当前位置:文档之家› GM4486P_1995人造复合橡胶的耐臭氧试验方法

GM4486P_1995人造复合橡胶的耐臭氧试验方法

GM4486P_1995人造复合橡胶的耐臭氧试验方法
GM4486P_1995人造复合橡胶的耐臭氧试验方法

--`,,`-`-`,,`,,`,`,,`---

Copyright General Motors North America

Provided by IHS under license with GM

No reproduction or networking permitted without license from IHS

Not for Resale

--`,,`-`-`,,`,,`,`,,`---

Copyright General Motors North America

Provided by IHS under license with GM

Not for Resale No reproduction or networking permitted without license from IHS

--`,,`-`-`,,`,,`,`,,`---

Copyright General Motors North America

Provided by IHS under license with GM

No reproduction or networking permitted without license from IHS

Not for Resale

耐油橡胶综述

耐油橡胶 耐油性通常指耐非极性油类:燃油,矿物油和合成润滑油。 橡胶按照耐油性分类(极性橡胶):CR,NBR,HNBR,ACM,AEM,CSM,FKM,FMVQ,CO,PUR。 不耐油性橡胶分类(非极性橡胶):NR,IR,BR,SBR,IIR,EPR,EPDM。 耐燃油性: 氟橡胶FKM 和氟硅橡胶FMVQ对燃料油的抗耐性最好。而氯丁橡胶和氯化聚乙烯橡胶CPE耐燃油性最差。 丁晴橡胶的耐燃油性随丙烯晴含量增加而提高。 氯醇橡胶的耐燃油性比丁晴橡胶好。 耐混合燃油性: 氟硅橡胶FMVQ和氟橡胶FKM 对混合燃料油的抗耐性最好。丙烯酸酯橡胶耐耐混合燃油性最差 丁晴橡胶的耐混合燃油性随丙烯晴含量增加而提高。 含氟量高的氟橡胶对混合燃油的稳定性较好 胶种汽油/甲醇85/15 汽油/乙醇85/15 平均溶涨度(54度)/% 平均溶涨度(54度)/% ECO 92 74 NBR 89 61 FMVQ 25 22 VITON A/FPM2601 23-28 16-20 VITON GH 19 15 BITON VI-R-4590 13 13 耐酸性氧化燃油性: 对酸性氧化燃油来说,酸性氧化燃油中的氢过氧化物可使硫化胶的性能恶化,所以在燃油系统中常用的丁晴橡胶,氯醇橡胶难以满足长期使用的要求。

只有含氟弹性体如氟橡胶FKM ,氟硅橡胶FMVQ,氟化磷晴和氢化丁晴橡胶性能较好。 普通的丁晴橡胶胶料,不能在125度的酸性汽油中长时间工作。只有采用氧化镉活化的低硫-给硫体以及白碳黑为主要原料的丁晴橡胶,才能较好的耐酸性汽油。增加丙烯晴的含量,可使酸性汽油的渗透性降低。 耐矿物油性: 丁晴橡胶是常用的耐矿物油橡胶。丁晴橡胶的耐矿物油性随丙烯晴含量增加而提高。 但高丙烯晴含量的丁晴橡胶耐热性有限。当油温达到150度时,应该采用氢化丁晴橡胶,氟橡胶FKM ,氟硅橡胶FMVQ和丙烯酸酯橡胶。 油温达到150度时,氟橡胶FKM ,氟硅橡胶FMVQ效果最好。但成本高,为降低成本,可以在氟橡胶FKM 中并入50%以下的丙烯酸酯橡胶,并用后的硫化胶性能下降不大于20%。 丙烯酸酯橡胶耐矿物油性好于丁晴橡胶. 丙烯酸乙酯型的橡胶丙烯酸酯橡胶的耐热油性,比丙烯酸丁酯型的橡胶好。 耐合成润滑油性: 相似相溶原则:极性聚合物溶于极性溶剂,非极性聚合物溶于非极性溶剂 三元乙丙橡胶属于氢类橡胶,在氢类油中极度膨胀,硅橡胶在硅油中,氟橡胶在全氟带氢液体中,都出现很大的体积膨胀。 耐合成氢类润滑油: 丁晴橡胶的耐油性随丙烯晴含量增加而提高。芳氢类对丁晴橡胶膨胀作用大于脂肪氢类。 高丙烯晴含量的丁晴橡胶,用于耐高芳氢含量的合成氢油。 中丙烯晴含量的丁晴橡胶,用于耐低芳氢含量的合成氢油。 低丙烯晴含量的丁晴橡胶,用于低膨胀使用的合成油如石蜡油。或低温屈挠性比耐油性更重要的场合。 使用氢化丁晴橡胶可以改善耐热性,耐臭氧性和提高对添加剂的抵抗性。

丁腈橡胶的基本性能及用途

字体大小:| | 2010-08-28 16:56 - 阅读:135 - :0 ,由丁二烯与丙烯腈共聚而制得的一种合成橡胶。是耐油(尤其是烷烃油)、耐老化性能较好的合成橡胶。丁腈橡胶中丙烯腈含量(%)有42~46、36~41、31~35、25~30、18~24 等五种。丙烯腈含量越多, 耐油性越好,但耐寒性则相应下降。它可以在120℃的空气中或在150℃的油中长期使用。此外,它还具有良好的耐水性、气密性及优良的粘结性能。广泛用于制各种耐油橡胶制品、多种耐油垫圈、垫片、套管、 软包装、软胶管、印染胶辊、电缆胶材料等,在汽车、航空、石油、复印等行业中成为必不可少的弹性材料。 丁腈橡胶基本性能 主要采用低温乳液聚合法生产,丁腈橡胶具有优良的耐油性,其耐油性仅次于聚硫橡胶和氟橡胶,并且具有的耐磨性和气密性,粘接力强。丁晴橡胶的缺点是不耐臭氧及芳香族、卤代烃、酮及酯类溶剂,不宜做 绝缘材料。丁腈橡胶耐低温性差,电性能低劣,弹性稍低。 丁腈橡胶主要用途 丁腈橡胶主要用于制作耐油制品,如耐油管、胶带、橡胶隔膜和大型油囊等,常用于制作各类耐油模压橡胶制品,如O形圈、油封、皮碗、 膜片、活门、波纹管等,也用于制作胶板和耐磨零件。

公司代理经销南帝公司的产品有:普通丁腈橡胶、特殊丁腈橡胶、丁腈胶乳、热塑性弹性体(TPV)等。其中镇江南帝主要牌号:NANCAR 1051、1052、1053、1052M30、1043N、2845、2865、2875、3345、3365、4155等。特殊丁腈橡胶有以下: ??羧化丁腈(XNBR):NANCAR 1072、1072CG、3245C 具优越耐磨性,适用于下列橡胶制品: a. 高耐磨的输送带、工业制品、纺织胶辊、及特殊鞋底等制品。 b. AB胶系接着剂及丙烯酸酯系接着剂。 c. 环氧树脂改性应用。 d. 软性电路板。 ??充油丁腈(NBR/DOP):NANCAR 1082 适用于超低硬度(40 Shore A以下) 并兼具耐油特性之橡胶制品,如:工业胶辊、工业制品等。 ??丁腈/PVC (NBR/PVC):NANCAR 1203D、1203HD、1203L D、具有良好的耐候性、耐油性,适用于下列橡胶制品: a. 耐臭氧的汽车部品(防尘套及胶管)、工业制品(胶板及杂件)、及电缆被 覆等制品。 b. 耐酒精汽油、低萃取燃料油管。 c. 耐溶剂的胶辊(工业胶辊、造纸胶辊、印刷胶辊)及纺织皮圈等制品。 d. 保温材料及运动器材等发泡制品。 ??丁腈/PVC/DOP (NBR/PVC/DOP):NANCAR 1204D 适用于超低硬度并兼具耐油耐臭氧之橡胶制品,如:印刷胶辊厂、工业制品等。 ??预交联丁腈(NBR):NANCAR 1022 具良好的尺寸安定性,特别适用于PVC改质,提高橡胶质感。 ??超低,极高丙烯腈丁腈(NBR):NANCAR 1965、4580

几种常用橡胶性能比较

几种常用橡胶性能比较 天然橡胶(NR) 天然橡胶由三叶树采集制成的弹性体,机械强度高、耐磨、耐压、伸长率高、弹性高、滞后损失小,能耐多次屈挠弯曲变形,适合纸厂、木业、家具、涂布、输送等胶辊应用。本厂天然橡胶分别使用印度尼西亚、泰国和海南三种产地,硬度可以在邵氏3 0~10 0 ° A调制。 丁腈橡胶(NBR) 首先由德国在30年代研制而成,因含丙烯腈,所以对矿物油、动植物油、液体燃料和脂肪族溶剂有较高的稳定性,耐油性是丁腈橡胶最大的特长。耐热性能好,能耐一般化学品优于通用橡胶。配合法国特种油膏,着墨性能优。广泛用于印刷类胶辊,配合耐酸碱物质、耐热剂,用于浆染、印染、砂辊。因耐磨性能比天然橡胶大30%左右,也是做其它滚轮比较理想的弹性体。采用的丁腈胶台湾南帝(NANCAR)系列、日本合成橡胶公司(JSR)系列,日本瑞翁公司丁腈橡胶,硬度可以在邵氏20~100 ° A调制。 三元乙丙橡胶(EPDM) 三元乙丙橡胶作为半通用合成橡胶,其使用温度范围-55~150℃之间。三元乙丙橡胶具有突出的耐臭氧性、耐侯性、耐水性、耐热性、耐蒸汽、耐化学药品(如氨水、酒精、双氧水、盐、硫酸、烧碱、石灰等)性能。适用于高要求的高速水墨印刷辊及化工、电镀、电子、纺织、染整、丝光和人造革类所用胶辊等使用。 氯丁橡胶(CR) 30年代美国公司生产的氯丁橡胶,改变了人们对橡胶易燃特点的看法,氯丁橡胶作为一种通用型特种橡胶,耐油性次于丁腈橡胶,优于通用橡胶,具有耐燃性、耐臭氧性、耐热老化性优异,耐化学品性能好,透气率小,其弹性与通用橡胶相当。适用于印刷类胶辊、耐碱类浆纱辊、浆染胶辊等使用。 氯磺化聚乙烯/海泊隆(CSM)

耐油橡胶的选用经验分享

耐油橡胶的选用经验分享 耐油橡胶是指橡胶抗耐油性类作用(溶胀、硬化、裂解、力学性能劣化)的能力。与油类接触的橡胶制品,在长期的使用过程中,油类能渗透到橡胶内部,使其产生溶胀;另一方面,油类物质可以从硫化胶中抽出可溶性的配合剂,导致硫化胶的体积减小。此外,合成润滑油中的某些添加剂能与橡胶发生化学作用,侵蚀高分子链;尤其是在高温下,能引起橡胶的交联或降解,侵蚀严重时,会使橡胶制品丧失工作能力。 我们所说的耐油,一般指耐非极性油类,像燃油,矿物油和合成润滑油。根据相似相溶原理,而我们经常接触到的耐油橡胶种类恰恰是指一些极性橡胶:NBR,HNBR,FKM,ACM, AEM,CSM,CR,FMVQ以及CO等。那根据橡胶制品接触的油类不同,该如何选用更合适的胶种呢?下面介绍各胶种在不同油类的耐受性。 一、耐油橡胶的选用经验 1、耐燃油性:FKM,FMVQ>CO>NBR>CR,CPE 氟橡胶FKM和氟硅橡胶FMVQ对燃料油的抗耐性最好。 氯醇橡胶的耐燃油性比丁腈橡胶好。其中丁腈橡胶的耐燃油性随丙烯腈含量增加而提高。而氯丁橡胶和氯化聚乙烯橡胶CPE耐燃油性最差。 2、耐酸性氧化燃油性: 对酸性氧化燃油来说,酸性氧化燃油中的氢过氧化物可使硫化胶的性能恶化,所以在燃油系统中常用的丁腈橡胶,氯醇橡胶难以满足长期使用的要求。普通的丁腈橡胶胶料,虽然能随着增加丙烯腈的含量,可使酸性汽油的渗透性降低,但也不能在125度的酸性汽油中长时间工作。 所以一般选用FKM,FMVQ或者HNBR会较好。 3、耐矿物油性: 丁腈橡胶是常用的耐矿物油橡胶。丁腈橡胶的耐矿物油性随丙烯腈含量增加而提高。但高丙烯腈含量的丁腈橡胶耐热性有限。当油温达到150度时,应该采用氢化丁腈橡胶,氟橡胶FKM,氟硅橡胶FMVQ和丙烯酸酯橡胶。 油温达到150度时,氟橡胶FKM,氟硅橡胶FMVQ效果最好。但成本高,为降低成本,可以在氟橡胶FKM中并入50%以下的丙烯酸酯橡胶,并用后的硫化胶性能下降不大于20%。丙烯酸酯橡胶耐矿物油性好于丁腈橡胶.丙烯酸乙酯型的丙烯酸酯橡胶的耐热油性,比丙烯酸丁酯型的橡胶好。 4、耐合成氢类润滑油: 丁腈橡胶的耐油性随丙烯腈含量增加而提高。 高丙烯腈含量的丁腈橡胶,用于耐高芳烃含量的合成润滑油。 中丙烯腈含量的丁腈橡胶,用于耐低芳烃含量的合成润滑油。 低丙烯腈含量的丁腈橡胶,用于低膨胀使用的合成油如石蜡油或低温屈挠性比耐油性更重要的场合。 使用氢化丁腈橡胶可以改善耐热性,耐臭氧性和提高对添加剂的抵抗性。氢化丁腈橡胶适用

臭氧老化试验箱安全操作规程标准范本

操作规程编号:LX-FS-A69583 臭氧老化试验箱安全操作规程标准 范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

编写:xxxxx 审核:xxxxx 臭氧老化试验箱安全操作规程标准 范本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1. 插上电源,打开总电源开关。 2. 按下电源开关,指示灯亮,将温度控制仪设定到所需温度,同时调节好试验所需的臭氧浓度和流速。“”为增键,“”为减键。 3. 将已拉伸和经调节的试样放和试验箱内,并保持试验条件稳定。按试验要求,作好必要的试验记录。 4.用7倍放大镜定期检查试样龟裂情况,可用适当的光源照明以检查试样。放大镜可安装在箱壁的窗口上,或者将试样从试验箱内取出作短时间检查。进

橡胶耐臭氧老化试验方法

橡胶耐臭氧老化试验方法 耐臭氧试验目的:通过本试验方法可检测硫化橡胶、热塑性橡胶的耐臭氧性能。基露于含一定浓度臭氧的空气中和在规定温度且无光线直接影响的环境中进行的耐臭氧龟裂的试验方法.不同橡胶材料的耐臭氧能力随臭氧浓度和沮度的不同有明显差别。 1、试验标准:GB T7762-2003 硫化橡胶或热塑性橡胶耐臭氧龟裂静态拉伸试验 2、试验设备:CLM-QL-100型臭氧老化试验箱进行试验(本处采用的是小样品,若样品过大可以采用更大型号的试验箱)。 3、试样:试样3个,长条标准试样宽度为不小于10 mm,厚度2.0 mm士。. 2 mm,拉仲前夹具两端间试样的长度不少于40 mm;哑铃标准试样应该由两端为12mm×12mm的正方形和中间宽为5mm,长为50 mm的长条构成.

4、试验条件: 臭氧浓度:最适宜浓度(50士5)×10-8 (注:臭氧浓度可用臭氧分压MPa表示,1×10-8 ,一臭氧浓度相当干1.01 MPa的臭氧分压。 温度:最适宜的试验温度为40℃士2'C.(也可根据使用环境选用其他温度,例如,30℃士2℃或23℃士2℃ ,但是使用这些温度所得到的结果与使用40'C12℃时的试验结果有差异。相对湿度:≤65%R.H 伸长率:通常选用下列一种或多种仲长率进行试验;5%±1%、10%士1%、15%士2%、20%士2%、30%士2%.40%士2%、50%士2%、60%士2%、80%士2%。 拉伸后的试样调节:拉伸后试样应该在无光,基本无臭氧的大气中调节48 h到96 h,调节温度应按GB/T 2941规定。 5、试验方法: 方法A 按规定进行调节后拉伸应变20%的试样,在臭氧试验箱经72 h后检查试样的龟裂情况.或按适用材料特性选择任一伸长率和暴露时间。 方法B 按规定采用一种或多种伸长率的试样,并进行调节.仅采用一种伸长率时.应采用20%伸长率.除非另有规定.在2h,4h,8h,16h,24h,48 h,72h和96h攀露后检查试样,必要时可适当延长暴露时问,并记录各种伸长率的试样出现龟裂的时间。 方法C 采用不少于四种伸长率的试样,并按进行调节。在2h,4h,8h,16h,24h,48h,72h和96h暴露后检查试样:如果需要.可适当延长暴露时间,并记录海种伸长率的试样开始出现龟裂的时间,

各种橡胶的耐油性

在此简单的介绍一下各种耐油橡胶: 耐油橡胶耐油性通常指耐非极性油类:燃油,矿物油和合成润滑油。 橡胶按照耐油性分类(极性橡胶): CR,NBR,HNBR,ACM,AEM,CSM,FKM,FMVQ,CO,PUR。不耐油性橡胶分类(非极性橡胶):NR,IR,BR,SBR,IIR,EPR,EPDM。 耐燃油性: 氟橡胶FKM和氟硅橡胶FMVQ对燃料油的抗耐性最好。而氯丁橡胶和氯化聚乙烯橡胶CPE耐燃油性最差。 丁晴橡胶的耐燃油性随丙烯晴含量增加而提高。 氯醇橡胶的耐燃油性比xx橡胶好。 耐混合燃油性: 氟硅橡胶FMVQ和氟橡胶FKM对混合燃料油的抗耐性最好。丙烯酸酯橡胶耐耐混合燃油性最差 丁晴橡胶的耐混合燃油性随丙烯晴含量增加而提高。含氟量高的氟橡胶对混合燃油的稳定性较好胶种汽油/甲醇汽油/乙醇平均溶涨度(54度)/%平均溶涨度 (54 度)/% ECO9274 NBR8961 FMVQ2522 VITON A/FPM260123-2816-20 VITON GH1915 BITON VI-R-459013 耐酸性氧化燃油性:对酸性氧化燃油来说,酸性氧化燃油中

的氢过氧化物可使硫化胶的性能恶化,所以在燃油系统中常用的丁晴橡胶,氯醇橡胶难以满足长期使用的要求。 只有含氟弹性体如氟橡胶FKM,氟硅橡胶FMVQ,氟化磷晴和氢化丁晴橡胶性能较好。 普通的丁晴橡胶胶料,不能在125 度的酸性汽油中长时间工作。只有采用氧化镉活化的低硫-给硫体以及白碳黑为主要原料的丁晴橡胶,才能较好的耐酸性汽油。增加丙烯晴的含量,可使酸性汽油的渗透性降低。 耐矿物油性:丁晴橡胶是常用的耐矿物油橡胶。丁晴橡胶的耐矿物油性随丙烯晴含量增加而提高。 但高丙烯晴含量的丁晴橡胶耐热性有限。当油温达到150 度时,应该采用氢化丁晴橡胶,氟橡胶FKM,氟硅橡胶FMVQ和丙烯酸酯橡胶。 油温达到150度时,氟橡胶FKM,氟硅橡胶FMVQ效果最好。但成本高,为降低成本,可以在氟橡胶FKM中并入50%以下的丙烯酸酯橡胶,并用后的硫化胶性能下降不大于20%。 丙烯酸酯橡胶耐矿物油性好于xx橡胶. 丙烯酸乙酯型的橡胶丙烯酸酯橡胶的耐热油性,比丙烯酸丁酯型的橡胶好。 耐合成润滑油性: 相似相溶原则:极性聚合物溶于极性溶剂,非极性聚合物溶于非极性溶剂三元乙丙橡胶属于氢类橡胶,在氢类油中极度膨胀,硅橡胶在硅油中,氟橡胶在全氟带氢液体中,都出现很大的体积膨胀。 耐合成氢类润滑油:丁晴橡胶的耐油性随丙烯晴含量增加而提高。芳氢类对丁晴橡胶膨胀作用大于脂肪氢类。 高丙烯晴含量的丁晴橡胶,用于耐高芳氢含量的合成氢油。中丙烯晴含量的丁晴橡胶,用于耐低芳氢含量的合成氢油。低丙烯晴含量的丁晴橡胶,用于低膨胀使用的合成

橡胶老化概念

橡胶老化概念 点击次数:1152 发布时间:2009-7-6 在1885年人们就发现受到拉伸的橡胶在老化过程中发生龟裂,当时人们曾认为是由于阳光的照射所致,但后来发现未经阳光照射的橡胶制品上,同样也有龟裂产生。后来经过分析发现,不受阳光的照射的橡胶拉伸所产生的龟裂,是由于大气中存在的臭氧所致。 在距离地面20-30km的高空,氧气分子在阳光照射下会产生牛气分子形成一层臭氧层。尽管地表的臭氧浓度较低,但引起的橡胶才华现象也不容忽视,越来越受众的重视。 橡胶的臭氧老化与其他因素所产生的老化有所不同,主要有如下表现。 (1)橡胶的臭氧老化是一种表面反应,未受应力的橡胶表面反应尝试为10-40个分子厚,或(10~50)*10-6次方mm厚。 (2)未受拉伸的橡胶暴露在O3环境中时,橡胶与O3反应直到表面上的双键完全反应完后终止,在表面上形成一层类似喷霜状的灰色硬脆膜,使其失去光泽。受拉伸的橡胶在产生臭氧老化时,表面要产生臭氧龟裂,但通过研究认为,橡胶的臭氧龟裂有一临界应力存在,当橡胶的伸长或所受的应力低于临界值时,在发生臭氧老化时是不会产生龟裂的,这是橡胶的固有特性。 (3)橡胶在产生臭氧龟裂时,裂纹的方向与受力的方向垂直,这是臭氧龟裂与光氧老化致龟裂的不同之处,介应当注意,在多方向受到应力的橡胶产生臭氧老化时,所产生的臭氧龟裂很有难看出方向性,与光氧老化所产生的龟裂相似。 老化是橡胶等高分子材料中存在的一种较为普遍的现象,它会使橡胶的性能劣化,影响橡胶制品的使用价值及使用寿命,橡胶防护体系是延缓橡胶的老化,延长制品的使用寿命。橡胶防护体系主要是防老剂,防老剂型按作用原理可分为化学防老剂和物理防老剂;按防护的目标分为抗氧剂、护臭氧剂、光屏蔽剂、金属钝化剂等,也可按化学结构进行分类。 (1)橡胶老化的现象:生胶或橡胶制品在加工、贮存或使用过程中,会受到热、氧、光等一干二净因素的影响而逐渐发生物理及化学变化,使其性能下降,并丧失用途,这种现象称为橡胶的老化。橡胶老化过程中

臭氧老化试验箱校准规范 编制说明

臭氧老化试验箱校准规范 编制说明 上海市计量测试技术研究院

目录 一、任务来源及起草经过 二、编制原则和依据 三、工作过程 四、规范的主要内容及主要技术关键 五、不确定度评定

编制说明 一、任务来源及规程起草经过 任务来源: 标准名称:气溶胶光度计校准规范 标准立项文件:国家环境化学计量技术委员会(2019)039号 提出单位:上海市计量测试技术研究院 起草单位:上海市计量测试技术研究院、 任务背景: 臭氧老化试验箱作为橡塑、纺织和电线电缆等产品臭氧加速老化的重要试验设备,广泛应用于橡塑、汽车、纺织和电线电缆等领域。作为上述领域产品可靠性测试的重要的试验设备,其箱内臭氧浓度等相关参数的准确性直接关系到最终产品的质量。 我国使用和生产的各类臭氧老化试验箱,因缺少相关的统一技术标准及规范,各个生产厂家有不同的出厂校正程序,导致不同厂家生产的设备,甚至是同一厂家生产的同型号设备彼此间测量结果差异都很大,直接影响了最后测试产品耐臭氧质量的评价结果。由于目前国内外并没有针对臭氧老化箱的相关校准规范,因而急需进行臭氧老化试验箱测量溯源技术研究,对新制造及使用中的臭氧老化试验箱的相关参数进行校准,建立我国的臭氧老化试验箱测量计量标准,实现我国臭氧老化试验箱量值统一和量值等效。 上海市计量测试技术研究院环保室于2005年开展了对臭氧老化试验箱的检测工作,熟悉国内外各种厂家型号臭氧老化试验箱的构造及原理;

同时拥有长期的现场检测经验。对臭氧老化试验箱的检测参数和检测手段已形成相应的自编方法《JCJ/I201002.1-2006 臭氧老化箱检测规范》。该自编方法于2006年获得了国家CNAS认可授权,也得到臭氧老化试验箱生产企业和使用企业的一致认可。 但是该自编方法已使用了十多年,相应的检测技术条件需要进一步细化。且广大客户的需求也不断提高,许多设备使用企业和产品制造企业根据现有技术的不断优化,对于臭氧老化试验箱又提出了进一步的校准需求。因此通过对上海市计量测试技术研究院《JCJ/I201002.1-2006 臭氧老化箱检测规范》进一步补充和完善,起草人从科学性、可能性和持久性出发,结合国内的具体情况,考虑到今后的发展和国内外设备的进步,经过进一步斟酌完善,完成了《臭氧老化试验校准规范》(征求意见稿)。 二、编制原则和依据 1.本标准在制定中应遵循以下基本原则: a)本标准编写格式应符合《国家计量检定规程管理办法》、JJF1001-2011《通用计量术语及定义》、JJJF1071-2010《国家计量校准规范编写规则》、JJF1059-2012《测量不确定度评定与表示》等标准的规定。 b)本标准要与国家的节能政策、环境保护政策等相一致; c)本标准要与已颁布实施的相关标准进行衔接; d)本标准规定的技术内容及要求应科学、合理,具有适用性和可操作性。 2. 本标准编写的依据: 在本标准编写过程中,参考了JJF 1101《环境试验设备温度、湿度参数

耐油橡胶

时间:2008年3月14日作者:佚名 耐油橡胶 耐油性通常指耐非极性油类:燃油,矿物油和合成润滑油。 橡胶按照耐油性分类(极性橡胶):CR,NBR,HNBR,ACM,AEM,CSM,FKM,FMVQ,CO,PUR。 不耐油性橡胶分类(非极性橡胶):NR,IR,BR,SBR,IIR,EPR,EPDM。 耐燃油性: 氟橡胶FKM 和氟硅橡胶FMVQ对燃料油的抗耐性最好。而氯丁橡胶和氯化聚乙烯橡胶CPE耐燃油性最差。 丁晴橡胶的耐燃油性随丙烯晴含量增加而提高。 氯醇橡胶的耐燃油性比丁晴橡胶好。 耐混合燃油性: 氟硅橡胶FMVQ和氟橡胶FKM 对混合燃料油的抗耐性最好。丙烯酸酯橡胶耐耐混合燃油性最差 丁晴橡胶的耐混合燃油性随丙烯晴含量增加而提高。 含氟量高的氟橡胶对混合燃油的稳定性较好 胶种汽油/甲醇85/15 汽油/乙醇85/15 平均溶涨度(54度)/% 平均溶涨度(54度)/% ECO 92 74 NBR 89 61 FMVQ 25 22 VITON A/FPM2601 23-28 16-20

VITON GH 19 15 BITON VI-R-4590 13 13 耐酸性氧化燃油性: 对酸性氧化燃油来说,酸性氧化燃油中的氢过氧化物可使硫化胶的性能恶化,所以在燃油系统中常用的丁晴橡胶,氯醇橡胶难以满足长期使用的要求。 只有含氟弹性体如氟橡胶FKM ,氟硅橡胶FMVQ,氟化磷晴和氢化丁晴橡胶性能较好。 普通的丁晴橡胶胶料,不能在125度的酸性汽油中长时间工作。只有采用氧化镉活化的低硫-给硫体以及白碳黑为主要原料的丁晴橡胶,才能较好的耐酸性汽油。增加丙烯晴的含量,可使酸性汽油的渗透性降低。 耐矿物油性: 丁晴橡胶是常用的耐矿物油橡胶。丁晴橡胶的耐矿物油性随丙烯晴含量增加而提高。 但高丙烯晴含量的丁晴橡胶耐热性有限。当油温达到150度时,应该采用氢化丁晴橡胶,氟橡胶FKM ,氟硅橡胶FMVQ和丙烯酸酯橡胶。 油温达到150度时,氟橡胶FKM ,氟硅橡胶FMVQ效果最好。但成本高,为降低成本,可以在氟橡胶FKM 中并入50%以下的丙烯酸酯橡胶,并用后的硫化胶性能下降不大于20%。 丙烯酸酯橡胶耐矿物油性好于丁晴橡胶. 丙烯酸乙酯型的橡胶丙烯酸酯橡胶的耐热油性,比丙烯酸丁酯型的橡胶好。 耐合成润滑油性: 相似相溶原则:极性聚合物溶于极性溶剂,非极性聚合物溶于非极性溶剂 三元乙丙橡胶属于氢类橡胶,在氢类油中极度膨胀,硅橡胶在硅油中,氟橡胶在全氟带氢液体中,都出现很大的体积膨胀。 耐合成氢类润滑油: 丁晴橡胶的耐油性随丙烯晴含量增加而提高。芳氢类对丁晴橡胶膨胀作用大于脂肪氢类。

橡胶老化原因分析以及防老化方法简介

橡胶制品老化的原因以及如何防止橡胶制品的老化方法有哪些? 在1885年人们就发现受到拉伸的橡胶在老化过程中发生龟裂,当时人们曾认为是由于阳光的照射所致,但后来发现未经阳光照射的橡胶制品上,同样也有龟裂产生。后来经过分析发现,不受阳光的照射的橡胶拉伸所产生的龟裂,是由于大气中存在的臭氧所致。 在距离地面20-30km的高空,氧气分子在阳光照射下会产生牛气分子形成一层臭氧层。尽管地表的臭氧浓度较低,但引起的橡胶才华现象也不容忽视,越来越受众的重视。 橡胶的臭氧老化与其他因素所产生的老化有所不同,主要有如下表现。 (1)橡胶的臭氧老化是一种表面反应,未受应力的橡胶表面反应尝试为10-40个分子厚,或(10~50)*10-6次方mm厚。 (2)未受拉伸的橡胶暴露在O3环境中时,橡胶与O3反应直到表面上的双键完全反应完后终止,在表面上形成一层类似喷霜状的灰色硬脆膜,使其失去光泽。受拉伸的橡胶在产生臭氧老化时,表面要产生臭氧龟裂,但通过研究认为,橡胶的臭氧龟裂有一临界应力存在,当橡胶的伸长或所受的应力低于临界值时,在发生臭氧老化时是不会产生龟裂的,这是橡胶的固有特性。 (3)橡胶在产生臭氧龟裂时,裂纹的方向与受力的方向垂直,这是臭氧龟裂与光氧老化致龟裂的不同之处,介应当注意,在多方向受到应力的橡胶产生臭氧老化时,所产生的臭氧龟裂很有难看出方向性,与光氧老化所产生的龟裂相似。 老化是橡胶等高分子材料中存在的一种较为普遍的现象,它会使橡胶的性能劣化,影响橡胶制品的使用价值及使用寿命,橡胶防护体系是延缓橡胶的老化,延长制品的使用寿命。橡胶防护体系主要是防老剂,防老剂型按作用原理可分为化学防老剂和物理防老剂;按防护的目标分为抗氧剂、护臭氧剂、光屏蔽剂、金属钝化剂等,也可按化学结构进行分类。(1)橡胶老化的现象:生胶或橡胶制品在加工、贮存或使用过程中,会受到热、氧、光等一干二净因素的影响而逐渐发生物理及化学变化,使其性能下降,并丧失用途,这种现象称为橡胶的老化。橡胶老化过程中常常会伴随一些显著的现象,如在外观上可以发现长期贮存的天然橡胶变软、发黏、出现斑点;橡胶制品有变形、变脆、变硬、龟裂、发霉、失光及颜色改变等。在物理性能上橡胶有溶胀、流变性能等的改变。在力学性能上会发生拉伸强度、断裂伸长率、冲击强度、弯曲强度、压缩率、弹性等指标下降。 (2)橡胶老化的原因:橡胶发生老化现象源于其长期受热、氧、光、机械力、辐射、化学介质、空气中的臭氧等外部因素的作用,使其大分子链发生化学变化,破坏了橡胶原有化学结构,从而导致橡胶性能变坏。导致橡胶发生老化现象的外部因素主要有物理因素、化学因素及生物因素。物理因素包括热、光、电、应力等;化学因素包括氧、臭氧、酸、碱、盐及金属离子等;生物因素包括微生物(霉菌、细菌)、昆虫(白蚁等)。这些外界因素在橡胶老化过程中,往往不是单独起作用,而是相互影响,加速橡胶老化进程。如轮胎胎侧在使用过程中就会受到热、光、交变应力和应变、氧、臭氧等多种形式因素的影响。 不同的制品在不同的使用条件下,各种因素的作用程度不同,其老化情况也不一样。即使同一制品,因使用的季节和地区不同,老化情况也有区别。因此,橡胶的老化是由多种因素引起的综合的化学反应。在这些因素中,最常见且最重要的化学因素是氧和臭氧;物理因素是热、光和机械应力。一般橡胶制品的老化均是由它们中的一种或几种因素共同作用的结果,最常见的热氧老化,其次有臭氧老化、疲劳老化和光氧老化。 (3)橡胶老化的防护方法:随着橡胶的老化进程,橡胶性能逐渐下降,其使用价值也逐步丧失。因此,研究的老化及防护方法有着极为重要的实用和经济意义。由于橡胶的老化是一种复杂的综合化学反应过程,而且要绝对防止橡胶老化的发生是不可能的。因此,只有认真的研究导致橡胶发生老化的各种原因,并根据这些原因对症下药,采取适当的措施,延缓橡胶

丁腈橡胶中的耐油性能探究

丁腈橡胶中的耐油性能探究 摘要:该文综述了丁腈橡胶耐油改性研究的最新进展,简要介绍了丁腈橡胶(NBR)的发展状况、化学结构以及生产工艺,重点阐述了NBR/PVC、NBR/PP、NBR/ECO以及NBR/ CSM等共混改性的研究进展以及氢化丁腈橡胶和羟基丁腈橡胶等新型丁腈橡胶品种的发展状况,并指明了丁腈橡胶耐油改性研究的发展方向。 关键词:丁腈橡胶耐油 在航空航天工业、汽车工业、机械制造、石油开采、炼油及其他工业生产中,需要大量在燃油、润滑油、液压油等油类中使用的橡胶制品而在橡胶制品的使用过程中,油类能够渗透到橡胶内部,产生分子之间相互扩散,使硫化胶的网状结构发生变化,从而导致橡胶的强度和其他力学性能降低。因此,在国民经济的各个行业中都需要大量耐油性良好的橡胶材料。而橡胶的耐油性取决于橡胶和油类的极性,极性大的橡胶和非极性的石油系油类接触时,两者的极性相差较大,此时橡胶不易溶胀。研制和开发耐油性橡胶,尤其是在高温高寒等恶劣环境下的耐油橡胶,一直是橡胶研究领域的重点课题。 在众多的橡胶材料中,由丙烯腈(CAN)和丁二烯共聚而成的丁腈橡胶(NBR)是最常用的耐油橡胶,对非极性油类有优良的耐油性虽然NBR耐非极性油性能优良,但其耐高温性能中等,耐臭氧老化、耐天候老化性能差。近年来,人们对NBR 的共混和改性进行了大量的研究,以提高NBR橡胶的耐高温高寒、耐天候、耐臭氧老化等性能,使NBR能够在更苛刻的环境中得以使用。本文主要对近年来耐油丁腈橡胶耐油改性方面的进展进行论述。 1、NBR的发展状况、化学结构及生产工艺 自德国IG公司以碱金属为催化剂,对丁二烯与其他单体进行共聚制得NBR 以来,NBR的研制和开发随即得到了迅速发展并广泛应用于航空航天工业、汽车工业、机械制造、石油开采、炼油及其他工业生产中。进入20世纪80年代,工业自动化和高新技术发展迅速,要求橡胶制品在耐油的基础上,还要具备良好的耐高温、耐老化、耐化学腐蚀以及优异的物理机械性能。因此,国内外开发了众多新型耐油NBR,以满足各种苛刻使用环境下的耐油要求。目前国外生产NBR的厂家主要有德国朗盛公司、日本JSR公司和瑞翁公司、意大利埃尼公司、加拿大Sarnia公司、韩国现代泰化公司、台湾南帝公司以及俄罗斯CKH系列丁腈橡胶,国内生产NBR的主要是兰化和吉化两家公司。到2006年,世界丁腈橡胶生产能力已经达到了73万t/α。 NBR结构上含有不同含量的丁二烯和CAN基团,而极性基团CAN,使得其对非极性油类具有良好的耐油性。CAN含量越多,耐油性越好,但耐寒性则相应下降。研究表明:NBR本身随着CAN含量增大内聚能密度迅速提高、极性增加,从而耐油性明显提高,但耐寒性能下降。因此,为得到综合性能优异的NBR,CAN的含量应控制在40%以内为好。市场上的NBR中CAN含量(%)有42~46、36~41、31~35、25~30、18~24等五种。 NBR的生产工艺有低温聚合和高温聚合两种,目前世界多数生产厂家如朗盛公司、日本瑞翁公司和JSR公司都采用低温乳聚法。NBR的生产理论上可以采用乳液聚合、溶液聚合和悬浮聚合等工艺,但由于后两者工艺存在聚合时间长、转化率低、产物相对分子质量小等缺点,始终未能实现工业化。乳液聚合工艺仍

如何提高橡胶耐臭氧性

提高耐臭氧性 臭氧侵蚀橡胶往往发生在表面。我们周围空气中的臭氧浓度在逐年上升。臭氧对施加一定应变的橡胶制品的侵蚀结果就是产生裂纹,这些裂纹最终会导致橡胶制件的彻底失效。 1.蜡类抗臭氧剂 要提高静态条件下胶料的耐臭氧性,通常是添加各种蜡的共混物,如低分子量石蜡、高分子量石蜡或者微晶蜡等共混物,这些共混物仅限于提高胶料的静态耐臭氧性,如果加入过多,其实会使胶料的动态耐臭氧性下降。 2.对苯二胺类PPDs抗臭氧剂 对苯二胺PPDs是很有效的抗臭氧剂,即使在动态条件下,也能赋予胶料很好的耐臭氧性。 很多情况下,也会选用6PPDs作为动态条件下的有效抗臭氧剂。 将6PPD(长期有效)和77PPD(短期有效)并用,可以全面提高胶料的耐臭氧性。 3.微廒囊化PPD 对6PPD,可以考虑实施微胶囊技术,这种微胶囊剂可以选择醋酸纤维素。将微胶囊化的6PPD加入到胶料中,既可以长时间地保护胶料免受臭氧侵蚀又可以防止6PPD的向外迁移。 4。蜡/PPDs 要想使胶料在静态和动态条件下都具有很好的耐臭氧性,那么就选择一蜡并用一种对苯二胺类,如6PPD的抗臭氧剂。 5.NBC抗臭氧剂 二丁基二硫代氨基甲酸镍( NBC)对于NBR、CR和SBR 来说是较好的静态抗臭氧剂,但不适合在动态条件下使用的胶料。 6.抗臭氧剂的分子量与溶解度 有效的抗臭氧剂必须是与胶料相溶的,并且必须能迁移到表面而起到隔臭氧侵蚀的作用。通常其迁移速度取决其分子量以及}中的溶懈度 7. 6QDI 硫黄硫化的二烯类胶料中,要选用N-苯基-N,-1,3-=甲基丁基对喹啉亚胺(6QDI)做抗臭氧剂,因为硫化后,它会与橡胶主链或者是炭黑发生化学,结合,提高了胶料的耐臭氧性。因此,有报道说,在一些情况下,6QDI比6PPD/TMQ有更好的抗氧化作用。还有报道说,6QDI会部分转化成6PPD而起到抗臭氧侵蚀的作用。 8. 77PD 77PD(烷基PPD)主要用做静态臭氧保护齐U,并且是短期保护。在动态条件下,往往是不单独使用的,一般会与烷基,芳基PPD 并用,使胶料在静态和动态下都会有较好的耐臭氧性。通常6PPD与77PD会按2:1比例(质量比)并用,前者是为动态条件的臭氧保护,而后者是为静态条件的臭氧保护。 9. TMQ/6PPD 如果TMQ在抗臭氧或者疲劳保护方面还不够的话,可以并用6PPD[ N-苯基-N‘-(1,3-二甲基丁基)-对苯二胺]。这对于先暴露在氧气环境之后再暴露在臭氧环境中的胶料来说尤为重要。因此,TMQ与6PPD 并用是很常见的。I 10.非着色乙缩醛抗臭氧剂 对白色或者彩色胶料,可以使用非着色抗氧剂。可以考虑选用环状乙缩醛类抗氧荊(Bayer 公司的Vulkazon AFS)作为各种不同胶料的抗臭氧剂。

橡胶的老化及其防护

论文 让大家认识常见的橡胶 橡胶化学成分 线型聚合物链中的骨架上有一个未饱和的双键,这个双键通常存在氧硫时候可以打开,在相邻键之间形成交联。就会固化成热固性聚合物TS(过渡态)。顺式聚丁二烯的单体就可以打开。 国内发展 我国的橡胶行业经过50多年的发展,对国民经济起到了不可或缺的配套作用,尤其是随着我国机械化水平的提高以及新材料的应用,橡胶行业不断与相关领域相互渗透,开拓了橡胶的应用范围和领域,产品广泛应用于煤炭、冶金、水泥、港口、矿山、石油、汽车、纺织、轻工、工程机械、建筑、海洋、农业、航空、航天等领域。近年来,橡胶行业坚持科学发展观,产品的品种、规格、质量得到了持续、快速、协调、健康的发展,基本满足了国内市场的需求,提高了产品的国际市场竞争力。 【摘要】橡胶及其制品在加工、贮存和使用过程中,由于受内外因素的综合作用而引起橡胶物理化学性质和机械性能的逐步变坏,最后丧失使用价值。因此,学习和研究橡胶老化,对延长橡胶及其制品的使用寿命具有重要的意义。 【关键词】顺丁橡胶化学键老化防护防老剂 1 橡胶的老化作用 在生产和贮存过程中,橡胶易受到光、热和空气中氧及臭氧的作用,通常发生的老 化作用有热氧老化、光氧化老化、臭氧老化等。另外,在橡胶生产中,催化剂的应用、设备腐蚀及各种生产助剂的加入,使橡胶中含有铜、锰、钴、镍、铁等有害的变价金属离子,它们对橡胶的氧化反应起到催化作用,使橡胶的氧化老化速度加快。 1.1 热氧老化 橡胶在生产、贮存过程中,由于同时受到热和空气中氧的作用而发生的老化,热氧老化是各种橡胶时刻都在发生的变化,是造成橡损坏的主要原因。 在200℃以下,橡胶发生热氧老化,氧是引起老化的主要原因,热只起到加快氧化 速度的作用。在200℃以上的较高温度下,仅靠热能的作用就可以使橡胶大分子链降解, 有氧存在,橡胶同时发生氧化反应,温度越高,热降解越占优势,此时,热是引起橡胶 老化的主要因素。因此,橡胶的耐高温性能不仅取决于其耐氧化能力,而且取决于它的 热稳定性,即耐高温降解能力。 在高温下,橡胶发生降解的难易程度,主要取决于橡胶分子链上化学键的解离能。 表1-1列出了各种化学键的解离能,Si—O键的解离能高达688kJ∕mol,故硅橡胶制品可以在较高温度下长期使用。O-O键的解离能最低,为147kJ/mol,O-O键很容易解离,生成

臭氧老化试验箱的基本知识.docx

臭氧老化试验箱的基本知识第二章 一、水溶臭氧浓度与保持时间是杀菌的必要条件 军事医学科学院军队卫生研究所马义伦教授等经过对炭疽杆菌,枯草杆菌黑色变种进行臭 氧处理试验,总结出杀菌动力学经验公式:dN/ dt=-KNtMCN其中:N:菌数t:时间C:水中臭氧浓度m、 n 是 t 与 c 的指数 K :效率常数,也可表示细菌抗力。 由以上公式可以看出单位时间的灭菌量是与水中臭氧浓度及处理时间的若十次疗成止比, 可见 K 与 N 在不变动的情况下要达到杀菌的目的,必须保证臭氧在水中浓度与一定的接触 时间。 二、保证水中臭氧浓度的必要性 要保证臭氧在水中的浓度需要很多条件,大致有水温、气压、气液的相对运动速度、臭氧气作用在液体表面的分压、臭氧气的表面积、水的粘度、密度、表面张力等,其中有些因素,如水温、气压、臭氧气作用在液体表面的分压至关重要。也有的,如水的密度、粘滞度、表 面张力等,在某一具体条件下是不变的,就可以不予考虑,现将其中关系简单介绍如下:气液两相间的传质强度取决于分子与湍流的扩散速度,可以用一般传质公式表示: u=dG / dt=KF ·△ C 其中: u:传质速度,可用在t 时间内从气相传入液相的臭氧量G 确定,即dG / dt。 K :传质系数, F:气相与液相的接触表面积,△ C 传质过程中的动力,可用臭氧在实际情况下 与平衡时的浓度差决定(即水中臭氧浓度与臭氧源中臭氧浓度差别越大,传质速度越大)。 就要尽量加大臭氧与水的分析一般传质方程式可以知道,首先要使臭氧尽多地溶入水中,接 触表面积 F,而这是接触装置决定的。 其次,△ C 说明臭氧发生器的浓度越高,越有利于水对臭氧的吸收· 第三,传质系数K 则与多种因素有关,K (总传质系数)为气相传质系数K 气与液相传质系数 K 液之和,而臭氧属于低溶解度气体,K 气可忽略不计.而根据亨利一道尔顿定律, K液是多种物理参数的复合函数。 K 液 =f (T , P, u, w, p,ó) 其中臭氧溶解量与气体压力P 成正比而与水温T 成反比。 随着两相相对线速度的增大,气液两相接触表面积 F 及其更新速度也增大,但每个气泡 与液体接触的时间会减小,因此从综合效果来看,气体-液体的相对线速度应维持在一个范 围内较好。 液体的粘滞度u,密度 p 及气液间介面表面张力。的提高可使相间表面更新速度降低,并 相应使 K 液减小,所以Km 与 u, p, o 成反比,对于各种饮用水,此项可忽略不计。 在应用中,我们应关注温度、气压两个参数,而在设计接触装置时则应注意到水流、气流的相对速度,尤其是其中的温度,因为温度高了不但使水对臭氧的吸收效果下降,而且臭氧本身会因温度过高而分解。国内就曾发生过试图用臭氧处理70·℃的水温而没有取得任何 效果的例证。

常用橡胶性能一览表

常用橡胶性能一览表

由于具有优异的耐老化性能耐冲击性也较好,所以常用做胎侧。 EPDM三元乙丙胶三元乙丙橡胶是一种在乙烯和丙烯共聚物中引入了第三单体的高分子聚合物,产品性能及优点:超高分子量,高乙烯含量,可高度填充填充剂和油,易碎的性能缩短了混炼的时间. 分子结构和特性 三元乙丙是乙烯、丙烯和非共轭二烯烃的三元共聚物。二烯烃具有特殊的结构,只有两键之一的才能共聚,不饱和的双键主要是作为交链处。另一个不饱和的不会成为聚合物主链,只会成为边侧链。三元乙丙的主要聚合物链是完全饱和的。这个特性使得三元乙丙可以抵抗热,光,氧气,尤其是臭氧。三元乙丙本质上是无极性的,对极性溶液和化学物具有抗性,吸水率低,具有良好的绝缘特性。

在三元乙丙生产过程中,通过改变三单体的数量,乙烯丙烯比,分子量及其分布以及硫化的方法可以调整其特性。 热塑性弹性体 (TPE) 高刚性耐高温且保有低温的弯曲性,优异的耐化学品性,应用于管材、静音齿轮、电线被覆、发卷、自动收缩管线. TPE热塑性弹性体特性: 1、材料有半透、高透明、白色、黑色供选择。 2、已通过ROHS、PAHs、FDA测试,等级测试。 3、材料环保无卤无毒无味,不含塑胶软化剂、磷苯二甲酸盐、重金属等化合物。 4、良好的减震性和防滑耐磨。 5、良好的抗紫外线及耐化学药品性。 6、广阔的硬度范围选择(邵氏0度-110度)。可根据需求任意调整。 7、在—60度至135度的长期使用温度 8、压缩变形及永久变形小 9、卓越的抗动态疲劳性能 10、极优的耐臭氧及耐候性能 11、亮面、雾面均可,光滑的外观和舒适的橡胶柔软质感。 12、材料不含水分,无须干燥可直接使用,节约能源。 13、易于加工,着色。水口料即边角料可百分百回收再利用,降低产品,且不影响产品物性。 14、它可以通过二次注塑成型,与PP、PE、PS、ABS、PC、PA等基体材料包覆粘合,也可单独成形。替代软质PVC部分硅橡胶。 TPE/TPR 之应用领 域运动器材: 手把类(高尔夫球、各种球拍、脚踏车、滑雪器材、滑水器材等), 潜水器材(蛙鞋、蛙镜、呼吸管、手电筒等)、刹车块、运动护垫。日常用品:

高低温试验箱使用说明书

高低温试验箱使用说明书 尊敬的用户: 感谢您选用雅士林高低温试验箱,在使用本产品前,请详细参阅操作说明书,相信它能让您的试验发挥最大的功效。阅读完本说明书后,请将其妥善保管,以便随时查阅。 高低温试验箱使用条件: 1、安装场地 地面平整,通风良好 设备周围无强烈振动 设备周围无强电磁场影响 设备周围无易燃、易爆、腐蚀性物质和粉尘 设备周围留有适当的使用及维护空间, 2、供电条件 电源要求:AC380V?10% 50?0.5Hz 三相五线制 预装功率:总功率+2.0KW 要求用户在安装现场为设备配置相应容量的空气或动力开关,并且此开关必须是独立供本设备使用(建议电源开关容量:32A) 3、环境条件 环境温度:5?,,30?(24小时内平均温度?30?) 环境湿度:?85%RH 4、供水条件(仅限湿热型及需要用水设备) 采用纯净水、蒸馏水、去离子水。电阻率?500Ω.m 5、其它注意事项

试验过程中打开试验箱的门,会造成箱内的温、湿度波动;在试验过程中如果多次打开门或长时间敞开门或试验样品散发湿汽,可能会造成制冷系统换热器结冰而无法正常工作 高低试验箱用途 该产品用于高、低温的可靠性试验。对电子电工、汽车摩托、航空航天、橡胶、塑胶、金属、船舶兵器、高等院校、科研单位等相关产品的零部件及材料在高、低温变化的情况下,检验其各项性能指标。 高低温试验箱参照标准 GB/T 2423.1-2008试验A《低温试验方法》;GB/T 2423.2-2008试验B《高温试验方法》;以及其它相关标准的要求,可进行各种高低温环境试验【雅士林品牌】高低温试验箱规格型号 型号规格工作室尺寸mm 外形尺寸mm 温度范围 GDW-100 1150×1050×1750 A:-20?,150? 450×450×500 GDW-225 500×600×750 1200×1100×1900 B:-40?,150? C:-60?,150? GDW-500 700×800×900 1450×1400×2150 D:-80?,150? GDW-800 800×1000×1000 1500×1550×2200 GDW-010 1000×1000×1000 1720×1580×2280 高低温试验箱技术参数 温度均匀度:?2? (空载时) 温度波动度:?0.5? (空载时) 升温速率:1.0?,3.0?/min 降温速率:0.7?,1.0?/min 时间设定范围:1,9999 小时 高低温试验箱箱体结构

相关主题
文本预览
相关文档 最新文档