当前位置:文档之家› 程控放大器的设计与实现

程控放大器的设计与实现

程控放大器的设计与实现
程控放大器的设计与实现

程控放大器的设计与实现

摘要

本文介绍了一种可通过程序改变增益的放大器。它与ADC相配合,可以自动适应大范围变化的模拟信号电平。系统以89S51单片机作微处理器,运用NE5532芯片组成运放电路,采用CD4052芯片担任增益切换开关,通过软件控制开关的闭合或断开来达到改变电路的增益。

文章首先对系统方案进行论证,然后对硬件电路和软件设计进行了说明,最后重点阐述了系统的调试过程,并且对调试过程中遇到的问题以及解决方案进行了详细说明。该系统设计达到了预期要求,实现了最大放大60db的目的。

关键词

程控放大器;运算器放大器;单片机;增益

The Design and Realization of Program-Controll Amplifier

Abstract

This article introduces a amplifier which changes the gain through the software. It coordinates with ADC and adapts the simulated signal level with wide range change automatically. The system uses the 89s51 SCM as the core. The NE5532 chip composes the operational circuit and the CD4052 chip composes the gain switch. The gain of the circuit is changed by software which can control switch closed or disconnect.

The article first demonstrates the system plan, then introduces the hardware and the software, finally explains the debugging process of the system with emphasis. It also especially analogizes the problem in the debugging process and the resolutions. This system design has achieved anticipative request and realized enlarged 60db most greatly the goal.

Key words

Program-controlled amplifier; operational Amplifier; SCM; gain

前言

在计算机数控系统中,模拟信号在送入计算机进行处理前,必须进行量化,即进行A/D 转换[ 1 ]。进行A/D 转换之前,必须考虑A/D 转换器的分辨率和模拟输入电压量程这两个问题。

在一些特殊的应用中,我们常希望输入信号的幅值接近A/D 的输入电压量程的上限。工程上常采取改变放大器增益的方法对幅值大小不一的信号进行放大。在计算机数控系统中,为实现不同幅度信号的放大, 往往不希望、甚至也不可能利用手动方法来实现增益变换。利用程控放大器可以很好地解决上述问题。程控放大器是根据使用要求由程序控制改变增益的放大器,具有控制方便,线性度高,稳定可靠等优点[ 2 ]。使用程控放大器改变模拟输入信号的增益,并配合A/D的使用,可允许输入的模拟信号在较大范围内动态变化,达到了提高A/D 的输入电压量程的目的,也相当于提高了A/D 的分辨率。

随着数字化技术的不断发展,各类测量仪表越来越趋于采取数字化和智能化方向的发展[ 3 ]。这些设备一般由前端的传感器、放大器电路和后端的数据处理电路组成。其中后端数据处理电路通常采用高精度A/D和高速单片机,以保证仪表的精度和速度要求。对于前端电路,由于传感器输出信号的幅度和驱动能力均比较微弱,必须加接高精度的测量放大器以满足后端电路的要求;另一方面,传感器在不同测试中输出信号的幅度可能相差很多,传统的处理方法是对放大器增加手动档位调节以保证后端的A/D采集输入端的信号在一定幅度内,从而

保证整个仪表的测量精度。人工档位调节增加了仪表操作的复杂性、影响了数据测量的实时性,同时档位调节通常采用机械转扭增加了仪器的不可靠性和接触电阻对测量精度的影响。是否可由单片机自动选择量程档位呢?答案是肯定的,传统的方法是采用可软件设臵增益的放大器。

1 设计任务与要求

设计并制作一个程控放大器。通频带10Hz-150KHz,输入阻抗大于500KΩ,最大输出10VPP。增益可调范围0-60db,每10db步进。放大倍数可预臵,可修改,并用数码管显示。增益误差不大于 2db。

2 系统方案论证

程控放大器的基本电路和一般放大器电路类似,只是不同电路其反馈网络以及期中的电阻阻值是不同的,下面就改变增益的几种常用方法作一些探讨。

2.1 方案一同相型程控放大器

图2.1 同相放大器的基本电路

同相型放大器的基本电路如图2.1所示。放大器的增益G只取决于反馈电阻Rf 和电阻R1。

由于运算放大器的输入阻抗很高,尤其对于场效应输入型运算放大器, 输入阻抗可达1012Ω,因而开关的导通电阻对放大器增益的影响可以忽略不计[ 4 ]。在图2.1中,利用运算放大器的高开环增益特性和负反馈,开关的导通电阻对增益的影响基本上得以消除。该类电路的优点是开关导通电阻对电路的增益影响小,因此特别适用于采用模拟电子开关控制的场合。电路的不足之处是放大器增益不能小于1 ,因此不能对输入信号进行衰减,解决办法是在前级加入无源衰减网络。2.2 方案二反相型程控放大器

图2.2 反相型程控放大器

反相型程控放大器的基本电路如图2.2所示。在图中只需改变Rf 或Ri 的阻值就可以改变放大器的增益。电路中,切换开关SW1~SWn 可以使用模拟电子开关或继电器,通过软件控制开关的闭合或断开,用于选择不同的输入电阻或反馈电阻来达到改变电路的增益[ 5 ]。该类电路的优点:放大器增益可大于1 ,也可小于1 或等于1 ,因此,既可以对输入的小信号进行放大,也可以对输入的大信号进行衰减,因此电路的动态适应范围很大。但该方法的缺点也是显而易见的:由于切换开关与输入电阻或反馈电阻串联,开关的导通电阻将影响放大器的增益,特别

是在使用模拟电子开关时尤其明显。解决方法是将放大器的反馈电阻Rf 和输入电阻Ri 尽量取大一些,也可先测出开关的导通电阻,再对电路中的Rf~Rf n或Ri1~Ri n作适当的修正。另外, 所示的放大器的输入阻抗不是固定的,因此最好加入隔离放大器以减少对前级信号源的影响。

该图所示电路,采用集成化的模拟开关担任增益切换开关,功耗小,体积小,可以由TTL或CMOS电平直接驱动,可进行放大和衰减。同样,模拟开关的导通电阻影响放大倍数,模拟开关可以使用CMOS 系列的CD4066,CD4051~CD4053等等,也可以使用MAX75XX系列或MAX301~309,331~339,351~359系列的模拟开关。当放大器的输入信号正负都有时,模拟开关必须双电源供电。

2.3 方案三 DAC型程控放大器

DAC型程控放大器由DAC 和运算放大器组成,其原理是利用DAC的乘法功能实现可变增益控制[ 6 ]。DAC内部主要由R-2R 电阻网络和模拟电子开关构成,例如DAC0832、AD7520 等电流输出型芯片。

此类程控放大器的优点:由于DAC中的R-2R电阻网络是采用精密光刻技术生产出来的,电阻的误差较小,温度系数也比一般的金属膜电阻低得多,因此构成的程控放大的增益误差较小;另外,只要取合适的输入电阻Ri或反馈电阻Rf,电路和增益可以大于1,也可小于1,也可以等于1,甚至为0。

电路的缺点:由于DAC内部的分布电容影响,电路的频响不是太理想,电路增益也不容易做得较大;另外电路的信噪比也较差。另外,虽

然市场上已有单片集成程控放大器芯片,如AD526、PGA204等产品,但它们的价格昂贵,放大的增益用户无法自行改变。 3 硬件电路设计

总结上述三种方案,我决定选用芯片NE5532实行三级放大,用CD4052模拟开关进行切换选择,单片机进行控制。系统分两大模块,一是控制模块,一是放大模块。图3.1是硬件电路框图。

图3.1 硬件电路框图

如图所示,输入信号先经过设臵为电压跟随器的晶体管,提高输入阻抗。然后进行一级放大,二级放大,三级放大。再由单片机控制放大倍数,选通模拟开关以及运放,关将结果送数码管显示。 3.1 控制模块

图3.2为控制模块电路图。控制模块主要由单片机组成,键盘扫描电路和显示电路则分别接在单片机的四个端口。在P0口,接共阳

电压跟随器

一级运放

二级运放

三级运放

单片机控制部分

键盘 显示

信号输入

信号输出

的数码管,P2.4~P2.7接晶体管,控制数码管的位选端。P2.0接程序指示灯。键盘扫描接在P3口。P1口分别接入一6脚排插用来连接模拟开关和6线下载器。复位电路采用按键复位。

图3.2控制模块

3.1.1 AT89S51:

MCS-51系列单片机中HMOS工艺制造的芯片采用双列直插(DIP)方式封装,有40个引脚[ 7 ]。

(1)电源引脚。VCC正常运行和编程校验时为5V电源,Vss 为接地端。

(2)I/O总线。P0.0~P0.7(P0口),P1.0~P1.7(P1口),P2.0~P2.(P2口),P3.0~P3.7(P3口)为输入/输出引线。

(3)时钟。XTAL1:片内振荡器反相放大器的输入端。XTAL2:片内振荡器反相器的输入端,也是内部时钟发生器的输入端。

(4)控制总线。RST:复位输入信号,当该引脚上出现2个机

器周期以上的高电平时,可实现复位操作,此引脚为掉电保护后备电源之输入引脚。

3.1.2 键盘扫描

本实验键盘扫描接为4X4矩阵,用反转法处理线路。

反转法:将行线作为输出线,列线作为输入线。行线输出全“0”信号,读入列线的值。然后将行线和列线的输入输出关系互换,并且将刚才读到的列线值从行线的端口输出,再读取行线的输入值[ 8 ]。

键盘扫描接在单片机P3口。根据反转法原理,P3.0~P3.3作为行线,P3.4~P3.7作为列线,即低位为行,高位为列。先臵低位为0,读高位值;再将行线与列线的关系互换,臵高位为0,读低位值。比较前后两值,即可判断哪个键按下。

3.2 放大模块

图3.3放大模块

图3.3为放大模块电路。NE5532一共8脚。3脚为同相输入端,2脚为反相输入端。8、4脚分别接正负12V电源。反馈网络由模拟

开关CD4052组成。CD4052共16脚。16脚接+5V,6、8脚接地,7脚接—5V,9、10脚接单片机控制信号。3脚接运放反馈量,1、2、5脚接入运放的负反馈,与滑动变阻器构成反馈网络。其中,其中1脚将输出电压全部反馈到反相输入端;2脚接入2.16K的电阻,可控制放大10dB,5脚接入9K的电阻,可控制放大20dB。

3.2.1 NE5532简介

NE5532是高性能低噪声运放,与很多标准运放(如1458)相似,它具有较好的噪声性能,优良的输出驱动能力及相当高的小信号与电源带宽。图3.4是NE5532内部结构图。

图3.4 NE5532芯片图

(1)小信号带宽:10MHz;

(2)输出驱动能力:600Ω,10V;

(3)输入噪声电压:5nV/√HZ(典型值);

(4)DC电压增益:50000;

(5)AC电压增益:10KHz时2200;

(6)电源带宽:140KHz;

(7)大电源电压范围:±3~±20V

虚短路:指集成运放的两个输入端电位无穷接近,但又不是真正短路。

虚断路:从集成运放两个输入端看进去相当于断路[ 9 ]。

3.2.2 CD4052简介

CD4052是一个双4选一的多路模拟选择开关。图3.5是CD4052芯片管脚图,图3.6是CD4052内部结构图。

图3.5 CD4052芯片管脚图

图3.6 CD4052内部结构图

其真值表如表3.1所示

表3.1 CD4052真值表

INHIBIT B A

0 0 0 0x,0y

0 0 1 1x,1y

0 1 0 2x,2y

0 1 1 3x,3y

1 X X None

应用时可以通过单片机对A/B的控制来选择输入哪一路,例如:需要从4路输入中选择第二路输入,假设使用的是Y组,那么单片机只需要分别给A和B送1和0即可选中该路,然后进行相应的处理。

注意第6脚为使能脚,只有为0时,才会有通道被选中输出。

4 软件设计

4.1程序设计思路

在实际设计中,本着程序简单,高效的原则,在初期设计过程中,

从复杂到简单一步步简化,直到最后的程序。

(1)最先想到的是模仿计算器程序设计。一共四个“8”,最后两个固定显示“db”字母字样。对于前两位,刚开始决定先由键盘输入一位数,送寄存器储存。再将其往前进一位,然后输入第二位数字。先键盘扫描,得出第一个键值,并且送显示。进行第二次扫描,得出键值,再送显示。

分析:这种方法较为先进,但由于我所学知道不足,一时无法处理进位问题,所以只能作罢。

(2)连续按两次键,直接将“十”位数显示在dp1处,“个”位显示在dp2处。先判断是第几次按键。如果是已经是第三次按键,则计数器清零,复位。第四次按重新计数。如果只是第一次按键,则送至“十”位,并保存;当第二次按下时,显示个位。这期间给程序一定的延时。但不知道什么原因,在实际应用中,出现了这样的问题:按第一次,“十、个”位都同时显示。第二个键值输入,却覆盖第一个键值,并且两位数显示同一数字。同时出现的问题还有,复位不能成功。每次复位后(重新上电后),数码管显示上次输入的键值。

分析有两种可能:1,芯片有了记忆功能,将断电前的状态存储下来了。2,一上电,芯片就执行了上次的程序。后一种解释更为合理,这说明问题出在显示上。初始化中显示没有清零。

(3)更为精简的方法。将第二个数码管(dp2)直接显示“0”。这样,只要处理一个“日”字就可以。这一思路,是三个中最简单的。虽然如此,但我觉得程序就应该简单,实用,完成所需功能即可。所

以,我决定采用第三种方法。

4.2 程序流程图

开始

初始化

按键扫描

有键按下

显示

模拟开关选择

结束N

Y

图4.1 程序流程图

程序流程图如图4.1所示。首先对程序进行初始,数码管显示默认为0。首先进行键扫描,判断是否有键按下。如果没有键按下,则返回重新键盘扫描。如果有键按下,则送显示电路,由数码管显示。同时,单片机控制模拟开关,根据输入键值,选通运放芯片,实现系统功能。最后程序结束,系统终止工作。

4.3 数码管显示

由于我在画PCB板时,为了更好的连线,将P0口8个管脚相对应的共阳数码管的管脚更改,所以在处理这个程序时,就与以往的不同。数码管显示原理如表4.1所示。

表4.1 数码管显示原理

E D h c g a f b

0 0 0 1 0 1 0 0 0 28h

1 1 1 1 0 1 1 1 0 0eeh

2 0 0 1 1 0 0 1 0 32h

3 1 0 1 0 0 0 1 0 0a2h

4 1 1 1 0 0 1 0 0 0e4h

5 1 0 1 0 0 0 0 1 0a1h

6 0 0 1 0 0 0 0 0 21h

7 1 1 1 0 1 0 1 0 0eah

8 0 0 1 0 0 0 0 0 20h

9 1 0 1 0 0 0 0 0 0a0h

4.4 CD4052程序

在设计程序时,应认真查看芯片的PDF文档资料。观察芯片各个引脚的功能,哪个输入,哪个输出。并要注意芯片的真值,编写程序主要就是依据此表。由前文所给出的真值表和芯片管脚图,得芯片的选通模式程序。

一共有三个模拟开关,每一个最大控制20db的放大幅度。每个模拟开关一次只能选通一个输出。表4.2为模拟开关程序设计原理。

表4.2模拟开关程序设计

P1.5 P1.4 P1.3 P1.2 P1.1 P1.0

U6 U5 U4 U3 U2 U1

A B A B A B

0db 0 0 0 0 0 0 00h

10db 0 0 0 0 1 0 02h

20db 0 0 0 0 0 1 01h

30db 0 0 0 1 1 0 06h

40db 0 0 0 1 0 1 05h

50db 0 1 0 1 1 0 16h

60db 0 1 0 1 0 1 15h

4.5 按键扫描程序

由原理图可以得出,按键接在P3.0~P3.7。表3.3为按键扫描程序。

表3.3 按键扫描程序

P3.7 P3.6 P3.5 P3.4 P3.3 P3.2 P3.1 P3.0

0 1 1 0 1 0 1 1 1

1 0 1 1 1 0 1 1 1

2 0 1 1 1 1 0 1 1

3 0 1 1 1 1 1 0 1

4 0 1 1 1 1 1 1 0

5 1 0 1 1 0 1 1 1

6 1 0 1 1 1 0 1 1

7 1 0 1 1 1 1 0 1

8 1 0 1 1 1 1 1 0

9 1 1 0 1 0 1 1 1

5 系统调试

检测工具:万用表,示波器,函数信号发生器

5.1 硬件检测

(1)检测电源线,地线。用万用表检测电路板有没有短路,断路现象。经检测,线路导通。

(2)检测极性电容正负极有无接反,电阻大小有无接对。

(3)检测单片机。上电后,先用万用表测试各引脚电压。其中40脚为4.93V,晶振两脚分别为2.39V和2.12V。基次,写入一小的

按键扫描程序,检测按键和数码管显示。检测结果,两者正常。再次,检测复位键。按下后,数码管能归零,说明复位成功。

(4)检测放大电路。接入四种正负电源。用万用表测NE5532的4、8号脚的输出电压,测CD4052的1、7、9、10、16脚,看电压输出是否正确。再测AT89S51的VCC,四个端口的电压值,看看是否在正常范围之内。经检测,运放8脚+11.95V,运放4脚-12.18V,CD4052的16脚+4.93V,7脚-5.10V。

(5)测量三个NE5532的静态工作点,观察电压是否正常。运放的1、2、3脚的电压都为0。

(6)阻容耦合电路

图5.1 阻容耦合电路

图5.1为阻容耦合电路。耦合电路的主要有三个作用:1是让信号无损耗地通过,加到后一级电路中;2是隔离两级放大器之间的直流;3是在前级和后级放大器之间进行阻抗的匹配。

当放大器的输入阻抗比较大时,可以适当减小耦合电容的容量。降低耦合电容C1的容量,对降低耦合电容的漏电有利,因为电容的容量愈大,其漏电电流就大,放大器电路的噪声就大(耦合电容漏电流会产生电路噪声),特别是输入级放大器的输入端耦合电容要尽可

能地小[ 10 ]。

耦合电容对低频信号的容抗比中频和高频信号的容抗要大,所以阻容对低频信号是不利的。当耦合电容的容量不够大时,低频信号首先受到衰减,说明阻容耦合的低频特性不好。

在不同工作频率的放大器中,由于放大器所放大的信号频率不同,对耦合电容的容量大小要求也不同。为了降低电容漏电,愈是处于前级的耦合电容,其容量要求愈小[ 11 ]。

当耦合电路中的元器件开路时,信号不能加到下一级电路中,使放大器无信号输出。当耦合电容漏电或击穿时,会影响前后两级放大器的直流电路工作,从而影响交流电路的工作,放大器输出信号将不正常。

(7)信噪比

信噪比等于信号功率大小与噪声功率大小之比,信号功率用S表示,噪声功率用N表示,信噪比用S/N表示.放大器的信噪比愈大愈好。

噪声也是放大器电路中的一种“信号”,是一种无用、有害的信号,它愈小愈好,但放大器中不可避免地会存在噪声,当噪声太大时,将来得影响电路性能。多级放大器电路中,前级放大器产生的噪声被后级放大器作为“信号”而加以放大,所以对前级放大器,要重点进行噪声抵制[ 12 ]。

解决噪声的方法,适当提高放大器的输入电阻,这样可以降低输入端耦合电容的容量,以减小因电容漏电而产生的噪声。

至此,硬件电路检测基本检测完毕。结果表明,一切正常。

5.2 软件检测

(1)检测键盘扫描程序

测试目的:每按一个按键,数码管全部显示一个数字。

一般地,对任何带有键盘扫描的硬件电路来说,在进行软件检测时,首先应检测的就是键盘扫描。即写个小的键扫程序,看键盘扫描电路是否连接成功。

利用反转法,写一个3X3的扫描程序,并送键盘显示。经过测试,键扫电路连接成功。

(2)检测CD4052控制程序

测试目的:按下一个按键,则相应的模拟开关会被选通。如表5.1所示。

表5.1 模拟开关选通对应表

第一个模拟开关第二个模拟开关第三个模拟开关按键5脚2脚5脚2脚5脚2脚

0 0 0 0 0 0 0

1 1 0 0 0 0 0

2 0 1 0 0 0 0

3 1 0 0 1 0 0

4 0 1 0 1 0 0

5 1 0 0 1 0 1

6 0 1 0 1 0 1

测试结果:模拟开关选通程序正确。

(3)主程序测试

前面两个子程序较容易写,写主程序时有一定的困难。经过不断的测试,修改,再测试,再修改,直到最后成功。

在主程序中,一共调用三个子程序,它们分别是键盘扫描keys,数码管显示disp,运放放大部分fangda,三个子程序用lcall调用。

Keys根据反转法原理,主要模仿3X3按键扫描程序而写。出现的问题:虽然前面子程序测试中键盘扫描程序成功,但写入改进后的4X4程序却没有成功。按任一键,数码管没有显示。对比3X3程序,主要有两个原因。

1 调用每一个判断键值程序后,子程序并没有返回主程序。

2 返回主程序,送显示之前,所判断键值并没有送寄存器保存。以至于送显示后后,累加器中没有值送数码管显示。

解决方法,写一个kk3子程序。先调用kk3子程序,再将键值保存到累加器。

Kk3: mov shi,a

Ret

(4)复位不成功

按下复位键后,数码管并不能清零。并且显示上一次按键键值。经过分析,根据程序执行顺序,系统上电后,有键按下后,送显示。如果总是显示上一次程序处理的结果,这说明显示程序没有初始化。

解决方法:对十位数值进行保存。

Shi equ 30h

mov shi,#00h

5.3 系统联调

简单的硬件测试,软件修改之后,将硬件和软件结合起来进行系统联调。原以为能够容易成功,可实际中却出现了大量的问题。

(1)准备工作

校正示波器:校正后,出现标准的方波,说明示波器良好,可以使用。输出信号:将探头直接接函数信号发生器输出端,共地端接地。观察示波器。调节信号发生器输出1KHz的波型,边观察示波器边调幅度旋钮,直至出现20mv VPP.

(2)第一次测量

输入10mv正弦信号,通过探头,观察示波器。发现居然输出的是方波信号。经过分析,是因为放大倍数过大。NE5532不能处理过大电压(12V以内),在高电平处截断波形,以至产生方波。而且程序控制并没有起到作用,并没有以10db步进。经分析认为,此时电路已经产生过大放大,所以程序控制此时已失去作用。

(3)第二次测量

按指导老师的意见,将整个三级放大电路拆开,分成三个独立的放大电路,逐级检查。断开第二,第三级NE5532,先不输入信号,测NE5532的1脚。发现在即使没有输入信号的情况下,示波器也测出有在幅值的波形。

得出结论:系统出现自激振荡。

(4)自激振荡现象

概念:系统在输入量为零的情况下,输出却产生了一定频率和一定幅值的信号,就称电路产生了自激振荡。电路中只有满足相位、幅值平衡条件,才能产生自激振荡[ 13 ]。

(5)第三次测量

这次测量是在指导老师的指导下完成的。测试三极管9018的三

低频功率放大器电路设计

参加全国大学生电子设计大赛的同学们加 油了! 低频功率放大器设计与总结报告 作者:王汉光 一、任务 设计并制作一个低频功率放大器,要求末级功放管采用分立的大功率MOS 晶体管。 二、要求 1.基本要求 (1)当输入正弦信号电压有效值为5mV时,在8Ω电阻负载(一端接地)上,输出功率≥5W,输出波形无明显失真。 (2)通频带为20Hz~20kHz。 (3)输入电阻为600Ω。 (4)输出噪声电压有效值V0N≤5mV。 (5)尽可能提高功率放大器的整机效率。 (6)具有测量并显示低频功率放大器输出功率(正弦信号输入时)、直流电源的供给功率和整机效率的功能,测量精度优于5%。

2. 发挥部分 (1)低频功率放大器通频带扩展为10Hz~50kHz。 (2)在通频带内低频功率放大器失真度小于1%。 (3)在满足输出功率≥5W、通频带为20Hz~20kHz的前提下,尽可能降低输入信号幅度。 (4)设计一个带阻滤波器,阻带频率范围为40~60Hz。在50Hz频率点输出功率衰减≥6dB。 (5)其他。 摘要: 本系统采用了NE5534p作为前级的电压放大电路来给低通功率放大电路提供输入电压,通过低通功率放大电路将功率放大,由双踪示波器对整个系统的输入输出端进行监测,调节可变电阻,使输出波形无明显失真,从而使输出功率达到指定的输出功率要求。输入的频率范围为20Hz~20kHz。 一.概述: 本系统通过信号发生器输入电压为5mV,频率在20Hz~20kHz范围内的信号,对信号进行功率放大,低通功率放大器模块由+/-15V的直流电源提供,通过前级放大电路将输入电压放大,再由低通功率放大电路进行功率放大。在此期间,用示波器监测低通功率放大模块的输入输出端,观察波形是否失真,以及测量最大最小不失真频率。 二.系统工作原理及分析: 此系统由三部分组成,分别为电源模块、前级放大模块、低频功率放大模块。 如图所示:

音频功率放大器设计详解

音频功率放大器设计 一、设计任务 设计一个实用的音频功率放大器。在输入正弦波幅度≤5mV,负载电阻等于8Ω的 条件下,音频功率放大器满足如下要求: 1、最大输出不失真功率P OM≥8W。 2、功率放大器的频带宽度BW≥50Hz~15KHz。 3、在最大输出功率下非线性失真系数≤3%。 4、输入阻抗R i≥100kΩ。 5、具有音调控制功能:低音100Hz处有±12dB的调节范围,高 音10kHz处有±12dB的调节范围。 二、设计方案分析 根据设计课题的要求,该音频功率放大器可由图所示框图实现。 下面主要介绍各部 分电路的特点及要求。 图1 音频功率放大器组成框图 1、前置放大器 音频功率放大器的作用是将声音源输入的信号进行放大,然后输

出驱动扬声器。声音源 的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低

音频功率放大器设计说明书要点

音频功率放大器的设计任务书 1 设计指标 (1)直接耦合的功率放大器,额定输出功率10W,负载阻抗8Ω;(2)具有频响宽、保真度度、动态特性好及易于集成化; (3)采用分立元件设计; (4)所设计的电路具有一定的抗干扰能力。 2 设计要求 (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)S C H文件生成与打印输出。 3 编写设计报告 写出设计的全过程,附上有关资料和图纸,有心得体会。 4 答辩 在规定时间内,完成叙述并回答问题。

音频功率放大器设计 摘要:这款功放采用了典型的OC L 功放电路,为全互补对称式纯甲类DC 结构,功放的每一级放大均工作于甲类状态。输入级和电压放大级采用线性较好的沃尔漫电路,差分管及电流推动管分别为很出名的K170、J 74(可用K389、J 109孪生对管对换)对管和K214、J77中功率M OS 管,功率输出级为2SC 5200和2S A1943大功率东芝管并联输出,功率强劲,驱动阻抗2Ω的喇叭也轻松自如,毫不费力。综合运用了我们前面所学的知识。设计完全符合要求。 关键字:沃尔漫电路 T IM 共源-共基电路 共射-共基电路 1 引言 在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放而言,应该达到电气指标与实际听音指标的平衡与统一。 2 设计思路 甲类放大器作为一种最古老,效率最低,最耗电,最笨重,最耗资,失真最小的放大器它有吸引人的音质。甲类放大器输出电路 本身具有抵消奇次谐波失真,且甲类放大器管子始终工作在线性曲线内,晶体管自始自终处于导通状态。因此,不存在开关失真和交越失真等问题。甲类放大器始终保持大电流的工作状态。所以对猝发性声音瞬间升降能迅速反映。因而输出功率发生急剧变化时,电 输入音 频信号 前置放大级电路 共射-共基电路 共射-共基电路 恒压源电路 推动级 反馈电路 至末级 功放 沃 尔漫电路 图1 前置放大电路框图

音频功率放大器设计实验报告

题目:音频功率放大器电路 音频功率放大器设计任务 1、基本要求 (1)频带范围 200Hz —— 10KHz,失真度 < 5%。 (2)电压增益 >= 20dB。 (3)输出功率 >= 1 W (8欧姆负载)。 (4)功率放大电路部分使用分立元件设计。 发挥部分 (1)增加音调控制电路。 (2)增加话筒输入接口,灵敏度 5mV,输入阻抗 >> 20 欧姆。 (3)输出功率 >= 10W (8欧姆负载)。 (4)其他。 目录 1 引言····························································· 2 总体设计方案·····················································2.1 设计思路······················································· 2.2 总体设计框图··················································· 3 设计原理分析·····················································3.1设计总原理图 3.2设计的PCB电路图 ··· 1 引言 在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放而言,应该达到电气指标与实际听音指标的平衡与统一。

音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。本次设计旨在熟悉设计流程,达到基本指标。 2 总体方案 根据实验要求,本次设计主要是也能够是用集成功放TDA2030为主的电路 一、电路工作原理 图1所示电路为音频功率放大器原理图,其中TDA2030是高保真集成功率放大器芯片,输出功率大于10W,频率响应为10~1400Hz,输出电流峰值最大可达3.5A。其内部电路包含输入级、中间级和输出级,且有短路保护和过热保护,可确保电路工作安全可靠。TDA2030使用方便、外围所需元器少,一般不需要调试即可成功。 RP是音量调节电位器,C1是输入耦合电容,R1是TDA2030同相输入端偏置电阻。 R2、R3决定了该电路交流负反馈的强弱及闭环增益。该电路闭环增益为 (R2+R3)/R2=(0.68+22)/0.68=33.3倍,C2起隔直流作用,以使电路直流为100%负反馈。静态工作点稳定性好。 C4、C5为电源高频旁路电容,防止电路产生自激振荡。R4、R5称为茹贝网路,用以在电路接有感性负载扬声器时,保证高频稳定性。VD1、VD2是保护二极管,防止输出电压峰值损坏集成块TDA2030。 2.电流反馈 电流反馈是指在一个反馈电路中,若反馈量与输出电流成正比则为电流反馈;若反馈量与输出电压成正比则为电压反馈。通常可以采用负载短路法来判断。 从概念上说,若反馈量与输出电压(有时不一定是输出电压,而是取样处的电压)成正比则为电压反馈;若反馈量与输出电流(有时不一定是输出电流,而是取样处的电流)成正比则为电流反馈。在判断电压反馈和电流反馈时,除了上述方法外,也可以采用负载短路法。负载短路法实际上是一种反向推理法,假设将放大电路的负载电阻RL短路(此时,),若

功率放大器原理功率放大器原理图

袁蒁膃蚇腿肀肃功率放大器原理功率放大器原理 图 芃蚆葿艿袂薇蒆要说功率放大器的原理,我们还是先来看看功率放大器的组成:射频功率放大器(RF PA)是各种无线发射机的重要组成部分。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大一缓冲级、中间放大级、末级功率放大级,获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。 射频功率放大器是发送设备的重要组成部分。射频功率放大器的主要技术指标是输出功率与效率。除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。 螆肇葿蚄蚆芈羁功率放大器原理 衿蚈膂袆袆膁螁高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出。在“低频电子线路” 课程中已知,放大器可以按照电流导通角的不同,将其分为甲、乙、丙三类工作状态。甲类放大器电流的流通角为360o,适用于小信号低功率放大。乙类放大器电流的流通角约等于180o;丙类放大器电流的流通角则小于180o。乙类和丙类都适用于大功率工作。丙类工作状态的输出功率和效率是三种工作状态中最高者。 高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。除了以上几种按电流流通角来分类的工作状态外,又有使电子器件工作于开关状态的丁类放大和戊类放大。丁类放大器的效率比丙类放大器的还高,理论上可达100%,但它的最高工作频率受到开关转换瞬间所产生的器件功耗(集电极耗散功率或阳极耗散功率)的限制。如果在电路上加以改进,使电子器件在通断转换瞬间的功耗尽量减小,则工作频率可以提高。这就是戊类放大器。 我们已经知道,在低频放大电路中为了获得足够大的低频输出功率,必须采用低频功率放大器,而且低频功率放大器也是一种将直流电源提供的能量转换为交流输出的能量转换器。高频功率放大器和低频功率放大器的共同特点都是输出功率大和效率高,但二者的工作频率和相对频带宽度却相差很大,决定了他们之间有着本质的区别。低频功率放大器的工作频率低,但相对频带宽度却很宽。例如,自20至20000 Hz,高低频率之比达1000倍。因此它们都是采用无调谐负载,如电阻、变压器等。高频功率放大器的工作频率高(由几百kHz一直到几百、几千甚至几万MHz),但相对频带很窄。例如,调幅广播电台(535-1605 kHz的频段范围)的频带宽度为10 kHz,如中心频率取为1000 kHz,则相对频宽只相当于中心频率的百分之一。中心频率越高,则相对频宽越小。因此,高频功率放大器一般都采用选频网络作为负载回路。由于这后一特点,使得这两种放大器所选用的工作状态不同:低频功率放大器可工作于甲类、甲乙类或乙类(限于推挽电路)状态;高频功率放大器则一般都工作于丙类(某些特殊情况可工作于乙类)。 近年来,宽频带发射机的各中间级还广泛采用一种新型的宽带高频功率放大器,它不采用选频网络作为负载回路,而是以频率

OCL功率放大器的设计报告

课程设计报告 题目:由集成运放和晶体管组成的OCL 功率放大器的设计 学生:郭二珍 学生学号:1008220107 系别:电气学院 专业:自动化 届别:2015年 指导教师:廖晓纬 电气信息工程学院制 2014年3月

OCL功率放大器的设计 学生:郭二珍 指导老师:廖晓纬 电气学院10级自动化 1、绪论 功率放大器(简称功放)的作用是给音频放大器的负载R L(扬声器)提供一定的输出功率。当负载一定时,希望输出的功率尽可能大,输出信号的非线性失真尽可能地小,效率尽可能高。 OCL是英文Output Capacitor Less的缩写,意为无输出电容的功率放大器。采用了两组电源供电,使用了正负电源。在输入电压不太高的情况下,也能获得较大的输出频率。省去了输出端的耦合电容,使放大器的频率特性得到扩展。OCL功率放大器是一种直接耦合的功率放大器,它具有频响宽、保真度高、动态特性好及易于集成化等特点。性能优良的集成功率放大器给电子电路功放级的调试带来了极大的方便。集成功率放大电路还具有输出功率大、外围元件少、使用方便等优点,因此在收音机、电视机、扩音器、伺服放大电路中也得到了广泛的应用。 功率放大器可分为三种工作状态:(1)甲类工作状态Q点在交流负载的中点,输出的是一种没有削波失真的完整信号,但效率较低。(2)乙类工作状态Q点在交流负载线和IB=0输出特性曲线的交界处,放大器只有半波输出,存在严重的失真。(3)甲乙类工作状态Q点在交流负载线上略高于乙类工作点处,克服了乙类互补电路产生交越失真,提高了效率。

因此,本设计可采用甲乙类互补电路。 2、容摘要 本设计中要求设计一个由集成运放和晶体管组成的OCL功率放大器。在输入正弦波幅度Ui等于200mV,负载电阻R L等于8Ω的条件下最大输出不失真功率P o≥2W,功率放大器的频带宽度BW≥80Hz~10KHZ 功率放大电路实质上是能量转换电路,它主要要求输出功率尽可能大,效率尽可能的高,非线性失真尽可能要小,功率器件的散热较好。 本设计选用的是双电源供电的OCL互补推挽对称功放电路。 此推挽功率放大器的工作状态为甲乙类,其目的是为了减少“交越失真”。 由于两管的工作点稍高于截止点,因而均有一很小的静态工作电流I CQ。这样,便可克服管子的死区电压,使两管交替工作处的负载中电流能按正弦规律变化,从而克服了交越失真。 OCL互补推挽对称功放电路一般包括驱动级和功率输出级,前者为后者提供一定的电压幅度,后者则向负载提供足够的信号频率,以驱动负载工作。

高效率音频功率放大器设计文献综述【文献综述】

文献综述 电子信息工程 高效率音频功率放大器设计文献综述 一、前言 为了节约电路的成本,提高放大器的效率,采用普通的电子元器件设计高 效率音频功率放大器的方法,使用基本的运算放大器,构成PWM路,形成D 类功率放大器,实现了高效率,低失真的设计要求。为了提高电路的抗干扰性能,在设计中使用了电压跟随器,差动放大器,有源带通滤波器等。使设计获 得了良好的效果。 二、主题 在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的 不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放 而言,应该达到电气指标与实际听音指标的平衡与统一。 音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。 (一)早期的晶体管功放 半导体技术的进步使晶体管放大器向前迈进了一大步。自从有了晶体管,人们就开始用它制造功率放大器。  早期的放大器几乎全用锗管来制作,但由于锗管工艺上的一些原因,使得放大器中所用的晶体管,尤其是功放管性能指标不易做得很高,例如,共发射极截止频率fh的典型值为4kHz,大电流管的耐压值一般在30V一40V左右。这样,放大器的频率响应也就很狭窄,其3dB截止频率通常在10kHz左右,大大影响了音乐中高频信号的重现。再加上功放管的耐压、电流和功耗三个指标相互制约,制作较大功率的OTL或OCL放大器不易寻到三个指标都满足要求的管子,所以不得不采用变压器耦合输出。变压器的相移又使电路中加深度负反馈变得很困难,谐波失真得不到充分的抑制,因此这一时期的晶体管放大器音质是很差的。“还

功率放大器的设计

课程设计任务书 学生姓名:专业班级:电子1003班 指导教师:葛华工作单位:信息工程学院 题目: 功率放大器的设计 初始条件: 计算机、Proteus软件、Cadence软件 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、课程设计工作量:2周 2、技术要求: (1)学习Proteus软件和Cadence软件。 (2)设计一个功率放大器电路。 (3)利用Cadence软件对该电路设计原理图并进行PCB制版,用Proteus软件对该电路进行仿真。 3、查阅至少5篇参考文献。按《武汉理工大学课程设计工作规范》要求撰写设计报告书。全文用A4纸打印,图纸应符合绘图规范。 时间安排: 2013.11.11做课设具体实施安排和课设报告格式要求说明。 2013.11.11-11.16学习Proteus软件和Cadence软件,查阅相关资料,复习所设计内容的基本理论知识。 2013.11.17-11.21对功率放大器进行设计仿真工作,完成课设报告的撰写。 2013.11.22 提交课程设计报告,进行答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要........................................................................ I Abstract ................................................................... II 1 功放的工作原理及分类 (1) 1.1功放的工作原理 (1) 1.2功放的分类 (1) 2 软件介绍 (2) 2.1 Proteus (2) 2.1.1 Proteus简介 (2) 2.1.2工作界面 (2) 2.1.3 对象的放置和编辑 (3) 2.1.4 连线 (4) 2.2Cadence软件 (4) 2.2.1 Cadence简介 (4) 2.2.2 Cadence软件的特点 (4) 2.2.3电路PCB的设计步骤 (4) 3 设计方案 (6) 3.1 运算放大电路的设计 (6) 3.2 功率放大电路的设计 (7) 3.3 音频功率放大电路 (9) 3.4方案总结及仿真 (10) 4 Candence软件操作 (11) 4.1 Cadence画电路原理图 (11) 4.2 布线及PCB图 (11) 4.2.1布线注意事项 (11) 4.2.2 PCB制作 (12) 5.心得体会 (14) 6.参考文献 (15)

大功率功率放大器电路的设计

大功率功率放大器电路设计 大功率功率放大器电路设计 一. 设计理念及实现方式 (1)能推4Ω、2Ω等双低音的“大食”音箱以及专业类大粗音圈的各类专业箱。 (2)要省电、噪声小,发热量小。 (3)音质要好,能适合家居使用和专业使用。 第一点的实现就是要有大的推动功率。由于目前居室客厅面积有不断扩大的趋势,100W ×2以下功放已显得有些“力不从心”,所以本功放设计为4ΩQ 时360W ×2,2Ω时720W ×2。 第二点的实现就是电路工作在静态时的乙类小电流,靠大水塘级电容和电阻进行滤波降噪,使功放级噪声极小。而电路的工作状态又决定了电路元件的发热量很小,与一般乙类电路相当。配备的大型散热系统是为了应付连续大功率、低阻抗输出时的安全、可靠。 第三点的实现是本功放板的主要目标。目前公认的是:甲类、MOS、电子管音质好,所以本功放要达到甲类、MOS、电子管的音质。 二.大功率输出的实现 要实现大功率,首先是电源容量要大。本功放配置的电源是在截面积为35mm ×60mm的环形铁心上绕制的环牛。一次侧为1.0mm线绕484圈,二次侧为1.5mm双线并绕100圈。 整流为两只40A全桥做双桥整流,滤波为4只47000 uF电容 2只2.7kΩ电阻并接在正负电源上,使电压稳定在±62V。如电压过高可减小电阻到2.2kΩ,过低可加大电阻到3kΩ,功率用3W以上的。 除电源外,要实现大功率输出,特别是驱动“大食”音箱,要求功放输出电流能力要强,本功放每声道选用6对2SD1037管做准互补输出,可驱动直流电阻低达0.5Ω的“大食”音箱。所以4Ω时360W×2、2Ω时720W×2是有保障的。 三. 甲类、MOS、电子管音质的实现 目前人们公认的甲类、MOS、电子管的音质最好,所以本功放电路设计动态时工作于甲类的最佳状态,偏流随信号大小而同步增减,所以音质是有技术保障的。而在此工作状态下,即使更换几只一般的MOS管,对音质的提高也不明显。下面给出其原理图,如图1所示。从图1上可见到本原理图相当简洁,比一般乙类或甲乙类准互补电路还节省元件。而通过在电路板上改变一只电阻的接法就可方便地在本电路与准互补乙类或甲乙类之间变换。 四.绿色环保概念的实现 对本功放来说,实现低耗电、低噪声污染、低热辐射污染是通过以下措施实现的: (1)本功放空载时只有小电流级工作,而功率管基极电压只有0.45V,基本上是截止的,所以比一般乙类耗电少,属节电型功放。

模电音频功率放大器课程设计

课程设计报告 学生姓名:张浩学学号:201130903013 7 学 院:电气工程学院 班 级: 电自1116(实验111) 题 目: 模电音频功率放大电路设计 指导教师:张光烈职称: 2013 年 7月 4 日

1、设计题目:音频功率放大电路 2、设计任务目的与要求: 要求:设计并制作用晶体管和集成运算放大器组成的音频功率放大电路,负载为扬声器,阻抗8。 指标:频带宽50HZ~20kHZ,输出波形基本不失真;电路输出功率大于8W;输入灵敏度为100mV,输入阻抗不低于47KΩ。 模电这门课程主要讲了二极管,三极管,几种放大电路,信号运算与处理电路,正弦信号产生电路,直流稳压电源。功率放大器的作用是给音响放大器的负载RL(扬声器)提供一定的输出频率。当负载一定时,希望输出的功率尽可能大,输出的信号的非线性失真尽可能小,效率尽可能高。功率放大器的常见电路形式有OTL电路和OCL电路。有用继承运算放大器和晶体管组成的功率放大器,也有专集成电路功率放大器。本实验设计的是一个OTL功率放大器,该放大器采用复合管无输出耦合电容,并采用单电源供电。主要涉及了放大器的偏置电路克服交越失真,复合管的基本组合提高电路功率,交直流反馈电路,对称电路,并用multism软件对OTL 功率放大器进行仿真实现。根据电路图和给定的原件参数,使用multism 软件模拟电路,并对其进行静态分析,动态分析,显示波形图,计算数据等操作。 3、整体电路设计: ⑴方案比较: ①利用运放芯片 LM1875和各元器件组成音频功率放大电路,有保护电路,电源分别接+30v和-30v并且电源功率至少要50w,输出功率30w。 ②利用运放芯片TDA2030和各元器件组成音频功率放大电路,有保护电路,电源只需接+19v,另一端接地,负载是阻抗为8Ω的扬声器,输出功率大于8w。 通过比较,方案①的输出功率有30w,但其输入要求比较苛刻,添加了实验难度。而方案②的要求不高,并能满足设计要求,所以选取方案②来进行设计。 ⑵整体电路框图:

功率放大器的设计

功率放大器的仿真设计 0 引言 各种无线通信系统的发展,大大加速了半导体器件和射频功率放大器的研究进程。射频功率放大器在无线通信系统中起着至关重要的作用,它的设计好坏影响着整个系统的性能。因此,无线系统需要设计性能良好的放大器。而且,为了适应无线系统的快速发展,产品开发的周期也是一个重要因素。另外,在各种无线系统中由于不同调制类型和多载波通信的采用,射频工程师为减小功率放大器的非线性失真,尤其是设计无线基站应用的高功率放大器时面临着巨大的挑战。采用EDA工具软件进行电路设计可以掌握设计电路的性能,进一步有环设计参数,同时达到加速产品开发进程的目的。 功率放大器(PA)在整个无线通信系统中是非常重要的一环,因为它的输出功率决定了通信距离的长短,其效率决定了电池的消耗程度及使用时间。 1 功率放大器基础 1.1 功率放大器的种类 根据输入与输出信号间的大小比例关系,功率放大器可分为线性放大器与非线性放大器两种。属于线性放大器的有A类、B类及AB类放大器;属于非线性的则有C类、D类、E类、F类等类型的放大器。 (1) A类放大器是所有类型功率放大器中线性最高的,其功率元件在输入信号的全部周期内均导通,即导通角为360°,但其效率却非常低,在理想状 态下效率仅达到50%,而在实际电路中,则仍限制在30%以下。 (2) B类功率放大器的功率元件只在输入正弦波之半周期内导通,即导通角仅为180°,其效率在理想状态下可达到78%,但在实际电路中所达到的效 率不会超过60%。 (3) AB类功率放大器的特性介于A类和B类放大器之间,其功率元件偏压在远比正弦波信号峰值小的非零直流电流,因此导通角大于180°但远小于360°。一般情况下,其效率介于30%~60%之间。 (4) C类功率放大器的功率元件的导通时段比半周期短,即导通角小于180°。 其输出波形为周期性脉冲,必须并联LC滤波电路后,才可得到所需要的正弦波。在理论上,C类放大器的效率可达到100%,但在实际电路中仅能

音频功率放大器设计(明细)

电气与电子信息工程学院《电子线路设计与测试B》报告 设计题目:多级音频放大电路的设计与测试专业班级:电子信息工程技术2013(1)班学号: 201330230118 姓名: 指导教师: 设计时间: 2015/07/13~2015/07/17 设计地点:K2—306

电子线路设计与测试B成绩评定表 姓名学号 专业班级电子信息工程技术2013级(1)班 课程设计题目:多级音频放大电路的设计与测试 课程设计答辩或质疑记录: 1、对一个音频功率放大器的前置级有什么要求? 答:要求:一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。 2、试画出利用TDA2030/2030A实现的OTL功率放大器电路? 答: 3、何为D类功率放大器?D类功率放大器有什么特点? 答:(1)D类功放也叫丁类功放,是指功放管处于开关工作状态的功率放大器。 (2)特点:效率高、功率大、失真小、体积小。 成绩评定依据: 实物制作(40%): 课程设计考勤情况(10%): 课程设计答辩情况(20%): 完成设计任务及报告规范性(30%): 最终评定成绩: 指导教师签字: 年月日

目录 《电子线路设计与测试B》课程设计任务书 (4) 一、课程设计题目:多级音频放大电路的设计与测试 (4) 二、课程设计内容 (4) 三、进度安排 (4) 四、基本要求 (5) 五、课程设计考核办法与成绩评定 (5) 六、课程设计参考资料 (5) 多级音频功率放大电路的设计与测试 (6) 一、设计任务 (6) 二、设计方案分析 (6) 1、前置放大器 (6) 2、音调控制电路 (7) 3、功率放大器 (11) 三、主要单元电路参考设计 (11) 1、前置放大器电路 (12) 2、音调控制器电路 (12) 3、功率放大器电路 (14) 四、软件的仿真与调试 (15) 五、原理图与PCB的制作 (16) 六、音频功率放大器的调试 (17) 七、心得体会 (18) 八、附录 (19) 1、元件清单 (19) 2、实物图 (19) 3、文献 (19)

功率放大器设计(DOC)

电子电路设计实践 设计题目:直流稳压电源设计 系别:电气工程学院专业:电子信息工程 班级:2011级1 班姓名:腾伟峰 学号:201151746 指导教师:张全禹 时间:2013年3月17日 绥化学院电气工程学院

高频功率放大器 1设计要求 1.1 已知条件 +VCC=+12V,晶体管3DG130的主要参数为PCM=700mW,ICM=300mA,VCES≤0.6V,hfe≥30,fT≥150MHz,放大器功率增益AP≥6dB。晶体管3DA1的主要参数为PCM=1W,ICM=750mA,VCES≥1.5V,hfe≥10,fT=70MHz,AP≥13dB。 1.2 主要技术参数 输出功率P0≥500mW,工作中心频率f0≈5MHz,效率η>50%,负载RL=50Ω。 1.3 具体要求 分析高频功率放大器原理,通过给定的技术指标要求确定甲类功率放大器和丙类谐振功率放大器设计的工作状态和计算出电路中各器件参数,利用电子设计工具软件multisim对电路进行仿真测试,分析电路的特性。

2原理分析 高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器。 利用选频网络作为负载回路的功率放大器称为谐振功率放大器,这是无线电发射机中的重要组成部分。根据放大器电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型的功率放大器。电流导通角θ愈小,放大器的效率η愈高。如甲类功放的θ=180,效率η最高也只能达到50%,而丙类功放的θ< 90o,效率η可达到80%,甲类功率放大器适合作为中间级或输出功率较小的末级功率放大器。丙类功率放大器通常作为末级功放以获得较大的输出功率和较高的效率。图 1为丙类谐振功率放大器。 图 1 丙类谐振功率放大器

音频放大器的设计

四川师范大学成都学院电路与电子技术课程设计数字音频放大器的设计 学生姓名 学号 所在学院通信工程学院 专业名称通信工程 班级 指导教师 成绩 四川师范大学成都学院 二○一四年十二月

课程设计任务书

数字音频放大器的设计 内容摘要:数字音频放大器是将输入音频模拟信号或PCM数字信息变换成PWM 或PDM的脉冲信号用来控制大功率开关电路,经过低通滤波器整形实现数字信号的放大输出。数字音頻放大器也看上去成是一个一比特的功率数模变换器。放大器由由三角波振荡器、前置放大电路、PWM比较器、驱动电路、功率放大电路和 低通滤波器电路组成。 输入信号形成电路分PWM处理器和PDM处理两种,将输入信号的振幅变化变 换成脉冲宽度的变化或脉冲密度的变化。 低通滤波器的作用是将脉冲波形整形成漂亮的模拟波形,即滤除PWM或PDM 信号的载波成分。常采用功率损耗小的LC型滤波器。 本设计介绍了数字音频放大器的组成及原理,然后用QuartusⅡ软件进行仿真和模拟,用以验证实验。 关键词:PWM调制低通滤波数字音频 The design of digital audio amplifier Abstract:Digital audio amplifier is an analog input audio signal or the PCM digital information into a PWM or PDM pulse signal for controlling the power switching circuit, low-pass digital filter shaping to achieve an amplified output signal.Also appears as a digital audio amplifier is a one bit digital to analog converter power. Amplifier by the triangular wave oscillator, preamplifier circuit, PWM comparator, the driving circuit, power amplifier and a low pass filter circuit. Input signal forming circuit of two PWM processor and sub-processor PDM, the amplitude of the input signal is converted into a variation or change in the pulse density of the pulse width changes. Low-pass filter is shaped to the pulse waveform beautiful analog waveform, i.e. the carrier component was filtered PWM or PDM signal. Often with a small power loss LC filter.

音频功率放大器课程设计--OTL音频功率放大器的设计与制作-精品

学号: 课程设计 题目OTL音频功率放大器的设计与制作 学院信息工程学院 专业通信工程 班级通信1302 姓名 指导教师 2014 年 1 月23 日

课程设计任务书 题目:OTL音频功率放大器的设计与制作 初始条件: 元件:集成功放TDA2030A、集成稳压器LM7812、电阻、电容、电位计若干。 仪器:万用表、示波器、交流毫伏表、函数信号发生器、学生电源要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、课程设计工作量:1周。 2、技术要求: ①要求设计制作一个音频功率放大器频率响应20~20KHZ,效率>60﹪,失真小。完成对音频功率放大器的设计、仿真、装配与调试,并自制直流稳压电源。 ②确定设计方案以及电路原理图并用multisim进行电路仿真。 时间安排: 序号设计内容所用时间 1 布置任务及调研1天 2 方案确定0.5天 3 制作与调试 1.5天 4 撰写设计报告书1天 5 答辩1天 合计1周 指导教师签名: 系主任(或责任教师)签名:年月日

目录 摘要 (1) Abstract (2) 音频功率放大器的设计与制作 (3) 1. 设计原理及参数 (3) 1.1音频功放电路的设计 (3) 1.1.1设计原理 (3) 1.1.2 参数计算 (5) 1.2直流稳压电源的设计 (6) 1.2.1设计原理 (6) 1.2.2参数计算 (7) 2.仿真结果及分析 (8) 2.1音频功率放大电路 (8) 2.1.1仿真原理图 (8) 2.1.2仿真效果图 (9) 2.2直流稳压电源电路 (11) 2.2.1电路原理图仿真 (11) 2.2.2仿真效果图 (11) 3.实物制作与性能测试 (12) 3.1音频功放实物制作 (12) 3.2性能测试 (13) 3.2.1功率性能测试 (13) 3.2.2频率响应测试 (14) 3.3直流稳压电源制作 (14) 3.4直流稳压电源的测试 (15) 4.收获以及体会 (15)

功率放大器的基本工作原理_共7页

一.功率放大器的基本工作原理 A 类扩音机的输出级中两个(或两组)晶体管永远处于导电状态,也就是说不管有无 讯号输入 它们都保持传导电流,并使这个电流等于交流电的峰值,这时交流在最大讯号情 况下流入负载。当无讯号时,两个晶体管各流通等量的电流,因此在输出中心点上没有不 平衡的电流或电压,故无电流输入扬声器,当讯号趋向正极,线路上方的输出晶体管容许 流入较多的电流,下方的输出晶体管则相对减少电流,由于电流开始不平衡,于是流入扬 声器发声。 A 类放大方式具有最佳的线性,每个输出晶体管均放大讯号全波,完全不存在交越失 真 ( Switching Distortion ),即使不采用负反馈,它的环路失真仍十分低,因此被认为是声 音最理想的放大线路设计。但凡事总是有利亦有弊, A 类放大的缺点是效率低,因为无讯 号时仍有较大电流流入,扩音机产生高热量和浪费功率,这种功率正如输出级的热量一样 完全消散,但却没输到负载,当讯号电平增加时有些功率可进入负载,但许多仍转变为热 量。 A 类放大器是一种最浪费能量的设计,只要一开机它的耗电量最高,播放音乐时,效 率约为百分之50,即一半功率变为热量浪费。如果不计较上述的缺点, A 类扩音机是重播 音乐的理想选择,它能提供非常平滑的音质,音色圆润温暖,高音透明开扬,这些优点足 以补偿它的缺点。为了有效处理散热问题, A 类扩音机必须采用大型沉热器,有些大功率 设计还需要风扇散热。因为它的效率低,供电器一定要能提供充足的电流,一部 25瓦的 A 类扩音机供电器的能力至少够 100瓦AB 类扩音机用。所以 A 类机的体积和重量都比 AB 类大,这令制造成本增加,售价当然较贵,一般而言 A 类扩音标机的售价约为同等功 率A B 类机的两倍或以上。 B 类放大的工作方式是当无讯号输入时,输出晶体管不导电,所以不消耗功率,当有 讯号时每 对输出管各放大一半波形,彼此一开一关轮流工作完成一个全波放大,在两个输 出晶体管转换工作时便发生交越失真,因此形成非线性。纯 B 类扩音机较少,因为在讯号 非常低时失真十分严重,因交越失真令声音变得粗糙。 B 类扩音机的效率平均约为百分之 75,产生的热量较 A 类机低,允许用较小的散热器,这类放大工作当其输出为最大功率的 40.5%,扩音机内消耗的功率最高,这时为百分之 50,输出功率较低和较高时则效率增加, 因此供电器可以比 A 类机小。 AB 类工作达成性能的妥协,大多数 B 类扩音机都不是用纯 B 类工作,通常有两个偏 压,在无讯号时也有少量电流通过输出晶体管,这类扩音机在讯号小时用 A 类工作,获得 最佳线性,当讯号提高到某一个电平时自动转为 B 类工作获得较高的效率。普通机十瓦的 AB 类大约在5瓦以内用 A 类工作,由于聆听音乐时所需要的功率只有几瓦,因此 AB 类 B 类,这种设计可以 AB 类扩音机将偏 A 类 机,但产生的热 可变偏流式扩音机:可变偏流扩音机据知是美国 Threshold 公司最先发展,八十年代 日本厂家却普遍采用并创造出多种不同的名称,这种设计是利用一个线路探测输入讯号电 压,根据电 压的高低自动改变偏流,讯号电压愈低偏流愈高,等于 A 类工作,讯号电压愈 高偏流愈低达成 B 类工作,这种偏流的变化是连续性,可将交越失真减至最少。理论上这 种设计颇为理想,但这类扩音机常因偏流探测线路与伺服控制线路本身工作不准确而导致 额外的失真,能真正达到接近 A 类音质的产品不多。 C 类放大不适合 HI-FI 用,C 类(丙类)放大器较少听闻,因为它是一种失真非常高 的放大 器,只适合在通讯用途上使用。 A 类输出晶体管百分之百时间都在工作, B 类输出 晶HP 曰 扩音机在大部分时间是用 A 类工作,只在出现音乐瞬态强音时才转为 获得优良的音质和提高效率减少热量,是一种颇为合逻辑的设计。有些 流调得甚高,令其在更宽润的功率范围内以 A 类工作,使声音接近纯 量亦相对增加。

高保真音频功率放大器设计

电子技术课程设计报告——高保真音频功率放大器 上海大学机自学院自动化系 自动化 姓名:吴青耘 学号:16121324 指导老师: 李智华 2018年6月29日

一、项目名称 高传真音频功率放大器 二、用途 家庭、音乐中心装置中作主放大器 三、主要技术指标 1. 正弦波不失真输出功率Po>5W (f=1kHz,RL=8Ω) 2. 电源消耗功率P E<10W ( Po>5W ) 3. 输入信号幅度VS=200~400mV (f=1kHz,RL=8Ω, Po>5W ) 4. 输入电阻Ri>10kΩ( f=1kHz ) 5. 频率响应BW=50Hz~10kHz ( R L=8Ω,Po>5W) 四、设计步骤 1.电路形式

电路特点分析: 较典型的OTL 电路,局部反馈稳定了工作点,总体串联电压负反馈控制了放大倍数并提高输入电阻和展宽频带,退耦滤波电容及校正电容是为防止寄生振荡而设。 功率放大器通常由功率输出级、推动级(中间放大级)和输入级三部分组成。 功率输出级由互补对称电路组成。推动级(中间放大级)一般都是共射极放大电路,具有一定的电压增益。输入级的目的是为了增大开环增益,以便引入深度负反馈,改进电路的各项指标。 2.设计计算: 设计计算工作由输出级开始,逐渐反推到推动级、输入级。 (1) 电源电压的确定 输出功率 W P 50> )(228588 .01 V V cc =??= (2) 输出级(功率级)的计算 W P P V Vcc V A RL V I M M C ce cc CM 12.0112 1 375.18/112/0======= 功率管需推动电流:mA I I CM M b 5.2750/375.1/3===β 耦合电容:uF R f C L L 200021 ) 5~3(6≈=π,现取2200uF/25V 稳定电阻R 12:过大则损失功率过大,过小温度稳定性不良,通常取0.5~1欧姆。

功率放大器,功率放大器的特点及原理

功率放大器,功率放大器的特点及原理是什么? 利用三极管的电流控制作用或场效应管的电压控制作用将电源的功率转换为按照输入信号变化的电流。因为声音是不同振幅和不同频率的波,即交流信号电流,三极管的集电极电流永远是基极电流的β倍,β是三极管的交流放大倍数,应用这一点,若将小信号注入基极,则集电极流过的电流会等于基极电流的β倍,然后将这个信号用隔直电容隔离出来,就得到了电流(或电压)是原先的β倍的大信号,这现象成为三极管的放大作用。经过不断的电流及电压放大,就完成了功率放大。 功率放大器,简称“功放”。很多情况下主机的额定输出功率不能胜任带动整个音响系统的任务,这时就要在主机和播放设备之间加装功率放大器来补充所需的功率缺口,而功率放大器在整个音响系统中起到了“组织、协调”的枢纽作用,在某种程度上主宰着整个系统能否提供良好的音质输出。 一、功率放大器的特点 向负载提供信号功率的放大器,通常称为功率放大器。功率放大器工作时,信号电压和电流的幅度都比较大,因此具有许多不同于小信号放大器的特点。 l.功率放大器的效率 功串放大的实质是通过晶体管的控制作用,把电源提供给放大器的直流功率转换成负载上的交流功率。交流输出功串和直流电源功率息息相关。一个功率放大器的直流电源提供的功率究竟能有多少转换成交流输出功率呢?我们当然希望功率放大器最好能把直流功率(PE= EcIc)百分之百转换成交流输出功率(Psc=Uscisc)实际上却是不可能的。因为晶体管自身要有一定的功率消耗,各种电路元件(电阻、变压器等)要消耗一定的功率,这就有个效率问题了。放大器的效率η指输出功率Psc与电源供给的直流动率PE之比,即通常用百分比表示: η=Psc/PE 通常用百分比表示: η=Psc/PE×100% 效率越高,表示功率放大器的性能越好。 晶休管在大信号工作条件下,工作点会上下大幅度摆动。一旦工作点跳出输入或输出特性曲线的线性区,就会出现非线性失真。所以对声频功率放大器来说,输出功率总要和非线性失真联系在一起考虑。一般声频功率放大器都有两个指标棗最大输出功率和最大不失真输

相关主题
文本预览
相关文档 最新文档