当前位置:文档之家› 夹套反应釜设计

夹套反应釜设计

夹套反应釜设计
夹套反应釜设计

0.95m 3

夹套反应釜设计计算说明书

一、罐体和夹套设计计算

1.1 罐体几何尺寸计算

1.1.1 选择筒体和封头的形式 选择圆柱筒体及椭圆形封头。 1.1.2 确定筒体内径

已知设备容积要求0.95m 3

,按式(4-1)初选筒体内径:

式中,V=0.95m 3

,根据【2】38页表4-2,常反应物料为液-液类型, i =H 1/D 1=1~1.3,取 i =1.3,代入上式,计算得

3

31440.95==1.032i 3.14 1.1V D π??

?

将D 1的估算值圆整到公称直径系列,取D 1=1100mm ,

1.1.3 确定封头尺寸

标准椭圆形封头尺寸查附表4-2,DN=1100mm ,选取直边高度h 2=25mm 。 1.1.4 确定筒体高度

当D 1=1100mm, h 2=25mm 时,由【2】附表D-2查得椭圆形封头的容积V 封=0.1980 m 3

,由附表D-1查得

筒体1m 高的容积V 1m =0.950 m 3

,按式(4-2):

H 1=(V-V 封)/V 1m =(0.950-0.198)/0.95=0.7916m

考虑到安装的方便,取H 1=0.9m ,则实际容积为

V= V 1m ×H 1+ V 封=0.950×0.9+0.198=1.053 m

3

1.2 夹套几何尺寸计算 1.

2.1 选择夹套结构

选择【2】39页图4-4 (b)所示结构。 1.2.2 确定夹套直径

查【2】表4-3, D 2= D 1+100=1100+100=1200mm 。套封头也采用椭圆形并与夹套筒体取相同直径。

1.2.3 确定夹套高度

装料系数η=操作容积/全容积=0.9/0.95=0.85 按式4-4计算夹套高度:

H 2≥(ηV- V 封)/ V 1m =(0.85×1.053-0.198)/0.95=0.734 m 取H 2=750mm 。选取直边高度h 2=25mm 。 1.2.4 校核传热面积

查【2】附表D-2,由D 1=1100mm ,得罐体封头表面积F 1封=1.3980 m 2

查【2】附表D-1,一米高筒体内表面积F 1m =3.46 m 2

31

4i

V D π

?罐体结构示意图

校核传热面积:

实际总传热面积F=F 筒+ F 1封=F 1m ×H 2 +F 1封=3.46×0.75+1.398=3.99 m 2>3.8 m 2

,可用。

1.3 罐体及夹套的强度计算 1.3.1确定计算压力

按工艺条件,罐体内设计压力P 1=0.2MPa ;夹套内设计压力P 2=0.3MPa

液体静压力P 1H =ρgH 2×10-6=1000×9.8×0.75×10-6

=0.007MPa ,取P 1H =0.01MPa 计算压力P 1c =P 1+P 1H =0.18+0.01=0.19MPa 夹套无液体静压,忽略P 2H ,故P 2c =P 2。 1.3.2选择设备材料

分析工艺要求和腐蚀因素,决定选用Q235-A 热轧钢板,其中100℃-150℃下的许用应力为:[ó]t

=113Mpa 。

1.3.3罐体筒体及封头壁厚计算 罐体筒体壁厚的设计厚度为

采用双面焊缝,进行局部无损探伤检查,按教材表10-9,取焊缝系数φ=0.85,C 2=2mm ,则

[]1c 1d1210.191100

=

2 1.092 3.09

21130.850.19

2t

c

p D C p δσ??+=

+=+=??--

查教材表10-10,取钢板负偏差C 1=0.25mm ,则δd1+C 1=3.34,考虑到最小厚度

mim δ为3mm ,

取名义厚度δn =5mm

罐体封头壁厚的设计厚度为

[]11

d110.191100

=

2 1.092 3.09

21130.850.50.19

20.5c t

c

P D P δσ??=

+=+=??-?-‘

查教材表10-10,取钢板负偏差C 1=0.25mm ,则δd1’+C 1=3.34mm ,考虑到最小厚度

mim δ为3mm ,取名义厚度

δn ’=5mm

1.3.4 夹套筒体及封头壁厚计算 夹套筒体壁厚的设计厚度为

采用双面焊缝,进行局部无损探伤检查,按【1】161页表10-9,取焊缝系数φ=0.85(夹套封头用钢板拼焊),C 2=2mm ,则

[]2c 22220.251200

=

2 1.562 3.5621130.850.25

2d t

c

p D C mm

p δσ??+=

+=+=??--

查【1】161页表10-10,取钢板负偏差C 1=0.3mm ,则δd1+C 1=3.86,考虑到最小厚度mim

δ为3mm ,取名

义厚度δn =5mm

夹套封头壁厚的设计厚度为

[]22

d220.251200

=

2 1.562 3.56

21130.850.50.25

20.5c t

c

P D P δσ??=

+=+=??-?-‘

[]2

2c i

d t c

p D C p δσ?=+-[]22c i

d t c

p D C p δσ?=+-

查【1】161页表10-10,取钢板负偏差C 1=0.3mm ,则δd1+C 1=3.86,考虑到最小厚度mim δ为3mm ,取名义厚

度δn =5mm

为照顾到筒体和封头焊接和取材的方便取δ封夹=δ夹=6mm 。

1.3.5釜体的筒体壁厚δ筒

1.3.5.1按承受0.18Mpa 的内压设计

[]12t

PD C

P

δσ?≥

+-筒

式中,设计压力P=0.18Mpa ;筒体内径D1=1100mm ;许用应力[ó]=113Mpa(同夹套材料);焊缝同夹套,故φ=0.85,壁厚附加量C=C1+C2+C3=0.5+2+0=2.5mm ;上述各值代入上式:

[]1 3.59

2t

PD C P

δσ?≥

+=-筒

1.3.5.2按承受0.25Mpa 的外压设计

设罐体筒体的名义厚度δ1n=5mm

厚度附加量C=C1+C2+C3=0.5+2+0=2.5mm

罐体筒体有效厚度δ1e=δ1n-C=5-2.5=2.5mm 罐体筒体外径D10=D1+2δ1n=1100+2ⅹ5=1110mm 筒体计算长度L=H2+1/3h1=750+1/3(300-25)=842mm

系数L/D0=842/1110=0.759 系数D0/δe=1110/2.5=444

由【1】168页图10-15,查得 :系数 A=0.00019;由【1】170页图10-17,查得:系数 B=27 则许用外压[P]=B δe/D=(27ⅹ2.5)/1110=0.06<3Mpa 因此壁厚5mm 不能满足外压稳定要求,需增大壁厚重新计算。现重新假设δ1n=8mm

厚度附加量C=C1+C2+C3=0.8+2+0=2.8mm

罐体筒体有效厚度δ1e=δ1n-C=8-2.8=5.2mm 罐体筒体外径D10=D1+2δ1n=1100+2ⅹ8=1116mm 筒体计算长度L=H2+1/3h1=750+1/3(300-25)=842mm

系数L/D0=842/1116=0.754 系数D0/δe=1116/5.2=215

由参考资料图9-7,查得 :系数 A=0.0006,系数 B=81 则许用外压[P]=B δe/D=81ⅹ

5.2/1116=0.38>0.25Mp 故δe=5.2mm 满足外压稳定性要求,其圆整到标准钢板厚度规格取δe=8mm. 1.3.6釜体的封头壁厚计算 1.3.

6.1 按内压计算δ封:

[]1

t

20.5PD C

P

δσ?≥

+-封

式中,P=0.18Mpa,D1=1100mm, φ=0.85, [ó]=113Mpa, C=C1+C2+C3=0.5+2+0=2.5mm,代入上式:

[]1

t 3.59

20.5PD C P

δσ?≥+=-封

考虑到封头与筒体的焊接方便取封头与筒体等壁厚δ封=8mm. 1.3.6.2按外压校核δ封,采用图算法:

封头有效壁厚δ0=δ- C=8-2.8=5.2mm

椭圆封头的计算当量半径Rv=K1D0,由设计规定或查资料知K1=0.9,故Rv=0.9ⅹ1116=1005mm; 系数A=0.125ⅹδ0/Rv=0.125ⅹ5.2/1005=0.00065,由【1】170页图10-17,查得B=84,则许用外压[P]:

[P]=B(δ0/Rv)=84ⅹ(4.9/1116)=0.391Mpa 大于水压实验时的压力0.25Mpa,故用δ封=8mm,外压稳定安全.

1.3.7水压实验校核

1.3.7.1 确定实验水压Pr,根据设计规定知: 釜体水压取

[][]11

t

1131.25=1.250.18=0.23

113T P P σσ=?? 夹套水压取

[][]22

t

1131.25=1.250.25=0.32

113T P P σσ=??

1.3.7.2 内压实验时:

釜体筒壁内压应力

()11e 1e 0.231100 5.2()24.4a

22 5.2T T P D MP δσδ?++===?

夹套筒壁内压应力

()21e 2e 0.321200 3.4()56.6a 22 3.4T T P D MP δσδ?++=

==?

釜体封头壁内应力

()()111n e 1e p 220.230.91100280.5 5.2=

=22.2a 22 5.2T T K D PM δδσδ++?+?+??????????封=

夹套封头壁内应力

()()212n e 2e K D 20.50.320.91200260.5 3.451.4a

22 3.4T T P MP δδσδ++?+?+?????????=

==?封

因Q235-A 常温σ=235Mpa,看出σr,σr 夹,σr 夹,σr 封夹都小于0.9φσs=179.8Mpa,故水压实验安全.

1.3.7.3 外压水压实验 釜体筒体外压校核:

δ0=δ- C=8-2.8=5.2mm,L/D0=842/1110=0.759 D0/δe=1110/5.2=215

由【1】168页图10-15查得A=0.0006,由【1】170页10-17查得B=81, 故许用外压[P]=BS0/D0=81ⅹ5.2/1116=0.38Mpa>水压压力Pr=0.32Mpa,故在0.32Mpa 外压水压实验时应可以不在釜体内充压,以防釜体筒体失稳.

釜体底封头外压校核 因其允许外压[P]=0.501Mpa>外压Pr=0.4Mpa,故安全.

表1-1 釜体夹套厚度计算结果

釜 体 夹 套 筒 体 8 mm 6 mm 封 头

8 mm

6 mm

二、进行搅拌传动系统设计

2.1.进行传动系统方案设计和作带传动设计计算

此搅拌釜采用V带推进搅拌器,选用库存电机Y160M2-8,转速n1=720r/min,功率5.5KW,搅拌轴转速n2=200r/min,轴功率4.7KW,设计V带。

表2-1 V型带的型号选择与计算

步骤设计项目单

公式及数据

1 传动的额定功率P KW 5.5

2 小皮带轮转速n1 r/min 720

3 大皮带轮转速n2 r/min 200

4 工况系数KA 1.3

5 设计功率Pd KW Pd=KAⅹP=1.3ⅹ

5.5=7.15

取Pd=7.2

6 选V带型号根据Pd和n1选取

B型带

7 速比i i=n1/n2=720/200

=3.6

8 小皮带轮计算直径d1 mm 140

9 验算带速V m/s V=лd1n1/60ⅹ

1000=5.3

10 大皮带轮计算直径d2 mm d2=id1(1-

ε)=500

11 初定中心距a0 mm 0.7(d1+d2)

(d1+d2)

取 a0=500

13 V带的基准长度Ld0 mm Ld0≈2a0+л

/2(d1+d2)+

(d2-d1)/4a0=207

取Ld=2000

14 确定中心距d确定安

装V带时所需最小中

心amin和最大中心

距amax

mm

a=a0+(Ld-

Ld0)/2=500+

(500-140)

/2=465

15 小皮带轮包角α1 (°) α1=180°

-(d2-d1)/aⅹ

57.3°

=136°>120°16 单根V带额定功率P1 KW 1.63

17 i ≠1时,单根V 带额 定功率增量Δp1 KW 0.23 18 包角修正系数Ka 0.88 19 带长修正系数KL

0.98 20

V 带根数Z

Z=Pd/{( P1+Δp1)

ⅹKaKL} =7.2/{(1.63+0.23)x0.93ⅹ

1.13}=4.49取Z=5

2.2 搅拌轴的设计

由于搅拌轴的长度较大,考虑加工的方便,将搅拌轴设计成两部分 2.2.1 进行上轴的结构设计及强度校核

上轴材料选用常用材料45钢,结构如图4-17.由于上轴只要受转矩,故按转矩初估最小轴径,轴上开有一个键槽,轴径扩大并圆整后,取最小轴径为40mm 。

表2-2 上轴的计算

步骤 项目及代号 参数及结果 1 轴功率P ,Kw 4.7 2 轴转数n,r/min 200 3 轴材料

45

4 轴所传递的转矩T=9550P/n ,N`m 224.4

5 材料许用扭转切应力[t],N/mm2 35 7 轴端直径d>=365(P/n[t])1/3 32 8 开一个键槽,轴径扩大5%,mm 35.7 9 圆整轴端直径d ,mm 40 10

长度l ,mm

530

2.2.2 搅拌轴直径的设计

2.2.2.1 取用材料为45钢 , [τ]=40MPa ,剪切弹性模量G =8.1×104MPa ,许用单位扭转角[θ]=1°/m 。

P 4.7

M =9550

=9550

=224.4N m

n 200

??

利用截面法得:

=max T M M

由max []T M W ρττ=

≤ 得:69.55310[]

P W n ρτ≥?=40850.310553.96????

搅拌轴为实心轴,则:

[]

33

3P 4.7

W 0.2d =955010=955010n 20040

ρτ≥???

?=

d ≥30.39mm 取d =40mm 2.2.2.2搅拌轴刚度的校核

由3max max 180

10T M GJ ρθπ

=

??得: ()3344

224.410180

=10=0.620/m 8.1100.140θπ???????

因为最大单位扭转角θmax =0.620

/m <[θ] =1/m 。 所以圆轴的刚度足够。

2.2.3搅拌轴长度的设计

搅拌轴的长度L 近似由釜外长度1L 、釜内未浸入液体的长度2L 、浸入液体的长度3L 三部分构成。即:L =1L +3L +2L

其中1L =H+M+F-A (H-凸缘法兰的高度;M-安装底盖的高度;F-机架高度;A-机架H1)

1L =40+50+550-372=268(mm )

2L =T H +F H i H -(T H —釜体筒体的长度;F H —封头深度;i H -液体的装填高度)

液体装填高度i H 的确定: 釜体筒体的装填高度12

4

c F

i

V V H D

π

-=

式中c V —操作容积(3m );F V —釜体封头容积(3m );i D —筒体的内径(m )

()

2

0.91050.1980

H1=0.75m 1.14

π

-=

?

液体的总装填高度i H =112H h h ++=750+25+275

=1050(mm )

2L =900+2x (25+275)+2x40-1050 =530(mm ) (40-甲型平焊法兰高度)

浸入液体搅拌轴的长度3L 的确定:

搅拌桨的搅拌效果和搅拌效率与其在釜体的位置和液柱高度有关。搅拌桨浸入液体内的最佳深度为:

22

33

i i S D H =

=(见文献[4]215) 当i i D H =时为最佳装填高度;当i D <i H 时,需要设置两层搅拌桨。 由于i H =1050mm <i D =1100mm ,本设计选用一个搅拌桨。

搅拌桨浸入液体内的最佳深度为:S=2Hi/3=2x1050/3=700(mm ) 故浸入液体的长度:3L =700(mm )

搅拌轴搅拌轴的长度L 为:L =268+530+700=1498(mm ) 取L =1500(mm )

2.2.4 搅拌抽临界转速校核计算

由于反应釜的搅拌轴转速n =200/min r 不大于200min /r ,故不作临界转速校核计算。 2.3 联轴器的型式及尺寸的设计

由联轴器的型式选用凸缘联轴节。标记为:GYH5 GB/T5843-2003,结构如图2-1。

图2-1 联轴器

2.4 轴承的型式及尺寸的设计

根据搅拌轴的大小,选择带轮和联轴器的连接选用平键12x8x40;轴承选用7210C ,90x50x20;

2.5 拌桨尺寸的设计

框式搅拌桨的结构如图2-2所示。由【2】44页表表4-5,零件明细表见表2-3。

图2-2框式搅拌桨的结构

1-桨叶;2-横梁;3-筋板;4-连接螺栓;5-螺母;6-穿轴螺栓;7-螺母

表2-3 框式搅拌桨的尺寸(HG/T2123—91) j D

d

螺栓

螺钉

δ

a

1d

数量 3d

数量

4d

600 40

M12

2

M12

1

16

B

1h 2h

c e m

f

1f

重量

/P n

60 140 3 110 45 - 4.59 不大于0.025

2.6 反应釜的轴封装置设计 2.6.1 反应釜的轴封装置的选型

反应釜中应用的轴封结构主要有两大类,填料箱密封和机械密封。考虑到釜内的物料具有易燃性和一定的腐蚀性,因此选用填料密封。根据W p =0.25MPa 、t =120℃、n=200r/min 、d=40mm 。选用R40 HG 21537-1992其结构如图2-3、主要尺寸如表2-4所示。

2.6.2 轴封装置的结构及尺寸

图2-3 填料密封结构

表2-4 填料密封的主要尺寸(mm )

轴径d

1D

2D

3D

H

n φ-

螺柱 40 175

145

110

315

8-18

4xM16

三.机架的设计

由于反应釜传来的轴向力不大,减速机输出轴使用了带短节的凸缘联轴器,且反应釜使用不带内置轴承的机填料密封,故选用DJ 型单支点机架(HG21566—95)。参考【2150页表E-8选代号为DJ55机架。结构如图3-1所示。

图3-1 DJ型单支点机架

四.选择接管、管法兰、设备法兰及其他构件

4.1法兰及其他构件

4.1.1 管法兰

蒸汽入口A、温度计接口D、压缩空气入口、冷却水出口G采用ф32ⅹ3.5无缝钢管,法兰PL25(B)-10,HG20592;

加料口B采用ф76ⅹ6无缝钢管,法兰PL65(B)-10,HG20592;

视镜采用108无缝钢管

放料口采用ф45ⅹ3.5无缝钢管,法兰PL40(B)-10,HG20592-97;

4.1.2 甲型平焊法兰法兰-FM 1100-0.25 ;法兰-M 1100-0.25

4.1.3 凸缘法兰法兰 R300 16Mn

4.1.4防冲板50x50x10材料Q235-A;挡板800x80x12材料Q235-A

4.1.5法兰垫片选耐酸石棉板,ò=2mm。

4.2视镜的选型

p=0.25MPa)且考虑DN=1100,本设计选用两个DN=100的带颈视镜。

由于釜内介质压力较低(

W

其结构见图4-1。

由文献【5】4-159页表4-5-7确定视镜的规定标记、标准图号、视镜的尺寸及材料。

标记:视镜ⅡPN0.25,DN100

标准图号:HG21575-11994。

图4-1 视镜的结构型式

表4-1 视镜的尺寸

DN

视镜玻璃 S d n ?

D

1D

1b 2b h

H d

1H

双头螺柱

数量 直径×长度 100 180 150

28

28

50 133

170

8 4×133 表4-2 视镜的材料

件号 名称 数量 材料 件号 名称 数量 材料 1 视镜玻璃 1 硼硅玻璃(SJ-6) 4 压紧环 1 Q235-A 2 衬 垫 2 石棉橡胶板 5 双头螺柱 8 Q235-A 3 接 缘

1

1Cr18Ni9Ti

6

螺母

16

Q235-A

五.选择安装底盖结构

对于不锈钢设备,本设计选择DN300 HG21565-1995,其上部与机架的输出端接口和轴封装置采用可拆相联,下部伸入釜内。

六、选择支座形式并进行计算

6.1 确定耳式支座实际承受载荷Q Q=[m0g+Ge/kn+Ge ⅹδe/n φ] ⅹ10

m0为设备总质量(包括客体及其附件,内部介质及保温的质量)Q1为釜体和夹套筒体总重载荷,查附表4-1,有:

Dg=1100mm, δ=8mm 的1米高筒节的质量q1=219kg, Dg=1200mm, δ=6mm 的1米高筒节的质量q2=178kg, 故Q1=H1q1+H2q2=0.9x219+0.75x178=330.6Kg ,

Q2为釜体和夹套封头重载荷,查【1】312页附续表 Dg=1100mm, δ=8mm 的封头的质量89.2kg ,Dg=1200mm, δ=6mm 的封头的质量78.6kg,

Q2=89.2ⅹ2+78.6=257kg.

Q3为料液重载荷,按水压试验时充满水计,r=1000kg/m 3

,现以夹套尺寸估计。由【1】312页附续表,

有:Dg=1100mm 的封头容积V 封=0.1980m 常1米筒节的容积V1米=0.950 m 常

故Q3=Vr=(2V 封+0.75V1)=(0.198+0.75ⅹ0.950)ⅹ1000=910.5kg 。 Q4为其它附件重量757.814Kg 。

m=330.6+257+910.5+757.814=2255.9kg

6.2 确定支座的型号及数量

6.2.1初定支座的型号及数量并算出安装尺寸D

容器总重量约2255.9kg ,选B3型支座本体允许载荷Q=30KN 四个。

()

()()()2

22n e 221D=

D +2+2b 2l s =120026288220550=1537.97mm

i δδ-+-+?+?-+-

6.2.2确定水平力P

因为容器置于室内,不考虑风载,所以只计算水平地震力Pe ,根据抗震8度取а0=0.08,于是Pe =0.08ⅹ1.00ⅹ2255.9ⅹ9.8=1768.6N(h 取180mm)

则:()()330441768.6180m g 2255.99.8Q=101013.7320.8321537.97e e e Ph G S G KN

kn nD --+??????+?+?=+?=??????????

M=Q(l2-s1)=13.73x (0.205-0.05)=1.183KN"m 当δe=6-2.6=3.4mm,DN=1200mm,筒体内压P=0.25Mpa,

材料Q235-A采用B3型耳式支座时,[M]=4KN"m>2.13 KN"m,所以容器选用B3型耳式支座是没问题的。

七.焊缝结构的设计

7.1 釜体上主要焊缝结构的设计

(a)筒体的纵向焊缝(b)筒体与下封头的环向焊缝

(c)固体物料进口与封头的焊缝(d)进料管与封头的焊缝

(e)冷却器接管与封头的焊缝(f)温度计接管与封头的焊缝

(h)出料口接管与封头的焊缝

图7-1 釜体主要焊缝的结构及尺寸

7.2夹套上的焊缝结构的设计

夹套上的焊缝结构及尺寸如图7-2。

(a)夹套的纵向焊缝(b)夹套与封头的横向焊缝

(c)导热油进口接管与筒体的焊缝(e)导热油出口接管与筒体的焊缝

(f)釜体与夹套的焊缝

图7-2 夹套主要焊缝的结构及尺寸

八、手孔选择与补强校核

手孔选择带颈平焊法兰手孔,其公称直径DN=150mm,S=4.5mm.

开孔补强校核:

由文献表14-24知此手孔超出不另行补强的最大孔径范围,故必须进行补强计算:开孔直径d=150+2ⅹ4.5=159mm

开孔削弱面积F=dS0=DPK1Di/2[ó]φ=(159ⅹ0.18ⅹ0.9ⅹ1100)/2ⅹ113ⅹ0.85=147.5mm2有效补强区尺寸:h1=√d(S-c)= √[159(4.5-2.6)]=16.9mm,B=2d=2ⅹ159=318mm

在有效补强区内,可作为补强金属截面面积计算:

A=(B-d)φ[(δn-c)-s6]=(318-159) ⅹ0.85 [(8-2.6)-4.14]=170.3mm2

因为A1>F故另需加补强圈进行补强,补强的截面面积为A2=170.3-147.5=22.8mm2

确定补强圈的外径及厚度:

补强圈的外径:B=2d=2ⅹ159=318 mm

补强圈的厚度: δ=(F-A1)/{B-[d+2(S-C)]}=22.8/[159-2(4.5-2.6)]=0.15mm

考虑其腐蚀裕量为2mm,故加强圈的厚度为3mm可以满足。

小结

在为期一周的设计里(6月13号开始到6月19号结束),我对机械设计有了初步的认识,它并不是简单的画图。

课程设计不同于书本理论知识的学习,有些问题是实际过程中的,无法用理论知识得到答案,因此不免过程中有很多困难,但通过与同学的交流和探讨,查阅文献资料,查阅互联网以及在张老师的指导帮助下,问题都得到很好的解决。这让我深深意识到自己知识体系的浅薄,但同时也深刻体会到同学间的团结互助的精神。

通过此次课程设计,使我查阅文献的能力和对数据的选择判断能力得到了很好的锻炼,同时我也意识到自己应该把所学到的知识应用到设计中来。同时在设计中同学之间的相互帮助,相互交流,认识的进一步加深,对设计中遇到的问题进行讨论,使彼此的设计更加完善,对设计的认识更加深刻。

由于首次做设计,过程中难免疏忽与错误,感谢有关老师同学能及时给予指出。

参考文献

[1]陈国恒主编,《化工机械基础》。北京:化学工业出版社2006

[2]蔡继宁主编,《化工设备机械基础课程设计指导书》。化学工业出版社2011

[3]赵军等主编,《化工设备机械基础》。北京:化学工业出版社。

[4]周开勤主编,《机械零件设计手册》第五版。北京:高等教育出版社2011.

[5]哈工大龚桂义主编,《机械设计课程设计图册》。北京:高等教育出版社1989.

[6] 朱家诚主编,《机械设计基础》。合肥工业大学出版社2003.

[7]HG/T20569-94《机械搅拌设备》。

反应釜设计

宁夏大学 课程设计说明书 题目: 夹套反应釜设计 院系:机械工程学院 专业班级:过控10-2班 学号: 学生姓名:马学良 指导教师:贺华 2013-6-27

宁夏大学课程设计(论文)任务书 机械工程学院过控教研室

年月日

目录 一、设计条件及设计内容分析 (1) 二、搅拌容器尺寸的确定及结构选型 (2) 搅拌釜直径设计计算 (2) 筒体厚度的计算 (2) 筒体封头的设计 (3) 筒体长度H的设计 (4) 外压筒体的壁厚确定 (4) 外压封头的壁厚的设计 (5) 三、夹套尺寸的设计计算 (5) 夹套公称直径DN的确定 (5) 夹套筒体壁厚的设计 (6) 夹套筒体长度H的计算 (6) 夹套封头的设计 (6) 四、反应釜附件的选型及尺寸设计 (7) 封头法兰的设计 (7) 封头法兰尺寸及结构 (7) 封头法兰密封面的选型 (8) 工艺接管 (9) 工艺接管尺寸的确定 (9) 接管垫片尺寸及材质 (11) 手孔的设计 (12) 视镜的选型 (13) 五、搅拌装置的选型与尺寸设计计算 (14) 搅拌轴直径的初步计算 (14) 搅拌轴直径的设计 (14) 搅拌轴刚度的校核 (14) 搅拌轴轴承的选择 (14) 联轴器的选择 (15) 搅拌器的设计 (16) 挡板的设计与计算 (17) 六、传动装置的选型和尺寸计算 (17)

凸缘法兰的选型 (17) 安装底盖的选型 (18) 机架的选型 (19) 安装底盖与密封箱体、机架的配置 (19) 电动机的选型 (20) 减速器的选型 (21) 搅拌轴长度的设计 (21) 搅拌轴的结构 (21) 支座的计算 (21) 密封形式的选择 (23) 七、焊接的形式与尺寸 (24) 八、开孔补强计算 (26) 封头开手孔后削弱的金属面积的计算 (26) 接管起补强作用金属面积的计算 (27) 焊缝起补强作用金属面积的计算 (27) 九、反应釜釜体及夹套的压力试验 (27) 釜体的液压试验 (27) 水压试验压力的确定 (27) 水压试验的强度校核 (28) 压力表量程 (28) 水压试验的操作过程 (28) 釜体的气压试验 (28) 气体实验压力的确定 (28) 气压试验的强度校核 (28) 气压试验的操作过程 (29) 夹套的液压试验 (29) 水压试验压力的确定 (29) 水压试验的强度校核 (29) 压力表量程 (29) 液压试验的操作过程 (29) 十、反应釜的装配图(见大图) (29) 课程设计总结 (30) 参考文献 (31)

夹套反应釜课程设计

有搅拌装置的夹套反应釜 前言 《化工设备机械基础》化学工程、制药工程类专业以及其他相近的非机械类专业,对化下设备的机械知识和设计能力的要求而编写的。通过此课程的学习,是通过学习使同学掌握基本的设计理论并具有设计钢制的、典型的中、低、常压化工容器的设计和必要的机械基础知识。 化工设备机械基础课程设计是《化工设备机械基础》课程教学中综合性和实践性较强的教学环节,是理论联系实际的桥梁,是学生体察工程实际问题复杂性,学习初次尝试化工机械设计。化工设计不同于平时的作业,在设计中需要同学独立自主的解决所遇到的问题、自己做出决策,根据老师给定的设计要求自己选择方案、查取数据、进行过程和设备的设计计算,并要对自己的选择做出论证和核算,经过反复的比较分析,择优选定最理想的方案和合理的设计。 化工设备课程设计是培养学生设计能力的重要实践教学环节。在教师指导下,通过裸程设计,培养学生独立地运用所学到的基本理论并结合生产实际的知识,综合地分析和解决生产实际问题的能力。因此,当学生首次完成该课程设计后,应达到一下几个目的: ⑴熟练掌握查阅文献资料、收集相关数据、正确选择公式,当缺乏必要的数据时,尚需要自己通过实验测定或到生产现场进行实际查定。 ⑵在兼顾技术先进性、可行性、经济合理的前提下,综合分析设计任务要求,确定化工工艺流程,进行设备选型,并提出保证过程正常、安全可

行所需的检测和计量参数,同时还要考虑改善劳动条件和环境保护的有效措施。 ⑶准确而迅速的进行过程计算及主要设备的工艺设计计算及选型。 ⑷用精炼的语言、简洁的文字、清晰地图表来表达自己的设计思想和计算结果。 化工设备机械基础课程设计是一项很繁琐的设计工作,而且在设计中除了要考虑经济因素外,环保也是一项不得不考虑的问题。除此之外,还要考虑诸多的政策、法规,因此在课程设计中要有耐心,注意多专业、多学科的综合和相互协调。

夹套反应釜设计

nd impr ove idl e land of utilizati on, real a chi eved envir onme nt improved a nd productivity development mut ual prom oting total wi n. Five, firmly implement, promoti ng work ahead, to create hig hlights. T hird depl oyment, impl ementation of seve n, the n it is imperative to stre ngthe n responsibility a nd impr ove the mechanisms and impleme ntation. All localities a nd departments m ust be convi nce d that goal s, goi ng all out, mustering spirit, w ork together t o ensure that thi s year's obje ctives carry out tasks, at the forefront. First, we m ust strengthen the leader shi p to implement. Departments at all level s shoul d always w ork and rural "five water treatment", "three to split" in a n important position, and carry the mai n responsibi lity, main lea der personally, leaders arre sted and layers of responsi bility rank transmissi on pre ssure e stabli she d hierarchical a ccountabilit y, and work together to pr omote the w ork of the mechani sm, a concerted effort pay attention to impleme ntation. County nong ban, flood, three to one dow n to further play a leadi ng catch total, integrate d and coordi nated role of all kinds is "long", "Sheriff" "Inspector" to 0.95m 3 夹套反应釜设计计算说明书 一、罐体和夹套设计计算 1.1 罐体几何尺寸计算 1.1.1 选择筒体和封头的形式 选择圆柱筒体及椭圆形封头。 1.1.2 确定筒体内径 已知设备容积要求0.95m 3 ,按式(4-1)初选筒体内径: 式中,V=0.95m 3 ,根据【2】38页表4-2,常反应物料为液-液类型, i =H 1/D 1=1~1.3,取 i =1.3,代入上式,计算得 3 31440.95==1.032i 3.14 1.1V D π?? ? 将D 1的估算值圆整到公称直径系列,取D 1=1100mm , 1.1.3 确定封头尺寸 标准椭圆形封头尺寸查附表4-2,DN=1100mm ,选取直边高度h 2=25mm 。 1.1.4 确定筒体高度 当D 1=1100mm, h 2=25mm 时,由【2】附表D-2查得椭圆形封头的容积V 封=0.1980 m 3 ,由附表D-1查得 筒体1m 高的容积V 1m =0.950 m 3 ,按式(4-2): H 1=(V-V 封)/V 1m =(0.950-0.198)/0.95=0.7916m 考虑到安装的方便,取H 1=0.9m ,则实际容积为 V= V 1m ×H 1+ V 封=0.950×0.9+0.198=1.053 m 3 1.2 夹套几何尺寸计算 1. 2.1 选择夹套结构 选择【2】39页图4-4 (b)所示结构。 1.2.2 确定夹套直径 查【2】表4-3, D 2= D 1+100=1100+100=1200mm 。套封头也采用椭圆形并与夹套筒体取相同直径。 1.2.3 确定夹套高度 装料系数η=操作容积/全容积=0.9/0.95=0.85 按式4-4计算夹套高度: H 2≥(ηV- V 封)/ V 1m =(0.85×1.053-0.198)/0.95=0.734 m 取H 2=750mm 。选取直边高度h 2=25mm 。 1.2.4 校核传热面积 查【2】附表D-2,由D 1=1100mm ,得罐体封头表面积F 1封=1.3980 m 2 查【2】附表D-1,一米高筒体内表面积F 1m =3.46 m 2 31 4i V D π ?罐体结构示意图

搅拌反应釜课程设计(优选.)

课程设计说明书 专业: 班级: 姓名: 学号: 指导教师: 设计时间:

要求与说明 一、学生采用本报告完成课程设计总结。 二、要求文字(一律用计算机)填写,工整、清晰。所附设备安 装用计算机绘图画出。 三、本报告填写完成后,交指导老师批阅,并由学院统一存档。

目录 一、设计任务书 (5) 二、设计方案简介 (6) 1.1罐体几何尺寸计算 (7) 1.1.1确定筒体内径 (7) 1.1.2确定封头尺寸 (8) 1.1.3确定筒体高度 (9) 1.2夹套几何计算 (10) 1.2.1夹套内径 (10) 1.2.2夹套高度计算 (10) 1.2.3传热面积的计算 (10) 1.3夹套反应釜的强度计算 (11) 1.3.1强度计算的原则及依据 (11) 1.3.2按内压对筒体和封头进行强度计算 (12) 1.3.2.1压力计算 (12) 1.3.2.2罐体及夹套厚度计算 (12) 1.3.3按外压对筒体和封头进行稳定性校核 (14) 1.3.4水压试验校核 (16) (二)、搅拌传动系统 (16) 2.1进行传动系统方案设计 (17) 2.2作带传动设计计算 (17) 2.2.1计算设计功率Pc (17) 2.2.2选择V形带型号 (17) 2.2.3选取小带轮及大带轮 (17) 2.2.4验算带速V (18) 2.2.5确定中心距 (18) (18) 2.2.6 验算小带轮包角 1 2.2.7确定带的根数Z (18) 2.2.8确定初拉力Q (19) 2.3搅拌器设计 (19) 2.4搅拌轴的设计及强度校核 (19) 2.5选择轴承 (20) 2.6选择联轴器 (20) 2.7选择轴封型式 (21) (三)、设计机架结构 (21) (四)、凸缘法兰及安装底盖 (22) 4.1凸缘法兰 (22) 4.2安装底盖 (23) (五)、支座形式 (24) 5.1 支座的选型 (24) 5.2支座载荷的校核计算 (26)

乙酸乙酯间歇反应釜课程设计

乙酸乙酯间歇反应釜 工 艺 设 计 说 明 书

目录 前言 (3) 摘要 (4) 一.设计条件和任务 (4) 二.工艺设计 (6) 1. 原料的处理量 (6) 2. 原料液起始浓度 (7) 3. 反应时间 (7) 4. 反应体积 (8) 三. 热量核算 (8) 1. 物料衡算 (8) 2. 能量衡算 (9) 3. 换热设计 (12) 四. 反应釜釜体设计 (13) 1. 反应器的直径和高度 (13) 2. 筒体的壁厚 (14) 3. 釜体封头厚度 (15) 五. 反应釜夹套的设计 (15) 1. 夹套DN、PN的确定 (15) 2. 夹套筒体的壁厚 (15) 3. 夹套筒体的高度 (16) 4. 夹套的封头厚度 (16) 六. 搅拌器的选型 (17) 1. 搅拌桨的尺寸及安装位置 (17) 2. 搅拌功率的计算 (18) 3. 搅拌轴的的初步计算 (18) 结论 (19) 主要符号一览表 (20) 总结 (21) 参考书目 (22)

前言 反应工程课程设计是《化工设备机械基础》和《反应工程》课程教学中综合性和实践性较强的教学环节,是理论联系实际的桥梁,是学生体察工程实际问题复杂性,学习初次尝试反应釜机械设计。化工设计不同于平时的作业,在设计中需要同学独立自主的解决所遇到的问题、自己做出决策,根据老师给定的设计要求自己选择方案、查取数据、进行过程和设备的设计计算,并要对自己的选择做出论证和核算,经过反复的比较分析,择优选定最理想的方案和合理的设计。 反应工程是培养学生设计能力的重要实践教学环节。在教师指导下,通过裸程设计,培养学生独立地运用所学到的基本理论并结合生产实际的知识,综合地分析和解决生产实际问题的能力。因此,当学生首次完成该课程设计后,应达到一下几个目的: 1、熟练掌握查阅文献资料、收集相关数据、正确选择公式,当缺乏必要的 数据时,尚需要自己通过实验测定或到生产现场进行实际查定。 2、在兼顾技术先进性、可行性、经济合理的前提下,综合分析设计任务要 求,确定化工工艺流程,进行设备选型,并提出保证过程正常、安全可行所需的检测和计量参数,同时还要考虑改善劳动条件和环境保护的有效措施。 3、准确而迅速的进行过程计算及主要设备的工艺设计计算及选型。 4、用精炼的语言、简洁的文字、清晰地图表来表达自己的设计思想和计算 结果。 化工设备机械基础课程设计是一项很繁琐的设计工作,而且在设计中除了要考虑经济因素外,环保也是一项不得不考虑的问题。除此之外,还要考虑诸多的政策、法规,因此在课程设计中要有耐心,注意多专业、多学科的综合和相互协调。

搅拌反应釜计算设计说明书

课程设计 设计题目搅拌式反应釜设 学生姓名 学号 专业班级过程装备与控制工程 指导教师

“过程装备课程设计”任务书 设计者姓名:班级:学号: 指导老师:日期: 1.设计内容 设计一台夹套传热式带搅拌的反应釜 2.设计参数和技术特性指标 简图设计参数及要求 容器内夹套 内 工作压力, MPa 设计压力, MPa 工作温 度,℃ 设计温 <100<150 度,℃ 蒸汽 介质有机溶 剂 全容积,m3 操作容积, m3 传热面积, >3 m2 腐蚀情况微弱 推荐材料Q345R 搅拌器型 推进式 式 250 r/min 搅拌轴转 速 轴功率 3 kW 接管表

3.设计要求 (1)进行罐体和夹套设计计算;(2)选择接管、管法兰、设备法兰;(3)进行搅拌传动系统设计;(4)设计机架结构;(5)设计凸缘及选择轴封形式;(6)绘制配料反应釜的总装配图;(7)绘制皮带轮和传动轴的零件图 1罐体和夹套的设计 1.1 确定筒体内径 当反应釜容积V 小时,为使筒体内径不致太小,以便在顶盖上布置接管和传动装置,通常i 取小值,此次设计取i =1.1。 一般由工艺条件给定容积V 、筒体内径1D 按式4-1估算:得D=1084mm. 式中 V --工艺条件给定的容积,3m ;

i ――长径比,1 1 H i D = (按照物料类型选取,见表4-2) 由附表4-1可以圆整1D =1100,一米高的容积1V 米=0.953m 1.2确定封头尺寸 椭圆封头选取标准件,其形式选取《化工设备机械基础课程设计指导书》图4-3,它的内径与筒体内径相同,釜体椭圆封头的容积由附表4-2 V 封=0.1983m ,(直边高度取50mm )。 1.3确定筒体高度 反应釜容积V 按照下封头和筒体两部分之容积之和计算。筒体高度由计算 H1==(2.2-0.198)/0.95=0.949m ,圆整高度1H =1000mm 。按圆整后的1H 修正实际容积由式 V=V1m ×H1+V 封=0.95×1.000+0.198=1.1483m 式中 V 封m --3封头容积,; 1V 米――一米高的容积3m /m 1H ――圆整后的高度,m 。 1.4夹套几何尺寸计算 夹套的结构尺寸要根据安装和工艺两方面的要求。夹套的内径2D 可根据内径1D 由 选工艺装料系数η=0.6~0.85选取,设计选取η=0.80。 1.4.1夹套高度的计算H2=(ηV-V 封)/V1m=0.758m 1.4.2.夹套筒体高度圆整为2H =800mm 。 1.4.3罐体的封头的表面积由《化工设备机械基础》附表4-2查的F 封=1.398。 1.4.4一米高的筒体内表面由《化工设备机械基础》附表4-1查的。F1m=3.46 1.4.5实际的传热面积F=4.166>3,由《化工设备机械基础》式4-5校核4.166〉3所以传热面积合适。

夹套反应釜设计

夹套反应釜设计计算说明书 一、罐体和夹套设计计算 罐体几何尺寸计算 选择筒体和封头的形式 选择圆柱筒体及椭圆形封头。 确定筒体内径 已知设备容积要求,按式(4-1)初选筒体内径: 式中,V=,根据【2】38页表4-2,常反应物料为液-液类型, i =H 1/D 1=1~,取 i =,代入上式,计算得 1D ? 将D 1的估算值圆整到公称直径系列,取D 1=1100mm , 确定封头尺寸 标准椭圆形封头尺寸查附表4-2,DN=1100mm ,选取直边高度h 2=25mm 。 确定筒体高度 当D 1=1100mm, h 2=25mm 时,由【2】附表D-2查得椭圆形封头的容积V 封= m 3,由附表D-1查得筒体1m 高的容积V 1m = m 3,按式(4-2): H 1=(V-V 封)/V 1m =()/= 考虑到安装的方便,取H 1=,则实际容积为 V= V 1m ×H 1+ V 封=×+= m 3 夹套几何尺寸计算 3 14i V D π ?罐体结构示意图

选择夹套结构 选择【2】39页图4-4 (b)所示结构。 确定夹套直径 查【2】表4-3, D 2= D 1+100=1100+100=1200mm 。套封头也采用椭圆形并与夹套筒体取相同直径。 确定夹套高度 装料系数η=操作容积/全容积== 按式4-4计算夹套高度: H 2≥(ηV- V 封)/ V 1m =× m 取H 2=750mm 。选取直边高度h 2=25mm 。 校核传热面积 查【2】附表D-2,由D 1=1100mm ,得罐体封头表面积F 1封= m 2 查【2】附表D-1,一米高筒体内表面积F 1m = m 2 校核传热面积: 实际总传热面积F=F 筒+ F 1封=F 1m ×H 2 +F 1封=×+= m 2> m 2,可用。 罐体及夹套的强度计算 确定计算压力 按工艺条件,罐体内设计压力P 1=;夹套内设计压力P 2= 液体静压力P 1H =ρgH 2×10-6=1000×××10-6=,取P 1H = 计算压力P 1c =P 1+P 1H =+= 夹套无液体静压,忽略P 2H ,故P 2c =P 2。 选择设备材料 分析工艺要求和腐蚀因素,决定选用Q235-A 热轧钢板,其中100℃-150℃下的许用应力为:[ó]t =113Mpa 。 罐体筒体及封头壁厚计算 罐体筒体壁厚的设计厚度为 []2 2c i d t c p D C p δσ?= +-

夹套反应釜设计模板

夹套反应釜设计 化学化工学院王信锐化工112班指导老师:陈胜洲

目录 一、夹套反应釜设计任务书 (4) 二、夹套反应釜设计 (5) 1、夹套反应釜的总体结构设计 (5) 2、罐体和夹套的设计 (5) 2.1、罐体和夹套的结构设计 (5) 2.2、罐体几何尺寸的计算 (5) 2.2.1、确定筒体内径 (5) 2.2.2 定封头尺寸 (6) 2.2.3 定筒体高度H1 (6) 2.3夹套的几何尺寸计算 (6) 2.4夹套反应釜的强度计算 (7) 2.4.1强度计算的原则及依据 (7) 2.4.2按内压对筒体和封头进行强度计算 (7) 2.4.3按外压对筒体和封头进行强度校核 (8) 2.4.4水压实验校核计算 (9) 2.5夹套反应釜设计计算数据一览表 (9) 2.5.1几何尺寸 (9) 2.5.2强度计算(按内压计算厚度) (10) 2.5.3稳定性校核(按外压校核厚度) (10) 2.5.4水压实验校核 (11) 3、反应釜的搅拌装置 (12) 3.1、搅拌器的安装方式及其与轴连接的结构设计 (12) 3.2、搅拌轴设计 (12) 3.3、轴的强度一览 (13) 4、反应釜的传动装置 (13) 4.1、常用电机及其连接尺寸 (13) 4.2、釜用减速器类型、标准及选用 (14) 4.3、V带减速机 (14) 4.4、凸缘法兰 (16) 4.5、安装底盘 (16) 4.6、机架 (17) 4.6.1、无支点机架 (17) 4.6.2、单支点机架 (17) 4.6.3、双支点机架 (17) 5、反应釜的轴封装置 (18) 5.1、填料密封 (18) 5.2、机械密封 (18) 6、反应釜其他附件 (19) 6.1支座 (19) 6.2、手孔和入孔 (20) 6.3、设备接口 (21) 6.3.1、接管与管法兰 (21)

夹套反应釜设计

0.95m 3 夹套反应釜设计计算说明书 一、罐体和夹套设计计算 1.1 罐体几何尺寸计算 1.1.1 选择筒体和封头的形式 选择圆柱筒体及椭圆形封头。 1.1.2 确定筒体内径 已知设备容积要求0.95m 3 ,按式(4-1)初选筒体内径: 式中,V=0.95m 3 ,根据【2】38页表4-2,常反应物料为液-液类型, i =H 1/D 1=1~1.3,取 i =1.3,代入上式,计算得 3 31440.95==1.032i 3.14 1.1V D π?? ? 将D 1的估算值圆整到公称直径系列,取D 1=1100mm , 1.1.3 确定封头尺寸 标准椭圆形封头尺寸查附表4-2,DN=1100mm ,选取直边高度h 2=25mm 。 1.1.4 确定筒体高度 当D 1=1100mm, h 2=25mm 时,由【2】附表D-2查得椭圆形封头的容积V 封=0.1980 m 3 ,由附表D-1查得 筒体1m 高的容积V 1m =0.950 m 3 ,按式(4-2): H 1=(V-V 封)/V 1m =(0.950-0.198)/0.95=0.7916m 考虑到安装的方便,取H 1=0.9m ,则实际容积为 V= V 1m ×H 1+ V 封=0.950×0.9+0.198=1.053 m 3 1.2 夹套几何尺寸计算 1. 2.1 选择夹套结构 选择【2】39页图4-4 (b)所示结构。 1.2.2 确定夹套直径 查【2】表4-3, D 2= D 1+100=1100+100=1200mm 。套封头也采用椭圆形并与夹套筒体取相同直径。 1.2.3 确定夹套高度 装料系数η=操作容积/全容积=0.9/0.95=0.85 按式4-4计算夹套高度: H 2≥(ηV- V 封)/ V 1m =(0.85×1.053-0.198)/0.95=0.734 m 取H 2=750mm 。选取直边高度h 2=25mm 。 1.2.4 校核传热面积 查【2】附表D-2,由D 1=1100mm ,得罐体封头表面积F 1封=1.3980 m 2 查【2】附表D-1,一米高筒体内表面积F 1m =3.46 m 2 31 4i V D π ?罐体结构示意图

夹套反应釜设计

《 夹套反应釜设计计算说明书 一、罐体和夹套设计计算 罐体几何尺寸计算 选择筒体和封头的形式 选择圆柱筒体及椭圆形封头。 确定筒体内径 * 已知设备容积要求,按式(4-1)初选筒体内径: 式中,V=,根据【2】38页表4-2,常反应物料为液-液类型, i =H 1/D 1=1~,取 i =,代入上式,计算得 1D ? ( 将D 1的估算值圆整到公称直径系列,取D 1=1100mm , 确定封头尺寸 标准椭圆形封头尺寸查附表4-2,DN=1100mm ,选取直边高度h 2=25mm 。 确定筒体高度 当D 1=1100mm, h 2=25mm 时,由【2】附表D-2查得椭圆形封头的容积V 封= m 3 ,由附表D-1查得筒体1m 高的容积V 1m = m 3 ,按式(4-2): H 1=(V-V 封)/V 1m =()/= 考虑到安装的方便,取H 1=,则实际容积为 V= V 1m ×H 1+ V 封=×+= m 3 【 夹套几何尺寸计算 选择夹套结构 选择【2】39页图4-4 (b)所示结构。 确定夹套直径 查【2】表4-3, D 2= D 1+100=1100+100=1200mm 。套封头也采用椭圆形并与夹套筒体取相同直径。 确定夹套高度 装料系数η=操作容积/全容积== · 按式4-4计算夹套高度: 31 4i V D π ?罐体结构示意图

H 2≥(ηV- V 封)/ V 1m =× m 取H 2=750mm 。选取直边高度h 2=25mm 。 校核传热面积 查【2】附表D-2,由D 1=1100mm ,得罐体封头表面积F 1封= m 2 查【2】附表D-1,一米高筒体内表面积F 1m = m 2 校核传热面积: 实际总传热面积F=F 筒+ F 1封=F 1m ×H 2 +F 1封=×+= m 2> m 2 ,可用。 : 罐体及夹套的强度计算 确定计算压力 按工艺条件,罐体内设计压力P 1=;夹套内设计压力P 2= 液体静压力P 1H =ρgH 2×10-6=1000×××10-6 =,取P 1H = 计算压力P 1c =P 1+P 1H =+= 夹套无液体静压,忽略P 2H ,故P 2c =P 2。 选择设备材料 " 分析工艺要求和腐蚀因素,决定选用Q235-A 热轧钢板,其中100℃-150℃下的许用应力为:[ó]t =113Mpa 。 罐体筒体及封头壁厚计算 罐体筒体壁厚的设计厚度为 采用双面焊缝,进行局部无损探伤检查,按教材表10-9,取焊缝系数φ=,C 2=2mm ,则 []1c 1d1210.191100 = 2 1.092 3.09 21130.850.19 2t c p D C p δσ??+= +=+=??-- % 查教材表10-10,取钢板负偏差C 1=,则δd1+C 1=,考虑到最小厚度 mim δ为3mm ,取名义厚度δn =5mm 罐体封头壁厚的设计厚度为 []11 d110.191100 = 2 1.092 3.09 21130.850.50.19 20.5c t c P D P δσ??= +=+=??-?-‘ 查教材表10-10,取钢板负偏差C 1=,则δd1’+C 1=,考虑到最小厚度 mim δ为3mm ,取名义厚度δn ’=5mm 夹套筒体及封头壁厚计算 夹套筒体壁厚的设计厚度为 - 采用双面焊缝,进行局部无损探伤检查,按【1】161页表10-9,取焊缝系数φ=(夹套封头用钢板拼焊),C 2=2mm ,则 []2 2c i d t c p D C p δσ?=+-[]2 2c i d t c p D C p δσ?= +-

反应釜课程设计说明书

课程设计 资料袋 机械工程学院(系、部) 2012 ~ 2013 学年第二学期 课程名称指导教师职称 学生专业班级班级学号题目酸洗反应釜设计 成绩起止日期 2013 年 6 月 24 日~ 2013 年 6 月 30 日 目录清单 . . .

过程设备设计 设计说明书 酸洗反应釜的设计 起止日期: 2013 年 6 月 24 日至 2013 年 6 月 30 日 学生 班级 学号 成绩 指导教师(签字) 机械工程学院(部) 2013年6月26日

课程设计任务书 2012—2013学年第二学期 机械工程学院(系、部)专业班级 课程名称:过程设备设计 设计题目:酸洗反应釜设计 完成期限:自 2013 年 6 月 24 日至 2013 年 6 月 30 日共 1 周 指导教师(签字):年月日系(教研室)主任(签字):年月日 目录

第一章绪论 (4) 1.1 设计任务 (2) 1.2 设计目的 (2) 第二章反应釜设计 (2) 第一节罐体几何尺寸计算 (2) 2.1.1 确定筒体径 (2) 2.1.2 确定封头尺寸 (2) 2.1.3 确定筒体高度 (2) 2.1.4 夹套的几何尺寸计算 (3) 2.1.5 夹套反应釜的强度计算 (4) 2.1.5.1 强度计算的原则及依据 (4) 2.1.5.2 筒及夹套的受力分析 (4) 2.1.5.3 计算反应釜厚度 (5) 第二节反应釜釜体及夹套的压力试验 (6) 2.2.1 釜体的水压试验 (6) 2.2.1.1 水压试验压力的确定 (6) 2.2.1.2 水压试验的强度校核 (6) 2.2.1.3 压力表的量程、水温及水中Cl-的浓度 (6) 2.2.2 夹套的水压试验 (6) 2.2.2.1 水压试验压力的确定 (6) 2.2.2.2 水压试验的强度校核 (6) 2.2.2.3 压力表的量程、水温及水中Cl-的浓度 (6) 第三节反应釜的搅拌装置 (1) 2.3.1 桨式搅拌器的选取和安装 (1) 2.3.2 搅拌轴设计 (1) 2.3.2.1 搅拌轴的支承条件 (1) 2.3.2.2 功率 (1) 2.3.2.3 搅拌轴强度校核 (2) 2.3.2.4 搅拌抽临界转速校核计算 (2) 2.3.3 联轴器的型式及尺寸的设计 (2) 第四节反应釜的传动装置与轴封装置 (1) 2.4.1 常用电机及其连接尺寸 (1) 2.4.2 减速器的选型 (2) 2.4.2.1 减速器的选型 (2) 2.4.2.2 减速机的外形安装尺寸 (2) 2.4.3 机架的设计 (3) 2.4.4 反应釜的轴封装置设计 (3) 第五节反应釜其他附件 (1) 2.5.1 支座 (1) 2.5.2 手孔和人孔 (2) 2.5.3 设备接口 (3) 2.5.3.1 接管与管法兰 (3) 2.5.3.2 补强圈 (3) 2.5.3.3 液体出料管和过夹套的物料进出口 (4) 2.5.3.4 固体物料进口的设计 (4) 第六节焊缝结构的设计 (7) 2.6.1 釜体上的主要焊缝结构 (7) 2.6.2 夹套上的焊缝结构的设计 (8) 第三章后言............................................................. 错误!未定义书签。 3.1 结束语 ......................................................... 错误!未定义书签。 3.2 参考文献....................................................... 错误!未定义书签。

夹套反应釜-课程设计

课程设计任务书 ..................................................... 错误!未定义书签。 1.1. 1. 设计方案的分析和拟定 (4) 2. 罐体和夹套的设计 (5) 2.1. 罐体和夹套的结构设计 (5) 2.2. 罐体几何尺寸计算 (5) 2.2.1. 确定筒体内径 (5) 2.2.2. 确定封头尺寸 (6) 2.2.3. 确定筒体高度H1 (6) 2.3. 夹套几何尺寸计算 (6) 2.3.1. 确定夹套内径 (6) 2.3.2. 确定夹套高度 (7) 2.3.3. 校核传热面积 (7) 2.4. 夹套反应釜的强度计算 (7) 2.4.1. 强度计算的原则及依据 (7) 2.4.2. 按内压对筒体和封头进行强度计算 (8) 2.4.3. 按外压对筒体和封头进行稳定性校核 (10) 2.4.4. 水压试验校核 (11) 3. 反应釜的搅拌器 (12) 3.1. 搅拌器的选用 (12) 3.2. 挡板 (12) 4. 反应釜的传动装置 (12) 4.1. 电动机、减速机选型 (13)

4.2. 凸缘法兰 (13) 4.3. 安装底盖 (14) 4.4. 机架 (14) 4.5. 联轴器 (14) 4.6. 搅拌轴设计 (14) 5. 反应釜的轴封装置 (16) 6. 反应釜的其他附件 (17) 6.1. 支座 (17) 6.1.1. 确定耳式支座实际承受载荷Q (17) 6.1.2. 确定支座的型号及数量 (18) 6.2. 手孔 (18) 6.3. 设备接口 (18)

设计目的:培养学生把所学“化工机械基础”及其相关课程的理论知识,在设备课程设计中综合地加以运用,把化工工艺条件与化工设备设计有机结合起来,使所学有关机械课程的基本理论和基本知识得以巩固和强化。培养学生对化工设备设计的基本技能以及独立分析问题、解决问题的能力。 设计要求:(1)树立正确的设计思想。(2)要有积极主动的学习态度和进取精神。(3)学会正确使用标准和规范,使设计有法可依、有章可循。(4)学会正确的设计方法,统筹兼顾,抓主要矛盾。(5)在设计中应注意处理好尺寸的圆整,处理好计算与结构设计的关系。 设计内容:设计一台带有搅拌装置的夹套反应釜,包括设备总装配图一张,零部件图一至二张,设计计算说明书一份。 设计任务书 设计参数及要求 容器内夹套内工作压力,Mpa 设计压力,Mpa 0.2 0.3 工作温度,℃ 设计温度,℃<120 <150 介质有机溶剂冷却水或蒸汽全容积V ,m3 2.5 操作容积V1,m3 2.0 传热面积,m37 腐蚀情况微弱 推荐材料不锈钢 搅拌器型式桨式 搅拌速度,r/min <120

化工课程设计--夹套反应釜课程设计 (2)

化工设备机械基础课程设计题目:1m3夹套反应釜设计 学院: 化学与材料工程学院专业: 化学工程 班级: 10化工 姓名: 学号: 10111003101 指导老师: 完成日期: 2012年6月1日

夹套反应釜设计任务书 设计者:班级:10化工学号:10111003101 指导老师:日期: 一、设计内容 设计一台夹套传热式带搅拌的配料罐。 二、设计参数和技术特性指标 见下表 三、设计要求 1.进行罐体和夹套设计计算; 2.选择支座形式并进行计算; 3.手孔校核计算; 4.选择接管、管法兰、设备法兰; 5.进行搅拌传动系统设计; (1)进行传动系统方案设计(指定用V带传动); (2)作带传动设计计算:定出带型,带轮相关尺寸(指定选用库存电机Y1322-6,转速960r/min,功率5.5kW); (3)选择轴承; (4)选择联轴器; (5)进行罐内搅拌轴的结构设计、搅拌器与搅拌轴的连接结构设计; 6.设计机架结构; 7.设计凸缘及安装底盖结构; 8.选择轴封形式; 9.绘制装配图; 10. 绘传动系统部件图。

表1 夹套反应釜设计任务书 简图设计参数及要求 容器内夹套内 工作压力, Mpa 设计压力, MPa 0.2 0.3 工作温度, ℃ 设计温度, ℃ <100 <150 介质染料及有机溶剂冷却水或蒸汽 全容积,m3 1.0 操作容积, m3 0.8全容积 传热面积, m2 >3.5 腐蚀情况微弱 推荐材料Q235-A 搅拌器型式推进式 搅拌轴转 速,r/min 200 轴功率,kW 4 接管表 符号公称尺寸 DN 连接面形式用途 a 25 蒸汽入口 b 25 加料口 c 80 视镜 d 65 温度计管 口 e 25 压缩空气入口 f 40 放料口 g 25 冷凝水出 口 h 100 手孔

夹套反应釜的设计

化工设备机械基础课程设计 ——夹套反应釜的设计六盘水师范学院化学与化学工程系

课程设计任务书 设计题目:夹套反应釜的设计 设计内容:1.夹套反应釜主要工艺尺寸的计算 3.搅拌器、传动装置、轴封装置选型 2.标准化零、部件选型及补强计算 4.绘制夹套反应釜总装配图 化学与化学工程系化学工程与工艺专业 01 班学生姓名### 学号13410###### 设计日期2015.6. 29 至2015.7. 4 设计指导教师(签名) 2015年7月日 1.设计任务

2.设计项目 1) 罐体和夹套的设计 包括:罐体和夹套的结构设计、罐体及夹套几何尺寸计算、夹套反应釜的强度计算、人孔、接口管等。 2) 反应釜搅拌器的选型及计算 包括:反应釜搅拌器选型及主要尺寸确定、挡板的安装方式确定等。 3)反应釜的传动装置选型及计算 包括:电动机选型、减速机选用、机架选型、搅拌轴的材料、轴径及强度计算等。 4)轴封装置选型及计算 填料密封与机械密封结构及主要尺寸确定。 5) 标准化零、部件选择及补强计算。 包括:(1)人孔选型:PN,DN,标记或代号。补强计算。 (2)接管及法兰选型:根据结构选型统一编制表格。内容包括:代号,PN,DN,法兰密封面形式,法兰标记,用途)。补强计算。 (3)其它标准件选型。 6) 绘制夹套反应釜总装配图(1号); 3.设计要求 1)计算单位一律采用国际单位;

2)计算过程及说明应清楚; 3)所有标准件均要写明标记或代号; 4)设计计算书目录要有序号、内容、页码; 5)设计计算书中与装配图中的数据一致。若装配图中有修改,在说明书中要注明变 更; 6)书写工整,字迹清晰,层次分明; 7)设计计算书要有封面和封底,均采用A4纸,装订成册。 4.设计说明书的内容 1)符号说明 2)前言 (1)设计条件; (2)设计依据; (3)设备结构形式概述。 3)材料选择 (1)选择材料的原则; (2)确定各零、部件的材质。 4)罐体、夹套、搅拌器、传动装置、轴封装置主要工艺尺寸的计算、选型5)标准化零、部件选型及补强计算 (1)接管及法兰选型:统一编制表格。内容包括:代号,PN,DN,法兰密封面形式,法兰标记,用途)。补强计算。 (2)人孔选择:PN,DN,标记或代号。补强计算。 (3)其它标准件选择。 6)结束语 对自己所做的设计进行小结与评价,经验与收获。 7)谢辞 8)主要参考资料 主要参考文献 1.谭蔚.化工设备设计基础[M].天津:天津大学出版社,2008. 2.朱思明. 化工设备机械基础[M].上海:华东化工学院出版社,1992. 3.贺匡国.化工容器及设备简明设计手册[M],北京:劳动人事出版社,1987. 4.施云海.化工热力学[M],上海:华东理工大学出版社,1988. 5.《钢制压力容器》GB150-1998.

化工设备机械基础课程设计-夹套反应釜

广州大学化学化工学院 本科学生化工设备机械基础课程 设计 实验课程化工设备机械基础课程设计 实验项目夹套反应釜设计 专业班级 学号姓名 指导教师及职称 开课学期 2013 至 2014 学年第一学期时间 2014 年 1 月 6 日~ 1 月 17 日

夹套反应釜设计任务书 设计者姓名: 班级:学号:指导老师姓名:日期:2014年01月10号 一、设计内容 设计一台夹套传热式的反应釜

1、进行罐体和夹套设计计算。 2、选择支座形式并进行计算。 3、选择接管、管法兰、设备法兰、手孔、视镜等容器附件。 4、绘总装配图 参考图见插页附图

前言 《化工设备机械基础》是针对化学工程、制药工程类专业以及其他相近的非机械类专业,对化学设备的机械知识和设计能力的要求而编写的。通过此课程的学习,是通过学习使同学掌握基本的设计理论并且具有设计钢制典型的中、低、常压化工容器的设计和必要的机械基础知识。 化工设备机械基础课程设计是《化工设备机械基础》课程教学中综合性和实践性较强的教学环节,是理论联系实际的桥梁,是学生体察工程实际问题复杂性,学习初次尝试化工机械设计。化工设计不同于平时的作业,在设计中需要同学独立自主的解决所遇到的问题、自己做出决策,根据老师给定的设计要求自己选择方案、查取数据、进行过程和设备的设计计算,并要对自己的选择做出论证和核算,经过反复的比较分析,择优选定最理想的方案和合理的设计。 化工设备课程设计师培养学生设计能力的重要事件教学环节。在教师指导下,通过课程设计,培养学生独立地运用所学到的基本理论并结合生产实际的知识,综合地分析和解决生产实际问题的能力。因此,当学生首次完成该课程设计后应达到以下几个目的: (1)熟练掌握查血文献资料、收集相关数据、正确选择公式,当缺乏必要的数据时,尚需要自己通过实验测定或到生产现场进行实际查定。 (2)在兼顾技术先进性、可行性、经济合理的前提下,综合分析设计任务要求,确定化工工艺流程,进行设备选型,并提出保证该过程正常、安全可行所需的检测和计量参数,同时还要考虑改善劳动条件和环境保护的有效措施。 (3)准确而迅速的进行过程计算及主要设备的工艺设计计算及选型。 (4)用精炼的语言、简洁的文字、清晰地图标来表达自己的设计思想和计算结果。 化工设备机械基础课程设计是一项很繁琐的设计工作,而且在设计中除了要考虑经济因素外,环保也是一项不得不考虑的问题。除此之外,还要考虑诸多的政策、法规,因此在课程设计中要有耐心,注意多专业、多学科的综合和相互协调。

夹套反应釜课程设计

夹套传热式带搅拌的反应釜 设计说明书 组员: 源学号:3099990054 勇华学号:3099990055 叙学号:3090343125 黄承标学号:3090343108 专业班级:化学工程与工艺09-1班 指导老师:淑华 设计时间:2011年12月19日至2011年12月30日

有搅拌装置的夹套反应釜 前言 《化工设备机械基础》化学工程、制药工程类专业以及其他相近的非机械类专业,对化下设备的机械知识和设计能力的要求而编写的。通过此课程的学习,是通过学习使同学掌握基本的设计理论并具有设计钢制的、典型的中、低、常压化工容器的设计和必要的机械基础知识。 化工设备机械基础课程设计是《化工设备机械基础》课程教学中综合性和实践性较强的教学环节,是理论联系实际的桥梁,是学生体察工程实际问题复杂性,学习初次尝试化工机械设计。化工设计不同于平时的作业,在设计中需要同学独立自主的解决所遇到的问题、自己做出决策,根据老师给定的设计要求自己选择方案、查取数据、进行过程和设备的设计计算,并要对自己的选择做出论证和核算,经过反复的比较分析,择优选定最理想的方案和合理的设计。 化工设备课程设计是培养学生设计能力的重要实践教学环节。在教师指导下,通过裸程设计,培养学生独立地运用所学到的基本理论并结合生产实际的知识,综合地分析和解决生产实际问题的能力。因此,当学生首次完成该课程设计后,应达到一下几个目的: ⑴熟练掌握查阅文献资料、收集相关数据、正确选择公式,当缺乏必要的数据时,尚需要自己通过实验测定或到生产现场进行实际查定。

⑵在兼顾技术先进性、可行性、经济合理的前提下,综合分析设计任务要求,确定化工工艺流程,进行设备选型,并提出保证过程正常、安全可行所需的检测和计量参数,同时还要考虑改善劳动条件和环境保护的有效措施。 ⑶准确而迅速的进行过程计算及主要设备的工艺设计计算及选型。 ⑷用精炼的语言、简洁的文字、清晰地图表来表达自己的设计思想和计算结果。 化工设备机械基础课程设计是一项很繁琐的设计工作,而且在设计中除了要考虑经济因素外,环保也是一项不得不考虑的问题。除此之外,还要考虑诸多的政策、法规,因此在课程设计中要有耐心,注意多专业、多学科的综合和相互协调。

相关主题
文本预览
相关文档 最新文档