当前位置:文档之家› 机械设计与实践教案 项目2 凸轮机构设计 (教案)

机械设计与实践教案 项目2 凸轮机构设计 (教案)

机械设计与实践教案 项目2   凸轮机构设计 (教案)
机械设计与实践教案 项目2   凸轮机构设计 (教案)

项目2 凸轮机构设计

1.教学目标

(1)了解凸轮机构的分类及应用;

(2)了解推杆常用运动规律的选择原则;

(3)掌握在确定凸轮机构的基本尺寸时应考虑的主要问题;

(4)能根据选定的凸轮类型和推杆运动规律设计凸轮的轮廓曲线。

2.教学重点和难点

(1)推杆常用运动规律特点及选择原则;

(2)盘形凸轮机构凸轮轮廓曲线的设计;

(3)凸轮基圆半径与压力角及自锁的关系。

难点:“反转法原理”与压力角的概念。

3.讲授方法

多媒体课件

4.讲授时数

8学时

任务一凸轮机构的应用

【任务导入】

凸轮机构是由凸轮、从动件、机架以及附属装置组成的一种高副机构。其中凸轮是一个具有曲线轮廓的构件,通常作连续的等速转动、摆动或移动。从动件在凸轮轮廓的控制下,按预定的运动规律作往复移动或摆动。受奥拓汽车零部件制造有限公司委托带领学员分析汽车内燃机凸轮机构的工作过程。

【任务分析】

在各种机器中,为了实现各种复杂的运动要求,广泛地使用着凸轮机构,汽车机构也不例外,如图2.1是汽车内燃机凸轮机构的工作简图。

【力学知识】

平面汇交力系的简化与平衡方程

按照力系中各力的作用线是否在同一平面内,可将力系分为平面力系和空间力系。若

各力作用线都在同一平面内并汇交于一点,则此力系称为平面汇交力系。按照由特殊到一般的认识规律,我们先研究平面汇交力系的简化与平衡规律。

设刚体上作用有一个平面汇交力系F 1、F 2、…、F n ,各力汇交于A 点(图2.2a )。根据力的可传性,可将这些力沿其作用线移到A 点,从而得到一个平面共点力系(图2.2b )。故平面汇交力系可简化为平面共点力系。

连续应用力的平行四边形法则,可将平面共点力系合成为一个力。在图2.3b 中,先合成力F 1与F 2(图中未画出力平行四边形),可得力F R1,即 F R1=F 1+ F 2;再将F R1与F 3合成为力F R2,即F R2=F R1+ F 3;依此类推,最后可得

F R =F 1+ F 2+…+ F n =∑F i (2-1)

式中 F R 即是该力系的合力。故平面汇交力系的合成结果是一个合力,合力的作用线

通过汇交点,其大小和方向由力系中各力的矢量和确定。

若已知F 的大小及其与x 轴所夹的锐角α ,则有

?

??-==ααsin cos F F F F y x (2-2) 如将F 沿坐标轴方向分解,所得分力F x 、F y 的值与在同轴上的投影F x 、F y 相等。但须

注意,力在轴上的投影是代数量,而分力是矢量,不可混为一谈。

若已知F x 、F y 值,可求出F 的大小和方向,即

??

???=+=x y y x F F F F F αtan 22 (2-3) 【设计知识】

一、凸轮机构的分类及应用

根据凸轮及从动件的形状和运动形式的不同,凸轮机构的分类方法有以下四种:

(1)按凸轮的形状分类

①盘形凸轮:

②移动凸轮:

③圆柱凸轮:

由于前两类凸轮运动平面与从动件运动平面平行,故称平面凸轮,后一种就称为空间

凸轮。

(2)按从动件的形状分类

根据从动件与凸轮接触处结构形式的不同,从动件可分为三类:

①尖顶从动件:这种从动件结构简单,但尖顶易磨损(接触应力高),故只适用于传力

不大的低速凸轮机构中。

②滚子推杆从动件:由于滚子与凸轮间为滚动摩擦,所以不易磨损,可以实现较大动

力的传递,应用最为广泛。

③平底推杆从动件:这种从动件与凸轮间的作用力方向不变,受力平稳。而且在高速

情况下,凸轮与平底间易形成油膜而减小摩擦与磨损。其缺点是:不能与具有内凹轮廓的凸轮配对使用;而且,也不能与移动凸轮和圆柱凸轮配对使用, 从动件常见结构如图 2.6所示。

(3)按推杆运动形式分类

①直动推杆:作往复直线移动的推杆称为直动推杆。若直动推杆的尖顶或滚子中心的

轨迹通过凸轮的轴心,则称为对心直动推杆,否则称为偏置直动推杆;推杆尖顶或滚子中心轨迹与凸轮轴心间的距离e ,称作偏距。(如图2.6的a 、b 、c 、d 、e )

②摆动推杆:作往复摆动的推杆成为摆动推杆。(如图2.6的f 、g 、h )

(4)按凸轮与推杆保持高副接触的方法分类

①力锁合:在这类凸轮机构中,主要利用重力、弹簧力或其它外力使推杆与凸轮始终

保持接触,如前述气门凸轮机构。

②形锁合:也叫几何锁合,在这类凸轮机构中,是依靠凸轮和从动件推杆的特殊几何

形状来保持两者的接触,如图2.7所示。

将不同类型的凸轮和推杆组合起来,我们可以得到各种不同的凸轮机构。

二、凸轮机构工作原理和从动件的运动规律

通过上面的介绍已经知道,凸轮机构是由凸轮旋转或平移带动从动件进行工作的。所

以设计凸轮机构时,首先就是要根据实际工作要求确定从动件的运动规律,然后依据这一运动规律设计出凸轮轮廓曲线。由于工作要求的多样性和复杂性,要求推杆满足的运动规律也是各种各样的。在本项目中,我们将介绍几种常用的运动规律。为了研究这些运动规律,我们首先介绍一下凸轮机构的运动情况和有关的名词术语。

1.凸轮机构的工作原理及有关名词术语

如图2.8所示为一对心直动尖顶推杆盘形凸轮机构。其中以凸轮最小向径

b r 为半径,

以凸轮的轴心O 为圆心所作的圆称为凸轮的基圆。下面我们就根据机构的运动情况定义一些有关的名词和术语。

图2.8凸轮的轮廓由AB 、BC 、CD 及DA 四段曲线所组成,而且BA 和CD 两段为圆

弧,A 点为基圆与凸轮轮廓的切点。如图2.8 (a)所示,当推杆与凸轮轮廓在A 点接触时,推杆尖端处于最低位置(或者说:推杆尖端处于与凸轮轴心O 最近的位置)。当凸轮以等角速度ω沿顺时针方向转动时,推杆首先与凸轮廓线的AB 段圆弧接触,此时推杆在最低位置静止不动,凸轮相应的转角01?称作近休止角(也称近休运动角);当凸轮继续转动时,推杆与凸轮廓线的BC 段接触,推杆将由最低位置A 被推到最高位置E ,推杆的这一行程为推程,凸轮相应的转角02?称为推程运动角。凸轮再继续转动,当推杆与凸轮廓线的CD

段接触时,由于CD 段为以凸轮轴心为圆心的圆弧,所以推杆处于最高位置静止不动,在此过程中凸轮相应的转角

03?称作远休止角(或称远休运动角)。而后,在推杆与凸轮廓线DA 段接触时,它又由最高位置E 回到最低位置A ,推杆的这一行程称作回程;凸轮相应的转角04?称作回程运动角。推杆在推程或回程中移动的距离h 称作推杆的行程(行程=推程=回程)。

2.从动件的运动规律分析

从动件的运动规律有很多种,常用的运动规律有等速运动规律、等加速等减速运动规

律、余弦运动规律、正弦运动规律等。它们的运动线图如图2.9所示,运动方程见表2.1。

应该指出,除了以上几种常用的从动件运动规律外,有时还要求从动件实现特定的运

动规律,其动力性能的好坏及适用场合,仍可参考上述方法进行分析。

在选择从动件的运动规律时,应根据机器工作时的运动要求来确定。如机床中控制刀

架进刀的凸轮机构,要求刀架进刀时作等速运动,所以应选择从动件作等速运动的运动规律,至于行程始末端,可以通过拼接其他运动规律曲线来消除冲击。对无一定运动要求,只需要从动件有一定位移的凸轮机构,如夹紧、送料等凸轮机构,可只考虑加工方便,采用圆弧、直线等组成的凸轮轮廓。对于高速凸轮机构,应减小惯性力所造成的冲击,多选择从动件作正弦加速度运动规律或其它改进型的运动规律。

【任务实施】

汽车内燃机凸轮机构的工作过程如下。图2.1所示为以内燃机的配气凸轮机构,凸轮

1作等速回转,其轮廓将迫使推杆2作往复摆动,从而使气门3开启和关闭(关闭时借助于弹簧4的作用来实现的),以控制可燃物质进入气缸或废气的排出。

凸轮机构的从动件是在凸轮控制下,按预定的运动规律运动的。这种机构具有结构简

单、运动可靠等优点。但是,由于凸轮机构是高副机构接触应力较大,易于磨损,因此,多用于小载荷的控制或调节机构中。

【相关拓展】

凸轮机构的结构设计

凸轮机构要求能实现预定的运动,承受连续工作载荷的作用,尺寸紧凑,易于加工装

配,并且成本低、寿命长。

凸轮机构的失效形式通常为凸轮工作表面的擦伤、点蚀与光亮磨损。擦伤主要由于表

面粗糙和润滑不充分造成表面材料损失。点蚀与时间和应力有关,是由于表面疲劳引起裂纹扩展,造成表层材料小片剥落。光亮磨损介于损伤和点蚀之间,与润滑油的化学性质有关。一般可选用接触强度高的材料、降低表面粗糙度以及合适的润滑方式来防止失效。

一、凸轮和从动件的常用材料及技术要求

1.凸轮和从动件的常用材料

凸轮的材料要求工作表面有较高的硬度,芯部有较好的韧性。一般尺寸不大的凸轮用

45钢或40Cr 钢,并进行调质或表面淬火,硬度为52~58HRC 。要求更高时,可采用15钢或20Cr 钢渗碳淬火,表面硬度为56~62HRC ,渗碳深度为0.8~1.5mm 。更加重要的凸轮可采用35CrMo 钢等进行渗碳,硬度为60~67HRC ,以增强表面的耐磨性。尺寸大或轻载的凸轮可采用优质灰铸铁,载荷较大时可采用耐磨铸铁。

在家用电器、办公设备、仪表等产品中常用塑料作凸轮材料。一般使用共聚甲醛、聚

砜、聚碳酸脂等,主要利用其成型简单、耐水、耐磨等优点。

从动件接触端面常用的材料有45钢,也可用T8、T10,淬火硬度为55~59HRC ;要求

较高时可以使用20Cr 进行渗碳淬火等处理。

滚子材料的选择主要考虑机构所受的冲击载荷和磨损等问题。可以采用与凸轮同样的

材料。

2.凸轮及从动件的精度与表面粗糙度

对于向径在300~500mm 以下的凸轮可以分为三个精度等级,其公差和表面粗糙度见

表2.2。对于高速凸轮机构的从动件,表面粗糙度应低于0.1~0.2μm 。

二、凸轮结构设计

1. 凸轮的结构及其在轴上的固定

盘型凸轮的结构通常分为整体式和组合式。整体式结构如图2.10所示,它具有加工方

便,精度高和刚性好的优点。凸轮轮廓尺寸的推荐值为:

01)2~5.1(d d =; 0)6.1~2.1(d L = (2-5)

对于大型低速凸轮机构的凸轮、或经常调整轮廓形状的凸轮,常用组合凸轮结构,如

图2.11所示。图2.11a 所示为凸轮与轮毂分开的结构,利用圆弧槽可调整轮盘与轮毂的相对角度;图2.11b 为可以通过调整凸轮盘之间的相对位置来改变从动件在最远位置停留的时间。

凸轮与轴的固定可采用紧定螺钉、键及销钉等方式。通常是在装配时调整好凸轮位置

后,配钻定位销,或用紧定螺钉定位后,再用锥销固定。

2. 从动件结构

(1)从动件导路,如图2.13 a 所示为单面导路,悬臂部分不宜过大,应满足

21L L <;

图2.13b 为双面导路,有利于改善从动件的工作性能。

(2)滚子结构,图2.14所示为滚子的几种装配结构,滚子与销为滑动配合,一般选用88

f H 。尺寸不大时,也可直接用滚动轴承作为滚子。对于几何锁合的凸轮机构,滚子与凸轮上凹槽的配合,一般选用1212

h H 。滚子的主要尺寸一般取:

滚子销轴直径k d :

T k d d )21~31(= (2-6)

滚子宽度b :

mm d b T 54+≥

(2-7)

3. 凸轮工作图

凸轮零件工作图与一般零件工作图相比,除了标注尺寸公差、表面粗糙度、技术条件、

材料和热处理等要求外,应该注意,对于盘型凸轮,为了便于加工和检验,常以极坐标形式或列表给出凸轮理论廓线尺寸,即列出每隔一定角度的凸轮径向值。用图解法设计的滚子从动件凸轮,尺寸标注在理论轮廓曲线上,而平底从动件凸轮,尺寸标注在凸轮实际轮廓曲线上。当同一根轴上有多个凸轮时,应根据工作循环确定各凸轮与轴之间的相对位置关系。如图2.15所示为凸轮工作图示例。

任务二 凸轮轮廓设计

【任务导入】

受巨鲸零部件制造有限公司委托,有培训班的学员设计一对心移动滚子从动件盘形凸

轮。已知凸轮按顺时针方向转动,其基圆半径r o =100mm ,滚子半径r T =5mm 。从动件的行程h=50mm 。其运动规律见表2.3。

表2.3 凸轮的运动规律

凸轮转角

0°~120° 120°~180° 180°~270° 270°~360° 从动件运动规律 等加速等减速上升

50mm 停止不动 等加速等减速下降至原位 停止不动

【任务分析】

在合理地选择了从动件运动规律以后,结合一些具体条件可以进行凸轮轮廓设计。根

据选定的推杆运动规律来设计凸轮具有的廓线时,可以利用作图法直接绘制出凸轮廓线,也可以用解析法列出凸轮廓线的方程式,定出凸轮廓线上各点的坐标,或计算出凸轮的一系列向径的值,以便据此加工出凸轮廓线。用图解法设计凸轮廓线,简单易行,而且直观,但误差较大,对精度要求较高的凸轮,如高速凸轮、靠模凸轮等,则往往不能满足要求。所以,现代凸轮廓线设计都以解析法为主,其加工也容易采用先进的加工方法,如线切割机、数控铣床及数控磨床来加工。但是,图解法可以直观地反映设计思想、原理。本节我们主要介绍图解法,并简单介绍解析法。

【力学知识】

平面汇交力系的平衡方程及其应用

设刚体上作用有一个平面汇交力系F 1、F 2、…、F n ,据式(2-1)则有F R = F 1+ F 2+…+

F n = ∑F 。 将此式两边分别向x 轴和y 轴投影,即有

??

???=+???++==+???++=∑∑y ny y y y x nx x x x F F F F F F F F F F 21R 21R (2-8) 式(2-8)即为合力投影定理:力系的合力在某轴上的投影,等于力系中各力在同一轴上投影的代数和。

若进一步按式(2-8)运算,即可求得合力的大小及方向,即

??

?

?

?

=

+

=

x

y

y

x

F

F

F

F

F

α

tan

)

(

)

(2

2

R(2-9)例如一固定于房顶的吊钩上有三个力F1、F2、F3,其数值与方向如图2.16所示。用解析法求此三力的合力。建立直角坐标系Axy,并应用式(2-8),求出,

图2.16 房顶的吊钩分析

F R x= F1x + F2x + F3x

= 732 N + 0 – 2000 N×cos30°

= —1000 N

F R y = F1y+ F2y+ F3y

= 0 – 732 N – 2000 N×sin30°

= —1732 N

再按式(2-9)得

60

732

.1

tan

N

2000

)

(

)

(2

2

R

=

=

=

=

+

=

∑∑

α

α

x

y

y

x

F

F

F

F

F

平衡条件的解析表达式称为平衡方程。由式(2-8)可知平面汇交力系的平衡条件是

??

?

?

?

=

=

y

x

F

F

(2-10)即力系中各力在两个坐标轴上投影的代数和分别等于零,上式称为平面汇交力系的平衡方程。这是两个独立的方程,可求解两个未知量。

【设计知识】

一、凸轮廓线设计的基本原理

为了说明凸轮廓线设计方法的基本原理,我们首先对已有的凸轮机构进行分析。如图2.18所示为一对心直动尖顶推杆盘形凸轮机构,当凸轮以角速度ω绕轴心O等速逆时针回

?角时,推杆上升至位移s的瞬时位置。转时,将推动推杆运动。图2.18b所示为凸轮回转

现在为了讨论凸轮廓线设计的基本原理,设想给整个凸轮机构加上一个公共角速度

-),使其绕凸轮轴心O转动。根据相对运动原理,我们知道凸轮与推杆间的相对运(ω

-绕动关系并不发生改变,但此时凸轮将静止不动,而推杆则一方面和机架一起以角速度ω

凸轮轴心O转动,同时又在其导轨内按预期的运动规律运动。由图C可见,推杆在复合运

动中,其尖顶的轨迹就是凸轮廓线。

利用这种方法进行凸轮设计的方法称为反转法,其基本原理就是理论力学中所讲过的

相对运动原理。

二、用作图法设计凸轮廓线

针对不同形式的凸轮机构,其作图法也有所不同。我们以三类推杆形式给予分别介绍,

同学们要注意理解三类机构设计的异同之处。

1.对心直动尖顶推杆盘形凸轮机构

已知一基圆半径为r0的对心移动尖顶从动件盘形凸轮机构,其从动件的位移线图如图2.19b所示,凸轮以角速度ω顺时针转动。试设计该凸轮的轮廓曲线。

设计步骤如下:

(1)根据已知从动件的规律(即位移线图),选定适当比例尺μs作出位移曲线,并将横坐标上φ角等分4份,如图2.19b)中1、2、3、4,通过各等分点作横坐标的垂线并与位移曲线相交,得到相应的凸轮转过各转角时从动件的位移11ˊ,22ˊ,33ˊ,44ˊ;同理,将图2.19b)中的φˊ角等6份,从5开始得6、7、…、11,通过各等分点作横坐标的垂线并与位移曲线相交,得到相应的凸轮转过各转角时从动件的位移66ˊ,…,1111ˊ如图2.9b所示。(注意,φs角,φsˊ角在横坐标轴不用等分,只按同样比例画出即可;φ、φˊ角等分几份视具体情况而定,总之等分份数越多,图形设计越精确)。

(2)以基圆半径r0为半径按所选比例尺μs作出基圆。

(3)在基圆上,任取一点B0作为从动件升程的起始点,由B0开始,沿-ω的方向将基圆360°角按已知的φ、φs、、φˊ、φsˊ大小分出,在图6.19 a中,∠B0O B4=φ,…,再将φ角、φˊ角等分成与位移线图相同的等份(图2.19 a中φ角等分成4份,φˊ角等分成6份),得各等分点B1ˊ,B2ˊ,B3ˊ,…。连接OB1ˊ,OB2ˊ,OB3ˊ,…得各径向线并将其延长,则这些径向线即为从动件导路在反转过程中每转过相应的等份角度时所占据的位置。

(4)在各条径向线上自B1ˊ,B2ˊ,B3ˊ…各点分别截取B1B1ˊ=11ˊ,B2B2ˊ=22

ˊ,B 3B 3ˊ=33ˊ…得B 1,B 2,B 3,…各点。将B 0,B 1,B 2,B 3,…各点连成光滑曲线,该曲线即为所要设计的对心移动尖顶从动件盘形凸轮轮廓曲线。(注意,B 4 B 5为等半径的圆弧,B 11 B 0也为等半径的圆弧)。

按以上作图法绘制的光滑封闭曲线即为凸轮廓线,如图2.9a 所示。

对于其它类型的凸轮机构的凸轮廓线设计,同样可根据如上所述反转法原理进行。接

下来,我们主要讨论其各自的特点及设计时要注意的问题。

2.对心直动滚子推杆盘形凸轮机构

对于这种类型的凸轮机构,由于凸轮转动时滚子(滚子半

径T r )与凸轮的相切点不一定在推杆的位置线上,但滚子中心

位置始终处在该线,推杆的运动规律与滚子中心一致,所以其

廓线的设计需要分两步进行。

(1)将滚子中心看作尖顶推杆的尖顶,按前述方法设计

出廓线0β,这一廓线称为理论廓线。 (2)以理论廓线上的各点为圆心、以滚子半径T r 为半径作一系列的圆,这些圆的内

包络线β即为所求凸轮的实际廓线,如图2.20所示。

3.对心直动平底推杆盘形凸轮机构

在设计这类凸轮机构的凸轮廓线时,也要按两步进行:

(1)把平底与推杆轴线的交点B 看作尖顶推杆的尖顶,按照前述方法,求出尖顶的一

系列位置,将其连成曲线,即为凸轮的理论廓线。

(2)过以上各交点B 按推杆平底与推杆轴线的夹角作一系列代表平底的直线,这一系

列位置的包络线即为所求凸轮的实际廓线。

求出凸轮廓线后,根据平底推杆的一系列位置,选择出推杆平底的最小尺寸不应小于

m ax l 的两倍。如图2.21。

4.偏心移动尖顶从动件盘形凸轮轮廓的设计

三、凸轮廓线设计的解析法

对于精度较高的高速凸轮、检验用的样板凸轮等需要用解析法设计,以适合数控机床

加工。在研究过凸轮廓线设计的作图法之后,接下来我们就利用如图2.23所示的偏置滚子直动推杆盘形凸轮机构,介绍解析方法。解析法主要采用解析表达式计算并确定凸轮轮廓,计算工作量大,一般采用计算机精确地计算出凸轮轮廓或刀具轨迹上各点地坐标进行。

图 2.21平

【任务实施】

巨鲸零部件制造有限公司委托的对心移动滚子从动件盘形凸轮轮廓设计步骤、结果及

说明如下。

3)绘制凸轮实际轮廓曲线

以凸轮理论轮廓曲线上的各点为圆心,以滚子半径为半径画一系列滚子圆,作该系列

滚子圆的内包络线,即为滚子从动件凸轮的实际轮廓曲线,如图 2.24(b)所示。

图2.24 对心移动滚子从动件盘形凸轮轮廓曲线的绘制

【相关拓展】 关于凸轮的 、b r 和T r

凸轮的基圆半径

b r 直接决定着凸轮机构的尺寸。在前面我们介绍凸轮廓线设计时,都

是假定凸轮的基圆半径已经给出。而实际上,凸轮的基圆半径的选择要考虑许多因素,首先要考虑到凸轮机构中的作用力,保证机构有较好的受力情况。为此,需要就凸轮的基圆半径和其它有关尺寸对凸轮机构受力情况的影响加以讨论。

一、凸轮机构中的作用力及凸轮机构压力角α

图 2.25所示为一直动尖顶推杆盘状凸轮机构的推杆在推程任意位置时的受力情况分析。

提高c α的有效途径是增大导路长度l ,减小悬臂长度b 。根据理论分析和实践经验,为提高机构效率,改善受力情况,通常规定

max α小于许用压力角[α],而[α]远小于c α,

即: c ααα<<≤][max (2-19)

根据实践经验,常用的许用压力角数值为:

1)工作行程时,对于直动推杆,取 30][=α;对于摆动推杆取 45~35][=α;

2)回程时,取 80~70][=α

二、凸轮基圆半径的确定

对于一定类型的凸轮机构,在推杆运动规律选定之后,该凸轮的机构压力角与凸轮基圆半径的大小直接相关。

由于基圆半径r b 与凸轮机构压力角α的大小有关,在确定基圆半径时,主要考虑的是使机构的压力角αmax ≤ [α]这一要求。

一般在工程实际中,可按经验来确定基圆半径r b 。当凸轮与轴制成一体时,可取凸轮基圆半径r b 略大于轴的半径;当凸轮与轴分开制造时,常取r b =(1.6~2)r 。其中r 是安装凸轮处轴颈的半径。

当从动件的运动规律确定后,凸轮基圆半径b r 越小,则机构的压力角越大。合理地选择偏距e 的方向,可使压力角减小,改善传力性能。

所以,我们在设计凸轮机构时,应该根据具体的条件抓住主要矛盾合理解决:如果对机构的尺寸没有严格要求,可将基圆取大些,以便减小压力角;反之,则应尽量减小基圆半径尺寸。但应注意使压力角满足α≤[α]。

三、滚子半径T r 的确定、平底尺寸的确定

1.滚子半径的选择

对于滚子从动件中滚子半径的选择,要考虑其结构、强度及凸轮廓线的形状等诸多因素。这里我们主要说明廓线与滚子半径的关系。

如图2.26所示为一内凹的凸轮轮廓曲线,β为实际轮廓,

0β为理论轮廓。实际轮廓的曲率半径a ρ等于理论轮廓的曲率半径ρ与滚子半径T r 之和,即:T a r +=ρρ。这样,不论滚子半径大小如何,凸轮的工作廓线总是可以平滑地作出。

对于图2.26b 中的外凸轮,T a r -=ρρ,则实际轮廓的曲率半径为零实际轮廓上将出现尖

点。当T r <ρ时,则a ρ为负值,这时实际的轮廓出现交叉,从动轮将不能按照预期的运动

规律运动,这种现象称为“失真”。因此,对于外凸的凸轮,应使滚子的半径T r 小于理论轮廓的最小曲率半径min ρ。另一方面,要考虑强度、结构等因素,滚子的半径也不能太小,通常取:

b T r r )5.0~1.0(=,其中b r 为基圆半径。

2.平底尺寸的选择

平底从动件其平底尺寸的确定必须保证凸轮轮廓与平底始终相切,否则从动件也会出现“失真”,甚至卡住。

通常平底长度L 应取:

mm l L )7~5(2max += (2-20) 其中m ax l 为凸轮与平底相切点到从动件运动中心距离的最大值。

哈工大机械原理大作业 凸轮机构设计 题

H a r b i n I n s t i t u t e o f T e c h n o l o g y 机械原理大作业二 课程名称: 机械原理 设计题目: 凸轮机构设计 一.设计题目 设计直动从动件盘形凸轮机构, 1.运动规律(等加速等减速运动) 推程 0450≤≤? 推程 009045≤≤? 2.运动规律(等加速等减速运动) 回程 00200160≤≤? 回程 00240200≤≤? 三.推杆位移、速度、加速度线图及凸轮s d ds -φ 线图 采用VB 编程,其源程序及图像如下: 1.位移: Private Sub Command1_Click() Timer1.Enabled = True '开启计时器 End Sub Private Sub Timer1_Timer() Static i As Single

Dim s As Single, q As Single 'i作为静态变量,控制流程;s代表位移;q代表角度 Picture1.CurrentX = 0 Picture1.CurrentY = 0 i = i + 0.1 If i <= 45 Then q = i s = 240 * (q / 90) ^ 2 Picture1.PSet Step(q, -s), vbRed ElseIf i >= 45 And i <= 90 Then q = i s = 120 - 240 * ((90 - q) ^ 2) / (90 ^ 2) Picture1.PSet Step(q, -s), vbGreen ElseIf i >= 90 And i <= 150 Then q = i s = 120 Picture1.PSet Step(q, -s), vbBlack ElseIf i >= 150 And i <= 190 Then q = i s = 120 - 240 * (q - 150) ^ 2 / 6400 Picture1.PSet Step(q, -s), vbBlue ElseIf i >= 190 And i <= 230 Then

《机械设计基础》试题库_凸轮机构

第 3章凸轮机构 习题与参考答案 一、单项选择题(从给出的 A 、 B 、C、 D 中选一个答案) 1与连杆机构相比,凸轮机构最大的缺点是。 A .惯性力难以平衡B.点、线接触,易磨损 C.设计较为复杂D.不能实现间歇运动 2与其他机构相比,凸轮机构最大的优点是。 A .可实现各种预期的运动规律B.便于润滑 C.制造方便,易获得较高的精度D.从动件的行程可较大 3盘形凸轮机构的压力角恒等于常数。 A .摆动尖顶推杆B.直动滚子推杆 C.摆动平底推杆D.摆动滚子推杆 4对于直动推杆盘形凸轮机构来讲,在其他条件相同的情况下,偏置直动推杆与对心直动推杆 相比,两者在推程段最大压力角的关系为关系。 A .偏置比对心大B.对心比偏置大 C.一样大D.不一定 5 下述几种运动规律中,既不会产生柔性冲击也不会产生刚性冲击,可用于高速场合。 A .等速运动规律B.摆线运动规律(正弦加速度运动规律) C.等加速等减速运动规律D.简谐运动规律(余弦加速度运动规律) 6 对心直动尖顶推杆盘形凸轮机构的推程压力角超过许用值时,可采用措施来解决。 A .增大基圆半径B.改用滚子推杆 C.改变凸轮转向 D .改为偏置直动尖顶推杆 7.()从动杆的行程不能太大。 A. 盘形凸轮机构 B. 移动凸轮机构 C. 圆柱凸轮机构 8.()对于较复杂的凸轮轮廓曲线,也能准确地获得所需要的运动规律。 A 尖顶式从动杆 B. 滚子式从动杆 C. 平底式从动杆 9.()可使从动杆得到较大的行程。 A. 盘形凸轮机构 B 移动凸轮机构 C. 圆柱凸轮机构 10.()的摩擦阻力较小,传力能力大。 A 尖顶式从动杆 B. 滚子式从动杆 C 平底式从动杆 11.()的磨损较小,适用于没有内凹槽凸轮轮廓曲线的高速凸轮机构。 A. 尖顶式从动杆 B. 滚子式从动杆 C. 平底式从动杆

机械设计基础实训课程标准-2019

机械设计基础实训课程标准 一、课程性质 《机械设计基础实训》是一门整周专业实践课程,目的在于培养学生的机械设计能力。《机械设计基础实训》是“机械设计基础”课程的最后一个重要的实践性教学环节,是学生在校期间第一次较全面的设计能力训练,在实现学生总体培养目标中占有重要地位。 二、设计理念 本课程的设计突破的学科体系模式,突出以就业为导向,按照高职教育培养应用型人才的目标,依据课程学习目标,根据学院现有条件,选择适合培养学生专业能力、适合教学操作的知识和实训内容,作为训练学生专业能力的学习任务载体。 三、设计思路 本课程采用项目式教学方法,把所有的知识点和操作方法都融入到教学项目中,本课程在机房上课,采用项目教学→多媒体教学演示→学生操作→教师总结四个阶段教学。采用讲授法、演示法、练习法、讨论法、教学做完全一体化。 四、课程衔接 1前导课程机械制图、AutoCAD. 2 平行课程公差配合与测量、金属材料与热处理。 3 后续课程液压与气动、毕业设计。 五、课程培养目标 学生能掌握机械设计内容和步骤,为今后从事机械设计工作打下良好基础。另 一方面培养学生培养学生专业能力、社会能力和方法能力。 (一)知识目标 (1)掌握机械设计步骤 (2)掌握力学计算、零件设计内容 (二)能力目标 (1)培养学生综合运用“机械设计基础”课程及其它先修课程的理论知识和生产实际知识解决工程实际问题的能力,并通过实际训练使所学理论知识得以巩固和提高 (2)学习和掌握一般机械设计的基本方法和程序,培养独立设计能力,为后续课的学习和实际工作打好基础 (3)进行机械设计工作基本技能的训练,包括训练计算、绘图能力及熟悉和运用设计资料 (三)素质目标 (1)具有较强的与人交流和沟通的能力 (2)具有较强的组织和团队协作能力

第9章凸轮机构及其设计(有答案)

1.图示凸轮机构从动件推程运动线图是由哪两种常用的基本运动规律组合而成?并指出有无冲击。如果有冲击,哪些位置上有何种冲击?从动件运动形式为停-升-停。 (1) 由等速运动规律和等加速等减速运动规律组合而成。 (2) 有冲击。 (3) ABCD 处有柔性冲击。 2. 有一对心直动尖顶从动件盘形凸轮机构,为改善从动件尖端的磨损情况,将其尖端改为滚子,仍使用原来的凸轮,这时该凸轮机构中从动件的运动规律有无变化?简述理 由。 (1) 运动规律发生了变化。 (见下图 ) (2)采用尖顶从动件时,图示位置从动件的速度v O P 2111=ω,采用滚子从动件时,图示位置的速度 '='v O P 2111ω,由于O P O P v v 1111 22≠'≠',;故其运动规律发生改变。

3. 在图示的凸轮机构中,画出凸轮从图示位置转过60?时从动件的位置及从动件的位移s。 总分5分。(1)3 分;(2)2 分 (1) 找出转过60?的位置。 (2) 标出位移s。

4. 画出图示凸轮机构从动件升到最高时的位置,标出从动件行程h ,说明推程运动角和回程运动角的大小。 总分5分。(1)2 分;(2)1 分;(3)1 分;(4)1 分 (1) 从动件升到最高点位置如图示。 (2) 行程h 如图示。 (3)Φ=δ0-θ (4)Φ'=δ' 0+θ

5.图示直动尖顶从动件盘形凸轮机构,凸轮等角速转动,凸轮轮廓在推程运动角Φ=? 从动件行程h=30 mm,要求: (1)画出推程时从动件的位移线图s-?; (2)分析推程时有无冲击,发生在何处?是哪种冲击? - 总分10分。(1)6 分;(2)4 分 (1)因推程时凸轮轮廓是渐开线,其从动件速度为常数v=r0?ω,其位移为直线, 如图示。

《机械设计基础》实验

《机械设计基础》实验 实验归属:课内实验 课程编码:0BH01207 课程性质:专业基础课 实验学时:8 适用专业:工业工程 一、实验教学的地位、任务及作用 实验教学是本课程教学体系的重要组成部分,是对学生进行科学试验训练、使学生对所学理论知识强化音响、深化理解并从中传授实用仪器设备、探索试验科学理论的基本方法。实验与工程实践教学,是培养学生实践能力和创新能力,提高学生综合素质的重要环节。 二、实验教学的目的及学生应达到的实验能力标准 通过实验课使学生获得实验技能和科研能力的基本训练,提高学生观察分析事物和动手解决问题的能力,使学生养成实事求是和严肃认真的科学作风,巩固、深化和验证课堂教学中掌握的机械设计基本理论和方法。 三、实验内容及基本要求 序号 实验项目名称 学 时 实验内容与要求 必开 / 选开 1 机构运动简图绘 制与结构认识实 验 2 绘制插齿机、小型冲床、油泵模型、摆动导杆机构、内燃机模型、 缝纫机的机针机构、缝纫机的脚踏驱动机构、缝鞋机的机针机构、 机车驱动机构等机构的机构运动简图,并计算自由度,分析机构 的运动,机构的组成,了解组成机构需要的各种结构。 必开 2 渐开线齿轮范成 实验 2 在一张图上,一半画标准齿轮的范成图,另一半画变位齿轮的范 成图;并计算所画的标准齿轮和变位齿轮的基本参数,并分析实 验结果。 必开 3 带传动实验 2 测定带传动主、从动轮的转速n1、n2,测定带传动主、从动轮的 转转矩T1、T2,绘制带传动的滑动率和效率随带传动负载的变化 测定带传动主、从动轮的转速曲线,分析带传动的涨紧力对这些 曲线的影响。 必开 4 轴系结构测绘与 分析实验 2 分析和测绘轴系模型,明确轴系结构设计需要满足的要求(固定 与定位要求,装拆要求,调整要求,加工工艺性要求等),画两种 轴系的结构装配图。 必开四、主要设备与器材配置 主要设备有用于测绘与分析的机构25个:缝纫机,插齿机,抛光机,牛头刨床,颚式 破碎机,机械手腕部机构,制动机构,急回简易冲床,步进输送机,假支膝关节机构,装订 机机构,铆机机构等;齿轮范成仪10个;插齿演示机一台 ;用于齿轮参数的测定与分析的 齿轮啮合对12个;机构运动参数测定实验台两台;机械原理陈列柜一套;带传动实验机三 台;拆装减速器8种:单级直齿圆柱齿轮减速器,单级斜齿圆柱齿轮减速器,单级直齿圆锥 齿轮减速器,双级同轴式圆柱齿轮减速器,双级展开式圆柱齿轮减速器,双级分流式圆柱齿

机械设计与实践教案 项目2 凸轮机构设计 (教案)

项目2 凸轮机构设计 1.教学目标 (1)了解凸轮机构的分类及应用; (2)了解推杆常用运动规律的选择原则; (3)掌握在确定凸轮机构的基本尺寸时应考虑的主要问题; (4)能根据选定的凸轮类型和推杆运动规律设计凸轮的轮廓曲线。 2.教学重点和难点 (1)推杆常用运动规律特点及选择原则; (2)盘形凸轮机构凸轮轮廓曲线的设计; (3)凸轮基圆半径与压力角及自锁的关系。 难点:“反转法原理”与压力角的概念。 3.讲授方法 多媒体课件 4.讲授时数 8学时 任务一凸轮机构的应用 【任务导入】 凸轮机构是由凸轮、从动件、机架以及附属装置组成的一种高副机构。其中凸轮是一个具有曲线轮廓的构件,通常作连续的等速转动、摆动或移动。从动件在凸轮轮廓的控制下,按预定的运动规律作往复移动或摆动。受奥拓汽车零部件制造有限公司委托带领学员分析汽车内燃机凸轮机构的工作过程。 【任务分析】 在各种机器中,为了实现各种复杂的运动要求,广泛地使用着凸轮机构,汽车机构也不例外,如图2.1是汽车内燃机凸轮机构的工作简图。

【力学知识】 平面汇交力系的简化与平衡方程 按照力系中各力的作用线是否在同一平面内,可将力系分为平面力系和空间力系。若 各力作用线都在同一平面内并汇交于一点,则此力系称为平面汇交力系。按照由特殊到一般的认识规律,我们先研究平面汇交力系的简化与平衡规律。 设刚体上作用有一个平面汇交力系F 1、F 2、…、F n ,各力汇交于A 点(图2.2a )。根据力的可传性,可将这些力沿其作用线移到A 点,从而得到一个平面共点力系(图2.2b )。故平面汇交力系可简化为平面共点力系。 连续应用力的平行四边形法则,可将平面共点力系合成为一个力。在图2.3b 中,先合成力F 1与F 2(图中未画出力平行四边形),可得力F R1,即 F R1=F 1+ F 2;再将F R1与F 3合成为力F R2,即F R2=F R1+ F 3;依此类推,最后可得 F R =F 1+ F 2+…+ F n =∑F i (2-1) 式中 F R 即是该力系的合力。故平面汇交力系的合成结果是一个合力,合力的作用线 通过汇交点,其大小和方向由力系中各力的矢量和确定。 若已知F 的大小及其与x 轴所夹的锐角α ,则有 ? ??-==ααsin cos F F F F y x (2-2) 如将F 沿坐标轴方向分解,所得分力F x 、F y 的值与在同轴上的投影F x 、F y 相等。但须 注意,力在轴上的投影是代数量,而分力是矢量,不可混为一谈。 若已知F x 、F y 值,可求出F 的大小和方向,即 ?? ???=+=x y y x F F F F F αtan 22 (2-3) 【设计知识】 一、凸轮机构的分类及应用 根据凸轮及从动件的形状和运动形式的不同,凸轮机构的分类方法有以下四种: (1)按凸轮的形状分类

哈工大机械原理大作业凸轮机构第四题

Harbin Institute of Technology 机械原理大作业二 课程名称:机械原理 设计题目:凸轮机构设计 姓名:李清蔚 学号:1140810304 班级:1408103 指导教师:林琳

一.设计题目 设计直动从动件盘形凸轮机构,其原始参数见表 1 表一:凸轮机构原始参数 升程(mm ) 升程 运动 角(o) 升程 运动 规律 升程 许用 压力 角(o) 回程 运动 角(o) 回程 运动 规律 回程 许用 压力 角(o) 远休 止角 (o) 近休 止角 (o) 40 90 等加 等减 速30 50 4-5-6- 7多 项式 60 100 120

二.凸轮推杆运动规律 (1)推程运动规律(等加速等减速运动) 推程F0=90° ①位移方程如下: ②速度方程如下: ③加速度方程如下: (2)回程运动规律(4-5-6-7多项式) 回程0 0240 190≤ ≤?,F0=90°,F s=100°,F0’=50°其中回程过程的位移方程,速度方程,加速度方程如下:

三.运动线图及凸轮s d ds -φ 线图 本题目采用Matlab 编程,写出凸轮每一段的运动方程,运用Matlab 模拟将凸轮的运动曲线以及凸轮形状表现出来。代码见报告的结尾。 1、程序流程框图 开始 输入凸轮推程回程的运动方程 输入凸轮基圆偏距等基本参数 输出ds,dv,da 图像 输出压力角、曲率半径图像 输出凸轮的构件形状 结束

2、运动规律ds图像如下: 速度规律dv图像如下: 加速度da规律如下图:

3.凸轮的基圆半径和偏距 以ds/dfψ-s图为基础,可分别作出三条限制线(推程许用压力角的切界限D t d t,回程许用压力角的限制线D t'd t',起始点压力角许用线B0d''),以这三条线可确定最小基圆半径及所对应的偏距e,在其下方选择一合适点,即可满足压力角的限制条件。 得图如下:得最小基圆对应的坐标位置O点坐标大约为(13,-50)经计算取偏距e=13mm,r0=51.67mm.

机械设计基础实训指导书

《机械设计基础》实验指导书 二零零九年十一月

机械设计基础实训规则及要求 一、作好实训前的准备工作 (1)按各次实训的预习要求,认真阅读实训指导复习有关理论知识,明确实 训目的,掌握实训原理,了解实训的步骤和方法。 (2)对实训中所使用的仪器、实训装置等应了解其工作原理,以及操作注意 事项。 (3)必须清楚地知道本次实训须记录的数据项目及其数据处理的方法。 二、严格遵守实训室的规章制度 (1)课程规定的时间准时进入实训室。保持实训室整洁、安静。 (2)未经许可,不得随意动用实训室内的机器、仪器等一切设备。 (3)作实训时,应严格按操作规程操作机器、仪器,如发生故障,应及时报告,不得擅自处理。 (4)实训结束后,应将所用机器、仪器擦拭干净,并恢复到正常状态。 三、认真做好实训 (1)接受教师对预习情况的抽查、质疑,仔细听教师对实训内容的讲解。 (2)实训时,要严肃认真、相互配合,仔细地按实训步骤、方法逐步进行。 (3)实训过程中,要密切注意观察实训现象,记录好全部所需数据,并交指 导老师审阅。 四、实训报告的一般要求 实训报告是对所完成的实训结果整理成书面形式的综合资料。通过实训报告的书写,培养学习者准确有效地用文字来表达实训结果。因此,要求学习者在自己动

手完成实训的基础上,用自己的语言扼要地叙述实训目的、原理、步骤和方法,所使用的设备仪器的名称与型号、数据计算、实训结果、问题讨论等内容,独立地写 出实训报告,并做到字迹端正、绘图清晰、表格简明。

目录 实验一平面机构运动简图的测绘和分析实验 (4) 实验二齿轮范成原理实验 (8) 实验三渐开线直齿圆柱齿轮的参数测量实验 (13) 实验四组合式轴系结构设计与分析实验 (19) 实验五机械传动性能综合测试实验 (32)

机械原理大作业3凸轮结构设计说明

机械原理大作业(二) 作业名称:机械原理 设计题目:凸轮机构设计 院系:机电工程学院 班级: 设计者: 学号: 指导教师:丁刚明 设计时间: 工业大学机械设计

1.设计题目 如图所示直动从动件盘形凸轮机构,根据其原始参数设计该凸轮。 表一:凸轮机构原始参数 序号升程(mm) 升程运动 角(o)升程运动 规律 升程许用 压力角 (o) 回程运动 角(o) 回程运动 规律 回程许用 压力角 (o) 远休止角 (o) 近休止角 (o) 12 80 150 正弦加速 度30 100 正弦加速 度 60 60 50 2.凸轮推杆运动规律 (1)推杆升程运动方程 S=h[φ/Φ0-sin(2πφ/Φ0)]

V=hω1/Φ0[1-cos(2πφ/Φ0)] a=2πhω12sin(2πφ/Φ0)/Φ02 式中: h=150,Φ0=5π/6,0<=φ<=Φ0,ω1=1(为方便计算) (2)推杆回程运动方程 S=h[1-T/Φ1+sin(2πT/Φ1)/2π] V= -hω1/Φ1[1-cos(2πT/Φ1)] a= -2πhω12sin(2πT/Φ1)/Φ12 式中: h=150,Φ1=5π/9,7π/6<=φ<=31π/18,T=φ-7π/6 3.运动线图及凸轮线图 运动线图: 用Matlab编程所得源程序如下: t=0:pi/500:2*pi; w1=1;h=150; leng=length(t); for m=1:leng; if t(m)<=5*pi/6 S(m) = h*(t(m)/(5*pi/6)-sin(2*pi*t(m)/(5*pi/6))/(2*pi)); v(m)=h*w1*(1-cos(2*pi*t(m)/(5*pi/6)))/(5*pi/6); a(m)=2*h*w1*w1*sin(2*pi*t(m)/(5*pi/6))/((5*pi/6)*(5*pi/6)); % 求退程位移,速度,加速度 elseif t(m)<=7*pi/6 S(m)=h; v(m)=0; a(m)=0; % 求远休止位移,速度,加速度 elseif t(m)<=31*pi/18 T(m)=t(m)-21*pi/18; S(m)=h*(1-T(m)/(5*pi/9)+sin(2*pi*T(m)/(5*pi/9))/(2*pi)); v(m)=-h/(5*pi/9)*(1-cos(2*pi*T(m)/(5*pi/9))); a(m)=-2*pi*h/(5*pi/9)^2*sin(2*pi*T(m)/(5*pi/9)); % 求回程位移,速度,加速度

机械原理 凸轮机构及其设计

第六讲凸轮机构及其设计 (一)凸轮机构的应用和分类 一、凸轮机构 1.组成:凸轮,推杆,机架。 2.优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且机构简单紧凑。缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。 二、凸轮机构的分类 1.按凸轮的形状分:盘形凸轮圆柱凸轮 2.按推杆的形状分 尖顶推杆:结构简单,能与复杂的凸轮轮廓保持接触,实现任意预期运动。易遭磨损,只适用于作用力不大和速度较低的场合 滚子推杆:滚动摩擦力小,承载力大,可用于传递较大的动力。不能与凹槽的凸轮轮廓时时处处保持接触。 平底推杆:不考虑摩擦时,凸轮对推杆的作用力与从动件平底垂直,受力平稳;易形成油膜,润滑好;效率高。不能与凹槽的凸轮轮廓时时处处保持接触。 3.按从动件的运动形式分(1)往复直线运动:直动推杆,又有对心和偏心式两种。(2)往复摆动运动:摆动推杆,也有对心和偏心式两种。 4.根据凸轮与推杆接触方法不同分: (1)力封闭的凸轮机构:通过其它外力(如重力,弹性力)使推杆始终与凸轮保持接触,(2)几何形状封闭的凸轮机构:利用凸轮或推杆的特殊几何结构使凸轮与推杆始终保持接触。①等宽凸轮机构②等径凸轮机构③共轭凸轮 (二)推杆的运动规律 一、基本名词:以凸轮的回转轴心O为圆心,以凸轮的最小半径r0为半径所作的圆称为凸轮的基圆,r0称为基圆半径。推程:当凸轮以角速度转动时,推杆被推到距凸轮转动中心最远的位置的过程称为推程。推杆上升的最大距离称为推杆的行程,相应的凸轮转角称为推程运动角。回程:推杆由最远位置回到起始位置的过程称为回程,对应的凸轮转角称为回程运动角。休止:推杆处于静止不动的阶段。推杆在最远处静止不动,对应的凸轮转角称为远休止角;推杆在最近处静止不动,对应的凸轮转角称为近休止角 二、推杆常用的运动规律 1.刚性冲击:推杆在运动开始和终止时,速度突变,加速度在理论上将出现瞬时的无穷大值,致使推杆产生非常大的惯性力,因而使凸轮受到极大冲击,这种冲击叫刚性冲击。 2.柔性冲击:加速度有突变,因而推杆的惯性力也将有突变,不过这一突变为有限值,因而引起有限

哈工大机械原理大作业_凸轮机构设计(第3题)

机械原理大作业二 课程名称:机械原理 设计题目:凸轮设计 院系:机电学院 班级: 1208103 完成者: xxxxxxx 学号: 11208103xx 指导教师:林琳 设计时间: 2014.5.2

工业大学 凸轮设计 一、设计题目 如图所示直动从动件盘形凸轮,其原始参数见表,据此设计该凸轮。 二、凸轮推杆升程、回程运动方程及其线图 1 、凸轮推杆升程运动方程(6 50π?≤≤) 升程采用正弦加速度运动规律,故将已知条件mm h 50=,650π= Φ带入正弦加速度运动规律的升程段方程式中得: ????? ???? ??-=512sin 215650?ππ?S ;

?? ??????? ??-=512cos 1601ππωv ; ?? ? ??=512sin 1442 1?πωa ; 2、凸轮推杆推程远休止角运动方程( π?π≤≤6 5) mm h s 50==; 0==a v ; 3、凸轮推杆回程运动方程(914π?π≤≤) 回程采用余弦加速度运动规律,故将已知条件mm h 50=,95' 0π= Φ,6s π =Φ带入余弦加速度运动规律的回程段方程式中得: ?? ????-+=)(59cos 125π?s ; ()π?ω--=5 9sin 451v ; ()π?ω-=5 9cos 81-a 21; 4、凸轮推杆回程近休止角运动方程(π?π29 14≤≤) 0===a v s ; 5、凸轮推杆位移、速度、加速度线图 根据以上所列的运动方程,利用matlab 绘制出位移、速度、加速度线图。 ①位移线图 编程如下: %用t 代替转角 t=0:0.01:5*pi/6; s=50*((6*t)/(5*pi)-1/(2*pi)*sin(12*t/5)); hold on plot(t,s); t=5*pi/6:0.01:pi; s=50; hold on plot(t,s); t=pi:0.01:14*pi/9; s=25*(1+cos(9*(t-pi)/5));

凸轮机构的设计毕业设计..

济源职业技术学院 毕业设计 题目凸轮机构的设计 系别机电系 专业机电一体化技术 班级机电0601 姓名赵贝贝 学号06010107 指导教师高清冉 日期2008年12月

设计任务书 设计题目: 凸轮机构的设计 设计要求: 原始条件:内燃机中的凸轮,该凸轮满足以下条件。凸轮以等角速度逆时针回转,及基圆半径rb=30mm,及从动件滚子圆半径rt=8mm。 应完成的任务: 1、凸轮轮廓设计 2、凸轮零件图 设计进度要求: 第一周:确定题目; 第二周:搜集凸轮机构相关资料及前期准备工作; 第三周:凸轮曲线设计及计算; 第四周:初步拟定设计的草稿; 第五周:毕业论文的整体校核、修改; 第六周:论文完善、定稿及打印装订; 第七周:毕业答辩。 指导教师(签名):

摘要 在各种机器中,特别是自动化机器中,为实现某些特殊或复杂的运动规律,常采用凸轮机构。凸轮机构通常是由原动件凸轮、从动件和机件组成。其功能是将凸轮的连续转动或移动转换为从动件的连续或不连续的移动或摆动。与连杆机构相比,凸轮机构便于准确的实现给定的运动规律。所以凸轮机构被广泛地应用,以实现各种复杂的运动要求。 本设计主要设计内燃机中的凸轮机构,内燃机中的凸轮以等角速度回转,其轮廓驱使从动件(阀杆)按预期的运动规律启闭阀门,以控制可燃物进入汽缸或排除废气。至于气阀开启或关闭时间的长短及其速度的变化规律,则取决于凸轮轮廓线的形状。根据从动件运动规律,来设计内燃机中滚子盘形凸轮,使其得到预期的运动规律。 关键词:凸轮机构分类,从动件运动规律,位移曲线,轮廓曲线,结构及材料

目录 设计任务书...................................................................................................................................... I 摘要........................................................................................................................................ II 1凸轮机构的应用及分类.. (1) 1.1凸轮机构的应用 (1) 1.2凸轮机构的分类 (1) 2 从动件常用运动规律 (3) 2.1 凸轮机构的基本参数 (3) 2.2 从动件常用的运动规律 (4) 3盘形凸轮轮廓曲线的设计 (8) 3.1凸轮廓线设计的基本原理 (8) 4凸轮机构的结构及材料 (11) 4.1 凸轮的结构 (11) 4.2从动件结构 (11) 4.3凸轮和滚子的材料 (11) 4.4凸轮的零件图 (13) 结论 (14) 致谢 (15) 参考文献 (16)

《机械设计基础》实验报告

. 广西科技大学鹿山学院 实验报告 课程名称: 指导教师: 班级: 姓名: 学号: 成绩评定: 指导教师签字: 年月日

实验一机构运动简图的测绘与分析 一、实验目的: 1、根据各种机械实物或模型,绘制机构运动简图; 2、学会分析和验证机构自由度,进一步理解机构自由度的概念,掌握机构自 由度的计算方法; 3、加深对机构结构分析的了解。 二、实验设备和工具; 1、缝纫机头; 2.学生自带三角板、铅笔、橡皮; 三、实验原理: 由于机构的运动仅与机构中所有构件的数目和构件所组成的运动副的数目、类型、相对位置有关,因此,在绘制机构运动简图时,可以撇开构件的形状和运动副的具体构造,而用一些简略符号(见教科书有关“常用构件和运动副简图符号”的规定)来代替构件和运动副,并按一定的比例尺表示运动副的相对位置,以此表明机构的运动特征。

四、实验步骤及方法: l、测绘时使被测绘的机械缓慢地运动,从原动件开始,仔细观察机构的运动,分清各个运动单元,从而确定组成机构的构件数目; 2、根据相联接的两构件的接触特征及相对运动的性质,确定各个运动副的种 类; 3、选定投影面,即多数构件运动的平面,在草稿纸上徒手按规定的符号及构 件的连接次序,从原动件开始,逐步画出机构运动简图。用数字1、2、 3、……。分别标注各构件,用英文字母A、B、C、,……分别标注各运动副; 4、仔细测量与机构运动有关的尺寸,即转动副间的中心距和移动副导路的方 向等,选定原动件的位置,并按一定的比例画出正式的机构运动简图。 五、实验要求: l、对要测绘的缝纫机头中四个机构即a.压布、b走针、c.摆梭、d.送布,只绘出机构示意图即可,所谓机构运动示意图是指只凭目测,使图与实物成比例,不按比例尺绘制的简图; 2、计算每个机构的机构自由度,并将结果与实际机构的自由度相对照,观察计 算结果与实际是否相符; 3、对绘制的机构进行结构分析(高副低代,分离杆组;确定机构级别等)。 六、思考题:

机械设计基础实验室参观报告

机械设计基础实验室参 观报告 班级:石工10-1班 姓名:王艺 通过一个学期的学习,我们已经初步掌握了一些机械设计基础的理论与常识。可是面对课本上的平面图形,我们仍然很难对各种机械链接与机构的运动关系及方式形成一个形象的、直观的画面与过程。于是机械设计机构陈列室便给了我们一个很好的学习机会,从中我也受益匪浅。 机构陈列室是根据机械原理课程教学内容设计的。它有十个陈列柜组成,主要展出常见的各类机构,介绍其基本类型和用途,演示传动原理。通过参观学习,有利于帮助我们加深对机构的认识和理解。 链传动的运动是不均匀的,选用小链结距,增加链轮齿数和限制链轮转速。图中我们看到了链传动的实际应用;曳引链和起重链。 我们看到几种螺纹的类型和螺纹连接的基本类型,比如螺栓连接,螺钉连接,双头螺柱连接等,加深了我们对圆柱螺纹和圆锥螺纹的各种参数的理解。 还有一些螺纹连接的预紧和放松的实物展示。

聚集人数最多的地方就是一些平面连接机构的模型展示了,大家开心的转动着各种连接机构,看到不同奇妙的连接方式与传动方法,一定激发了对机械设计课程学习的热情。我想这也是陈列室带给我们感受最深的地方。 机构陈列室的十个陈列柜分别向我们展示了不同种类的常用机构。从最基础的连杆机构、凸轮机构、齿轮机构,到复杂的轮系和间歇运动机构等等,并且对应每一种机构都有其基本类型以及用途、功能、特点的介绍。清晰明了的向我们展示了我们本学期在书本上学习的各种机构。通过具体形象的实体机构,向我们阐述机构和零件的工作原理,促使我们进一步了解了我们所学

的知识。 通过对机构陈列室的参观,我对课本中学习的各种机械设备、机构的设计原理有了深入了解,更进一步的认识到了机械在我们生活中的重要作用,也更加明白了机械设计其实与我所学的专业息息相关。畅游在各式各样的机构之间,也激发了我对机械设计的兴趣。 看到一些零零岁岁的部件,我了解到在各个生产部门实现机械化,对于发展国民经济具有十分重要的意义。为了加速社会主义建设的步伐,应当对原有的机械设备进行全面的级数改造,以充分发挥企业潜力;应答设计各种高质量的、先进的成套设备来装备新兴的生产部门;还应当研究、设计完善的、高度只能化的机械手和机器人,从事空间探测、海底开发和实现生产过程自动化。 我也深刻的感到:任何一种工程设计都是“折中”或“权衡”设计,工程设计最基本的“折中”就是成本与性能的“折中”。一般而言,性能越好、功能越复杂,成本就越高,设计时必须根据使用对象、使用场合综合考虑。 在今后的学习中,我希望能有机会更进一步的了解各种通用机械及与我们专业相关的专用机械的工作原理和设计理论。

《机械设计基础》试题库_凸轮机构

第3章凸轮机构 习题与参考答案 一、单项选择题(从给出的A、B、C、D中选一个答案) 1 与连杆机构相比,凸轮机构最大的缺点是。 A.惯性力难以平衡 B.点、线接触,易磨损 C.设计较为复杂 D.不能实现间歇运动 2 与其他机构相比,凸轮机构最大的优点是。 A.可实现各种预期的运动规律 B.便于润滑 C.制造方便,易获得较高的精度 D.从动件的行程可较大 3 盘形凸轮机构的压力角恒等于常数。 A.摆动尖顶推杆 B.直动滚子推杆 C.摆动平底推杆 D.摆动滚子推杆 4 对于直动推杆盘形凸轮机构来讲,在其他条件相同的情况下,偏置直动推杆与对心直动推杆相比,两者在推程段最大压力角的关系为关系。 A.偏置比对心大 B.对心比偏置大 C.一样大 D.不一定 5 下述几种运动规律中,既不会产生柔性冲击也不会产生刚性冲击,可用于高速场合。 A.等速运动规律 B.摆线运动规律(正弦加速度运动规律) C.等加速等减速运动规律 D.简谐运动规律(余弦加速度运动规律)

6 对心直动尖顶推杆盘形凸轮机构的推程压力角超过许用值时,可采用措施来解决。 A.增大基圆半径 B.改用滚子推杆 C.改变凸轮转向 D.改为偏置直动尖顶推杆 7.()从动杆的行程不能太大。 A. 盘形凸轮机构 B. 移动凸轮机构 C. 圆柱凸轮机构 8.()对于较复杂的凸轮轮廓曲线,也能准确地获得所需要的运动规律。 A 尖顶式从动杆 B.滚子式从动杆 C. 平底式从动杆 9.()可使从动杆得到较大的行程。 A. 盘形凸轮机构 B 移动凸轮机构 C. 圆柱凸轮机构 10.()的摩擦阻力较小,传力能力大。 A 尖顶式从动杆 B. 滚子式从动杆 C 平底式从动杆 11.()的磨损较小,适用于没有内凹槽凸轮轮廓曲线的高速凸轮机构。 A. 尖顶式从动杆 B.滚子式从动杆 C. 平底式从动杆 12.计算凸轮机构从动杆行程的基础是()。 A 基圆 B. 转角 C 轮廓曲线 13.凸轮轮廓曲线上各点的压力角是()。 A. 不变的 B. 变化的 14.凸轮压力角的大小与基圆半径的关系是()。

凸轮机构基本参数的设计

凸轮机构基本参数的设计 前节所先容的几何法和解析法设计凸轮轮廓曲线,其基圆半径r0、直动从动件的偏距e或 摆动从动件与凸轮的中心距a、滚子半径rT等基本参数都是预先给定的。本节将从凸轮机 构的传动效率、运动是否失真、结构是否紧凑等方面讨论上述参数的确定方法。 1 凸轮机构的压力角和自锁 图示为偏置尖底直动从动件盘形凸轮机构在推程的一个位置。Q为从动件上作用的载荷(包 括工作阻力、重力、弹簧力和惯性力)。当不考虑摩擦时,凸轮作用于从动件的驱动力F是 沿法线方向传递的。此力可分解为沿从动件运动方向的有用分力F'和使从动件紧压导路的有 害分力F''。驱动力F与有用分力F'之间的夹角a(或接触点法线与从动件上力作用点速度方 向所夹的锐角)称为凸轮机构在图示位置时的压力角。显然,压力角是衡量有用分力F'与有 害分力F''之比的重要参数。压力角a愈大,有害分力F''愈大,由F''引起的导路中的摩擦阻 力也愈大,故凸轮推动从动件所需的驱动力也就愈大。当a增大到某一数值时,因F''而引 起的摩擦阻力将会超过有用分力F',这时无论凸轮给从动件的驱动力多大,都不能推动从动 件,这种现象称为机构出现自锁。机构开始出现自锁的压力角alim称为极限压力角,它的 数值与支承间的跨距l2、悬臂长度l1、接触面间的摩擦系数和润滑条件等有关。实践说明, 当a增大到接近alim时,即使尚未发生自锁,也会导致驱动力急剧增大,轮廓严重磨损、 效率迅速降低。因此,实际设计中规定了压力角的许用值[a]。对摆动从动件,通常取[a]=40~ 50;对直动从动件通常取[a]=30~40。滚子接触、润滑良好和支承有较好刚性时取数据的上 限;否则取下限。 对于力锁合式凸轮机构,其从动件的回程是由弹簧等外力驱动的,而不是由凸轮驱动的,所 以不会出现自锁。因此,力锁合式凸轮机构的回程压力角可以很大,其许用值可取[a]=70~ 80。

机械设计基本实训指导书

《机械设计基础》实验指导书

二零零九年十一月 机械设计基础实训规则及要求 一、作好实训前的准备工作 (1)按各次实训的预习要求,认真阅读实训指导复习有关理论知识,明确实训目的,掌握实训原理,了解实训的步骤和方法。 (2)对实训中所使用的仪器、实训装置等应了解其工作原理,以及操作注意事项。 (3)必须清楚地知道本次实训须记录的数据项目及其数据处理的方法。二、严格遵守实训室的规章制度

(1)课程规定的时间准时进入实训室。保持实训室整洁、安静。 (2)未经许可,不得随意动用实训室内的机器、仪器等一切设备。 (3)作实训时,应严格按操作规程操作机器、仪器,如发生故障,应及时报告,不得擅自处理。 (4)实训结束后,应将所用机器、仪器擦拭干净,并恢复到正常状态。三、认真做好实训 (1)接受教师对预习情况的抽查、质疑,仔细听教师对实训内容的讲解。 (2)实训时,要严肃认真、相互配合,仔细地按实训步骤、方法逐步进行。 (3)实训过程中,要密切注意观察实训现象,记录好全部所需数据,并交指导老师审阅。 四、实训报告的一般要求 实训报告是对所完成的实训结果整理成书面形式的综合资料。通过实训报告的书写,培养学习者准确有效地用文字来表达实训结果。因此,要求学习者在自己动手完成实训的基础上,用自己的语言扼要地叙述实训目的、原理、步骤和方法,所使用的设备仪器的名称与型号、数据计算、实训结果、问题讨论等内容,独立地写出实训报告,并做到字迹端正、绘图清晰、表格简明。

目录 实验一平面机构运动简图的测绘和分析实验 (4) 实验二齿轮范成原理实验 (8) 实验三渐开线直齿圆柱齿轮的参数测量实验 (13) 实验四组合式轴系结构设计与分析实验 (19) 实验五机械传动性能综合测试实验 (32)

哈工大机械原理大作业二凸轮机构设计(29)

设计说明书 1 设计题目 如图所示直动从动件盘形凸轮机构,其原始参数见下表,据此设计该凸轮机构。 2、推杆升程、回程运动方程及位移、速度、加速度线图 2.1凸轮运动理论分析 推程运动方程: 01cos 2h s π?????=-?? ?Φ???? 1 00sin 2h v πωπ??? = ?ΦΦ?? 22 12 00cos 2h a πωπ???= ?ΦΦ?? 回程运动方程: ()0' 1s s h ?-Φ+Φ?? =- ??Φ ? ? 1'0 h v ω=- Φ 0a = 2.2求位移、速度、加速度线图MATLAB 程序 pi= 3.1415926; c=pi/180; h=140; f0=120; fs=45; f01=90; fs1=105; %升程 f=0:1:360; for n=0:f0

s(n+1)=h/2*(1-cos(pi/f0*f(n+1))); v(n+1)=pi*h/(2*f0*c)*sin(pi/f0*f(n+1)); a(n+1)=pi^2*h/(2*f0^2*c^2)*cos(pi/f0*f(n+1)); end %远休程 for n=f0:f0+fs s(n+1)=140; v(n+1)=0; a(n+1)=0; end %回程 for n=f0+fs:f0+fs+f01 s(n+1)=h*(1-(f(n+1)-(f0+fs))/f01); v(n+1)=-h/(f01*c); a(n+1)=0; end %近休程 for n=f0+fs+f01:360; s(n+1)=0; v(n+1)=0; a(n+1)=0; end figure(1);plot(f,s,'k');xlabel('\phi/\circ');ylabel('s/mm');grid on;title('推杆位移线图') figure(2);plot(f,v,'k');xlabel('\phi/\circ');ylabel('v/(mm/s)');grid on;title('推杆速度线图') figure(3);plot(f,a,'k');xlabel('\phi/\circ');ylabel('a/(mm/s2');grid on;title('推杆加速度线图') 2.3位移、速度、加速度线图

《机械设计基础》本科实验报告汇总

实验一:平面机构认知实验 一、实验目的和要求 目的:通过观察机械原理陈列柜,认知各种常见运动副的组成及结构特点,认知各类常见机构分类、组成、运动特性及应用。加深对本课程学习内容及研究对象的了解。 要求:1、认真观察陈列柜,仔细揣摩分析 2、结合有关的实验展柜和教材的相关章节内容回答下列简答题,完成实验报告。 二、实验原理 分批地组织学生观看、听讲陈列柜的展出和演示。初步了解《机械设计基础》课程所研究的各种常用机构的结构、类型、组成、运动特性及应用。 三、主要仪器设备及材料 JY-10B型机械原理陈列柜,共10柜,有近80个常用机构。 四、试验方法与步骤 第1柜机构的组成 1 机构的组成:蒸汽机、内燃机 2 运动副模型:平面运动副、空间运动副。 第2柜平面连杆机构 1 铰链四杆机构三种形式:①曲柄摇杆机构;②双曲柄机构;③双摇杆机构 2 平面四杆机构的演化形式 ①对心曲柄滑块机构②偏置取冰滑块机构③正弦机构④偏心轮机构⑤双重偏心机构⑥直动滑杆机构⑦摇块机构⑧转动导杆机构⑨摆动导杆机构⑩双滑块机构 第3柜连杆机构的应用 1 鄂式破碎机、飞剪; 2 惯性筛; 3 摄影机平台、机车车轮联动机构; 4 鹤式起重机; 5 牛头刨床的主体机构; 6 插床模型。 第4柜空间连杆机构 RSSR 空间机构、4R 万向节、RRSRR机构、RCCR联轴节、RCRC揉面机构、SARRUT机构第5柜凸轮机构 盘形凸轮、移动凸轮、圆柱凸轮、圆锥凸轮、槽状凸轮、等宽凸轮、等径凸轮和主回凸轮等多种形式;移动和摆动从动件;尖顶、棍子和平底从动件等;空间凸轮机构 第6 柜齿轮机构类型 1 平行轴齿轮机构;2相交轴齿轮机构;3交错轴齿轮机构

凸轮机构及其设计(8学时)(精)

凸轮机构及其设计(8学时)(精)

第四章 凸轮机构及其设计(8学时) 一、教学目的和教学要求 1、 教学目的:使学生掌握凸轮机构设计的基础知识,并能根据生产实 际需要的运动规律设计凸轮机构。 2、 教学要求 1)了解凸轮机构的分类和应用 2)了解推杆常用的运动规律及推杆运动规律的选择原则。由于现代机器 的速度提高,几种常用的运动规律已不能满足实际工作需要,因此, 除常用运动规律外,应简单介绍一些改进型的运动规律。 3)掌握在确定凸轮机构的基本尺寸时应考虑的主要问题(包括压力角对 尺寸的影响,压力角对凸轮受力状况、效率和自锁的影响) 4)能根据选定的凸轮类型和推杆的运动规律设计凸轮的轮廓曲线。设计 时应以解析法为主。 二、本章重点教学内容及教学难点 重点1、推杆常用运动规律的特点及其选择原则; 2、凸轮机构运动过程的分析; 3、凸轮轮廓曲线的设计; 4、凸轮机构压力角与机构基本尺寸的关系。 难点 1、凸轮机构设计的基本方法 凸轮设计的基本方法是反转法,所依据的是相对运动原 理。其求解的关键是确定推杆在复合运动中其尖顶的位置。确 定时应注意以下几点: 1)要注意推杆反转方向。先要明确凸轮的实际转向,然 后在图上用箭头及“-ω”标出推杆的反转方向,以 避免搞错反转方向。 2)要正确确定推杆在反转运动中占据的位置。推杆反转 前后两位置线的夹角应等于凸轮的转角δ。 3)要正确确定推杆的位移s 。推杆在复合运动中,对应的 位移量s 应在对应的反转位置上从基圆上开始向外量 取。 2、凸轮机构的运动分析方法 反转法不仅是凸轮机构设计的基本方法,而且是凸轮机构分 析常用的方法。凸轮机构分析常涉及的问题,如给定一凸轮机构, 即已知凸轮机构的尺寸及其位置、凸轮角速度大小及方向,求解 推程角0δ、远休止角01δ、回程角0 δ'、近休止角02δ以及推杆行程h ;或求解当凸轮转过某一个δ角时,推杆所产生的相应位移s 、 速度v 等运动参数及凸轮与从动件在该位置接触时的压力角α 等。这时,如果让凸轮转过δ角后来求解,显然是很不方便的。 即利用反转法求解,这实际上与凸轮设计的反转法原理相同。 三、教学过程思路 (一)、凸轮机构的应用与分类

相关主题
文本预览
相关文档 最新文档