺,在保持韧性前提下提高强度,其裂纹率很可能有所下降,使用寿命将会相对延长。 长期以来,我国的机车车辆均采用优质碳素钢车轴,国外由于各国的国情不同,技术观点不同,选用的车轴材料不尽相同。依据各国车轴标准不同,车轴材料一般分为两大类,即碳素钢车轴及合金钢车轴。但都属于低碳钢范畴。碳素钢车轴钢材的含碳量一般选择0.30~0.45%,加入合金元素,可适当降碳。 车轴钢材的合金元素 依据车轴钢材的使用性能,要求车轴钢具有较高的强度和韧性,即良好的综合性能。因此,车轴钢合金化的目的就是添加合金元素达到强韧化目的。 钢材的韧化,意味着不发生脆化。依据一般的强化机构,除细晶强化外,一般均会发生脆化,即脆性转变温度上升的同时,韧性破断的冲击值和断裂韧性值下降。对于大截面钢件,Mo是使其晶粒细化,提高综合性能的首选元素。Cr能够增加钢的淬透性,促使淬火及回火后工件整个截面上获得较均匀的组织。Ni是提高钢材韧性最有效的合金元素。它韧化的机理是使材料基体本身在低温下易于交叉滑移,从而提高韧性。所以,不论对何种组织,加入Ni均可提高韧性。多种合金元素的复合加入,反映在性能上,则由单一性能到优良的综合机械性能,从而可以满足车轴在不同受荷状态的需要。因此,Cr、Ni、Mo等合金元素是车轴钢合金化的主要元素。 选材时还必须考虑经济性,包括材料成本的高低,供应是否充分,加工工艺过程是否复杂。由于Ni、Mo的价格昂贵,使材料的成本增加。 综合性能、资源和成本等多种因素,车轴钢成分设计中,在满足设计要求的组织和性能前提下,应控制Ni、Mo的含量。 车轴钢的冶金质量 车轴要求钢材具有良好的疲劳强度,钢材中的宏观和微观缺陷将造成应力集中,而且本身常常就是裂纹源,因而,车轴钢材的冶金质量就显得十分重要。为此,国外已开始较普遍地采用钢包脱气、真空冶炼等精炼方法生产车轴用钢。精炼钢的疲劳强度和冲击性能都得到

Fe-safe疲劳分析功能详细介绍

Fe-safe疲劳分析功能详细介绍 SIMULIA FE-SAFE可定义载荷时间历程,用于处理一组有限元分析结果。 SIMULIA FE-SAFE能有效处理FEA分析的弹性应力结果和弹塑性应力结果,可组合多个载荷的时间历程。迭加多轴加载的时间历程,从而在模型的每个位置上都产生各个应力张量的复杂的时间历程。 SIMULIA FE-SAFE可进行序列工况的疲劳分析,数据集序列可以是一个瞬态分析的结果,也可以通过一系列离散事件来生成。如对发动机曲轴不同转角下的多个求解结果进行疲劳分析。 SIMULIA FE-SAFE可对复杂的块数据载荷进行分析,对于每个载荷条件,生成载荷的有限元结果数据集循环块。 SIMULIA FE-SAFE 可对载荷历程和序列载荷进行组合使用。

SIMULIA FE-SAFE可定义载荷文件,其中可包含一系列载荷块,每一载荷块又可定义一系列的载荷历程或序列载荷数据的组合。序列载荷数据是由于结构承受随时间变化载荷而引起的应力变化数据。 SIMULIA FE-SAFE可利用应力-寿命曲线、应变-寿命曲线,并可使用局部应力-应变法进行单轴和多轴疲劳分析。同时可以使用多种平均应力修正方法,也可采用用户定义的平均应力修正。具有很强的基于局部应力-应变技术的高级多轴疲劳分析功能,自动识别疲劳“热点”;对于运动部件,可针对给定的设计寿命,给出三维安全系数云图,显示疲劳寿命的设计余量。多轴Neuber准则用来计算循环中构件产生屈服引起的弹塑性应力应变。对于应力历程中的每一事件,利用材料记忆算法重新计算双轴条件下的循环应力-应变曲线。对多向载荷,在载荷历程上节点的主应力方向不断变化,因而临界平面的法向也在不断变化,在每个面上,剪切应变或正应变都采用雨流计数法,计算每个循环的疲劳损伤,使用Miner准则来计算节点的疲劳寿命,所有面上的最短疲劳寿命作为节点的疲劳寿命。 ?利用应力-寿命曲线进行单轴分析-Goodman、Gerber平均应力修正。 ?利用应变-寿命曲线进行单轴分析-Morrow、Smith-Watson-T opper平均应力修正。 ?利用局部应力-应变法进行多轴疲劳分析,可分别考虑最大剪应变(适用于延展性好的材料)、最大正应变(适用于脆性材料)、Brown-Miller组合剪应变

细解Ansys疲劳寿命分析

细解Ansys疲劳寿命分析 2013-08-29 17:16 by:有限元来源:广州有道有限元 ANSYS Workbench 疲劳分析 本章将介绍疲劳模块拓展功能的使用: –使用者要先学习第4章线性静态结构分析. ?在这部分中将包括以下内容: –疲劳概述 –恒定振幅下的通用疲劳程序,比例载荷情况 –变振幅下的疲劳程序,比例载荷情况 –恒定振幅下的疲劳程序,非比例载荷情况 ?上述功能适用于ANSYS DesignSpacelicenses和附带疲劳模块的更高级的licenses. A. 疲劳概述 ?结构失效的一个常见原因是疲劳,其造成破坏与重复加载有关 ?疲劳通常分为两类: –高周疲劳是当载荷的循环(重复)次数高(如1e4 -1e9)的情况下产生的. 因此,应力通常比材料的极限强度低. 应力疲劳(Stress-based)用于高周疲劳. –低周疲劳是在循环次数相对较低时发生的。塑性变形常常伴随低周疲劳,其阐明了短疲劳寿命。一般认为应变疲劳(strain-based)应该用于低周疲劳计算. ?在设计仿真中, 疲劳模块拓展程序(Fatigue Module add-on)采用的是基于应力疲劳(stress-based)理论,它适用于高周疲劳. 接下来,我们将对基于应力疲劳理论的处理方法进行讨论. …恒定振幅载荷 ?在前面曾提到, 疲劳是由于重复加载引起: –当最大和最小的应力水平恒定时, 称为恒定振幅载荷. 我们将针对这种最简单的形式,首先进行讨论. –否则,则称为变化振幅或非恒定振幅载荷

…成比例载荷 ?载荷可以是比例载荷, 也可以非比例载荷:–比例载荷, 是指主应力的比例是恒定的,并且主应力的削减不随时间变化. 这实质意味着由于载荷的增加或反作用的造成的响应很容易得到计算.–相反, 非比例载荷没有隐含各应力之间相互的关系,典型情况包括:?在两个不同载荷工况间的交替变化?交变载荷叠加在静载荷上?非线性边界条件

简析滚动轴承的疲劳寿命

安昂商城 简析滚动轴承的疲劳寿命 轴承疲劳寿命是指,在一定技术状态下的滚动轴承,在主机的实际使用状态下运转,直至滚动表面发生疲劳剥落而不能满足主机要求时的轴承内,外圈(轴、座圈)相对旋转次数的总值总转数。当轴承转速大致恒定或已成为已知,疲劳寿命可用与总转数相应的运转总小时数来表示,此外,还应注意: 1)、影响滚动轴承疲劳寿命的因素非常多,无法全部加以估计或通过标准试验条件而加以消除,这造成轴承实际疲劳寿命有很大的离散性,因此轴承疲劳寿命的计算与试验是以数理统计学和概率论为基础的。最常用的滚动轴承疲劳寿命的表达参数为额定寿命L10,在ISO推荐标准R281中L10的涵义明确规定如下:“数量上足够多的相同的一批轴承,其额定寿命L10用转数(或在转速不变时用小时数)来表示,改批轴承中有90%在疲劳剥落发生前能达到或超过此转数(或小时数)”。迄今为止,世界各国都遵从上述规定。 在美国等一些国家中,还采用中值寿命的概念。中值寿命Lm是指一批相同轴承的中值寿命,即指其中50%的轴承在疲劳剥落前能够达到或超过的总转数,或在一定转速下的工作小时数。中值寿命Lm,不是一批轴承寿命的算术平均值。一般中值寿命Lm是额定寿命的5倍左右。 2)、额定寿命的概念值使用于数量足够的一批滚动轴承,而不适用于个别滚动轴承。例如有40套6204轴承按其使用条件算的其额寿命为1000h,其实际意义是在这批轴承中大体上可能有90%,即36套的实际运转寿命将超过1000h即出现疲劳,但不能个别地指出究竟是哪只轴承的疲劳寿命将低于1000h。事实上,由于轴承设计、制造、材质以及应用技术的不断进步,一些厂家轴承产品的实际使用寿命大多略高于甚至成倍地高于按标准方法计算出的额定寿命。 3)、对于实际使用中并非由于疲劳失效的轴承,额定疲劳寿命的意义就代表这批滚动轴承在正常发挥其材料潜力时可期望的寿命。因此在大多数情况下,用户在选择滚动轴承时仍先作疲劳寿命计算,再根据实际失效类别进行校核,例如磨损寿命校核,取计算结果中较小值为滚动轴承计算寿命。

疲劳寿命试验报告OTY.doc

离合器分离轴承 疲劳寿命试验报告 (2016)试验第012号 产品名称:离合器分离轴承产品型号:50RCTS3502 产品件号:491Q-1602060 试验类型:寿命质量考核 哈尔滨天烨轴承有限公司 2016年12 月18 日

哈尔滨天烨轴承有限公司产品开发部 离合器轴承寿命试验报告共2页第2页 7 试验结果 该分离轴承经过100万次分离、结合试验后,各零部件无任何损坏,轴承总成工作正常。 8 试验结论 根据JB/T5312-2001《汽车离合器分离轴承及其单元》的规定,离合器分离轴承动态分离耐久性试验达到100万次为合格品,该分离轴承与原车离合器进行配套试验,经过100万次分离、结合试验后没有任何损坏,旋转灵活、无异响。证明该轴承满足使用要求。 9试验时间 2016年11月25日至2016年12月17日 10试验地点 本公司轴承寿命试验区 11试验参加人员 姜利涛陈庆峰张学涛 编制张学涛审核陈庆峰

哈尔滨天烨轴承有限公司产品开发部 离合器轴承寿命试验报告共2页第1页 离合器分离轴承寿命试验报告 1试验报告 任务单号:LHQ—012/2007 2试验目的 对本公司生产的50RCTS3502自调心离合器分离轴承进行寿命试验。 3试验对象 本公司成品库里的50RCTS3502自调心离合器分离轴承任抽2套中的第2套。4试验项目 离合器分离轴承寿命试验。 5试验方法及实验条件 5.1评价依据标准 现参考我国JB/T5312-2001《汽车离合器分离轴承及其单元》 5.2试验设备 本公司2014年自制的TY-03-04离合器分离轴承耐久性试验台。 5.3试验条件 与原车离合器总成配套进行动态分离耐久性试验。 主轴转速:3000r/min 分离频率:70次/min 分离行程:7.5mm 试验区温度:100℃±5℃ 试验总次数: 100万次 6试验过程 试验从2016年11月25日开始。每20万次停机对实验轴承检查一次。 直至1001500次试验结束。

abaqus与fatigue结合疲劳分析

Fatigue 分析实例 为如图1所示的中心孔板,材料为LY12-CZ ,板宽50mm,孔直径为8mm ,板厚1mm 。LY12-CZ 铝板弹性模量GPa E 68=,强度极限MPa b 482=σ。在板的两边施加1MPa 的均布拉应力。 图1 中心孔板结构示意图 1、应力计算结果与分析 对上述模型进行有限元计算,结果应力云图如图2所示。

图2 应力云图 2、*.Fil文件说明 *.fil文件是ABAQUS的一种二进制输出文件,供其他软件(如Patran)后处理使用,如生成X-Y曲线,制作二维表格等,可以输出的项目包括:单元、节点、接触面、能量、模态、梁截面等的输出信息,输出的方法是在INP文件中增加输出指令, 生成*.fil文件的步骤如下 对ABAQUS/Standard,可以直接输出.fil文件,步骤如下: 在inp文件中,step步骤之后, end step步骤之前,加上以下内容:*NODE FILE

RF,U,V **输出节点的作用力(RF),位移(U,V)到*.fil中 *EL FILE S,E **输出单元应力(S),应变(E)到*.fil中 在abaqus的job界面重新运行inp文件,即可得到对应的fil文件3、疲劳寿命估算 疲劳寿命估算需用到软件中的模块。如图3所示,位于的Tools菜单下,点击Main Interface即可进入模块主界面。 图3 在中进入界面 对结构施加的疲劳载荷谱见表1。

表1 名义应力谱 级数Smax Smin循环次数 1318-1212 217641982将载荷谱导入后显示如图4所示。 图4载荷谱块谱示意图 将模型的结果文件(.fil文件)导入中,点击输入材料和载荷谱信息,进行寿命估算,得到模型的对数寿命云图,如图5所示。

轴承寿命试验

实验一:滚动轴承疲劳寿命 一、实验目的 1.了解影响轴疲劳承寿命的影响因素 2.了解实验的原理及试验方法 二、实验设备 ABLT-1A型轴承寿命强化试验机 三、实验原理及方法 ABLT-1A型轴承寿命强化试验机适用于内径为10-60mm的滚动轴承寿命强化实验。该试验机主要由实验头、实验头座、传动系统、加载系统、润滑系统、电器控制系统、计算机监控系 统等部分组成。实验头装在实验头座内。传动系统传递电机的运动,使试验轴按一定转速旋转。加载系统提供试验所需的的

载荷。润滑系统使实验轴承在正常情况下充分润滑进行实验。电气控制系统提供电气和动力保护,控制电机和液压油缸等的动作。计算机记录试验温度和振动信息,监控机器的运行情况。强化是在保持滚动轴承接触疲劳失效机理一致的前提下被实验的轴承上所加的当量动载荷应接近或达到额定动载荷C的一半,以达到缩短试验周期的目的。 实验轴承外圈温度自动显示,试验时间自动累计显示,疲劳剥落自动停机,用工控机将实验结果每隔一定时间将寿命实验通过时间、振动、温度自动打印一份。 主要技术指标: 实验轴承类型:深沟球轴承、角接触球轴承、圆柱滚子轴承、圆锥滚子轴承、滚针轴承、汽车水泵轴连轴承和汽车轮毂轴承。实验轴承内径:Φ10-60mm 实验轴承数量:2-4套 最大径向载荷:25KN/100KN 最大轴向载荷:50KN 试验轴承转速:1000-10000r/min(有级可调) 供电电源:380v 50hz 三相 功率:约4.5KW 环境温度:5-40 ℃ 四、实验步骤

1.在同一批同型号经检验合格的的产品中随机轴承实验样品在同一批同型号经检验合格的的产品中随机轴承实验样品,每批轴承必须在同一结构的试验机,在相同实验条件下进行试验。 2.在样品内外套圈非基准端面上逐套编号。 3.试验主体组装:试验主体是指主轴,承载体,左右衬套,左右法兰盘,拆卸环,左右锁紧螺母,承载轴承实验轴承等。各零部件要清洗干净。严格按照标准和图样要求组装。 4.在压装轴承时只允许内圈受力,压装后手感检查每套轴承是否旋转灵活。试验主体与机身组装后,用手转动主轴无障碍、无异常。检查各系统(载荷传递、润滑、电气、控制、检测等),使功能正常,安全可靠。 5.采用油润滑实验时,实验轴承外圈温度不允许超过95℃;采用脂润滑时,实验轴承温度不允许超过80℃。 6.寿命试验连续运转,要随时对载荷、转速、油压、振动、噪声、温度等进行监控,每两小时记录一次实验轴承外圈温度,作为实验通过时间的依据。除自动检测外,还要随时用听诊器监听轴承噪音变化,判断轴承运转情况,若有异常情况,立即停机检查处理。 7.试验结束后,有关检测记录、实验报告、实验记录等有关资料保持其原始面目,并妥善保管。试验后典型失效样品送有关部门进行失效分析,其余防锈保存。 五、实验报告

ansys实例命令流-疲劳分析命令流

/FILNAME,Structure ,1 !定义工作文件名。/TITLE, Fatigue Analysis !定义工作文件标题。!进入前处理。 /PREP7 ET,1,PLANE82 !定义单元。 !定义材料属性。 MPTEMP,,,,,,,, !定义材料属性。MPTEMP,1,0 MPDATA,EX,1,,2.06e5 MPDATA,PRXY,1,,0.3 !建立几何模型。 K,1,,,, K,2,,-100,, K,3,150,-60,, K,4,150,-45,, K,5,300,-30,, K,6,300,,, FLST,2,6,3 FITEM,2,1 FITEM,2,2 FITEM,2,3 FITEM,2,4 FITEM,2,5 FITEM,2,6 A,P51X !以上几何模型完成。 !网格划分。 FLST,5,6,4,ORDE,2 FITEM,5,1 FITEM,5,-6 CM,_Y,LINE LSEL, , , ,P51X CM,_Y1,LINE CMSEL,,_Y LESIZE,_Y1,5, , , , , , ,1 !网格控制完成。!网格单元分配划分完成。 MSHAPE,0,2D MSHKEY,0 CM,_Y,AREA ASEL, , , , 1 CM,_Y1,AREA CHKMSH,'AREA' CMSEL,S,_Y AMESH,_Y1

CMDELE,_Y CMDELE,_Y1 CMDELE,_Y2 !以上网格单元分配划分完成。 !施加约束。 FLST,2,1,4,ORDE,1 FITEM,2,1 /GO DL,P51X, ,ALL, FLST,2,1,4,ORDE,1 FITEM,2,6 /GO SFL,P51X,PRES,2, !施加均布载荷。FINISH /SOL /STATUS,SOLU SOLVE !求解。 /POST1 !输入S-N曲线。 FP,1,100,200,500,1000,1500,2000 FP,7,10000,15000,30000,60000,100000,150000 FP,13,200000,250000,300000,350000,400000,450000 FP,19,480000,500000 FP,21,250,240,230,220,210,200 FP,27,195,190,170,150,130,100 FP,33, 90, 80,60,50,30,25 FP,39,18,12 !定义节点号(参数化)。 *SET,node_num,node(150,-45,0) !指定第一个应力位置。 FL,1,node_num,,,, !从数据库中提取应力值。 FSNODE,node_num,1,1, FS,node_num,1,2,1,0,0,0,0,0,0, !存储节点应力。FE,1,100000,2,even1 !指定事件循环次数。FTCALC,1

斜齿轮轴疲劳寿命分析_关丽坤

第34卷第5期2013年10月 河南科技大学学报:自然科学版 Journal of Henan University of Science and Technology :Natural Science Vol.34No.5Oct.2013 基金项目:内蒙古自治区自然科学基金项目(2012MS0717) 作者简介:关丽坤(1963-),女,辽宁沈阳人,教授,硕士,硕士生导师,主要从事机械结构强度及仿真分析研究.收稿日期:2012-12-31 文章编号:1672-6871(2013)05-0023-04 斜齿轮轴疲劳寿命分析 关丽坤,王宁宁 (内蒙古科技大学机械工程学院,内蒙古包头014010) 摘要:针对某钢厂210t 氧气顶吹转炉倾动机构减速机高速斜齿轮轴出现疲劳断裂的问题,采用ANSYS /FE-SAFE 疲劳软件对斜齿轮轴进行疲劳寿命分析,得到斜齿轮轴疲劳寿命和疲劳安全因数,确定疲劳寿命最短位置和实际断裂位置一致, 验证了分析的正确性,此分析为进一步结构优化提供了一定的参考。关键词:倾动机构;减速机;斜齿轮轴;疲劳寿命;结构优化中图分类号:TH133.2 文献标志码:A 0引言 氧气顶吹转炉倾动机构是用以转动炉体,以完成转炉兑铁水、出钢、加料、修炉等一系列工艺操作, 是实现转炉炼钢生产的关键设备之一[1] 。某钢厂210t 氧气顶吹转炉倾动机构一级减速机高速斜齿轮轴出现断裂,断裂实物图如图1所示,由断裂的实物图并根据金属疲劳的破坏机理可以初步断定为疲劳 破坏[2] 。本文应用ANSYS 软件对其进行静强度分析, 结合疲劳累计损伤理论法则和疲劳破坏的概念来查找断裂原因,并用专门的疲劳软件FE-SAFE 完成疲劳分析,为进一步的结构优化提供参考 。 图1斜齿轮轴断裂实物图 1 斜齿轮轴静强度分析 1.1 建立模型及结构简介 图2 斜齿轮轴三维模型 用SolidWorks 软件建立三维实体模型,如图 2所示。在图2中,1处连接制动器;2、4、5处装圆锥滚子轴承;3为斜齿轮;6处为断裂部位;7处连接电机。进行静强度分析之前需要对原模型进行 合理的简化, 这对分析精度影响不大,又节省时间[3]。 斜齿轮轴依靠3个双列圆锥滚子轴承支撑,引导它的旋转,并保证回转精度。一端通过键槽和电机联轴器相连;另一端和制动器相连,轴中间的斜齿轮和另一轴上的斜齿轮相啮合,传递运动和动力。轴承端处的螺纹上拧有锁紧螺母,起到固定轴承内圈的作用。

轴承疲劳寿命试验技术发展趋势

轴承疲劳寿命试验技术发展趋势 李兴林,张仰平,张燕辽,曹茂来,李建平 (杭州轴承试验研究中心,浙江 杭州 310022) 摘要:结合国际国内轴承疲劳试验的现状,阐述了强化轴承疲劳寿命试验发展趋势。随着全球经济一体化的发展,轴承寿命快速试验国际化势在必行。 关键词:滚动轴承;疲劳试验; 中图分类号:TH133.3 文献标识码:B 文章编号:1000-3762(2005)02-0042-03 随着人们对轴承研究的不断深入,疲劳寿命及可靠性作为轴承最重要的性能,已引起各轴承生产单位及相关用户的广泛关注。但由于影响疲劳寿命的因素太多再加上轴承疲劳寿命理论仍需完善,进行寿命试验无疑成为评定这项指标的唯一有效途径。 我国轴承寿命试验,相对于SK F、I NA/FAG、T imken、NSK、NT N、K OY O等国外公司起步较晚、规模较小。目前正处于大量积累试验数据的阶段。而对轴承寿命的各种影响因素及轴承失效机理等基础性理论研究尚嫌不足,与世界先进水平仍有较大差距。随着我国加快建设轴承强国的步伐,用户提高对轴承寿命和性能的要求,轴承试验设备和试验方法将不断推陈出新,轴承寿命试验技术发展将呈现十分乐观的前景。 1 标准试验技术现代化 1.1 标准试验技术自动化 40多年来,我国轴承行业一直沿用前苏联50年代的规范用ZS型试验机进行寿命试验,其主要缺点是:试验载荷的加载系统稳定性差,测试手段落后,没有自动监控装置,试验过程中各数据的测试均靠人工完成,通常是“四班三运转”,这样既影响试验结果的准确性,同时又增加工作人员的劳动强度,时间和人力消耗大,远远不适应大量试验工作的需要。新开发的轴承寿命试验机均不同程度地采用自动化技术来解决这一问题。 1.2 标准试验技术智能化 智能化是自动化的进一步发展,可以根据标准,设定转速谱、载荷谱等以满足试验要求,同时试验结果可以用人工智能和专家系统等知识库技术来进行智能化处理,以达到多快好省的要求。 1.3 标准试验技术个性化 基于标准试验的个性化试验是指轴承寿命试验时与标准轴承寿命试验有所“偏离”,以达到某种特定试验条件的特殊试验需要。如在润滑油中加入金属粉末或污染物研究其对轴承寿命的影响。 2 模拟试验技术模块化 20世纪40年代美国就对产品的设计开始采用单因素环境模拟的研制试验与鉴定试验,以检验设计的质量与可靠性。至70年代发展到采用综合环境模拟可靠性试验(CERT)和任务剖面试验。为检验工艺则采用不带设计裕度的验收模拟试验。 随着环境模拟试验技术的发展与成熟,各国政府部门及军兵种相继颁布了一系列的国标、军标,以严格的法规形式来保证产品的质量和可靠性,其中最有代表性的如美国的环境模拟试验军标MI L-ST D-810,可靠性试验军标MI L-ST D-781和空间飞行器试验军标MI L-ST D-1540及其修订版,具体产品型号则根据这些标准与型号的特点制定详细的试验大纲。长期以来环境模拟试验成为保障产品可靠性的主要手段。 模拟试验技术的特点是:模拟真实环境,加上设计裕度,确保试验过关。因此,环境模拟的真实程度和设计裕度的大小便成为两个关键因素。要提高可靠性就必须对环境进行更精确的模拟和加大设计裕度,但这样一来便使难度增大,周期拖长和成本增加。 这种方法的不足之处是对设计和工艺缺陷未 ISS N1000-3762 C N41-1148/TH 轴承 Bearing   2005年第2期 2005,N o.2 42-43

职业倦怠案例分析

[分享]实务社会工作者职业倦怠研究——以深圳为例 (二)职业倦怠的典型案例 1.受访者J的职业倦怠历程分析 (l)受访者J的工作历程介绍 作为应届毕业生,受访者J自2008年2月任职于深圳某社工机构,目前担任两个社工点的督导助理,从事社会工作职业近三年时间,一直留在目前团队中。J职业倦怠历程的源头来自工作理想与现实环境的巨大落差。上岗之初,和同事L被分派到区民政局的某个科室,J整天都要帮助科室工作人员做一些端茶倒水、打字复印传真等杂事,而L天天没有事情做,就一个人呆在会议室里面,科室开会时就被赶出去。J觉得社工身份不被认同和尊重,自己是外派人员,科室也不会关心你的感受,每天的工作觉得很没有意义,还要面对服务指标的压力,行政的压力。 香港督导也很无奈,说来到你们深圳,听你们说的最多的就是郁闷这个词。直到有一次科室要做一个邻里互助的项目,科室工作人员不知道怎么做项目,这时候J和L就主动提出可以帮忙做个计划书,后来市里开会,J就帮科长给其他各区的作解释,市民政局领导表示社工很有用,科长也很高兴,觉得社工还是有用的,J等自此才开始做一些专业上的工作。 2008年底时,J怀着现在做公务员的杂事,不如自己去做公务员的想法,去参加了公务员考试,并通过了面试环节。恰在此时,在香港督导等的努力下,区民政局同意J等五名社工作为一个小组被派往

该区的S街道成立社工服务点,直接为街道辖区老人、青少年和外来工提供服务,2009年3月时经过考虑J还是选择留下来。 2009年4月成立了社工服务点后,J被同组的社工推选为小组长,承担了与机构,民政局,街道等各方的协调与沟通,随着角色的转变,但是机构并没有明确小组长的权利和职责,考虑到要承担可能的后果J在做决定时往往很有压力,待他习惯了以后,大家也逐渐认同了他,这种压力才逐渐消除。因为条件的限制,J等社工在社区开展活动和小组较多,个案很有限,活动做多了之后感到厌倦,感觉工作只是完成指标,最需要帮助的人得不到帮助,也没有能力和资源去帮助,不需要帮助的反而又要去帮助,觉得没意思,年底J又有离开的打算。于是联系了汉川的一家机构,谈好了过去以后的打算,适逢春节期间,家里出了点事情,考虑到过去坟川后,工资要低很多,J觉得无法跟父母开口,刚好年底参加了督导助理选拔,恰好又选上了,认为可以在这边争取一些发展,就留了下来。 2010年年底,J遇到一个私人的问题,写好了离职报告,考虑到自己的职业自己的理想,还有一起呆了近三年的团队,仍然留了下来,想去改变一些东西,也主动与机构各个部门、见习督导去沟通,去开拓一些工作。 (2)受访者J的职业倦怠历程分析 从以上论述不难看出,在个案J工作经历中,随着工作环境的不断变化,J对工作的认同不断变化,存在一些关键事件让J陷入职业倦怠,J也根据具体情况,做出应对,尝试从倦怠状态中脱离出来。

相关主题
文本预览
相关文档 最新文档