当前位置:文档之家› PUROLITE树脂功能基团及存储过程

PUROLITE树脂功能基团及存储过程

PUROLITE树脂功能基团及存储过程

PUROLITE树脂功能基团及存储过程

漂莱特纯水树脂在离子交换过程中起着催化作用,使离子交换的速度,我将进一步分析离子交换树脂的历史。在第二次世界大战中,美国赢得了浓缩型离子交换树脂的化学和物理性质的苯乙烯和丙烯酸聚合稳定和离子交换树脂合成的专利。离子交换树脂法的基础开始。

我国在1950年以后开始离子交换树脂的研究,1958年,离子交换树脂在国内正式投入工业化生产。目前,我国离子交换树脂生产的品种已超过60种,质量不断提高,在我国的经济建设中起着重要的作用。

漂莱特浮床纯水树脂的组成

离子交换树脂是一类带有功能基的网状结构的高分子化合物,其结构由三部分组成:不溶性的三维空间网状骨架,连接在骨架上的功能基团和功能基团所带的相反电荷的可交换离子。

漂莱特A100C树脂的分类

按骨架结构不同,离子交换树脂可分为凝胶型和大孔型两大类。

按其所带的交换功能基的特性,可分为阳离子交换树脂、阴离子交换树脂和其他树脂。

按功能基上酸或碱的强弱程度分为强酸阳离子交换树脂、弱酸阳离子交换树脂;强碱阴离子交换树脂、弱碱阴离子交换树脂。

特别强调的是,在存储的过程中,我们需要保持PUROLITE树脂水分,尽量不要使水侵蚀。提出了离子交换树脂储存在干燥的水处理工程设备,防止污染树脂。树脂储存以避免油性材料和铁容器,抗氧化剂和直接接触,以免树脂污染或氧化降解。

氟树脂

1.1含氟树脂概述 自1963年聚偏氟乙烯(PVDF)涂料成功地应用在建筑业,涂覆于装饰板材上以来。氟树脂涂料已经走过了近40年的发展历程,氟树脂涂料以其独特的性能经受住了历史的考验。目前国际上形成了三种不同用途的氟树脂与氟涂料行业,第一种是以美国阿托—菲纳公司生产的PVDF树脂为主要成分的外墙高耐候性氟树脂涂料、具有超强耐候性;第二种是以美国杜邦公司为代表的特氟龙不粘涂料。主要用于不粘锅、不粘餐具及不粘模具等方面;第三种是以日本旭硝子为代表的室外常温固化氟树脂涂料,主要应用于桥梁、电视塔等难以经常施工的塔架防腐等[1]。 1.2含氟树脂的结构特点及性能 1.2.1氟树脂的结构特点 常温固化氟树脂的结构如图1.1所示, 在FEVE的分子结构中, 作为主要的单体三氟氯乙烯, 由于前述氟原子的特性, 在空间结构和化学上, 氟烯烃单元保护了不很稳定的乙烯基醚单元, 使其难以受氧化侵蚀, 提高了树脂的耐候性和耐化学腐蚀性,并为树脂提供了必要的硬度。环己基的引人, 则赋予了树脂刚性和透明性, 其侧链的大环降低了树脂的结晶性, 使其可以在常温下溶于大多数有机溶剂。烷基的引人给树脂提供了较好的挠曲性能, 增加了树脂的柔韧性能。经烷基的引人则给树脂带来了固化点, 使树脂能在常温下与异氛酸醋交联固化, 高温下与三聚氰胺树脂交联固化, 使树脂具有从室温到高温广阔温度范围内固化的性能, 应用范围大为扩展。而侧链上梭基的引人, 则提高了树脂对颜料的润湿性, 加强了树脂与固化剂、有机颜料的相溶性。 C-F键能高达486KJ/mol,因此分子结构稳定, 很难被热、光以及其它化学因素破坏。在同一分子中未成键原子之间存在着一种较弱的范德华力。2个氟原子的范德华半径之和为0.27nm,两个氟原子正好把C-C之间的空隙填满, 保护了碳碳键, 使氟碳树脂相当稳定。 1.2.2氟树脂的性能 氟树脂具有优异的耐候性、耐腐蚀性、耐沾污性、耐热性、耐化学品性、斥水斥油性、绝缘性及低摩擦系数, 其原因是由于氟原子电负性高, 原子半径小, 与碳形成的C-F键极短, 相邻氟原子相互排斥, 使含氟烷烃中氟原子呈螺线形分布, 碳链周围被一系列带负电性的氟原子所包围, 形成屏蔽层。

蛋白质的生理功能

蛋白质的生理功能 1、构造人的身体:蛋白质是一切生命的物质基础,是肌体细胞的重要组成部分,是人体组织更新和修补的主要原料。人体的每个组织:毛发、皮肤、肌肉、骨骼、内脏、大脑、血液、神经、内分泌等都是由蛋白质组成,所以说饮食造就人本身。蛋白质对人的生长发育非常重要。比如大脑发育的特点是一次性完成细胞增殖,人的大脑细胞的增长有二个高峰期。第一个是胎儿三个月的时候;第二个是出生后到一岁,特别是0---6个月的婴儿是大脑细胞猛烈增长的时期。到一岁大脑细胞增殖基本完成,其数量已达成人的9/10。所以0到1岁儿童对蛋白质的摄入要求很有特色,对儿童的智力发展尤关重要。 2、修补人体组织:人的身体由百兆亿个细胞组成,细胞可以说是生命的最小单位,它们处于永不停息的衰老、死亡、新生的新陈代谢过程中。例如年轻人的表皮28天更新一次,而胃黏膜两三天就要全部更新。所以一个人如果蛋白质的摄入、吸收、利用都很好,那么皮肤就是光泽而又有弹性的。反之,人则经常处于亚健康状态。组织受损后,包括外伤,不能得到及时和高质量的修补,便会加速机体衰退。 3、维持肌体正常的新陈代谢和各类物质在体内的输送。载体蛋白对维持人体的正常生命活动是至关重要的。可以在体内运载各种物质。比如血红蛋白—输送氧(红血球更新速率250万/秒)、脂蛋白—输送脂肪、细胞膜上的受体还有转运蛋白等。 4、白蛋白:维持机体内的渗透压的平衡及体液平衡。 5、维持体液的酸碱平衡。 6、免疫细胞和免疫蛋白:有白细胞、淋巴细胞、巨噬细胞、抗体(免疫球蛋白)、补体、干扰素等。七天更新一次。当蛋白质充足时,这个部队就很强,在需要时,数小时内可以增加100倍。 7、构成人体必需的催化和调节功能的各种酶。我们身体有数千种酶,每一种只能参与一种生化反应。人体细胞里每分钟要进行一百多次生化反应。酶有促进食物的消化、吸收、利用的作用。相应的酶充足,反应就会顺利、快捷的进行,我们就会精力充沛,不易生病。否则,反应就变慢或者被阻断。 8、激素的主要原料。具有调节体内各器官的生理活性。胰岛素是由51个氨基酸分子合成。生长素是由191个氨基酸分子合成。 9、提供热能。蛋白质和健康蛋白质是荷兰科学家格里特在1838年发现的。他观察到有生命的东西离开了蛋白质就不能生存。蛋白质是生物体内一种极重要的高分子有机物,占人体干重的54%。蛋白质主要由氨基酸组成,因氨基酸的组合排列不同而组成各种类型的蛋白质。人体中估计有10万种以上的蛋白质。生命是物质运动的高级形式,这种运动方式是通过蛋白质来实现的,所以蛋白质有极其重要的生物学意义。人体的生长、发育、运动、遗传、繁殖等一切生命活动都离不开蛋白质。生命运动需要蛋白质,也离不开蛋白质。人体内的一些生理活性物质如胺类、神经递质、多肽类激素、抗体、酶、核蛋白以及细胞膜上、血液中起“载体”作用的蛋白都离不开蛋白质,它对调节生理功能,维持新陈代谢起着极其重要的作用。人体运动系统中肌肉的成分以及肌肉在收缩、作功、完成动作过程中的代谢无不与蛋白质有关,离开了蛋白质,体育锻炼就无从谈起。在生物学中,蛋白质被解释为是由氨基酸借肽键联接起来形成的多肽,然后由多肽连接起来形成的物质。通俗易懂些说,它就是构成人体组织器官的支架和主要物质。 蛋白质能供给能量。这不是蛋白质的主要功能,我们不能拿“肉”当“柴”烧。但在能量缺乏时,蛋白质也必须用于产生能量。另外,从食物中摄取的蛋白质,有些不符合人体需要,或者摄取数量过多,也会被氧化分解,释放能量。

环氧树脂优缺点

热固性树脂基复合材料是目前研究得最多、应用得最广的一种复合材料。它具有质量轻、强度高、模量大、耐腐蚀性好、电性能优异、原料来源广泛,加工成型简便、生产效率高等特点,并具有材料可设计性以及其他一些特殊性能,如减振、消音、透电磁波、隐身、耐烧蚀等特性,已成为国民经济、国防建设和科技发展中无法取代的重要材料。在热固性树脂基复合材料中使用最多的树脂仍然是酚醛树脂、不饱和聚酪树脂和环氧树脂这三大热固性树脂。这三种树脂阶性能各有特点:酚醛树脂的耐热性较高、耐酸性好、固化速度快,但较脆、需高压成型;不饱和聚酪树脂的工艺性好、价格最低,但性能较差;环氧树脂的粘结强度和内聚强度高,耐腐蚀性及介电性能优异,综合性能最好,但价格较贵。因此,在实际工程中环氧树脂复合材料多用于对使用性能要求高的场合,如用作结构材料、耐腐蚀材料、电绝缘材料及透波材料等。 1、环氯树脂复合材料的分类 环氧树脂复合材料(简称环氧复合材料,也有人称为环氧增强塑料)的品种很多,其名称、含义和分类方法也没有完全统一,但大体上讲可按以下方法分类。 (1)按用途可分为环氧结构复合材料、环氧功能复合材料和环氧功能型结构复合材料。结构复合材料是通过组成材料力学性能的复合,使之能用作受力结构材料,并能按受力情况设计和制造材料,以达到材料性能册格比的最佳状态。功能复合材料是通过组成材料其他性能(如光、电、热、耐腐蚀等)的复合,以得到具有某种理想功能的材料。例如环氧树脂覆铜板、环氧树脂电子塑封料、雷达罩等。需要指出的是,无论使用的是材料的哪一种功能性,都必须具有必要的力学性能,否则再好的功能材料也没有实用性。已有些功能材料同时还要有很高的强度,如高压绝缘子芯棒,要求绝缘性和强度都很高,是一种绝缘性结构复合材料。 (2)按成型压力可分为高压成型材料(成型压力5—30MPa),如环氧工程塑料及环氧层压塑料;低压成型材料(成型压力<2.5MPa),如环氧玻璃钢和高性能环氧复合材料。玻璃钢和高性能复合材料由于制件尺寸较大(可达几个㎡)、型面通常不是平面,所以不宜用高压成型。否则模具造价太高,压机吨位太大,因而成本太贵。 (3)按环氧复合材料阶性能、成型方法、产品及应用领域的特点,并照顾到习惯上的名称综合考虑可分为:环氧树脂工程塑料、环氧树脂层压塑料、环氧树脂玻璃钢(通用型环氧树脂复合材料)及环氧树脂结构复合材料。 3、环氧树脂复合材料的特性 (1)密度小,比强度和比模量高。高模量碳纤维环氧复合材料的比强度为钢的5倍、铝合金的4倍,钻合金的3.2倍。其比模量是钢、铝合金、钦合金的5.5—6倍。因此,在强度和刚度相同的情况下碳纤维环氧复合材料构件的重量可以大大减轻。这在节省能源、提高构件的使用性能方面,是现有任何金属材料所不能相比的。 (2)疲劳强度高,破损安全特性好。环氧复合材料在静载荷或疲劳载荷作用下,首先在最薄弱处出现损伤,如横向裂纹、界面脱胶、分层、纤维断裂等。然而众多的纤维和界面会阻

氟树脂简介

氟树脂简介 1定义 分子结构中含有氟原子的一类热塑性树脂。氟树脂的主要品种有聚四氟乙烯(PTFE)、聚三氟氯乙烯(PCTFE)、聚偏氟乙烯(PVDF)、乙烯-四氟乙烯共聚物(ETFE)、乙烯-三氟氯乙烯共聚物(ECTFE)、聚氟乙烯(PVF)等。其中以聚四氟乙烯为主。 2性能 氟树脂具有优异的耐高低温性能、介电性能、化学稳定性、耐候性、不燃性、不粘性和低的摩擦系数等特性。聚四氟乙烯可以在260℃高温下长期使用,-268℃低温下短期使用。介电性能不仅优异,且不受工作环境、温度、湿度和工作频率的影响。在高温下也不与强酸、强碱和强氧化剂起作用,即使在“王水”中煮沸也无变化,故有“塑料王”之称。润滑性特别是自润滑性很好,对钢的静摩擦系数仅0.02,动摩擦系数0.03,自摩擦系数0.01。主要缺点是有冷流性,在负荷和高速条件下尺寸不稳定;刚性、耐磨和压缩强度较差,需加硫化钼和青铜粉等填料改性;耐辐照性和加工性不好。可熔性聚四氟乙烯不仅具有聚四氟乙烯的原有特性,而且高温机械性能(250℃拉伸强度为13MPa,而聚四氟乙烯为8.5MPa)和加工性能大为改善。聚三氟氯乙烯的特点是透明性、尺寸稳定性和粘接性好,但耐温性较差。聚偏氟乙烯、乙烯-三氟氯乙烯共聚物和乙烯-四氟乙烯共聚物都是机械强度好和韧性大的氟树脂,耐辐照性优良;聚偏氟乙烯还是压电性和热电性极好的功能材料。聚氟乙烯薄膜可耐大气老化30年以上。偏氟乙烯-六氟异丁烯共聚物可在280℃以上高温下长期使用,主要问题是价格昂贵,常温下发脆。 3国内外状况 1934年,德国的F.施洛费尔和O.舍雷尔研究成功的聚三氟氯乙烯,是氟树脂的第一个品种。 1938年美国杜邦公司合成聚四氟乙烯树脂,开发出“特氟龙”不粘涂料,它是将聚四氟乙烯(PTFE)以微小颗粒状态分散在溶剂中,然后以360-380oC的高温烧结成膜,该涂层可长期在-195--250oC下使用,其耐化学品性超过所有聚合物,主要应用于不粘涂层;如:不粘锅内涂膜、聚合反应釜内衬。 20世纪60年代,Elf Ato 公司开发出“Kynar500”为商标的聚偏二氟乙烯(PVDF)氟碳树脂,随后,被应用于氟碳涂料之中。它具有优良的耐候性、耐水性、耐污染性、耐化学品性,尤其用于建筑物的外部装饰有其他涂料无法相比的优点。但由于PVDF树脂不溶欲

【CN110041683A】一种用于箱包壳体的PCPMMA材料及其制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910339782.4 (22)申请日 2019.04.25 (71)申请人 金旸(厦门)新材料科技有限公司 地址 361028 福建省厦门市海沧区后祥路 66号 (72)发明人 陈志峰 刁雪峰 王清文  (74)专利代理机构 厦门市精诚新创知识产权代 理有限公司 35218 代理人 赖秀华 (51)Int.Cl. C08L 69/00(2006.01) C08L 33/12(2006.01) C08L 23/08(2006.01) C08L 33/08(2006.01) (54)发明名称 一种用于箱包壳体的PC/PMMA材料及其制备 方法 (57)摘要 本发明属于复合材料领域,尤其涉及一种用 于箱包壳体的PC/PMMA材料及其制备方法。所述 用于箱包壳体的PC/PMMA材料由聚碳酸酯、聚甲 基丙烯酸甲酯、沙林树脂、增韧剂、分散剂和抗氧 剂组成,所述聚碳酸酯、聚甲基丙烯酸甲酯和沙 林树脂的重量比为(2.8~14.5):(1.2~7):1。本 发明提供的PC/PMMA复合材料兼具有优异的耐刮 擦性能和韧性,符合箱包壳体材料的各项测试要 求。权利要求书1页 说明书6页CN 110041683 A 2019.07.23 C N 110041683 A

1.一种用于箱包壳体的PC/PMMA材料,其特征在于,所述用于箱包壳体的PC/PMMA材料由聚碳酸酯、聚甲基丙烯酸甲酯、沙林树脂、增韧剂、分散剂和抗氧剂组成,所述聚碳酸酯、聚甲基丙烯酸甲酯和沙林树脂的重量比为( 2.8~14.5):(1.2~7):1。 2.根据权利要求1所述的用于箱包壳体的PC/PMMA材料,其特征在于,所述用于箱包壳 体的PC/PMMA材料由如下重量百分比的组分组成: 3.根据权利要求1或2所述的用于箱包壳体的PC/PMMA材料,其特征在于,所述聚碳酸酯为挤出级聚碳酸酯;所述聚碳酸酯在300℃、1.2kg条件下的熔融指数为3.5~8.0cm 3/10min。 4.根据权利要求1或2所述的用于箱包壳体的PC/PMMA材料,其特征在于,所述聚甲基丙烯酸甲酯为低流动性聚甲基丙烯酸甲酯;所述聚甲基丙烯酸甲酯在230℃、3.8kg条件下的熔融指数小于3.0cm 3/10min。 5.根据权利要求1或2所述的用于箱包壳体的PC/PMMA材料,其特征在于,所述沙林树脂为乙烯-(甲基)丙烯酸-金属离子聚合物,金属离子为锌离子、钠离子、镁离子、钾离子或锂离子。 6.根据权利要求1或2所述的用于箱包壳体的PC/PMMA材料,其特征在于,所述增韧剂为丙烯酸酯类聚合物。 7.根据权利要求1或2所述的用于箱包壳体的PC/PMMA材料,其特征在于,所述分散剂选自硅氧烷类分散剂、硬脂酸盐类分散剂和蜡类分散剂中的至少一种。 8.根据权利要求1或2所述的用于箱包壳体的PC/PMMA材料,其特征在于,所述抗氧剂为受阻酚类抗氧剂和/或亚磷酸酯类抗氧剂。 9.权利要求1~8中任意一项所述的用于箱包壳体的PC/PMMA材料的制备方法,其特征在于,该方法包括:将所述聚碳酸酯、聚甲基丙烯酸甲酯、沙林树脂、增韧剂、分散剂和抗氧剂混合均匀,之后将所得混合料在双螺杆挤出机中进行熔融挤出造粒。 10.根据权利要求9所述的用于箱包壳体的PC/PMMA材料的制备方法,其特征在于,所述混合在混料锅中进行,且所述混合的条件包括转速为300~500r/min,时间为2~5min;所述熔融挤出的条件包括温度为240~260℃,螺杆转速为350~500r/min ,真空度不小于0.08MPa。 权 利 要 求 书1/1页2CN 110041683 A

蛋白质的主要生理功能和作用

蛋白质的主要生理功能和作用 张世林外语学院日语14.1 学号:201407030120 摘要本文阐述了蛋白质的定义概念、组成特点、结构性质、生理功能以及作用。 关键词历史定义组成特点结构性质功能 正文: 在18世纪,安东尼奥·弗朗索瓦(Antoine Fourcroy)和其他一些研究者发现蛋白质是一类独特的生物分子,他们发现用酸处理一些分子能够使其凝结或絮凝。当时他们注意到的例子有来自蛋清、血液、血清白蛋白、纤维素和小麦面筋里的蛋白质。荷兰化学家格利特·马尔德(Gerhardus Johannes Mulder)对一般的蛋白质进行元素分析发现几乎所有的蛋白质都有相同的实验公式。用“蛋白质”这一名词来描述这类分子是由Mulder的合作者永斯·贝采利乌斯于1838年提出。Mulder随后鉴定出蛋白质的降解产物,并发现其中含有为氨基酸的亮氨酸,并且得到它(非常接近正确值)的分子量为131Da。 对于早期的生物化学家来说,研究蛋白质的困难在于难以纯化大量的蛋白质以用于研究。因此,早期的研究工作集中于能够容易地纯化的蛋白质,如血液、蛋清、各种毒素中的蛋白质以及消化性和代谢酶(获取自屠宰场)。1950年代后期,Armour Hot Dog Co.公司纯化了一公斤纯的牛胰腺中的核糖核酸酶A,并免费提供给全世界科学家使用。

这一构想最早是由威廉·阿斯特伯里于1933年提出。随后,Walter Kauzman在总结自己对变性的研究成果和之前Kaj Linderstrom-Lang的研究工作的基础上,提出了蛋白质折叠是由疏水相互作用所介导的。1949年,弗雷德里克·桑格首次正确地测定了胰岛素的氨基酸序列,并验证了蛋白质是由氨基酸所形成的线性(不具有分叉或其他形式)多聚体。原子分辨率的蛋白质结构首先在1960年代通过X射线晶体学获得解析;到了1980年代,NMR也被应用于蛋白质结构的解析;近年来,冷冻电子显微学被广泛用于对于超大分子复合体的结构进行解析。截至到2008年2月,蛋白质数据库中已存有接近50,000个原子分辨率的蛋白质及其相关复合物的三维结构的坐标。 蛋白质是一种复杂的有机化合物,旧称“朊(ruǎn)”。氨基酸是组成蛋白质的基本单位,氨基酸通过脱水缩合连成肽链。蛋白质是由一条或多条多肽链组成的生物大分子,每一条多肽链有二十至数百个氨基酸残基(-R)不等;各种氨基酸残基按一定的顺序排列。蛋白质的氨基酸序列是由对应基因所编码。除了遗传密码所编码的20种基本氨基酸,在蛋白质中,某些氨基酸残基还可以被翻译后修饰而发生化学结构的变化,从而对蛋白质进行激活或调控。多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,折叠或螺旋构成一定的空间结构,从而发挥某一特定功能。合成多肽的细胞器是细胞质中

氟树脂涂料

氟树脂涂料 蒋卓君 04300011 摘要:简述了氟树脂涂料的发展、分类、特点、性能、存在的问题与对策,并简单介绍了几种典型的氟树脂涂料的性能和合成工艺。 关键词:氟树脂; 氟涂料 1 前言 自1963 年聚偏氟乙烯(PVDF) 涂料成功地应用在建筑业,涂覆于装饰板材上以来,氟树脂涂料已经走过了近40 年的发展历程,氟树脂涂料以其独特的性能经受住了历史的考验。目前国际上形成了三种不同用途的氟树脂与氟涂料行业, 第一种是以美国阿托—菲纳公司生产的PVDF 树脂为主要成分的外墙高耐候性氟树脂涂料, 具有超强耐候性;第二种是以美国杜邦公司为代表的特氟龙不粘涂料, 主要用于不粘锅、不粘餐具及不粘模具等方面; 第三种是以日本旭硝子为代表的室外常温固化氟树脂涂料, 主要应用于桥梁、电视塔等难以经常施工的塔架防腐等[1]。 2氟树脂涂料发展的几个阶段 氟树脂涂料的品种发展主要经历了熔融型、溶剂可溶型、可交联固化型及水性氟树脂涂料等阶段。 2.1熔融型氟树脂涂料 熔融型氟树脂涂料又称高温烘烤型氟树脂涂料,是最早的氟树脂涂料品种。PTFE、PVF、PVDF 等均可制成熔融型氟树脂涂料,常用熔融型氟树脂及其性能如表1 所示[2 ]。

由表可见,这些氟树脂都有很好的耐候性、耐溶剂性及耐高温性。但由于这些氟树脂涂料须在高温下烘烤使其熔融成膜,只适合于工厂涂装,不适合现场施工。因而应用范围主要局限在电饭锅、耐高温铝板或钢板上,从而限制了自身的发展。 2.2溶剂可溶型氟树脂涂料 为扩大氟树脂涂料的应用范围,首先必须降低氟树脂的结晶度,提高其在有机溶剂中的溶解度。因此,研究者们就将各种含氟单体与带侧基的乙烯单体进行共聚改性,制得了溶解性较高的氟树脂涂料。如VDF/ TFE/ HFP 三元共聚物、VF2/ HFP 二元共聚物涂料等。这种涂料可在较低温度下成膜,因而拓展了氟树脂涂料的使用范围。 2.3可交联固化型氟树脂涂料 可交联固化型氟树脂涂料是指在氟树脂中引入—OH 及—COOH 等官能团,使之可与异氰酸酯、三聚氰胺和氨基树脂等进行交联固化。典型的可交联固化型氟树脂涂料有羟基乙烯基醚共聚物( PFEVE) 涂料等。 2.4 水性氟树脂涂料 随着人们环保意识的加强,水性涂料将成为21世纪的主流产品之一,因此,水性氟树脂涂料已成为当今涂料研究的热点。水性氟树脂涂料一般是由含氟烯烃、乙烯基醚、含羧基化合物和水溶性氨基树脂共聚而制得。研究较多的有三氟氯乙烯共聚物涂料、四氟氯乙烯共聚物涂料及偏氟乙烯共聚物涂料等。降低水性氟树脂涂料的成膜温度是研究的热点。目前,日本旭硝子公司的PFEVE 乳胶成膜温度为35~50 ℃。国内水性氟树脂涂料也在积极研究之中,研究焦点也集中在如何降低成膜温度上。

一文看懂塑料的韧性、刚性、抗冲击性

一文看懂塑料的韧性、刚性、抗冲击性刚度”是指物体发生单位形变时所需要的力的大小;“柔度”则指物体在单位力下所发生的形变大小。“刚度”越大,越不容易发生变形;“柔度”越大,越容易发生变形。韧性好的材料比较柔软,拉伸断裂伸长率、抗冲击强度较大,而硬度、拉伸强度和拉伸弹性模量较小。 从以上叙述可以看出,刚度和韧性呈对立态,但对经过改性的塑料制品而言,两者会相互依存。例如用玻纤增强塑料后,它的刚性变大的同时,可能出现拉伸强度和冲击强度都增加。 如何提高塑料韧性 通过对塑料制品的测试发现,提高基体树脂的韧性有利于提高增韧塑料的增韧效果。增韧的途径很多,比如增大基体树脂的分子量,使分子量分布变得窄小,或者控制是否结晶以及结晶度、晶体尺寸和晶型等方法提来高韧性。 如何区分塑料常用的增韧剂?

橡胶弹性体增韧 EPR(二元乙丙)、EPDM(三元乙丙)、顺丁橡胶(BR)、天然橡胶(NR)、异丁烯橡胶(IBR)、丁腈橡胶(NBR)等;适用于所有塑料树脂的增韧改性; 热塑性弹性体增韧 SBS、SEBS、POE、TPO、TPV等;多用于聚烯烃或非极性树脂增韧,用于聚酯类、聚酰胺类等含有极性官能团的聚合物增韧时需加入相容剂; 核-壳共聚物及反应型三元共聚物增韧 ACR(丙烯酸酯类)、MBS(丙烯酸甲酯-丁二烯-苯乙烯共聚物)、PTW(乙烯-丙烯酸丁酯—甲基丙烯酸缩水甘油酯共聚物)、E-MA-GMA (乙烯-丙烯酸甲酯—甲基丙烯酸缩水甘油酯共聚物)等;多用于工

程塑料以及耐高温高分子合金增韧; 高韧性塑料共混增韧 PP/PA、PP/ABS、PA/ABS、HIPS/PPO、PPS/PA、PC/ABS、PC/PBT等;高分子合金技术是制备高韧性工程塑料的重要途径; 其它方式增韧 纳米粒子增韧(如纳米CaCO3)、沙林树脂(杜邦金属离聚物)增韧等。

氟树脂涂层的性能特点

氟树脂涂层的性能特点 一、氟树脂静电喷涂工艺是当今世界上最先进的防腐工艺,经喷涂后在设备表面形成0.3—1.8mm厚的涂层,所喷涂原料有PTFE、PFA、FEP、ETFE、halar-ECTFE、PVDF六种,经过喷涂不同原料的涂层后具有以下特点: 1、涂层与金属间有极高的结合力:外力基本无法去除,金属与涂层的附着,如同人的表皮与真皮附着。故解决了传统内衬四氟工艺四氟层与金属基层间因结合力不足易起鼓,脱落的缺陷,温度变化频繁的环境中表现更加明显。 2、克服了传统内衬四氟工艺因形状限制造成的使用范围的局限性:任意形状设备、零部件均可喷涂加工; 3、优良的成形可再加工性能:由于氟塑料熔融流动性能优良,在零件表面喷涂后,还可进行二次加工,以满足对工件尺寸精密度控制的要求。 4、优良的防粘性能:经喷涂后不仅具有优异的防粘性能而且具有优异的耐温性能,在-193到260℃的高温使用中依然具备独特的防粘性能。 5、优良的耐真空性能:在任何真空条件下不会出现脱层(在真空-0.01至-0.1兆帕)。 6、优良的机械性能:机械强度大,耐具有高硬度与韧性。 7、优良的耐热性:可在-193到260℃的高低温下的环境长期稳定使用。 8、优良的电气性能:介电常数与介电损耗因子在很宽的温度与频率范围内都比较低,显示出高介电强度; 9、阻燃性:氟树脂在易燃易暴环境下都不易燃烧,是很好的阻燃材料。 10、优良的耐磨性:经过特殊处理可增加涂层表面硬度,以提高耐磨性。 11、优良的耐腐蚀性:几乎不受任何介质的腐蚀。 12、优良的高纯洁净性:例如多晶硅行业、电镀行业、特殊物料反应等等,既达到防腐又起到高纯洁净的效果。 二、已经成功应用到化工业、纯水设备制造业、多晶硅业、半导体业、制药业、电镀业、纯水设备制造业等等

高分子材料 名词解释

1、工程塑料:具有较高的力学性能,能够经受较宽的温度变化范围和较苛刻的环境 条件,并在此条件下长时间使用,可作为结构材料。 2、熔体流动指数(MFI):在规定的温度和压力下,试样熔体每10min通过标准出 料模孔的总重量(克)。单位:g/10min。 3、在外界环境的作用下(例如溶剂、氧气等),因为塑料材料加工过程中有残余内应力存在,使得材料在远远低于屈服应力值时就发生了开裂的现象称为环境应力开裂。 4、热塑性弹性体是指在常温下具有橡胶的弹性,高温下具有可塑化成型的一类弹性体材料。 5、环氧树脂是指分子中含有两个或两个以上环氧基团的线性有机高分子化合物。 6、反增塑现象:当增塑剂加入到聚合物中时,正常情况下,他们能降低弹性模量, 降低拉伸强度和增加伸长率。但有时加入少量增塑剂却往往会出现树脂硬化的现象,即反增塑。 7、润滑剂协同效应:在PVC加工中,加入适量合适的润滑剂,不仅可以降低树脂 熔融前和熔融后分子间以及加工树脂熔体与加工设备间的相互摩擦,改善树脂的熔融流动性及摩擦生热的降低,还有效地防止由此引起的树脂热降解,起到热稳定的协同作用。 8、维卡温度(维卡软化温度),是指测定高分子材料在合适的液体传热介质中,在一定的负荷、一定的等速升温条件下,试样被1毫米2压针头压入1毫米时的温度。 9、(1)合成树脂是将有机原料用化学方法人工合成而得的,一类具有类似天然树脂性能的高分子量的聚合物,是一种无定形的半固体或固体有机物。 (2)塑料是以合成(或天然)树脂为基础,再加入塑料助剂(如填料、增塑剂、 稳定剂、润滑剂、交联剂及其它添加剂),在一定的温度和压力下,经过模塑而成型的产物。 10、硫化指的是橡胶胶料通过生胶分子间交联,生成具有三维网络结构的硫化胶的过程。 11、(1)热固性树脂:树脂加热后产生化学变化,逐渐硬化成型,再受热也不软化,也不能溶解。 (2)热塑性树脂:是具有受热软化、冷却硬化的性能,而且不起化学反应,无论加热和冷却重复进行多少次,均能保持这种性能。

一文看懂塑料的韧性刚性抗冲击性

一文看懂塑料的韧性刚性 抗冲击性 Modified by JEEP on December 26th, 2020.

一文看懂塑料的韧性、刚性、抗冲击性 刚度”是指物体发生单位形变时所需要的力的大小;“柔度”则指物体在单位力下所发生的形变大小。“刚度”越大,越不容易发生变形;“柔度”越大,越容易发生变形。韧性好的材料比较柔软,拉伸断裂伸长率、抗冲击强度较大,而硬度、拉伸强度和拉伸弹性模量较小。 从以上叙述可以看出,刚度和韧性呈对立态,但对经过改性的塑料制品而言,两者会相互依存。例如用玻纤增强塑料后,它的刚性变大的同时,可能出现拉伸强度和冲击强度都增加。 如何提高塑料韧性 通过对塑料制品的测试发现,提高基体树脂的韧性有利于提高增韧塑料的增韧效果。增韧的途径很多,比如增大基体树脂的分子量,使分子量分布变得窄小,或者控制是否结晶以及结晶度、晶体尺寸和晶型等方法提来高韧性。 如何区分塑料常用的增韧剂 橡胶弹性体增韧 EPR(二元乙丙)、EPDM(三元乙丙)、顺丁橡胶(BR)、天然橡胶(NR)、异丁烯橡胶(IBR)、丁腈橡胶(NBR)等;适用于所有塑料树脂的增韧改性; 热塑性弹性体增韧 SBS、SEBS、POE、TPO、TPV等;多用于聚烯烃或非极性树脂增韧,用于聚酯类、聚酰胺类等含有极性官能团的聚合物增韧时需加入相容剂; 核-壳共聚物及反应型三元共聚物增韧

ACR(丙烯酸酯类)、MBS(丙烯酸甲酯-丁二烯-苯乙烯共聚物)、PTW(乙烯-丙烯酸丁酯—甲基丙烯酸缩水甘油酯共聚物)、E-MA-GMA(乙烯-丙烯酸甲酯—甲基丙烯酸缩水甘油酯共聚物)等;多用于工程塑料以及耐高温高分子合金增韧; 高韧性塑料共混增韧 PP/PA、PP/ABS、PA/ABS、HIPS/PPO、PPS/PA、PC/ABS、PC/PBT等;高分子合金技术是制备高韧性工程塑料的重要途径; 其它方式增韧 纳米粒子增韧(如纳米CaCO3)、沙林树脂(杜邦金属离聚物)增韧等。 从原理上讲,增韧的本质可以说是增容。如果把增韧剂看作一类聚合物,就可以把这种增容原理延伸到所有的高分子共混物中。工业上制备有用的聚合物共混物时,反应性增容是我们必须要运用的技术,增韧剂也因此有了不一样的意义,也正是如此,才有了“增韧相容剂”,“界面乳化剂”的形象称谓! 如何提高抗冲击性能

环氧树脂特性

环氧树脂 目录 材料简介应用特性类型分类使用指南国内主要厂商环氧树脂应用领域环氧树脂行业 材料简介 环氧树脂是泛指分子中含有两个或两个以上环氧基团的有机高分子化合物,除个别外,它们的相对分子质量都不高。环氧树脂的分子结构是以分子链中含有活泼的环氧基团为其特征,环氧基团可以位于分子链的末端、中间或成环状结构。由于分子结构中含有活泼的环氧基团,使它们可与多种类型的固化剂发生交联反应而形成不溶、不熔的具有三向网状结构的高聚物。 应用特性 1、形式多样。各种树脂、固化剂、改性剂体系几乎可以适应各种应用对形式提出的要求,其范围可以从极低的粘度到高熔点固体。 2、固化方便。选用各种不同的固化剂,环氧树脂体系几乎可以在0~180℃温度范围内固化。 3、粘附力强。环氧树脂分子链中固有的极性羟基和醚键的存在,使其对各种物质具有很高的粘附力。环氧树脂固化时的收缩性低,产生的内应力小,这也有助于提高粘附强度。 4、收缩性低。环氧树脂和所用的固化剂的反应是通过直接加成反应或树脂分子中环氧基的开环聚合反应来进行的,没有水或其它挥发性副产物放出。它们和不饱和聚酯树脂、酚醛树脂相比,在固化过程中显示出很低的收缩性(小于2%)。 5、力学性能。固化后的环氧树脂体系具有优良的力学性能。 6、电性能。固化后的环氧树脂体系是一种具有高介电性能、耐表面漏电、耐电弧的优良绝缘材料。 7、化学稳定性。通常,固化后的环氧树脂体系具有优良的耐碱性、耐酸性和耐溶剂性。像固化环氧体系的其它性能一样,化学稳定性也取决于所选用的树脂和固化剂。适当地选用环氧树脂和固化剂,可以使其具有特殊的化学稳定性能。 8、尺寸稳定性。上述的许多性能的综合,使环氧树脂体系具有突出的尺寸稳定性和耐久性。 9、耐霉菌。固化的环氧树脂体系耐大多数霉菌,可以在苛刻的热带条件下使用。 类型分类 根据分子结构,环氧树脂大体上可分为五大类: 1、缩水甘油醚类环氧树脂 2、缩水甘油酯类环氧树脂 3、缩水甘油胺类环氧树脂 4、线型脂肪族类环氧树脂 5、脂环族类环氧树脂 复合材料工业上使用量最大的环氧树脂品种是上述第一类缩水甘油醚类环氧树脂,而其中又以二酚基丙烷型环氧树脂(简称双酚A型环氧树脂)为主。其次是缩水甘油胺类环氧树脂。 1、缩水甘油醚类环氧树脂 缩水甘油醚类环氧树脂是由含活泼氢的酚类或醇类与环氧氯丙烷缩聚而成的。

蛋白质的生理作用.

《食品化学与健康》电子教材 蛋白质的生理作用 一、是人体最重要的组成成分 人体中所有重要组织都有蛋白质参与如神经、肌肉、内脏、血液等都含有蛋白质。蛋白质是构成细胞和组织的“建筑材料”,在人体细胞中的含量仅次于水,占细胞干重的50%以上。一切生物膜,如细胞膜、细胞内各种细胞器的膜,几乎都是由蛋白质和脂类等物质组成。蛋白质是生命活动的重要物质基础。在体内多种重要生理活性物质的成分是蛋白质,蛋白质参与调节生理功能,如构成细胞核的核蛋白能影响细胞功能;促进食物消化、吸收和利用作用的是酶蛋白;维持机体免疫功能作用的是免疫蛋白;具有调节肌肉收缩的功能的是肌球蛋白;具有运送营养素的作用的是血液中的脂蛋白、运铁蛋白、视黄醇结合蛋白质;具有携带、运送氧气功能的是血红蛋白;具有调节渗透压、维持体液平衡的作用(肝癌) 是白蛋白;由蛋白质或蛋白质衍生物构成的某些激素,如垂体激素、甲状腺激素、胰岛素及肾上腺素等等都是机体的重要调节物质。蛋白质能向机体提供能量,大约占总热能的14%,每克蛋白质在体内代谢,能产生4千卡左右的能量。 二、蛋白质的生理作用表现为 1.参与生理活动和劳动做功 心脏跳动、呼吸运动、胃肠蠕动以及日常各种劳动做功等,都离不开肌肉的收缩,而骨肉的收缩又离不开具有骨肉收缩功能的蛋白质。 2.参与氧和二氧化碳的运输 在生命活动中,将氧气供给全身组织,同时将新陈代谢所产生的二氧化碳排出体外的运输工具就是血红蛋白。血红蛋白是红细胞的主要成分,也是红细胞行使其功能的物质基础。 3.参与维持人体的渗透压

血浆中有多种蛋白质,对维持血液的渗透压、维持细胞内外的压力平衡起着重要作用。 4.具有防御功能 血浆中含有的抗体,主要是丙种球蛋白,这是一种具有防御功能的蛋白质。 5.参与调节人体内物质的代谢 在物质代谢中,都需要酶系统的催化或调节,而酶的本质就是蛋白质。在调节代谢过程中,蛋白质以酶和激素的形式出现,发挥了生命活动中“指挥员”的作用。

氟树脂及其在行业中的应用

氟树脂及其在行业中的应用 董经博(浙江蓝天环保高科技股份有限公司,浙江杭州310023) 文章编号:1006-4184(2010)01-0004-05 摘要:主要介绍了氟树脂的性能及PVDF 、PFA 、ETFE 、PTFE 、e-PTFE 、FEP 、TFE 树脂在行 业中的应用。 关键词:氟树脂;PVDF ;PFA ;ETFE ;PTFE ;e-PTFE ;FEP ;TFE 收稿日期:2009-06-29 作者简介:董经博(1979-),男,本科毕业。从事氟树脂应用研究工作。 自1934年德国首先开发成功聚三氟氯乙烯(PCTFE ),1938年DuPont 公司开发成功聚四氟乙烯,并逐步工业化以来,氟树脂的种类一直在不断增加,应该领域不断扩大,迄今其身影已遍及航空、航天、石油、化工、机械、电子、建筑、农药、医药及生活材料等。 1氟树脂性能及种类 氟树脂由含氟原子的单体通过均聚或共聚反 应而得。F 原子的电负性为4.0,范德华半径为1.35, C-F 键能为487.2kJ/mol ,C-F 键的极化率为0.68c-x , 再加之特殊的结构,使得氟树脂在耐热性、耐酸性、耐碱性、耐药品性、耐候性、疏水疏油性、耐玷污性、不粘性、生物体适应性、气体选择透过性、射线敏感性和低摩擦系数等方面有优良的表现。 使用中的氟树脂品种主要有:聚四氟乙烯(PTFE )、聚三氟氯乙烯(PCTFE )、聚偏氟乙烯(PVDF )、聚氟乙烯(PVF )、四氟乙烯-六氟丙稀共聚物(FEP )、乙烯-三氟氯乙烯共聚物(ECTFE )、乙烯-四氟乙烯共聚物(ETFE )、四氟乙烯-全氟烷基乙烯基醚共聚物(PFA )、四氟乙烯-六氟乙烯-偏氟乙烯共聚物(THV )和四氟乙烯-六氟丙烯-三氟乙烯共聚物(TFB )等。 2氟树脂在行业中的应用情况 2.1绿色能源 二次锂离子电池是20世纪80年代末出现的绿色高能电池,具有电压高、容量大、自放电小、循环寿命长、绿色环保等优点,是国防工业、数码相机、手机、笔记本电脑、太空技术等领域近年来能源研究和开发的重点之一。 锂离子电池包括液体型锂离子电池(LIB )和聚合物型锂离子电池(LIP )。在液体型锂离子电池中, PVDF 树脂主要用作阴阳两极电极活性物质的粘结 剂;在聚合物型锂离子电池中,PVDF 改性树脂与锂盐、溶剂一起,被制成聚合物电解质膜。 PVDF 树脂由于碳链中的间个碳原子的氢原子 被电负性为4.0的氟原子取代,氟原子相互排斥使得氟原子沿碳链呈螺旋状分布,所以碳链的四周被一系列性质稳定的氟原子包围,这种几乎无间隙的空间屏障使得任何原子或基团不可能进入其结构内部而破坏碳链,因而表现出极高的化学稳定性和热稳定性,这不仅使得PVDF 树脂具有足够的粘结强度,而且还使PVDF 树脂不易被氧化或还原。同时,由于C-F 键的极化率极低,仅为0.68c-x ,因此 PVDF 树脂还具有高度的绝缘性。所以将PVDF 树 脂应用于液体型锂离子电电池时,能够保证: (1)足够的粘结强度,以防止活性物质在集电 器上脱落或在电池装配过程中裂化及被覆盖层从集电器上脱落或在反复充放电循环中裂化; A 。

高分子合成工艺学

第一章绪论 高分子合成材料:塑料、合成纤维、合成橡胶、涂料、粘合剂、离子交换树脂等材料。 三大合成材料:塑料、合成纤维、合成橡胶 高分子合成工业的任务:将基本有机合成工业生产的单体,经过聚合反应合成高分子化合物,从而为高分子合成材料成型工业提供基本原料。 塑料的原料:是合成树脂和添加剂(包括稳定剂、润滑剂、着色剂、增塑剂、填料以及根据不同用途而加入的防静电剂、防霉剂、紫外线吸收剂等)。 塑料成型方法:注塑成型、挤塑成型、吹塑成型、模压成型等。 合成橡胶:高弹性体,制造橡胶制品时加入的添加物通常称为配合剂(硫化剂、硫化促进剂、助促进剂、防老剂、软化剂、增强剂、填充剂、着色剂等)。 自由基聚合方法:本体聚合、乳液聚合、悬浮聚合、溶液聚合 离子聚合及配位聚合实施方法主要有本体聚合、溶液聚合两种方法。在溶液聚合方法中,如果所得聚合物在反应温度下不溶于反应介质中而称为淤浆聚合。 1、简述高分子化合物的生产过程。 (1)原料准备与精制过程:包括单体、溶剂、去离子水等原料的贮存、洗涤、精制、干燥、调整浓度等过程相设备。 (2)催化剂(引发剂)配制过程:包括聚合用催化剂、引发剂和助剂的制造、溶解、贮存、调整浓度等过程与设备。 (3)聚合反应过程:包括聚合和以聚合釜为中心的有关热交换设备及反应物料输送过程与设备。 (4)分离过程:包括未反应单体的回收、脱除溶剂、催化剂,脱除低聚物等过程与设备。 (5)聚合物后处理过程:包括聚合物的输送、干燥、造粒、均匀化、贮存、包装等过程与设备。 (6)回收过程:主要是未反应单体和溶剂的回收与精制过程及设备。 此外三废处理和公用工程如供电、供气、供水等设备。 2、比较连续生产和间歇生产工艺的特点。 间歇聚合:聚合物在聚合反应器中分批生产的,当反应达到要求的转化率时,将

沙林料

沙林料 沙林料Surlyn简介 沙林树脂是美国杜邦利用独特的生产工艺聚合而成,是乙烯-(甲基)丙烯酸锌盐、钠盐、锂盐等离子键聚合体。杜邦是世界上唯一一家离子聚合树脂生产厂家。 沙林料的特性: ·优异的低温抗冲击韧性; ·出色的抗磨损、刮擦性能; ·出色的抗化学药品性能; ·透明、清澈、光泽柔和华贵; ·优异的熔融强度(熔融下拉伸不断裂); ·有多种牌号符合FDA相关标准; ·直接粘贴环氧树脂和聚丙烯表面作修饰保护; ·直接热贴合在金属、玻璃、天然纤维表面作修饰保护; 沙林料的应用领域: (1)化妆品领域:香水瓶盖,霜、膏容器等; (2)消费品领域:各种手柄,玩具如宠物口嚼物,冰桶,地板; (3)运动器材领域:高尔夫球壳,冲浪板,滑雪板表层,滑雪靴,滑冰靴,雪曲棍球头盔,鞋后跟内衬,牛仔竞技保护背心; (4)其他领域:浮标,户外安全照明,玻璃制品表面涂层,管道螺丝保护盖,荧光灯表面保护; 沙林料Surlyn各种型号性能对照表 型号 主要特性 Surlyn PC2000 高透明 香水瓶专用料 Surlyn 1601 良好的耐磨性能;高透明;良好的硬度;低温韧性;低温热封性;低凝胶 Surlyn 1601-2 良好的热封性 Surlyn 1601-2LM 低吸水性 Surlyn 1601B 低凝胶 Surlyn 1601B-2 低防粘连 Surlyn 1605 良好的耐磨性能;高透明;良好的硬度;低温韧性;低温热封性 Surlyn 1605SBR 低滑动性;低防粘连;良好的脱模性 Surlyn 1650 良好的耐磨性能;高透明;良好的硬度;低温韧性;低温热封性 Surlyn 1652 良好的耐磨性能;高透明;良好的硬度;低温韧性;低温热封性 Surlyn 1652-1 低凝胶 Surlyn 1652SB 滑动;防粘连 Surlyn 1652SBR 滑动;防粘连;良好的脱模性 Surlyn 1652SR 滑动;良好的脱模性

环氧树脂化学成分

环氧树脂化学成分 主要成份是:酚醛树脂; 酚醛树脂是由苯酚和甲醛在催化剂条件下缩聚、经中和、水洗而制成的树脂,其中以苯酚和甲醛树脂为最重要。也是世界上最早由人工合成的,至今仍很重要的高分子材料。因选用催化剂的不同,可分为热固性和热塑性两类。酚醛树脂具有良好的耐酸性能、力学性能、耐热性能,广泛应用于防腐蚀工程、胶粘剂、阻燃材料、砂轮片制造等行业。 NL固化剂是酚醛树脂呋喃树脂的高效低毒固化剂。NL固化剂毒性低,基本无刺激味,树脂固化后强度高、耐蚀性好,使用用量少,操作方便,贮存期长。本品适用于热固性酚醛树脂及呋喃树脂的常温固化。用来配制酚醛树脂及呋喃胶泥;玻璃钢制品;制笔、制刷、竹木等制品的粘合;也可用作铸造树脂的室温固化剂。质量指标外观暗灰色液体相对密度(20℃)1.16±0.01粘度(涂-4,25℃)秒20-30 总酸度(以H2SO4计)% 18±2 游离酸(以H2SO4计)% 3-5 贮存期一年以上(密闭存放)应用对酚醛树脂或呋喃树脂,NL固化剂的用量范围一般为5-12%。环境温度20℃时,2130酚醛树脂的NL固化剂用量为8%左右,NL固化剂用量可随温度调整。参考配方酚醛树脂酒精NL固化剂石英粉酚醛胶泥100 0-5 6-10 150-200玻璃钢腻子100 0-5 6-10 120-200玻璃钢面料100 10 8-15 10-1520℃时NL用量为8%,1小时左右初凝,使用期30分钟左右配方注意:酚醛树脂或呋喃树脂用NL固化剂来固化时,对填料的要求较高,要求填料的耐酸性达到规范的要求。劣质填料含有碳酸钙等会与酸性固化剂反应产生气泡,影响制品质量,并可能造成树脂不固化。包装及贮运10Kg、25Kg塑料桶装。室温密闭储存。可长期贮存,超过一年复测合格可继续使用。

蛋白质的营养生理作用

“蛋白质”一词,源于希腊字“Proteios”,其意是“最初的”、“第一重要的”;蛋白质是细胞的重要组成成份,在生命过程中起着重要的作用, 涉及动物代谢的大部分与生命攸关的化学反应。不同种类动物都有自己特定的、多种不同的蛋白质。在器官、体液和其它组织中,没有两种蛋白质的生理功能是完全一样的。这些差异是由于组成蛋白质的氨基酸种类、数量和结合方式不同的必然结果。 动物在组织器官的生长和更新过程中,必须从食物中不断获取蛋白质等含氮物质。因此,把食物中的含氮化合物转变为机体蛋白质是一个重要的营养过程。 蛋白质在动物的生命活动中的重要营养作用: (一)蛋白质是构建机体组织细胞的主要原料 动物的肌肉、神经、结缔组织、腺体、精液、皮肤、血液、毛发、角、喙等都以蛋白质为主要成份,起着传导、运输、支持、保护、连接、运动等多种功能。肌肉、肝、脾等组织器官的干物质含蛋白质80%以上。蛋白质也是乳、蛋、毛的主要组成成份。除反刍动物外,食物蛋白质几乎是唯一可用以形成动物体蛋白质的氮来源。 (二)蛋白质是机体内功能物质的主要成份 在动物的生命和代谢活动中起催化作用的酶、某些起调节作用的激素、具有免疫和防御机能的抗体(免疫球蛋白)都是以蛋白质为主要成分。另外,蛋白质对维持体内的渗透压和水分的正常分布,也起着重要的作用。 (三) 蛋白质是组织更新、修补的主要原料 在动物的新陈代谢过程中,组织和器官的蛋白质的更新、损伤组织的修补都需要蛋白质。据同位素测定,全身蛋白质6-7个月可更新一半。 (四)蛋白质可供能和转化为糖、脂肪 在机体能量供应不足时,蛋白质也可分解供能,维持机体的代谢活动。当摄入蛋白质过多或氨基酸不平衡时,多余的部分也可能转化成糖、脂肪或分解产热。正常条件下,鱼等水生动物体内亦有相当数量的蛋白质参与供能作用。 “蛋白质”一词,源于希腊字“Proteios”,其意是“最初的”、“第一重要的”;蛋白质是细胞的重要组成成份,在生命过程中起着重要的作用, 涉及动物代谢的大部分与生命攸关的化学反应。不同种类动物都有自己特定的、多种不同的蛋白质。在器官、体液和其它组织中,没有两种蛋白质的生理功能是完全一样的。这些差异是由于组成蛋白质的氨基酸种类、数量和结合方式不同的必然结果。 动物在组织器官的生长和更新过程中,必须从食物中不断获取蛋白质等含氮物质。因此,把食物中的含氮化合物转变为机体蛋白质是一个重要的营养过程。 蛋白质在动物的生命活动中的重要营养作用: (一)蛋白质是构建机体组织细胞的主要原料 动物的肌肉、神经、结缔组织、腺体、精液、皮肤、血液、毛发、角、喙等都以蛋白质为主要成份,起着传导、运输、支持、保护、连接、运动等多种功能。肌肉、肝、脾等组织器官的干物质含蛋白质80%以上。蛋白质也是乳、蛋、毛的主要组成成份。除反刍动物外,食物蛋白质几乎是唯一可用以形成动物体蛋白质的氮来源。 (二)蛋白质是机体内功能物质的主要成份 在动物的生命和代谢活动中起催化作用的酶、某些起调节作用的激素、具有免疫和防御机能的抗体(免疫球蛋白)都是以蛋白质为主要成分。另外,蛋白质对维持体内的渗透压和水分的正常分布,也起着重要的作用。 (三) 蛋白质是组织更新、修补的主要原料 在动物的新陈代谢过程中,组织和器官的蛋白质的更新、损伤组织的修补都需要蛋白质。据同位素测定,全身蛋白质6-7个月可更新一半。

相关主题
文本预览
相关文档 最新文档