当前位置:文档之家› 高中数学概率中的涂色问题

高中数学概率中的涂色问题

高中数学概率中的涂色问题
高中数学概率中的涂色问题

二、高考数学中涂色问题的常见解法及策略

与涂色问题有关的试题新颖有趣,近年已经在高考题中出现,其中包含着丰富的数学思想。解决涂色问题方法技巧性强且灵活多变,因而这类问题有利于培养学生的创新思维能力、分析问题与观察问题的能力,有利于开发学生的智力。本文拟总结涂色问题的常见类型及求解方法

1、 一.区域涂色问题根据分步计数原理,对各个区域分步涂色,这是处理染色

问题的基本方法。

例1、 用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂

一种颜色,相邻部分涂不同颜色,则不同的涂色方法有多少种?

分析:先给①号区域涂色有5种方法,再给②号涂色有4种方法,接着给③号涂色方法有3种,由于④号与①、②不相邻,因此④号有4种涂法,根据分步计数原理,不同的涂色方法有5434240???=

2、 根据共用了多少种颜色讨论,分别计算出各种情形的种数,再用加法原理求

出不同的涂色方法种数。

例2、四种不同的颜色涂在如图所示的6

个区域,且相邻两个区域不能同色。 分析:依题意只能选用4种颜色,要分四类:

(1)②与⑤同色、④与⑥同色,则有4

4A ;

(2)③与⑤同色、④与⑥同色,则有4

4

A ;

(3)②与⑤同色、③与⑥同色,则有4

4A ;

(4)③与⑤同色、② 与④同色,则有4

4A ; (5)②与④同色、③与⑥同色,则有44A ;

所以根据加法原理得涂色方法总数为54

4

A =120 例3、如图所示,一个地区分为5个行政区域, 现给地图着色,要求相邻区域不得使用同一颜色, 现有4种颜色可供选择,则不同的着方法共有多少种? 分析:依题意至少要用3种颜色

1) 当先用三种颜色时,区域2与4必须同色,

2) 区域3与5必须同色,故有3

4A 种;

3) 当用四种颜色时,若区域2与4同色,

4) 则区域3与5不同色,有44A 种;若区域3与5同色,则区域2与4

不同色,有44A 种,故用四种颜色时共有24

4A 种。由加法原理可知满足题意的着色方法共有34A +244A =24+2?24=72

3、 根据某两个不相邻区域是否同色分类讨论,从某两个不相邻区域同色与不同

色入手,分别计算出两种情形的种数,再用加法原理求出不同涂色方法总数。

例4用红、黄、蓝、白、黑五种颜色涂在如图所示的四个区域内,每个区域涂一种颜色,相邻两个区域涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法?

分析:可把问题分为三类:

(1) 四格涂不同的颜色,方法种数为(2) 有且仅两个区域相同的颜色, (3) 即只

① ②

④ ⑤

有一组对角小方格涂相 同的颜色,涂法种数为

12542C A ;

5) 两组对角小方格分别涂相同的颜色,涂法种数为2

5A ,

因此,所求的涂法种数为2122

55452260A C A A ++=

4、 根据相间区使用颜色的种类分类

例5如图, 6个扇形区域A 、B 、C 、D 、E 、F ,现给这6个区域着色,要求同一区域涂同一种颜色,

现有4种不同的颜色可1A 解(

1)当相间区域A 有4种着色方法,此时,

B 、D 、F 各有3种着色方法, 此时,B 、D 、F 各有3种着色方法 故有4333108???= 种方法。

(2)当相间区域A 、C 、E 着色两不同的颜色时,有22

34C A 种着色方法,此时B 、D 、F 有322??种着色方法,故共有22

34322432C A ???=种着色

方法。

(3)当相间区域A 、C 、E 着三种不同的颜色时有3

4A 种着色方法,此时

B 、D 、F 各有2种着色方法。此时共有3

4222192A ???=种方法。 故总计有108+432+192=732种方法。

说明:关于扇形区域区域涂色问题还可以用数列中的递推公来解决。

如:如图,把一个圆分成(2)n n ≥解:设分成n 个扇形时染色方法为n a 种

(1) 当n=2时1A 、2A 有2

4

A =12种,即2a =12

(2)当分成n 个扇形,如图,1A 与2A 不同色,2A 与3A 不同 色,L ,1n A -

与n A 不同色,共有1

43

n -?种染色方法, 但由于n A 与1A

邻,所以应排除n A 与1A 同色的情形;n A 与1A 同色时,可把n A 、 1A 看成一个扇形,与前2n -个扇形加在一起为1n -个扇形,此时有1n a -种染色法,故有如下递推关系:

11

43n n n a a --=?-1211243(43)43n n n n n n a a a -----∴=-+?=--+?+?

21321

234343434343n n n n n n n a a -------=-?+?=-+?-?+?124[33(1)3](1)33

n n n n

n

--==?-++-?=-?+L L

二.点的涂色问题

方法有:(1)可根据共用了多少种颜色分类讨论,(2)根据相对顶点是否同色

分类讨论,(3)将空间问题平面化,转化成区域涂色问题。

例6、将一个四棱锥S ABCD -的每个顶点染上一种颜色,并使同一条棱的两端点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数是多少? 解法一:满足题设条件的染色至少要用三种颜色。

(1)若恰用三种颜色,可先从五种颜色中任选一种染顶点S ,再从余下的四种颜色中任选两种涂A 、B 、C 、D 四点,此时只能A 与C 、B 与D 分别同色,

故有12

5460

C A=种方法。

(2)若恰用四种颜色染色,可以先从五种颜色中任选一种颜色染顶点S,再从余下的四种颜色中任选两种染A与B,由于A、B颜色可以交换,故有2

4

A种染法;再从余下的两种颜色中任选一种染D或C,而D与C,而D与C中另一个只需染与其

相对顶点同色即可,故有1211

5422240

C A C C=种方法。

(3)若恰用五种颜色染色,有5

5120

A=种染色法

综上所知,满足题意的染色方法数为60+240+120=420种。

解法二:设想染色按S—A—B—C—D的顺序进行,对S、A、B染色,有54360

??=种染色方法。

由于C点的颜色可能与A同色或不同色,这影响到D点颜色的选取方法数,故分类讨论:

C与A同色时(此时C对颜色的选取方法唯一),D应与A(C)、S不同色,有3种选择;C与A不同色时,C有2种选择的颜色,D也有2

对C、D染色有13227

?+?=种染色方法。由乘法原理,

607420

?=

解法三:可把这个问题转化成相邻区域不同色问题:如图,

对这五个区域用5种颜色涂色,有多少种不同的涂色方法?

二.线段涂色问题

对线段涂色问题,要注意对各条线段依次涂色,主要方法有:

6)根据共用了多少颜色分类讨论

7)根据相对线段是否同色分类讨论。

例7、用红、黃、蓝、白四种颜色涂矩形ABCD的四条边,每条边只涂一种

颜色,且使相邻两边涂不同的颜色,如果颜色可以反复使用,共有多少

种不同的涂色方法?

解法一:(1)使用四颜色共有4

4

A种;

(2)使用三种颜色涂色,则必须将一组对边染成同色,故有112

423

C C A

种,

(3)使用二种颜色时,则两组对边必须分别同色,有2

4

A种

因此,所求的染色方法数为41122

44234

84

A C C A A

++=种解法二:涂色按AB-BC-CD-DA的顺序进行,对AB、BC涂色有4312

?=种涂色方法。

由于CD的颜色可能与AB同色或不同色,这影响到DA颜色的选取方法数,

故分类讨论:当CD与AB同色时,这时CD对颜色的选取方法唯一,则

DA有3种颜色可供选择CD与AB不同色时,CD有两种可供选择的颜色,DA

也有两种可供选择的颜色,从而对CD、DA涂色有13227

?+?=种涂色方法。

由乘法原理,总的涂色方法数为12784

?=种

例8、用六种颜色给正四面体A BCD

-的每条棱染色,要求每条棱只染一种颜色且共顶点的棱涂不同的颜色,问有多少种不同的涂色方法?

解:(1)若恰用三种颜色涂色,则每组对棱必须涂同一颜色,而这三组间的

颜色不同,故有3

6

A种方法。

(2)若恰用四种颜色涂色,则三组对棱中有二组对棱的组内对棱涂同色,但组与组

之间不同色,故有34

66

C A种方法。

(3)若恰用五种颜色涂色,则三组对棱中有一组对棱涂同一种颜色,故有15

36

C A种方法。

(4)若恰用六种颜色涂色,则有6

6

A种不同的方法。

综上,满足题意的总的染色方法数为40806

65613462336=+++A A C A C A 种。

三.面涂色问题

例9、从给定的六种不同颜色中选用若干种颜色,将一个正方体的6个面涂色,每两个具有公共棱的面涂成不同的颜色,则不同的涂色方案共有多少种?

分析:显然,至少需要3三种颜色,由于有多种不同情况,仍应考虑利用加法原理分类、乘法原理分步进行讨论

解:根据共用多少种不同的颜色分类讨论

(1)用了六种颜色,确定某种颜色所涂面为下底面,则上底颜色可有5种选择,在上、下底已涂好后,再确定其余4种颜色中的某一种所涂面为左侧面,则其余3个面有3!种涂色方案,根据乘法原理30!351=?=n

(2)共用五种颜色,选定五种颜色有65

6=C 种方法,必有两面同色(必为相

对面),确定为上、下底面,其颜色可有5种选择,再确定一种颜色为左侧面,此时的方法数取决于右侧面的颜色,有3种选择(前后面可通过翻转交换)

9035562=??=C n ;(3)共用四种颜色,仿上分析可得

9024463==C C n ;(4)共用三种颜色,203

64==C n

例10、四棱锥P ABCD -,用4种不同的颜色涂在四棱锥的各个面上,要求相邻不同色,有多少种涂法?

解:这种面的涂色问题可转化为区域涂色问题,如右图,区域1、2、3、4相当于四个侧面,区域5相当于底面;根据共用颜色多少分类:

(1) 最少要用3种颜色,即1与3同色、2与4同色,此时有3

4A 种;

(2) 当用4种颜色时,1与3同色、2与4两组中只能有一组同色,此时

有14

24C A ;故满足题意总的涂色方法总方法交总数为31442472A C A +=

用三种不同的颜色填涂如右图33?方格中的9个区域,要求

每行、每列的三个区域都不同色,则不同的填涂方法种数共有( D )

A 、48、

B 、24

C 、12

D 、6

“立几”中的计数问题求解策略

在近几年的高考试题和各地模拟试题中频繁出现以“立几”中的点、线、面的位置关系为背景的计数问题,这类问题题型新颖、解法灵活、多个知识点交织在一起,综合性强,能力要求高,

有一定的难度,它不仅考查相关的基础知识,而且注重对数学思想方法和数学能力的考查。现结合具体例子谈谈这种问题的求解策略。

直接求解例1:从平面α上取6个点,从平面β上取4个点,这10个点最多可以确定多少个三棱锥?

解析: 利用三棱锥的形成将问题分成α平面上有1个点、2个点、3个点三类直接求

解共有132231

646464194C C C C C C ++=个三棱锥

例2: 在四棱锥P-ABCD 中,顶点为P ,从其它的顶点和各棱的中点中取3个,使它

们和点P 在同一平面上,不同的取法有 B. 48 C. 56 D. 62种

A

B

C

解析: 满足题设的取法可以分成三类

(1) 在四棱锥的每一个侧面上除P 点外取三点有3

5440C =种不同取法; (2) 在两个对角面上除点P 外任取3点,共有3

428C =种不同取法;

(3) 过点P 的每一条棱上的3点和与这条棱异面的棱的中点也共面,共有1

248

C =种不同取法,故共有40+8+8=56种

评注:这类问题应根据立体图形的几何特点,选取恰当的分类标准,做到分类不重

复、不遗漏。 1. 结合“立几”概念求解

例3: 空间10个点无三点共线,其中有6个点共面,此外没有任何四个点共面,则这些点可以组成多少个四棱锥? 解析: 4

16

4

60C C = 2. 结合“立几”图形求解

如果把两条异面直线看作“一对”,那么六棱锥的棱和底面所有的12条直线中,异面直线有:A. 12 B. 24 C. 36 D. 48 B

用正五棱柱的10个顶点中的5个顶点作四棱锥的5个顶点,共可得多少个四棱锥?

分类:以棱柱的底面为棱锥的底面 41

552C C ; 以棱柱的侧面为棱锥的底面 1156C C 以棱柱的对角面为棱锥的底面1156C C

以图中11ADC B (梯形)为棱锥的底面 11562C C

3. 构造几何模型求解

在正方体的8个顶点的所有连线中,有多少对异面直线? 与空间不共面的四点距离相等的平面有多少个?

(05年湖北)以平面六面体1111ABCD A B C D -的任意三个顶点为顶点作三角形,从中随机取出两个三角形,则这两个三角形不共面的概率为 A.

367385 B. 376385 C. 192385 D. 18

385

A 在知识的网络交汇点初设计命题是近几年高考命题改革强调的重要观念之一,在复习备考中,要把握好知识间的纵横联系和综合,使所学知识真正融会贯通,运

用自如,形成有序的网络化知识体系。

1. 对于已知直线a,如果直线b 同时满足下列三个条件: ① 与直线a 异面;② 与直

线a 所成的角为定值θ;③ 与直线a 的距离为定值d.那么这样的直线b 有 A. 1条 B. 2条 C. 3条 D. 无数条

2. 如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是

A. 48

B. 36

C. 24

D. 18

3. 设四棱锥P-ABCD 的底面不是平行四边形,用平面α去截这个四棱锥,使得截面四边形是平行四边形,则这样的平面α

A. 不存在

B. 只有1个

C. 恰有4个

D. 有无穷多个 4. 如图,点1210,,,P P P L 分别是四面体的顶点或棱的中点,那么在同一平面上的四点组()

1,,,i j k P P P P 共有 个

5. 在正方体的一个面所在的平面内,任意画一条直线,则与它异面的正方体的棱的条数是

6. 正方体的8个顶点中任取4个不在同一平面上的顶点,,,P Q M N 组成的二面角为

P MN Q --的大小可能值有 个.

答案

1.D

2. B

3. D

4. 33

5. 4或6或7或8

6. 8个

高中数学解题方法系列:概率的热点题型及其解法

高中数学解题方法系列:概率的热点题型及其解法 概率主要涉及等可能事件,互斥事件,对立事件,独立事件的概率的求法,对于这部分,我们还应当重视与传统内容的有机结合,在以后的高考中,可能出现概率与数列、函数、不等式等有关内容的结合的综合题,下面就谈一谈概率与数列、函数、不等式等有关知识的交汇处命题的解题策略。 题型一:等可能事件概率、互斥事件概率、相互独立事件概率的综合。 例1:甲、乙两人各射击一次,击中目标的概率分别是 32和4 3.假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响. (Ⅰ)求甲射击4次,至少1次未击中目标的概率; (Ⅱ)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率; (Ⅲ)假设某人连续2次未击中... 目标,则停止射击.问:乙恰好射击5次后,被中止射击的概率是多少? 解:(1)设“甲射击4次,至少1次未击中目标”为事件A,则其对立事件A 为“4次均击中目标”,则()()4 26511381P A P A ??=-=-= ???(2)设“甲恰好击中目标2次且乙恰好击中目标3次”为事件B,则 ()223 23442131133448P B C C ??????=?????= ? ? ???????(3)设“乙恰好射击5次后,被中止射击”为事件C,由于乙恰好射击5次后被中止射击,故必然是最后两次未击中目标,第三次击中目标,第一次及第二次至多有一次未击中目标。 故()22123313145444441024 P C C ??????=+????=?? ? ?????????例2:某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的. (Ⅰ)求3个景区都有部门选择的概率; (Ⅱ)求恰有2个景区有部门选择的概率. 解:某单位的4个部门选择3个景区可能出现的结果数为34.由于是任意选择,这些结果出现的可能性都相等. (I)3个景区都有部门选择可能出现的结果数为!32 4?C (从4个部门中任选2个作为1组, 另外2个部门各作为1组,共3组,共有624=C 种分法,每组选择不同的景区,共有3!种选法),记“3个景区都有部门选择”为事件A 1,那么事件A 1的概率为 P(A 1)=.943!3424=?C (II)解法一:分别记“恰有2个景区有部门选择”和“4个部门都选择同一个景区”为事件A 2

高中数学:概率的意义 (16)

第三章 概率 3.1 随机事件的概率 3.1.2 概率的意义 A 级 基础巩固 一、选择题 1.给出下列三个命题,其中正确命题的个数是( ) ①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品; ②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是37 ; ③随机事件发生的频率就是这个随机事件发生的概率. A .0 B .1 C .2 D .3 解析:①概率指的是可能性,错误;②频率为37 ,而不是概率,故错误;③频率不是概率,错误. ★答案★:A 2.事件A 发生的概率接近于0,则 ( ) A .事件A 不可能发生 B .事件A 也可能发生 C .事件A 一定发生 D .事件A 发生的可能性很大 ★答案★:B 3.一枚质地均匀的硬币如果连续抛掷100次,那么第99次出现反面朝上的概率是( ) A.1100 B.99100 C.12 D.199 解析:由于每次试验出现正、反面朝上的概率是相等的,均为12 . ★答案★:C 4.从一批电视机中随机抽出10台进行检验,其中有1台次品,则关于这批电视机,下列说法正确的是( ) A .次品率小于10% B .次品率大于10% C .次品率等于10% D .次品率接近10% 解析:抽出的样本中次品的频率为110 ,即10%,所以样本中次品率为10%,所以总体中次品率大约为10%. ★答案★:D

5.同时向上抛100个铜板,结果落地时100个铜板朝上的面都相同,你认为这100个铜板更可能是下面哪种情况( ) A.这100个铜板两面是一样的 B.这100个铜板两面是不同的 C.这100个铜板中有50个两面是一样的,另外50个两面是不相同的 D.这100个铜板中有20个两面是一样的,另外80个两面是不相同的 解析:落地时100个铜板朝上的面都相同,根据极大似然法可知,这100个铜板两面是一样的可能性较大. ★答案★:A 二、填空题 6.利用简单抽样法抽查某校150名男学生,其中身高为1.65米的有32人,若在此校随机抽查一名男学生,则他身高为1.65米的概率大约为________.(保留两位小数) 解析:所求概率为32 150 ≈0.21. ★答案★:0.21 7.给出下列三个结论: ①小王任意买1张电影票,座号是3的倍数的可能性比座号是5的倍数的可能性大; ②高一(1)班有女生22人,男生23人,从中任找1人,则找出的女生可能性大于找出男生的可能性; ③掷1枚质地均匀的硬币,正面朝上的可能性与反面朝上的可能性相同. 其中正确结论的序号为________. ★答案★:①③ 8.某地区牛患某种病的概率为0.25,且每头牛患病与否是互不影响的,今研制一种新的预防药,任选12头牛做试验,结果这12头牛服用这种药后均未患病,则此药________(填“有效”或“无效”). 解析:若此药无效,则12头牛都不患病的概率为(1-0.25)12≈0.032,这个概率很小,故该事件基本上不会发生,所以此药有效. ★答案★:有效 三、解答题 9.某转盘被平均分成10等份(如图所示),转动转盘,当转盘停止后,指针指向的数字即为转出的数字.游戏规则如下:两个人参加,先确定猜数方案,甲转动转盘,乙猜,若猜出的结果与转盘转出的数字所表示的特征相符,则乙获胜,否则甲获胜.猜数方案从以下两种方案中选一种: A.猜“是奇数”或“是偶数”;

高三数学 深入分析高考中概率试题的特点与解题方法

深入分析高考中概率试题的特点与解题方法 1 概率试题的特点 (1)密切联系教材,试题通常是通过对课本原题的改编,通过对基础知识的重新组合、拓广,从而成为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题. (2)概率试题与其它数学试题有着明显的区别,它具有一定的应用性.近三年来出现过三种类型:一是课本中出现的,从实际生活中概括出来的;二是与横向学科有联系的问题;三是赋予时代气息的数学问题. (3)概率试题中注重了对四个基本公式的考查,即对等可能性事件的概率;互斥事件的概率加法公式;独立事件的概率乘法公式;事件在n次独立重复试验中恰发生k次的概率的考查. 2 概率试题的解题分析 2.1 通过对事件的理解与把握来解决问题 例1 (2000年新课程卷第17题)甲乙两人参加普法知识竞赛,其中选择题6个,判断题4个,甲、乙二人依次各抽一题. (Ⅰ)甲抽到选择题、乙抽到判断题的概率是多少?(Ⅱ)甲、乙二人中至少有一人抽到选择题的概率是多少? 分析本题是一个等可能性事件的概率问题.同时注意到“甲、乙二人依次各抽一题”在解题中的作用,于是可利用排列知识及等可能事件的概率公式加以求解. 2.2 通过应用分类讨论的思想来解决问题 例2 (2002年新课程卷第19题)某单位6个员工借助互联网开展工作,每个员工上网的概率都是0.5(相互独立). (Ⅰ)求至少3人同时上网的概率; (Ⅱ)至少几人同时上网的概率小于0.3? 分析本题可应用分类讨论的思想将问题(Ⅰ)“至少3人同时上网的概率”转化为恰有3人同时上网,恰有4人同时上网,恰有5人同时上网,恰有6人同时

上网的四种类型,再结合相互独立事件同时发生或互斥事件有一个发生的概率的计算方法加以求解.同时问题(Ⅰ)的解决为第二问的求解做好了铺垫. 2.3 通过合理运用公式()1()P A P A =-来解决问题 例3 (2000年新课程卷第18题)用A 、B 、C 三类不同的元件连接成两个系统N 1、N 2.当元件A 、B 、C 都正常工作时,系统N 1正常工作,当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作.已知元件A 、B 、C 正常工作的概率依次为0.80,0.90,0.90,分别求系统N 1、N 2正常工作的概率. 分析 系 统N 1正常工作的概率由物理串联知识结合独立事件的乘法公式即可求得;而系统N 2正常工作的概率由“当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作”可知,必须分成三类:一元件A 、B 正常工作,元件C 不正常工作;二元件A 、C 正常工作,元件B 不正常工作;三元件A 、B 、C 都正常工作.在解题时容易遗漏第三种情况,且忘记不正常工作的元件,导致解题错误.但若我们合理使用公式()1()P A P A =-,则系统N 2正常工作的概率可以看成元件A 正常工作,元件B 、C 都不正常工作的对立事件的概率,从而可以简化计算过程. 3 概率试题对高考复习的启示 3.1 在复习中,不能因为概率这部分是新增加的内容而加以忽视,也不能因为概率与排列、组合同在一个章节,认为只可能出现填空、选择题的类别.因为从近三年的试卷看到,每年均有一个概率解答题,所以在复习中应引起足够的重视. 3.2 在复习中,应充分研究大纲、考纲,使学生做到:(1)五个了解,即了解随机事件的统计规律性;随机事件的概率;等可能事件的概率;互斥事件;相互独立事件.(2)四个会,即会用排列组合基本公式计算等可能事件的概率;会用互斥事件的概率加法公式计算事件的概率;会用独立事件的概率乘法公式计算事件的(N 1 (N 2

(最全)高中数学概率统计知识点总结

概率与统计 一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。 2、平均数:①、常规平均数:12n x x x x n ++???+= ②、加权平均数:112212n n n x x x x ωωωωωω++???+=++???+ 3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。 4、方差:2222121 [()()()]n s x x x x x x n = -+-+???+- 二、频率直方分布图下的频率 1、频率 =小长方形面积:f S y d ==?距;频率=频数/总数 2、频率之和:121n f f f ++???+=;同时 121n S S S ++???+=; 三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。 2、平均数: 112233n n x x f x f x f x f =+++???+ 112233n n x x S x S x S x S =+++???+ 3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。 4、方差:22221122()()()n n s x x f x x f x x f =-+-+???+- 四、线性回归直线方程:???y bx a =+ 其中:1 1 2 22 1 1 ()() ?() n n i i i i i i n n i i i i x x y y x y nxy b x x x nx ====---∑∑== --∑∑ , ??a y bx =- 1、线性回归直线方程必过样本中心(,)x y ; 2、?0:b >正相关;?0:b <负相关。 3、线性回归直线方程:???y bx a =+的斜率?b 中,两个公式中分子、分母对应也相等;中间可以推导得到。 五、回归分析 1、残差:??i i i e y y =-(残差=真实值—预报值)。分析:?i e 越小越好; 2、残差平方和:21?()n i i i y y =-∑, 分析:①意义:越小越好; ②计算:222211221 ????()()()()n i i n n i y y y y y y y y =-=-+-+???+-∑ 3、拟合度(相关指数):221 2 1 ?()1() n i i i n i i y y R y y ==-∑=- -∑,分析:①.(]20,1R ∈的常数; ②.越大拟合度越高; 4、相关系数 :()() n n i i i i x x y y x y nx y r ---?∑∑= = 分析:①.[r ∈-的常数; ②.0:r >正相关;0:r <负相关 ③.[0,0.25]r ∈;相关性很弱; (0.25,0.75)r ∈;相关性一般; [0.75,1]r ∈;相关性很强; 六、独立性检验 1、2×2列联表: 2、独立性检验公式 ①.2 2() ()()()() n ad bc k a b c d a c b d -= ++++ ②.犯错误上界P 对照表 3、独立性检验步骤

高中数学统计与概率知识点(原稿)

高中数学统计与概率知识点(文) 第一部分:统计 一、什么是众数。 一组数据中出现次数最多的那个数据,叫做这组数据的众数。 众数的特点。 ①众数在一组数据中出现的次数最多;②众数反映了一组数据的集中趋势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的大致情况。但是,当一组数据大小不同,差异又很大时,就很难判断众数的准确值了。此外,当一组数据的那个众数出现的次数不具明显优势时,用它来反映一组数据的典型水平是不大可靠的。 3.众数与平均数的区别。 众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数量。 二、.中位数的概念。 一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数)叫做这组数据的中位数。 三 .众数、中位数及平均数的求法。 ①众数由所给数据可直接求出;②求中位数时,首先要先排序(从小到大或从大到小),然后根据数据的个数,当数据为奇数个时,最中间的一个数就是中位数;当数据为偶数个时,最中间两个数的平均数就是中位数。③求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平均数。 四、中位数与众数的特点。 ⑴中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数据; ⑵求中位数时,先将数据有小到大顺序排列,若这组数据是奇数个,则中间的数据是中位数;若这组数据是偶数个时,则中间的两个数据的平均数是中位数; ⑶中位数的单位与数据的单位相同; ⑷众数考察的是一组数据中出现的频数; ⑸众数的大小只与这组数的个别数据有关,它一定是一组数据中的某个数据,其单位与数据的单位相同; (6)众数可能是一个或多个甚至没有; (7)平均数、众数和中位数都是描述一组数据集中趋势的量。

高中概率知识要点

概率知识要点 一、随机事件的概率 1 事件的有关概念 (1)必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。 简称必然事件 (2)不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。简称不可能事件 (3)确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。 (4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。简称随机事件 (5)事件及其表示方法:确定事件和随机事件统称为事件,一般用大写字母A 、B 、C,…,表示 2 随机试验 对于随机事件,知道它的发生可能性大小是非常重要的,要了解随机事件发生的可能性大小,最直接的方法就是试验 一个试验如果满足下述条件: (1)试验可以在相同的情形下重复进行; (2)试验的所有结果是明确可知的,但不止一个; (3)每次试验总是出现这些结果中的一个, 但是一次试验之前却不能确定这次试验会出现哪一个结果 我们称这样的试验为随机试验 3 频数、频率和概率 (1)频数:在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的频数。 (2)频率:在相同条件S 下重复n 次试验,时间A 出现的比例n n A f A n = )(称为事件A 出现的频率 (3)概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值. 定义 符号表示 包含关系 对于事件A 与事件B ,如果事件A 发生,则事件B 一定发生,称事件B 包含事件A (或事件A 包含于事件B ) ()B A A B ?? 相等关系 若B A A B ??且,则称事件A 与事件B 相等 A=B 并事件(和事件) 某事件发生当且仅当事件A 发生或事件B 发生。 )(B A B A +或Y 交事件(积事件) 某事件发生当且仅当事件A 发生且事件B 发生。 )(AB B A 或I 5 互斥事件与对立事件 (1)互斥 事件A 与事件B 互斥:B A I 为不可能事件,即?=B A I ,即事件A 与事件B 在任何一次试验中并不会同时发生。 (2)对立 事件A 与事件B 互为对立事件:B A I 为不可能事件,B A Y 为必然事件,即事件A 与事件B 在任何一次试验中有且仅有一个发生。 6 概率的几个基本性质 (1)1)(0≤≤A P A P )的取值范围:(概率.

概率与统计高考常见题型解题思路及知识点总结

概率与统计高考常见题型 解题思路及知识点总结 一、解题思路 (一)解题思路思维导图 (二)常见题型及解题思路 1.正确读取统计图表的信息 典例1:(2017全国3卷理科3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图,根据该折线图,下列结论错误的是().

A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月份 D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,选A. 2.古典概型概率问题 典例2:( 全国卷理科)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德 巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A. B. C. D. 解:不超过30的素数有2,3,5,7,11,13 ,17,19,23,29,共10个,随机选取两个不同的数,共有 种方法,因为 ,所以随机选取两个不同的数,其和等于30的有3种方 法,故概率为 ,选C. 典例3: (2014全国2卷理科5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 ( ) A. 0.8 B. 0.75 C. 0.6 D. 0.45 解:设某天空气质量优良,则随后一天空气质量也优良的概率为p,则据条件概率公式得 ,故选A. 3.几何概型问题 典例4:(2016全国1卷理科4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 ( ) A.13 B.12 C. 23 D.3 4

高中数学《概率》第二节 古典概型(

高中数学《概率》第二节古典概型(第一课时) 一、地位作用:本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。 学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。 二、重点、难点:理解古典概型的概念及利用古典概型求解随机事件的概率。 如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。 三、教学目的 1:知识与技能 (1)理解古典概型及其概率计算公式, (2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。 2:过程与方法 根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。 3:情感态度与价值观 概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神。 四、教学过程: (一)、引入:在课前,教师布置任务,以数学小组为单位,完成下面两个模拟试验:试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成20次(最好是整十数),最后由科代表汇总; 试验二:抛掷一枚质地均匀的骰子,分别记录“1点”、“2点”、“3点”、“4点”、“5点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后由科代表汇总。 在课上,学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受。 教师最后汇总方法、结果和感受,并提出问题? 1.用模拟试验的方法来求某一随机事件的概率好不好?为什么? 不好,要求出某一随机事件的概率,需要进行大量的试验,并且求出来的结果是频率,而不是概率。 2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点? (二)、思考交流:在试验一中随机事件只有两个,即“正面朝上”和“反面朝上”,并且他们都是互斥的,由于硬币质地是均匀的,因此出现两种随机事件的可能性相等,即它们 的概率都是1 2 ; 在试验二中随机事件有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,并且他们都是互斥的,由于骰子质地是均匀的,因此出现六种随机事件的可能性相等,即它 们的概率都是1 6 。

人教版高中数学必修三概率的意义

3.1.2概率的意义 [读教材·填要点] 1.概率的正确理解 随机事件在一次试验中发生与否是随机的,但随机性中含有规律性,认识了这种随机性中的规律性,就能使我们比较准确地预测随机事件发生的可能性.概率只是度量事件发生的可能性的大小.不能确定是否发生. 2.游戏的公平性 (1)裁判员用抽签器决定谁先发球,不管哪一名运动员先猜,猜中并取得发球的概率均为0.5,所以这个规则是公平的. (2)在设计某种游戏规则时,一定要考虑这种规则对每个人都是公平的这一重要原则. 3.决策中的概率思想 如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“使样本出现的可能性最大”可以作为决策的准则,这种判断问题的方法称为极大似然法,是决策中的概率思想. 4.天气预报的概率解释 天气预报的“降水概率”是随机事件的概率,是指明了“降水”这个随机事件发生的可能性的大小. 5.试验与发现 概率学知识在科学发展中起着非常重要的作用,例如:奥地利遗传学家孟德尔利用豌豆所做的试验,经过长期观察得出了显性与隐性的比例接近3∶1,而对这一规律进行深入研究,得出了遗传学中的一条重要统计规律. 6.遗传机理中的统计规律 奥地利遗传学家孟德尔通过收集豌豆试验数据,寻找到了其中的统计规律,并用概率理论解释这种统计规律.利用遗传定律,帮助理解概率统计中随机性与规律性的关系,以及频率与概率的关系. [小问题·大思维] 1.天气预报中“明天北京的降水概率是60%,上海的降水概率是70%”.有没有可能北京降雨了,上海没有降雨?试从概率的角度加以分析. 提示:“降水概率”说明了北京与上海降雨这个随机事件发生的可能性.上海降雨的可能性比北京大,并不能说北京降雨了,上海就一定降雨,完全有可能北京降雨,而上海没有

新课标高中数学必修三《概率》知识点

高中数学必修3(新课标) 第三章 概 率(知识点) 3.1 随机事件的概率及性质 1、 基本概念: (1)必然事件:一般地,在条件S 下,一定会发生的事件,叫做相对于条件S 的必然事件,简称必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫做相对于条件S 的不可能事件,简称不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件,简称确定事件; (4)随机事件:在条件S 下可能发生也可能不发生的事件,叫做相对于条件S 的随机事件,简称随机事件; (5)确定事件与随机事件统称为事件,一般用大写字母表示A 、B 、C ……表示. (6)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)=n n A 为事件A 出现的频率: 对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。 (7)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数n A 与试验总次数n 的比值n n A ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小,接近某个常数。我们把这个常数叫做随机事件的概率,概率从数量

上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率 (8)任何事件的概率是0~1之间的一个确定的数,它度量该事件发生的的可能性. 2 概率的基本性质 1)一般地、对于事件A与事件B,如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B),记作B?A(或A?B).不可能事件记作?,任何事件都包含不可能事件. 2)如果事件C1发生,那么事件D1一定发生,反过来也对,这时我们说这两个事件相等,记作C1=D1. 一般地,若B?A,且A?B,那么称事件A与事件B相等,记作A=B. 3)若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A或事件B的并事件(或和事件),记作A∪B(或A+B). 4)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件),记作A∩B(或AB). 5)若A∩B为不可能事件(A∩B=?),那么称事件A与事件B互斥.不可能同时发生. 6)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件.有且仅有一个发生. 任何事件的概率在0~1之间,即 0≤P(A)≤1. 必然事件的概率为1,不可能事件的概率为0. (4)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B).

高中理科数学解题方法篇(概率与数据)

概率与数据 概率 1.随机事件的概率,其中当时称为必然事件;当时称为不可能事件P(A)=0; 2.等可能事件的概率(古典概率): P(A)=。理解这里m、n的意义。比如: (1)将数字1、2、3、4填入编号为1、2、3、4的四个方格中,每格填一个数字,则每个方格的标号与所填数字均不相同的概率是______(答:); (2)设10件产品中有4件次品,6件正品,求下列事件的概率:①从中任取2件都是次品;②从中任取5件恰有2件次品;③从中有放回地任取3件至少有2件次品;④从中依 次取5件恰有2件次品。(答:①;②;③;④) 3、互斥事件:(A、B互斥,即事件A、B不可能同时发生)。计算公式:P(A+B)=P(A)+P(B)。比如: (1)有A、B两个口袋,A袋中有4个白球和2个黑球,B袋中有3个白球和4个黑球,从A、B袋中各取两个球交换后,求A袋中仍装有4个白球的概率。(答:); (2)甲、乙两个人轮流射击,先命中者为胜,最多各打5发,已知他们的命中率分别为0.3和0.4,甲先射,则甲获胜的概率是(0.425=0.013,结果保留两位小数)______(答:0.51); (3)有一个公用电话亭,在观察使用这个电话的人的流量时,设在某一时刻,有n个人正在使用电话或等待使用的概率为P(n),且P(n)与时刻t无关,统计得

到,那么在某一时刻,这个公用电话亭里一个人也没有的概率P(0)的值是(答:) 4、对立事件:(A、B对立,即事件A、B不可能同时发生,但A、B中必然有一个发生)。计算公式是:P(A)+ P(B)=1;P()=1-P(A); 5、独立事件:(事件A、B的发生相互独立,互不影响)P(A?B)=P(A) ? P(B) 。提醒: (1)如果事件A、B独立,那么事件A与、与及事件与也都是独立事件; (2)如果事件A、B相互独立,那么事件A、B至少有一个不发生的概率是1-P(A B)=1-P(A)P(B); (3)如果事件A、B相互独立,那么事件A、B至少有一个发生的概率是1-P() =1-P()P()。比如: ①设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率P(A)是______(答:); ②某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错得0分,假设这位同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响,则这名同学得300分的概率为_____________;这名同学至少得300分的概率为_____________(答:0.228;0.564); ③袋中有红、黄、绿色球各一个,每次任取一个,有放回地抽取三次,球的颜色全相同的概率是________(答:);

概率习题精选精讲

概 率 (1)随机事件——概率学把“可能性”引进数学 在概率学中,我们称一定发生的事件为必然事件,不可能发生的事件是不可能事件,可能发生也可能不发生的事件是随机事件. 概率也就是事件发生的可能性.所以必然事件的概率是1,不可能事件的概率是0,而随机事件的概率在区间(0,1)之中. 【例1】 同时掷两枚骰子,则以下事件各是什么事件? (1) 点数之和是正整数; (2) 点数之和小于2; (3) 点数之和是3的倍数. 【解析】(1)是必然事件,(2)是不可能事件;(3)是随机事件. (2)等可能事件——概率公式的起源 如果一次试验中可能出现的结果有n 个,而且这n 个结果出现的可能性相同,则称这类事件为等可能事件.由此导出基本概率公式是: ()m P A n = .(其中n 和 m 分别表示基本事件总数和事件A 发生的次数.) 【例2】将一枚骰子连续抛掷三次,它落地时向上的点数依次..成等差数列的概率为 ( ) A. 19 B. 112 C.1 15 D. 1 18 【解析】抛掷一枚骰子后,出现任何一面的可能性相同.所以本题属于等可能事件. 一枚骰子连续抛掷三次,则基本事件总数3 6 216n ==;设事件A ;连掷3次所得点数依次成等差数列,那么3数相等时有111, 222,…666等六种;3数不相等时有123,234,345,456,135,246及其反序数等12个.于是事件A 发生的次数61218m =+=种. 故()181 21612 P A = =.选B. (3)互斥事件——概率的加法原理 在某种试验中,不能同时发生的事件称为互斥事件.如果A 、B 是互斥事件,那么: ()()()P A B P A P B ?=+. 【例3】在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( ) A . 310 B .15 C .110 D .112 【解析】设小球标注的数字之和为3与6的事件分别为A 、B.显然A 与B 不能同时成立,是互斥事件. 由于基本事件总数 2 510.n C ==事件 A 只有1+2=3一种,;事件 B 有1+5=2+4=6两种,.∵A 与B 互斥, ()()()12 3 10 10 P A B P A P B +∴?=+= =.选A. (4)对立事件——两互斥事件的特写 在一次试验中,如果事件A 与B 一定恰有一个发生,则称事件A 与B 是对立事件. 注意对立事件必然互斥,但是互斥事件不一定对立. 一般地,记A 的对立事件为 A .由于A 与A 具有互补性,所以()()1P A P B +=.这是简化概率计算的基本公式. 【例4】8个篮球队中有2个强队,先任意将这8个队分成两个组(每组4个队)进行比赛,这两个强队被分在一个组内的概率是多少? 【解析】 我们用a 、b 分别记八个队中的两个强队. 令C =“a 队与b 队分在同一组”, 则C =“a 队与b 队不在同一组”. a 队与 b 队不在同一组,只能分成两种情况:a 队在第一组,b 队在第二组,此时有C 3 6·C 3 3=C 3 6种分法;a 队在第二组,b 队在第一

高中数学古典概率教案新人教版必修3

§3.2.1 古典概型 一、教材分析 本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的.古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位. 学好古典概型可以为其他概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题. 概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象.适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例.使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神. 二、教学目标 1、知识与技能: (1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等; (2)掌握古典概型的概率计算公式:P (A )=总的基本事件个数 包含的基本事件个数A 2、过程与方法: (1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力; (2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。 3、情感态度与价值观: 通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点. 三、重点难点 教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率. 教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数. 四、课时安排 1课时 五、教学设计 (一)导入新课 思路1 (1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件. (2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,...,10,从中任取一球,只有10种不同的结果,即标号为1,2,3, (10) 思考讨论根据上述情况,你能发现它们有什么共同特点? 为此我们学习古典概型,教师板书课题. 思路2 将扑克牌(52张)反扣在桌上,先从中任意抽取一张,那么抽到的牌为红心的概率有多大?是否一定要进行大量的重复试验,用“出现红心”这一事件的频率估计概率?这样工作量较大且不够准确.有更好的解决方法吗?把“抽到红心”记为事件B,那么事件B 相当于“抽到红心1”,“抽到红心2”,…,“抽到红

高中数学选修计数原理概率知识点总结

选修2-3定理概念及公式总结 第一章基数原理 1.分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法 N=m 1+m 2+……+m n 种不同的方法 2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事有N=m 1×m 2×……m n 种不同的方法 分类要做到“不重不漏”,分步要做到“步骤完整” 3.两个计数原理的区别: 如果完成一件事,有n 类办法,不论哪一类办法中的哪一种方法,都能独立完成这件事,用分类计数原理, 如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要完成所有步骤才能完成这件事,是分步问题,用分步计数原理. 4.排列:从n 个不同的元素中取出m 个(m ≤n)元素并按一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. (1)排列数: 从n 个不同的元素中取出m 个(m ≤n)元素的所有排列的个数.用符号m n A 表示 (2)排列数公式:)1()2)(1(+-???--=m n n n n A m n 用于计算, 或m n A )! (! m n n -=() n m N m n ≤∈*,, 用于证明。 n n A =!n =()1231????-Λn n =n(n-1)! 规定0!=1 5.组合:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合 (1)组合数: 从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,用m n C 表示 (2)组合数公式: (1)(2)(1) ! m m n n m m A n n n n m C A m ---+==L 用于计算, 或)! (!! m n m n C m n -= ),,(n m N m n ≤∈*且 用于证明。

高中数学概率统计

第八讲 概率统计 【考点透视】 1.了解随机事件的发生存在着规律性和随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 【例题解析】 考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=)()(I card A card =n m ; 等可能事件概率的计算步骤: ① 计算一次试验的基本事件总数n ; ② 设所求事件A ,并计算事件A 包含的基本事件的个数m ; ③ 依公式()m P A n =求值; ④ 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”:

① 求概率的步骤是: 第一步,确定事件性质???? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 例1.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). [考查目的]本题主要考查概率的概念和等可能性事件的概率求法. [解答过程]0.3提示:1 33 5 C 33.54C 10 2 P ===? 例2.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 . [考查目的]本题主要考查用样本分析总体的简单随机抽样方式,同时考查概率的概念和等可能性事件的概率求法. 用频率分布估计总体分布,同时考查数的区间497.5g~501.5的意义和概率的求法. [解答过程]1.20 提示:51.10020P == 例3从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ): 492 496 494 495 498 497 501 502 504 496 497 503 506 508 507 492 496 500 501 499 根据的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g 之间的概率约为__________. [考查目的]本题主要考查用频率分布估计总体分布,同时考查数的区间497.5g~501.5的意义和概率的求法.

高中数学选修2-3基础知识归纳(排列组合、概率问题)

高中数学选修2-3基础知识归纳(排列组合、概率问题) 一.基本原理 1.加法原理:做一件事有n类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,所有排列的个数记为。

四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题)②有序还是无序③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路: ①直接法: ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用题时一种常用的解题方法。 分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原

理得出结论。 注意:分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4)两种途径:①元素分析法;②位置分析法。 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2) 特殊元素优先考虑、特殊位置优先考虑; 例1. 电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公 益广告,则共有种不同的播放方式(结果用数值表示). 解:分二步:首尾必须播放公益广告的有种;中间4个为不同的商业广告有种,从而应当填=48. 从而应填48. 例2. 6人排成一行,甲不排在最左端,乙不排在最右端,共有多少

相关主题
文本预览
相关文档 最新文档