当前位置:文档之家› 弹性碰撞模型及应用(一)

弹性碰撞模型及应用(一)

弹性碰撞模型及应用(一)
弹性碰撞模型及应用(一)

弹性碰撞模型及其应用(1)

动量和能量最常出现的问题是碰撞问题。碰撞问题可分为两大类:弹性碰撞和非弹性碰撞。非弹性碰撞又分为一般非弹性碰撞和完全非弹性碰撞,我们重点讨论一下弹性碰撞。 弹性碰撞特点:(1)碰撞前后动量、动能都守恒;(2)碰撞过程中系统机械能守恒。严格的弹性碰撞在自然界中是很难找到的,原因是碰撞中总会有内能的生成,但是常见的弹性球、光滑的钢球及分子、原子等微观粒子的碰撞都可以看做是弹性碰撞。掌握这一模型,可轻松解决这一类题,切实提高学生推理能力和分析解决问题能力。

(一)弹性碰撞模型

已知A 、B 两个钢性小球质量分别是m 1、m 2,小球B 静止在光滑水平面上,A 以初速度v 0与小球B 发生弹性碰撞,求碰撞后小球A 的速度v 1,

物体B 的速度v 2大小和方向 解析:取小球A 初速度v 0的方向为正方向,因发

生的是弹性碰撞,碰撞前后动量守恒、动能不变有:

m 1v 0= m 1v 1+ m 2v 2 ① 2222112012

12121v m v m v m += ② 由①②两式得:210211)(m m v m m v +-= , 2

10122m m v m v += 结论:(1)当m 1=m 2时,v 1=0,v 2=v 0,显然碰撞后A 静止,B 以A 的初速度运动,两球速度交换,并且A 的动能完全传递给B ,因此m 1=m 2也是动能传递最大的条件;

(2)当m 1>m 2时,v 1>0,即A 、B 同方向运动,因2121)(m m m m +- <2

112m m m +,所以速度大小v 1<v 2,即两球不会发生第二次碰撞;

若m 1>>m 2时,v 1= v 0,v 2=2v 0 即当质量很大的物体A 碰撞质量很小的物体B 时,物体A 的速度几乎不变,物体B 以2倍于物体A 的速度向前运动。

(3)当m 1<m 2时,则v 1<0,即物体A 反向运动。

当m 1<

以上弹性碰撞以动撞静的情景可以简单概括为:(质量)等大小,(速度和动能)交换了;小撞大,被弹回;大撞小,同向跑。

(二) 经典例题1

质量为 M 的小车静止于光滑的水平面上,小车的上表面和圆弧的轨道均光滑,如图3如图所示,一个质量为m 的小球以速度v 0水平冲向小车,

冲上又返回;讨论

1、 小球上升的最大高度是多少?

2、 小球返回左端脱离小车时,可能做何种运动?

[解析]:1系统水平方向动量守恒,由于是4

1圆弧,即使小球从顶端飞出小车仍与车保持相同的水平速度,不

影响计算高度,此时可看作是完全非弹性碰撞,动能损失最大,全部转化为重力势能。

(2)小球水平冲上小车,又返回左端,到离开小车的整个过程中,系统动量守恒、机械能守恒,相当于小球与小车发生弹性碰撞的过程,如果m <M ,小球离开小车向左平抛运动,m=M ,小球离开小车做自由落体运动,如果m >M ,小球离开小车向右做平抛运动.所以答案有三种可能。

弹性碰撞模型的应用不仅仅局限于“碰撞”,我们应广义地理解 “碰撞”模型。这一模型的关键是抓住系统“碰撞”前后动量守恒、系统机械能守恒(动能不变),具备了这一特征的物理过程,可理解为“弹性碰撞”。我们对物理过程和遵循的规律就有了较为清楚的认识,问题就会迎刃而解。

经典例题2

(1)在光滑水平面上有相隔一定距离的A 、B 两球,质量相等,假定它们之间存在恒定的斥力作用,原来两球被按住,处在静止状态。现突然松开两球,同时给A 球以速度v 0,使之沿两球连线射向B 球,B 球初速度为零;若两球间的距离从最小值(两球未接触)到刚恢复到原始值所经历的时间为t 0,求:B 球在斥力作用下的加速度

[解析]:A 球射向B 球过程中,A 球一直作匀减速直线运动,B 球由静止开始一直作匀加速直线运动,当两球速度相等时相距最近,当恢复到原始值时相当于发生了一次弹性碰撞,,由于A 、B 质量相等,A 、B 发生了速度交换,系统动量守恒、机械能守恒。

设A 、B 速度相等时速度为v ,恢复到原始值时A 、B 的速度分别为v 1、v 2,

mv 0= 2mv ①

2mv=mv 1+ mv 2 ②

2221202

12121mv mv mv += ③ 由①式得v=2

0v ,由②③解得v 1=0,v 2= v 0 (另一组解v 1= v 0,v 2= 0舍去) 则B 的加速度a=0

00022t v v t v v -=-=002t v 练习题

(1)如图4所示,光滑水平地面上静止放置两由弹簧相连木块A 和B,一质量为m 子弹,以速度v 0,水平击中木块A,并留在其中,A 的质量为3m,B 的质量为4m.

(1)求弹簧第一次最短时的弹性势能

(2)何时B 的速度最大,最大速度是多少?

(2)如图2所示,两单摆的摆长不同,已知B 的摆长是A 摆长的4倍,A 的

周期为T ,平衡时两钢球刚好接触,现将摆球A 在两摆线所在的平面向左拉开一小角度释放,两球发生弹性碰撞,碰撞后两球分开各自做简谐运动,以m A ,m B 分别表示两摆球A ,B 的质量,则下列说法正确的是;

A .如果m A =m

B 经时间T 发生下次碰撞且发生在平衡位置

B .如果m A >m B 经时间T 发生下次碰撞且发生在平衡位置

C .如果m A >m B 经时间T/2发生下次碰撞且发生在平衡位置右侧

D .如果m A

(3)在可控核反应堆中需要给快中子减速,轻水、重水和石墨常用作减速剂。中子在重水中可与21H核碰撞减速,在石墨中可与126C核碰撞减速,上述碰撞可以简化为弹性碰撞模型,某反应堆中快中子与静止的靶核发生对心正碰,通过计算说明,仅从一次碰撞考虑,用重水和石墨做减速剂,哪种减速效果更好?

弹簧碰撞模型

模型分析 1.注意弹簧弹力特点及运动过程,弹簧弹力不能瞬间变化。 2.弹簧连接两种形式:连接或不连接。 连接:可以表现为拉力和压力,从被压缩状态到恢复到原长时物体和弹簧不分离,弹簧的弹力从压力变为拉力。 不连接:只表现为压力,弹簧恢复到原长后物体和弹簧分离,物体不再受弹簧的弹力作用。 3.动量和能量问题:动量守恒、机械能守恒,动能和弹性势能之间转化,等效于弹性碰撞。弹簧被压缩到最短或被拉伸到最长时,与弹簧相连的物体共速,此时弹簧具有最大的弹性势能,系统的总动能最小;弹簧恢复到原长时,弹簧的弹性势能为零,系统具有最大动能。 题型1.弹簧直接连接的两物体间的作用. 【例1】质量分别为3m 和m 的两个物体, 用一根细线相连,中间夹着一个被压缩的 轻质弹簧,整个系统原来在光滑水平地面上以速度v 0向右匀速运动,如图所 示.后来细线断裂,质量为m 的物体离开弹簧时的速度变为2v 0.求: (1)质量为3m 的物体最终的速度; (2)弹簧的这个过程中做的总功. 【答案】(1)032v (2) 203 2mv 【解析】(1)设3m 的物体离开弹簧时的速度为v 1,由动量守恒定律得: ()100 323v m v m v m m ?+?=+ 所以 013 2v v = (2)由能量守恒定律得:()()202021321221321v m m v m v m E P +?-?+??= 所以弹性势能:2032mv E P =

【点评】本题考查动量守恒定律和能量守恒定律的应用,解答的关键是正确确定初末状态及弹簧弹开过程的能量转化。 【例2】【2015届石家庄市高中毕业班第二次模拟考试试卷理科综合能力测试】如图所示,一辆质量M=3kg 的小车A 静止在水平面上,小车上有一质量m=lkg 的小物块B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为p E =6J ,小物块与小车右壁距离为l =0.4m ,解除锁定,小物块脱离弹簧后与小车右壁发生碰撞,碰撞过程无机械能损失,不计一切摩擦。求: ①从解除锁定到小物块与小车右壁发生第一次碰撞,小车移动的距离; ②小物块与小车右壁发生碰撞后,小物块和小车各自的速度大小和方向。 【答案】①0.1m ②小车速度方向向右为1m/s ,小物块速度方向向左为3m/s 22211122P E mv Mv = + 解得s /m 3s /m 121-==v v 或s /m 3s /m 1-' 2'1==v v 碰后小车速度方向向右为1m/s ,小物块速度方向向左为3m/s 【点评】本题考查动量守恒定律、能量守恒定律的结合应用,明确研究的系统和初末状态是正确解答的关键。 4.滑块a 、b 沿水平面上同一条直线发生碰撞;碰撞后两者粘在一起运动;经过一段时间后,从光滑路段进入粗糙路段.两者的位置x 随时间t 变化的图象如图所示.求:

高中物理模型-水平方向上的碰撞弹簧模型

模型组合讲解——水平方向上的碰撞+弹簧模型 [模型概述] 在应用动量守恒、机械能守恒、功能关系和能量转化等规律考查学生的综合应用能力时,常有一类模型,就是有弹簧参与,因弹力做功的过程中弹力是个变力,并与动量、能量联系,所以分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。 [模型讲解] 一、光滑水平面上的碰撞问题 例1. 在光滑水平地面上有两个相同的弹性小球A 、B ,质量都为m ,现B 球静止,A 球向B 球运动,发生正碰。已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P ,则碰前A 球的速度等于( ) A. m E P B. m E P 2 C. m E P 2 D. m E P 22 解析:设碰前A 球的速度为v 0,两球压缩最紧时的速度为v ,根据动量守恒定律得出 mv mv 20=,由能量守恒定律得220 )2(21 21v m E mv P +=,联立解得m E v P 20=,所以正确选项为C 。 二、光滑水平面上有阻挡板参与的碰撞问题 例 2. 在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”。这 类反应的前半部分过程和下述力学模型类似,两个小球A 和B 用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P ,右边有一小球C 沿轨道以速度v 0射向B 球,如图1所示,C 与B 发生碰撞并立即结成一个整体D ,在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A 球与挡板P 发生碰撞,碰后A 、D 都静止不动,A 与P 接触而不粘连,过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A 、B 、C 三球的质量均为m 。 图1 (1)求弹簧长度刚被锁定后A 球的速度。 (2)求在A 球离开挡板P 之后的运动过程中,弹簧的最大弹性势能。 解析:(1)设C 球与B 球粘结成D 时,D 的速度为v 1,由动量守恒得1 0)(v m m mv +=当弹簧压至最短时,D 与A 的速度相等,设此速度为v 2,由动量守恒得2132mv mv =,由

有弹簧的碰撞模型

高三物理有弹簧的碰撞模型 1.如图所示,物体A 静止在光滑的水平面上,A 的左边固定有轻质弹簧,与A 质量相等的物 体B 以速度v 向A 静运动并与弹簧发生碰撞,A 、B 始终沿同一直线运动,则A 、B 组成的系统动能损失最大的时刻是 A .A 开始运动时 B .A 的速度等于v 时 C .B 的速度等于零时 D .A 和B 的速度相等时 2.如图所示,位于光滑水平桌面上的小滑块P 和Q 都可视作质点,质量相等。Q 与轻弹簧相连。设Q 静止,P 以某一初速度向Q 运动并与弹簧发生碰撞。 在整个碰撞过程中,弹簧具有的最大弹性势能等于( ) A .P 的初动能 B .P 的初动能的12 C .P 的初动能的13 D .P 的初动能的14 3.一物体从某一高度自由落下,落在直立于地面的轻弹簧上,如下页左图所示.在A 点,物体开始与弹簧接触,到B 点时,物体速度为零,然后被弹回.下列说法中正确的是 (A)物体从A 下降到B 的过程中,动能不断变小 (B)物体从B 上升到A 的过程中,动能不断变大 (C)物体从A 下降到B,以及从B 上升到A 的过程中,速率都是先增大,后减小 (D)物体在B 点时,所受合力为零 4、(2013新课标)(10分)如图,光滑水平直轨道上有三个质量均为m 的物块A、 B 、 C 。 B 的左 侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A 以速度v0朝B 运动,压缩弹簧; 当A 、 B 速度相等时,B 与C 恰好相碰并粘接在一起,然后继续运动。假设B 和C 碰撞过 程时间极短。求从A开始压缩弹簧直至与弹簧分离的过程中, (i) 整个系统损失的机械能; (ii) 弹簧被压缩到最短时的弹性势能。 5、(2011安徽)(9分)如图,A 、B 、C 三个木块的质量均为m 。置于光滑的水平面上,B 、C 之间有一轻质弹簧,弹簧的两端与木块接触可不固连。将弹簧压紧到不能再压缩时用细线把B 和C 紧连,使弹簧不能伸展,以至于B 、C 可视为一个整体。现A 以初速v 0沿B 、C 的连线方向朝B 运动,与B 相碰并粘合在一起。以后细线突然断开, 弹簧伸展,从而使C 与A 、B 分离。已知C 离开弹簧后的速度恰为 v 0。求弹簧释放的势能。 6.(2009重庆)(18 分)探究某种笔的弹跳问题时,把笔分为轻质弹簧、内芯和外壳三部分,

2010年经典高中物理模型--常见弹簧类问题分析

常见弹簧类问题分析 高考要求 轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视. 弹簧类命题突破要点 1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化. 2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变. 3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义 进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-21kx 12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p =2 1kx 2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解. 下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进行分析。 一、与物体平衡相关的弹簧问题 1.(1999年,全国)如图示,两木块的质量分别为m 1和m 2,两轻质 弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴 接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离 开上面弹簧.在这过程中下面木块移动的距离为( ) A.m 1g/k 1 B.m 2g/k 2 C.m 1g/k 2 D.m 2g/k 2 此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧 形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m 1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m 1 + m 2)g /k 2,而m l 刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m 2g /k 2,因而m 2移动△x =(m 1 + m 2)·g /k 2 - m 2g /k 2=m l g

动量-含弹簧的碰撞模型祥解

A B C 水平弹簧 1、如图所示,光滑的水平面上有m A =2kg ,m B = m C =1kg 的三个物体,用轻弹簧将A 与B 连接.在A 、C 两边用力使三个物体靠近,A 、B 间的弹簧被压缩,此过程外力做功72 J ,然后从静止开始释放,求: (1)当物体B 与C 分离时,B 对C 做的功有多少? (2)当弹簧再次恢复到原长时,A 、B 的速度各是多大? (1)当弹簧恢复原长时,B 与C 分离,0=m A v A -(m B +m c )v C ①,E P =221A A v m +2)(2 1C C B v m m +②,对C 由动能定理得W = 2 2 1C C v m -0③,由①②③得W =18J ,v A =v C =6m/s . (2)取A 、B 为研究系统,m A v A -m B v C = m A v A ’ +m B v C ’, 221A A v m +2 21C B v m = 2 1 m A v A ’ 2 + 2 1 m B v C ’2 , 当弹簧恢复到原长时A 、B 的速度分别为:,v A =v B =6m/s 或v A =-2m/s , v B =10m/s . 2、(2)如图所示,光滑水平面轨道上有三个木块,A 、B 、C ,质量分别为m B =m c =2m ,m A =m ,A 、B 用细绳连接,中间有一压缩的弹簧 (弹簧与滑块不栓接)。开始时 A 、 B 以共同速度v 0运动, C 静止。某时刻细绳突然断开,A 、B 被弹开,然后B 又与C 发生碰撞并粘在一起,最终三滑块速度恰好相同。求B 与C 碰撞前B 的速度。 解析:(2)设共同速度为v ,球A 和B 分开后,B 的速度为B v ,由动量 守恒定律有0()A B A B B m m v m v m v +=+,()B B B C m v m m v =+,联立这两式得B 和C 碰撞前B 的速度为09 5 B v v = 。考点:动量守恒定律 3、两物块A 、B 用轻弹簧相连,质量均为2 kg ,初始时弹簧处于原长,A 、B 两物块都以v =6 m /s 的速度在光滑的水平地面上运动,质量4 kg 的物块C 静止在前方,如图所示。B 与C 碰撞后二者会粘在一起运动。求在以后的运动中: (1)当弹簧的弹性势能最大时,物块A 的速度为多大? (2)系统中弹性势能的最大值是多少? 解析:(1)当A 、B 、C 三者的速度相等时弹簧的弹性势能最大. 由A 、B 、C 三者组成的系统动量守恒,()()A B A B C ABC m m v m m m v +=++ (2分) 解得 (22)6 /3/224 ABC v m s m s +?= =++ (2分) (2)B 、C 碰撞时B 、C 组成的系统动量守恒,设碰后瞬间B 、C 两者速度为BC v ,则 m B v =(m B +m C ) BC v BC v = 4 262+? (2分) v

高中物理模型组合讲解 水平方向上的碰撞+弹簧模型 专题辅导

高中物理模型组合讲解 水平方向上的碰撞+弹簧模型 车晓红 [模型概述] 在应用动量守恒、机械能守恒、功能关系和能量转化等规律考查学生的综合应用能力时,常有一类模型,就是有弹簧参与,因弹力做功的过程中弹力是个变力,并与动量、能量联系,所以分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。 [模型讲解] 一、光滑水平面上的碰撞问题 例1. 在光滑水平地面上有两个相同的弹性小球A 、B ,质量都为m ,现B 球静止,A 球向B 球运动,发生正碰。已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P ,则碰前A 球的速度等于( ) A. m E P B. m E P 2 C. m E P 2 D. m E P 22 解析:设碰前A 球的速度为v 0,两球压缩最紧时的速度为v ,根据动量守恒定律得出 mv mv 20=,由能量守恒定律得220)2(2121v m E mv P +=,联立解得m E v P 20=,所以正确选项为C 。 二、光滑水平面上有阻挡板参与的碰撞问题 例2. 在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”。这类反应的前半部分过程和下述力学模型类似,两个小球A 和B 用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P ,右边有一小球C 沿轨道以速度v 0射向B 球,如图1所示,C 与B 发生碰撞并立即结成一个整体D ,在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A 球与挡板P 发生碰撞,碰后A 、D 都静止不动,A 与P 接触而不粘连,过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A 、B 、C 三球的质量均为m 。 图1 (1)求弹簧长度刚被锁定后A 球的速度。 (2)求在A 球离开挡板P 之后的运动过程中,弹簧的最大弹性势能。 解析:(1)设C 球与B 球粘结成D 时,D 的速度为v 1,由动量守恒得1 0)(v m m mv +=

弹簧10大模型

弹簧”模型 10 大问题 太原市第十二中学 姚维明 模型建构 : 在我们的日常生活中,弹簧虽然形态各异 , 大小不同 , 但是从弹簧秤 , 机动车的减震装置 , 各种复 位按钮和机械钟表内的动力装置等 , 弹簧处处在为我们服务 .因为弹簧本身的特性,如弹簧弹力的方 向与弹簧所处的伸缩状态有关、弹力的大小与弹簧形变量大小有关;而且,弹簧在伸缩过程中涉及 的物理过程较复杂,物理概念和规律较多,如力和加速度、功和能、冲量和动量等,因此,弹簧类 试题多年来深受物理命题专家的青睐。 【模型】弹簧 【特点】:( 1)一般问题中的轻弹簧是一种理想模型,不计质量。( 2) 弹簧弹力不能突变,弹 力变化需要形变量变化,需要时间的积累。 (3)弹力变化: F = kx 或△ F =k △x ,其中 F 为弹力(△ F 为弹力变化), k 为劲度系数, x 为形变量(△ x 为形变变化量)。( 4 )弹簧可以贮存能量,弹 力做功和弹性势 能的关系为: W =-△ E P 其中 W 为弹簧弹力做功, △ E P 为弹性势能变化。另外, 弹性势能计算公式暂不做要求。 、轻弹簧的弹力与弹簧秤的读数问题 【典案 1】如图 1,四个完全相同的轻弹簧都处于水平位置,它们的右端受到大小相等的拉力 F 作用,而左端的情况则各不相同: ⑴ 弹簧的左端固定在墙上 ⑵ 弹簧的左端受到大小也为 F 的拉力作用 以 l 1、l 2、 l 3、 l 4 依次表示四条弹簧的伸长量,则有 A 、 l 1 l 2 B 、 l 4 l 3 C 、 l 1 l 3 D 、 l 2 =l 4 〖解析〗因轻弹簧自身质量不计,则轻弹簧的伸长量与轻弹簧上的弹力大小成正 比,因为四种 状态中轻弹簧的弹力均为 F ,故四种状态轻弹簧的伸长量相同;选 D 【体验 1】如图 2,四个完全相同的弹簧秤都处于水平位置,它们的右端受到大小相等的拉力 F 作用,而左端的情况则各不相同: ⑴弹簧秤的左端固定在墙上 ⑵ 弹簧秤的左端受到大小也为 F 作用 ⑶ 弹簧秤的左端拴一小物块 块在光滑的水平面上滑动 ⑷ 弹簧秤的左端拴一个小物块 m 1,物块在粗糙的水平面上滑动 ⑶ 弹簧的左端拴一小物块 m ,物块在光滑的 水平面上滑动 图1 ⑷ 弹簧的左端拴一个小物块 m ,物块在粗糙的水平面上滑动 的拉力 m 1,物 图2

《摄影测量学》数字高程模型及其应用(可编辑)

《摄影测量学》7数字高程模型及其应用 常用的地貌表示方法 常用的地貌表示方法 等高线图 第七章数字高程模型及其应用 §7-1 概述 数字地面模型的发展过程 1956年由Miller教授提出概念 60年代至70年代对DTM内插问题进行了大量的研 究 70年代中、后期对采样方法进行了研究 80年代以后,对DTM的研究已涉及到DTM系统的 个环节,其中包括用DTM表示地形的精度、地形 分类、数据采集、DTM的粗差探测、质量控制、 数据压缩、DTM应用以及不规则三角网的建立与 应用数字地面模型DTM的概念 数字地面模型DTM(Digital Elevation Model):是地形表面形 态等多种信息的一个数字表示. DTM是定义在某一区域D上的m 维向量有限序列: V ,i1,2,…,n

i 其向量V (V ,V ,…,V )的分量为地形X,Y,Z i i1 i2 in i i i ((X,Y)∈ D)、资源、环境、土地利用、人口分布等多种 i i 信息的定量或定性描述。 数字高程模型DEM的概念 数字高程模型DEM(Digital Elevation Model):是表示区域D 上地形的三维向量有限序列 {Vi(Xi,Yi,Zi),i1,2,…n} 其中(Xi,Yi)∈D是平面坐标,Zi是(Xi,Yi)对应的高程DEM是DTM的一个子集,是对地球表面地形地貌的一种离散 的数字表达,是DTM的地形分量。地面信息的不同表达方 地形图:优点:直观,便于人工使用 缺点:计算机不能直接利用,不能满足自动化要求,管理不 DTM:地表信息的数字表达形 优点:直接输入计算机,计算机辅助设计,便于修改、更新、 管理,便于转换成其它形式的产品 数字高程模型DEM 表示形式 规则矩形格网(Grid 利用一系列在X,Y方向上等间 隔排列的地形点的高程Z表示地

弹簧模型(动力学问题)

模型组合讲解——弹簧模型(动力学问题) [模型概述] 弹簧模型是高考中出现最多的模型之一,在填空、实验、计算包括压轴题中都经常出现,考查范围很广,变化较多,是考查学生推理、分析综合能力的热点模型。 [模型讲解] 一. 正确理解弹簧的弹力 例1. 如图1所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上。②中弹簧的左端受大小也为F的拉力作用。③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动。④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。若认为弹簧的质量都为零,以l1、l2、l3、l4依次表示四个弹簧的伸长量,则有() ①② ③④ 图1 解析:当弹簧处于静止(或匀速运动)时,弹簧两端受力大小相等,产生的弹力也相等,用其中任意一端产生的弹力代入胡克定律即可求形变。当弹簧处于加速运动状态时,以弹簧为研究对象,由于其质量为零,无论加速度a为多少,仍然可以得到弹簧两端受力大小相等。

F是作用力与反作用的关系,因此,弹簧 的弹力也处处相等,与静止情况没有区别。在题目所述四种情况中,由于弹簧的右端受到大小皆为F的拉力作用,且弹簧质量都为零,根据作用力与反作用力关系,弹簧产生的弹力大小皆为F,又由四个弹簧完全相同,根据胡克定律,它们的伸长量皆相等,所以正确选项为D。 二. 双弹簧系统 例2. (2004年苏州调研)用如图2所示的装置可以测量汽车在水平路面上做匀加速直线运动的加速度。该装置是在矩形箱子的前、后壁上各安装一个由力敏电阻组成的压力传感器。用两根相同的轻弹簧夹着一个质量为2.0kg的滑块,滑块可无摩擦的滑动,两弹簧的另一端分别压在传感器a、b上,其压力大小可直接从传感器的液晶显示屏上读出。现将装置沿运动方向固定在汽车上,传感器b在前,传感器a在后,汽车静止时,传感器a、b的示数均为10N 图2 (1)若传感器a的示数为14N、b的示数为6.0N,求此时汽车的加速度大小和方向。 (2)当汽车以怎样的加速度运动时,传感器a的示数为零。 解析:(1 a1的方向向右或向前。 (2

碰撞连接理论

碰撞连接理论 概述: 碰撞连接理论来自对自然发展的观察和总结,通过碰撞这个运动方式解读和认知这个世界的一种方式,研究的是自然科学发展方向的规律性和自然生物进化的驱动力。研究方式采用是有效碰撞和有效连接之间的平衡模型。 宇宙大爆炸最初的那一瞬间,爆炸产生的动能,奠定了形成生命基础的运动和碰撞。运动是碰撞的基础,而碰撞为有序的逻辑创造了可能,有序的逻辑组合产生后的每一次的碰撞都会衍生出一个新的逻辑,随着新碰撞不断产生,新的逻辑组合形式不断出现。一旦一个碰撞产生的逻辑组合在一个稳定的环境里存在足够久,就会不断加强产生有效连接的连接键。这个形体产生的有效连接本身所具有的动能和加强自身连接从而回避无效碰撞的运动方式,就是我们所谓的意识。建立起物质和意识的桥梁就是有序的逻辑组合形体的运动。自然的多样性也是有效碰撞多样性的一个表现形式。 正文: 进入当代我们认知这个世界的知识不断增多,但这不仅没有消除我们的疑惑,反而让我们的困惑更多,矛盾更为尖锐。当下自然科学知识对于生命的根本性问题遇见了许多不能解释和与原来建立的知识体系冲突的地方,并且对于自然界和生命发展过程中出现的许多问题都不能进行解释和找到问题的出路,当我们一次次的审视生命发展史一代代生物的发展和消亡背后的原因是什么,是什么决定了物种的发展走向,又是什么原因让人类站在了地球自然的顶端?为了探究这个世界何去何从,我们是一个什么样的个体,人类的发展方向又是什么样的? 我们首先还原到自然发展的原始状态:宇宙大爆炸最初的那一瞬间,爆炸产生了动能,奠定了生命形式的基础:运动。运动是碰撞的基础,而碰撞则为有序的逻辑组合创造了可能,有序的逻辑组合产生后的每一次的碰撞都会衍生出一个新的逻辑,随着新碰撞不断产生,一旦一个碰撞产生的逻辑组合在一个稳定的环境里存在时间足够久,这个组合就会不断加强形成有效连接的连接键。这个形体产生的有效连接本身所具有的动能和加强自身连接从而回避无效碰撞的运动方式,就是我们所谓的意识。建立起物质和意识的桥梁就是有序的逻辑组合形体的运动。自然的多样性也是有效碰撞多样性的一个表现形式。 当有效碰撞所组成的逻辑组合进行想要保持这个逻辑形式持续存在的方式有两种:加强自身的逻辑连接强度和复制产生自身逻辑的新个体。最初碰撞产生的逻辑组合连接能量尚弱,随时都可能被别的碰撞冲击溃散,形成的逻辑组合处在进化阶段,需要不断有效碰撞以加强逻辑连接,自身逻辑连接能量不足以支撑持续存在,而应对连接键的老化最有效的方式

弹簧碰撞模型

模型分析 1.注意弹簧弹力特点及运动过程,弹簧弹力不能瞬间变化。 2.弹簧连接两种形式:连接或不连接。 连接:可以表现为拉力和压力,从被压缩状态到恢复到原长时物体和弹簧不分离,弹簧的弹力从压力变为拉力。 不连接:只表现为压力,弹簧恢复到原长后物体和弹簧分离,物体不再受弹簧的弹力作用。 3.动量和能量问题:动量守恒、机械能守恒,动能和弹性势能之间转化,等效于弹性碰撞。弹簧被压缩到最短或被拉伸到最长时,与弹簧相连的物体共速,此时弹簧具有最大的弹性势能,系统的总动能最小;弹簧恢复到原长时,弹簧的弹性势能为零,系统具有最大动能。 题型1.弹簧直接连接的两物体间的作用. 【例1】质量分别为3m 和m 的两个物体, 用一根细线相连,中间夹着一个被压缩的 轻质弹簧,整个系统原来在光滑水平地面上以速度v 0向右匀速运动,如图所 示.后来细线断裂,质量为m 的物体离开弹簧时的速度变为2v 0.求: (1)质量为3m 的物体最终的速度; (2)弹簧的这个过程中做的总功. 【答案】(1)032v (2) 203 2mv 【解析】(1)设3m 的物体离开弹簧时的速度为v 1,由动量守恒定律得: ()100 323v m v m v m m ?+?=+ 所以 013 2v v = (2)由能量守恒定律得:()()202021321221321v m m v m v m E P +?-?+??= 所以弹性势能:203 2mv E P = 【点评】本题考查动量守恒定律和能量守恒定律的应用,解答的关键是正确确定初末状

态及弹簧弹开过程的能量转化。

【例2】【2015届石家庄市高中毕业班第二次模拟考试试卷理科综合能力测试】如图所示,一辆质量M =3kg 的小车A 静止在水平面上,小车上有一质量m =lkg 的小物块B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为p E =6J ,小物块与小车右壁距离为l =0.4m ,解除锁定,小物块脱离弹簧后与小车右壁发生碰撞,碰撞过程无机械能损失,不计一切摩擦。求: ①从解除锁定到小物块与小车右壁发生第一次碰撞,小车移动的距离; ②小物块与小车右壁发生碰撞后,小物块和小车各自的速度大小和方向。 【答案】①0.1m ②小车速度方向向右为1m/s ,小物块速度方向向左为 3m/s 22211122P E mv Mv = + 解得s /m 3s /m 121-==v v 或s /m 3s /m 1-' 2'1==v v 碰后小车速度方向向右为1m/s ,小物块速度方向向左为3m/s 【点评】本题考查动量守恒定律、能量守恒定律的结合应用,明确研究的系统和初末状态是正确解答的关键。 4.滑块a 、b 沿水平面上同一条直线发生碰撞;碰撞后两者粘在一起运动;经过一段时间后,从光滑路段进入粗糙路段.两者的位置x 随时间t 变化的图象如图所示.求: ①滑块a 、b 的质量之比;

弹簧10大模型

图 1 图2 “弹簧”模型10大问题 太原市第十二中学 姚维明 模型建构: 在我们的日常生活中,弹簧虽然形态各异,大小不同,但是从弹簧秤,机动车的减震装置,各种复位按钮和机械钟表内的动力装置等,弹簧处处在为我们服务.因为弹簧本身的特性,如弹簧弹力的方向与弹簧所处的伸缩状态有关、弹力的大小与弹簧形变量大小有关;而且,弹簧在伸缩过程中涉及的物理过程较复杂,物理概念和规律较多,如力和加速度、功和能、冲量和动量等,因此,弹簧类试题多年来深受物理命题专家的青睐。 【模型】弹簧 【特点】:(1)一般问题中的轻弹簧是一种理想模型,不计质量。(2) 弹簧弹力不能突变,弹力变化需要形变量变化,需要时间的积累。(3)弹力变化:F = kx 或△F =k △x ,其中F 为弹力(△F 为弹力变化),k 为劲度系数,x 为形变量(△x 为形变变化量)。(4)弹簧可以贮存能量,弹力做功和弹性势能的关系为:W =-△E P 其中W 为弹簧弹力做功, △E P 为弹性势能变化。另外, 弹性势能计算公式暂不做要求。 一、轻弹簧的弹力与弹簧秤的读数问题 【典案1】如图1,四个完全相同的轻弹簧都处于水平位置,它们的右端受到大小相等的拉力F 作用,而左端的情况则各不相同: ⑴弹簧的左端固定在墙上 ⑵弹簧的左端受到大小也为F 的拉力作用 ⑶弹簧的左端拴一小物块m ,物块在光滑的 水平面上滑动 ⑷弹簧的左端拴一个小物块m ,物块在粗糙的水平面上滑动 以1l 、2l 、3l 、4l 依次表示四条弹簧的伸长量,则有 A 、1l 2l B 、4l >3l C 、1l >3l D 、2l =4l 〖解析〗因轻弹簧自身质量不计,则轻弹簧的伸长量与轻弹簧上的弹力大小成正比,因为四种状态中轻弹簧的弹力均为F ,故四种状态轻弹簧的伸长量相同;选D 【体验1】如图2,四个完全相同的弹簧秤都处于水平位置,它们的右端受到大小相等的拉力F 作用,而左端的情况则各不相同: ⑴弹簧秤的左端固定在墙上 ⑵弹簧秤的左端受到大小也为F 的拉力 作用 ⑶弹簧秤的左端拴一小物块m 1,物 块在光滑的水平面上滑动 ⑷弹簧秤的左端拴一个小物块m 1,物块在粗糙的水平面上滑动

动量-含弹簧的碰撞模型

水平弹簧 1、如图所示,光滑的水平面上有 m A=2kg , m B= m c=1kg 的三个物体,用轻弹簧将 A 与 B 连接?在A 、 C 两边用力使三个物体靠近, A 、 B 间的弹簧被压缩,此过程外力做功 72 J , 然后从静止开始释放,求: (1 )当物体B 与C 分离时,B 对C 做的功有多少? (2)当弹簧再次恢复到原长时, A 、 B 的速度各是多大? ②,对C 由动能定理得 W =l m C v C — 0③,由①②③得 W =18J , V A =v c =6m/s . 2 1 2 1 2 1 ' 2 1 —m A v A + — m B v c = — m A v A + — 2 2 2 2 '2 m B v c 当弹簧恢复到原长时 A 、B 的速度分别为:,V A = v B =6m/s 或v A =-2m/s , v B =10m/s 2、(2)如图所示,光滑水平面轨道上有三个木块, A 、B 、C ,质量分 别为m B = m c=2 m ,m A= m, A 、B 用细绳连接,中间有一压缩的弹簧 (弹 簧与滑块不栓接)。开始时A 、B 以共同速度v o 运动,C 静止。某时刻 细绳突然断开, A 、 B 被弹开,然后B 又与 C 发生碰撞并粘在一起,最终三滑块速度恰好相 同。求B 与C 碰撞前B 的 速度。 解析:(2)设共同速度为V ,球A 和B 分开后,B 的速度为V B ,由动量守恒定律有 (m A m B )v 0 m A v m B v B ,m B v B (m B m c )v ,联立这两式得 B 和C 碰撞前B 的速度为 9 一 一 v B v 0。考点:动量守恒定律 5 3、两物块A 、B 用轻弹簧相连,质量均为 2 kg ,初始时弹簧处于原长, A 、 B 两物块都以 v = 6 m / s 的速度在光滑的水平地面上运动,质量 4 kg 的 (1)当弹簧恢复原长时, B 与C 分离,O=m A V A —( m B +m c ) v c ①, 1 E P = _m A v 2 m c )v C (2)取 A 、B 为研究系统,m A v A — m B V C = m A v A ' +m B v c

动量守恒定律弹簧模型

弹簧模型+子弹打木块模型 弹簧模型 1.两物块A、B用轻弹簧相连,质量均为2kg,初始时弹簧处于原长,A、B两物块都以v=6m/s的速度在光滑的水平地面上运动,质量为4kg的物块C静止在前方,如图4所示.B 与C碰撞后二者会粘在一起运动.则在以后的运动中: (1)当弹簧的弹性势能最大时,物块A的速度为多大? (2)系统中弹性势能的最大值是多少? 2.(多选)光滑水平地面上,A、B两物体质量都为m,A以速度v向右运动,B原来静止,左端有一轻弹簧,如图所示,当A撞上弹簧,弹簧被压缩最短时() A.A、B系统总动量仍然为mv B.A的动量变为零 C.B的动量达到最大值 D.A、B的速度相等 3.如图所示,质量相等的两个滑块位于光滑水平桌面上,其中弹簧两端分别与静止的滑块N 和挡板P相连接,弹簧与挡板的质量均不计;滑块M以初速度v0向右运动,它与档板P碰撞(不粘连)后开始压缩弹簧,最后滑块N以速度v0向右运动。在此过程中( ) A.M的速度等于0时,弹簧的弹性势能最大 B.M与N具有相同的速度时,两滑块动能之和最小 C.M的速度为v0/2时,弹簧的长度最长 D.M的速度为v0/2时,弹簧的长度最短 4.如图甲所示,一轻弹簧的两端与质量分别是m1和m2的两木块A、B相连,静止在光滑水平面上.现使A瞬间获得水平向右的速度v=3 m/s,以此时刻为计时起点,两木块的速度随时间变化规律如图乙所示,从图示信息可知() A.t1时刻弹簧最短,t3时刻弹簧最长 B.从t1时刻到t2时刻弹簧由伸长状态恢复到原长 C.两木块的质量之比为m1:m2=1:2 D.在t2时刻两木块动能之比为E K1:E K2=1:4 5.质量为m的物块甲以3 m/s的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m的物块乙以4 m/s的速度与甲相向运动,如图所示,则()

上次课复习直链反应,稳态近似,平衡假设法,支链反应。

第 44 次课 2 学时

第十一章 化学动力学基础(二) 本章介绍化学动力学的两个速率理论,碰撞理论和过渡状态理论。同时还介绍溶液中的反应、光化反应和催化反应等特殊反应的动力学规律。 § 12.1 碰撞理论 1.速率理论的共同点 与热力学的经典理论相比,动力学理论发展较迟。先后形成的碰撞理论、过渡态理论都是20世纪后建立起来的,尚有明显不足之处。 理论的共同点是:首先选定一个微观模型,用气体分子运动论(碰撞理论)或量子力学(过渡态理论)的方法,并经过统计平均,导出宏观动力学中速率系数的计算公式。 由于所采用模型的局限性,使计算值与实验值不能完全吻合,还必须引入一些校正因子,使理论的应用受到一定的限制。 2.气体碰撞理论的要点 ①气体分子必须经过碰撞才能发生反应,相撞分子称作相撞分子对。 反应速率∝碰撞数 ②相撞分子对的动能有大有小,各不相同。分子互碰并不是每次都发生反应,只有相对平动能在连心线上的分量大于阈能C ε的碰撞才是有效的。 q =C εε≥的碰撞数/总碰撞数,q 称作碰撞的有效分数。则 反应速率∝q ③ 反应速率=碰撞数×q 3.两个分子的一次碰撞过程 两个分子在相互的作用力下,先是互相接近,接近到一定距离,分子间的斥力随着距离的减小而很快增大,分子就改变原来的方向而相互远离,完成了一次碰撞过程。 4.有效碰撞直径和碰撞截面 运动着的A 分子和B 分子,两者质心的投影落在直径为AB d 的圆截面之内,都有可能发生碰撞。 AB d 称为有效碰撞直径,数值上等于A 分子和B 分子的半径之和。 虚线圆的面积称为碰撞截面(collision cross

弹簧-质量-阻尼模型

弹簧-质量-阻尼模型

弹簧-质量-阻尼系统 1 研究背景及意义 弹簧-质量-阻尼系统是一种比较普遍的机械振动系统,研究这种系统对于我们的生活与科技也是具有意义的,生活中也随处可见这种系统,例如汽车缓冲器就是一种可以耗减运动能量的装置,是保证驾驶员行车安全的必备装置,再者在建筑抗震加固措施中引入阻尼器,改变结构的自振特性,增加结构阻尼,吸收地震能量,降低地震作用对建筑物的影响。因此研究弹簧-质量-阻尼结构是很具有现实意义。 2 弹簧-质量-阻尼模型的建立 数学模型是定量地描述系统的动态特性,揭示系统的结构、参数与动态特性之间关系的数学表达式。其中,微分方程是基本的数学模型, 不论是机械的、液压的、电气的或热力学的系统等都可以用微分方程来描述。微分方程的解就是系统在输入作用下的输出响应。所以,建立数学模型是研究系统、预测其动态响应的前提。通常情况下,列写机械振动系统的微分方程都是应用力学中的牛顿定律、质量守恒定律等。 弹簧-质量-阻尼系统是最常见的机械振动系统。机械系统如图2.1所示,

图2.1 弹簧-质量-阻尼系统简图 其中1 m ,2 m 表示小车的质量,i c 表示缓冲器的粘滞摩擦系数,i k 表示弹簧的弹性系数,i F (t )表示小车所受的外力,是系统的输入即i U (t )=i F (t ),i X (t)表示小车的位移,是系统的输出,即i Y (t )=i X (t),i=1,2。设缓冲器的摩擦力与活塞的速度成正比,其中1m =1kg ,2 m =2kg ,1k =3k =100N/cm ,2k =300N/cm ,1c =3 c =3N ?s/cm ,2 c =6N ?s/cm 。 由图 2.1,根据牛顿第二定律,,建立系统的动力学模型如下: 对1 m 有: (2-1) 对2 m 有: (2-2) 3 建立状态空间表达式 令3 1421122 ,,,x x x x u F u F ====,则原式可化为:

弹簧类问题的几种模型及其处理方法

弹簧类问题的几种模型 及其处理方法 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

弹簧类问题的几种模型及其处理方法 学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。根据近几年高考的命题特点和知识的考查,笔者就弹簧类问题分为以下几种类型进行分析,供读者参考。 一、弹簧类命题突破要点 1.弹簧的弹力是一种由形变而决定大小和方向的力。当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态。 2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。 3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。同时要注意弹力做功的特点:弹力做功等于弹性势能增量 的负值。弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。 二、弹簧类问题的几种模型 1.平衡类问题 例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。 分析:上提m1之前,两物块处于静止的平衡状态,所以有:, ,其中,、分别是弹簧k1、k2的压缩量。 当用力缓慢上提m1,使k2下端刚脱离桌面时,,弹簧k2最终恢复原长,其中,为此时弹簧k1的伸长量。

物理化学讲稿第十二章化学动力学基础二

物理化学讲稿 第十二章化学动力学基础(二) (10学时) 物理化学教研室

第十二章化学动力学基础(二)(教学方案)

第十二章 化学动力学基础(二) 人们在测量了大量反应的速率常数,并对反应速率常数于温度的依赖关系有了相当了解以后,对于为什么会有这些宏观规律存在必须从理论给予回答。在反应速率理论的发展过程中,先后形成了碰撞理论、过渡态理论和单分子反应理论等。动力学理论与,发展较迟。先后形成的碰撞理论、过渡态理论都是20世纪后建立起来的。而且与热力学的经典理论相比尚有明显不足之处。 速度理论是研究化学反应的速率系数与温度的关系,描述反应过程的动力学性质。 速率理论的共同点:首先选定一个微观模型,用气体分子运动论(碰撞理论)或量子力学(过渡态理论)的方法,并经过统计平均,导出宏观动力学中速率系数的计算公式。 由于所采用模型的局限性,使计算值与实验值不能完全吻合,还必须引入一些校正因子,使理论的应用受到一定的限制。 §12.1 碰撞理论(Simple Collision theory )(SCT ) 碰撞理论是接受了阿伦尼乌斯关于“活化状态”和“活化能”概念的基础上,利用已经建立起来的气体分子运动论的基础上,在20世纪初由路易斯建立起来的。路易斯把气相中的双分子反应看作是两个分子激烈碰撞的结果。在这里只学习简单的硬球碰撞理论(SCT )。气相双分子简单反应如A + B → 产物,2A → 产物。 一、碰撞理论 1、微观模型 (1) 反应物分子可看作简单的刚球,无内部结构; (2) 分子间除碰撞间外无其它相互作用; (3) 在反应过程中,反应分子的速率分布遵守麦克斯韦-玻耳兹曼分布。 2、碰撞理论的基本要点 (1) 分子必须通过碰撞才能发生反应,反应物分子间的接触碰撞是发生反应的前提。即要反应,先碰撞; (2) 不是任何两个反应物分子碰撞都能发生反应,只有当两个反应物碰撞分子的能量超过一定的数值ε0时,并满足一定的空间配布几何条件的碰撞反应才能发生反应; (3)活化分子的能量较普通能量高,它们碰撞时,松动并部分破坏了反应物分子中的旧键,并可能形成新键,从而发生反应,这样的碰撞称为有效碰撞或非弹性碰撞,活化分子愈多,发生化学反应的可能性就愈大。 根据上述的基本观点,自然得出一个结论:活化分子在单位时间内的碰撞就是反应速率。 []A q AB d Z r dt L =- = ? Z AB —(collision frequency)单位体积、单位时间内碰撞的分子数 q — (fraction of effective collision)有效碰撞在总碰撞中所占分数 设法求的Z 和q 就可求出r ,碰撞理论就是求碰撞数Z 和q 。 简单碰撞理论是以硬球碰撞为模型,导出宏观反应速率常数的计算公式,故又称为硬球碰撞理论。

动量-含弹簧的碰撞模型

A B C v 水平弹簧 1、如图所示,光滑的水平面上有m A =2kg ,m B = m C =1kg 的三个物体,用轻弹簧将A 与B 连接.在A 、C 两边用力使三个物体靠近,A 、B 间的弹簧被压缩,此过程外力做功72 J ,然后从静止开始释放,求: (1)当物体B 与C 分离时,B 对C 做的功有多少? (2)当弹簧再次恢复到原长时,A 、B 的速度各是多大? (1)当弹簧恢复原长时,B 与C 分离,0=m A v A -(m B +m c )v C ①,E P =221A A v m +2 )(2 1C C B v m m +②,对C 由动能定理得W = 2 2 1C C v m -0③,由①②③得W =18J ,v A =v C =6m/s . (2)取A 、B 为研究系统,m A v A -m B v C = m A v A ’ +m B v C ’, 221A A v m +2 21C B v m =21 m A v A ’2+2 1 m B v C ’2 , 当弹簧恢复到原长时A 、B 的速度分别为:,v A =v B =6m/s 或v A =-2m/s , v B =10m/s . 2、(2)如图所示,光滑水平面轨道上有三个木块,A 、B 、C ,质量分别为m B =m c =2m ,m A =m ,A 、B 用细绳连接,中间有一压缩的弹簧 (弹簧与滑块不栓接)。开始时 A 、 B 以共同速度v 0运动, C 静止。某时刻细绳突然断开,A 、B 被弹开,然后B 又与C 发生碰撞并粘在一起,最终三滑块速度恰好相同。求B 与C 碰撞前B 的速度。 解析:(2)设共同速度为v ,球A 和B 分开后,B 的速度为B v ,由动量 守恒定律有0()A B A B B m m v m v m v +=+,()B B B C m v m m v =+,联立这两式得B 和C 碰撞前B 的速度为09 5 B v v = 。考点:动量守恒定律 3、两物块A 、B 用轻弹簧相连,质量均为2 kg ,初始时弹簧处于原长,A 、B 两物块都以v =6 m /s 的速度在光滑的水平地面上运动,质量4 kg 的物块C 静止在前方,如图所示。B 与C 碰撞后二者会粘在一起运动。求在以后的运动中: (1)当弹簧的弹性势能最大时,物块A 的速度为多大? (2)系统中弹性势能的最大值是多少? 解析:(1)当A 、B 、C 三者的速度相等时弹簧的弹性势能最大. 由A 、B 、C 三者组成的系统动量守恒,()()A B A B C ABC m m v m m m v +=++ (2分) 解得 (22)6 /3/224 ABC v m s m s +?= =++ (2分) (2)B 、C 碰撞时B 、C 组成的系统动量守恒,设碰后瞬间B 、C 两者速度为BC v ,则 m B v =(m B +m C ) BC v BC v = 4 26 2+?=2 m/s (2分) 0 v

相关主题
文本预览
相关文档 最新文档