当前位置:文档之家› 能量和动量的综合应用(超详细)

能量和动量的综合应用(超详细)

能量和动量的综合应用(超详细)
能量和动量的综合应用(超详细)

【本讲主要内容】

能量和动量的综合应用

相互作用过程中的能量转化及动量守恒的问题

【知识掌握】

【知识点精析】

1. 应用动量和能量的观点求解的问题综述:

该部分是力学中综合面最广,灵活性最大,内容最为丰富的部分。要牢固树立能的转化和守恒思想,许多综合题中,当物体发生相互作用时,常常伴随多种能量的转化和重新分配的过程。因此,必须牢固地以守恒(系统总能量不变)为指导,这样才能正确无误地写出能的转化和分配表达式。

2. 有关机械能方面的综述:

(1)机械能守恒的情况:

例如,两木块夹弹簧在光滑水平面上的运动,过程中弹性势能和木块的动能相互转化;木块冲上放在光滑面上的光滑曲面小车的过程,上冲过程中,木块的动能减少,转化成木块的重力势能和小车的动能。等等……

(2)机械能增加的情况:

例如,炸弹爆炸的过程,燃料的化学能转化成弹片的机械能;光滑冰面上两个人相互推开的过程,生物能转化成机械能。等等……

(3)机械能减少的情况:

例如,“子弹击木块”模型,包括“木块在木板上滑动”模型等;这类模型为什么动量守恒,而机械能不守恒(总能量守恒),请看下面的分析:

如图1所示,一质量为M 的长木板B 静止在光滑水平面上,一质量为m 的小滑块A 以水平速度v 0从长木板的一端开始在长木板上滑动,最终二者相对静止以共同速度一起滑行。

滑块A 在木板B 上滑动时,A 与B 之间存在着相互作用的滑动摩擦力,大小相等,方向相反,设大小为f 。

A 、

B 为系统,动量守恒。(过程中两个滑动摩擦力大小相等,方向相反,作用时间相同,对系统总动量没有影响,即系统的内力不影响总动量)。 由动量守恒定律可求出共同速度0

v m M m v += 上述过程中,设滑块A 对地的位移为s A ,B 对地位移为s B 。由图可知,s A ≠s B , 且s A =(s B +Δs ),根据动能定理:

对A :W fA =2020202B 2

1)(212121)(mv m M mv m mv mv s s f -+=-=?+-

对B :202B fB )(21021m

M mv M Mv fs W +=-== 以上两式表明:滑动摩擦力对A 做负功,对B 做正功,使A 的动能减少了,使B 的动能增加了。我们计算一下系统机械能的变化量:

2

1)(21202mv v m M E -+=

?

(1)撤去力F 后木块B 能够达到的最大速度是多大?

(2)木块A 离开墙壁后,弹簧能够具有的弹性势能的最大值多大?

分析:本题第一问,撤去力F 后木块B 只在弹簧弹力作用下运动,木块A 不动,弹簧的弹性势能转化为木块B 的动能,弹簧第一次恢复原长时,木块B 有最大速度。

弹簧第一次恢复原长后,由于惯性,木块B 将继续运动,弹簧被拉长,木块A 将离开墙壁。木块A 离开墙壁后,只有弹簧弹力做功,三者组成的系统机械能仍守恒,且墙壁对此系统不再施加外力,所以此系统的动量也守恒。此后当木块A 和B 具有相同的速度时,

动量和能量结合综合题附答案解析

动量与能量结合综合题 1.如图所示,水平放置的两根金属导轨位于方向垂直于导轨平面并指向纸里的匀强磁场中.导轨上有两根小金属导体杆ab和cd,其质量均为m,能沿导轨无摩擦地滑动.金属杆ab和cd与导轨及它们间的接触等所有电阻可忽略不计.开始时ab和cd都是静止的,现突然让cd杆以初速度v向右开始运动,如果两根导轨足够长,则()A.cd始终做减速运动,ab始终做加速运动,并将追上cd B.cd始终做减速运动,ab始终做加速运动,但追不上cd C.开始时cd做减速运动,ab做加速运动,最终两杆以相同速度做匀速运动 D.磁场力对两金属杆做功的大小相等 h,如图所示。2.一轻弹簧的下端固定在水平面上,上端连接质量为m的木板处于静止状态,此时弹簧的压缩量为 3h的A处自由落下,打在木板上并与木板一起向下运动,但不粘连,它们到达最低点一物块从木板正上方距离为 后又向上运动。若物块质量也为m时,它们恰能回到O点;若物块质量为2m时,它们到达最低点后又向上运动,在通过O点时它们仍然具有向上的速度,求: 1,质量为m时物块与木板碰撞后的速度; 2,质量为2m时物块向上运动到O的速度。 3.如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd静止,棒ab有指向棒cd的初速度0v,若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热Q最多是多少? (2)当ab棒的速度变为初速度的4/3时,cd棒的加速度a是多少?

高中物理公式大全(全集) 八、动量与能量

八、动量与能量 1.动量 2.机械能 1.两个“定理” (1)动量定理:F ·t =Δp 矢量式 (力F 在时间t 上积累,影响物体的动量p ) (2)动能定理:F ·s =ΔE k 标量式 (力F 在空间s 上积累,影响物体的动能E k ) 动量定理与动能定理一样,都是以单个物体为研究对象.但所描述的物理内容差别极大.动量定理数学表达式:F 合·t =Δp ,是描述力的时间积累作用效果——使动量变化;该式是矢量式,即在冲量方向上产生动量的变化. 例如,质量为m 的小球以速度v 0与竖直方向成θ角 打在光滑的水平面上,与水平面的接触时间为Δt ,弹起 时速度大小仍为v 0且与竖直方向仍成θ角,如图所示.则 在Δt 内: 以小球为研究对象,其受力情况如图所示.可见小球 所受冲量是在竖直方向上,因此,小球的动量变化只能在 竖直方向上.有如下的方程: F ′击·Δt -mg Δt =mv 0cos θ-(-mv 0cos θ) 小球水平方向上无冲量作用,从图中可见小球水平方向动量不变. 综上所述,在应用动量定理时一定要特别注意其矢量性.应用动能定理时就无需作这方 面考虑了.Δt 内应用动能定理列方程:W 合=m υ02/2-m υ02 /2 =0 2.两个“定律” (1)动量守恒定律:适用条件——系统不受外力或所受外力之和为零 公式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2 ′或 p =p ′ (2)机械能守恒定律:适用条件——只有重力(或弹簧的弹力)做功 公式:E k2+E p2=E k1+E p1 或 ΔE p = -ΔE k 3.动量守恒定律与动量定理的关系 一、知识网络 二、画龙点睛 规律

动量和能量综合专题

动量和能量综合例析 例1、如图,两滑块A、B的质量分别为m1和m2, 置于光滑的水平面上,A、B间用一劲度系数 为K的弹簧相连。开始时两滑块静止,弹簧为 原长。一质量为m的子弹以速度V0沿弹簧长度方向射入滑块A并留在其中。试求:(1)弹簧的最大压缩长度;(已知弹性势能公式E P=(1/2)KX2,其中K为劲度系数、X为弹簧的形变量) ;(2)滑块B相对于地面的最大速度和最小速度。【解】(1)设子弹射入后A的速度为V1,有: mV0=(m+m1)V1(1) 得:此时两滑块具有的相同速度为V,依前文中提到的解题策略有: (m+m1)V1=(m+m1+m 2)V (2) (3) 由(1)、(2)、(3)式解得: (2) mV0=(m+m1)V2+m2V3(4) (5)

由(1)、(4)、(5)式得: V3[(m+m1+m2)V3-2mV0]=0 解得:V3=0 (最小速度)(最大速度)例2、如图,光滑水平面上有A、B两辆小车,C球用0.5m长的细线悬挂在A车的支架上,已知mA=m B=1kg,m C=0.5kg。开始时B车静止,A车以V0=4m/s的速度驶向B车并与其正碰后粘在一起。若碰撞时间极短且不计空气阻力,g取10m/s2,求C球摆起的最大高度。 【解】由于A、B碰撞过程极短,C球尚未开始摆动, 故对该过程依前文解题策略有: m A V0=(m A+m B)V1(1) E内= (2) 对A、B、C组成的系统,图示状态为初始状态,C球摆起有最大高度时,A、B、C有共同速度,该状态为终了状态,这个过程同样依解题策略处理有: (m A+m C)V0=(m A+m B+m C)V2(3) (4)

动量与能量结合综合题附答案汇编

动量与能量结合综合题1.如图所示,水平放置的两根金属导轨位于方向垂直于导轨平面并指向纸里的匀强磁场中.导轨上有两根小金属导体杆ab和cd,其质量均为m,能沿导轨无摩擦地滑动.金属杆ab和cd与导轨及它们间的接触等所有电阻可忽略不计.开始时ab和cd都是静止的,现突然让cd杆以初速度v向右开始运动,如果两根导轨足够长,则() A.cd始终做减速运动,ab始终做加速运动,并将追上cd B.cd始终做减速运动,ab始终做加速运动,但追不上cd C.开始时cd做减速运动,ab做加速运动,最终两杆以相同速度做匀速运动 D.磁场力对两金属杆做功的大小相等 h,如图所示。2.一轻弹簧的下端固定在水平面上,上端连接质量为m的木板处于静止状态,此时弹簧的压缩量为 3h的A处自由落下,打在木板上并与木板一起向下运动,但不粘连,它们到达最低点一物块从木板正上方距离为 后又向上运动。若物块质量也为m时,它们恰能回到O点;若物块质量为2m时,它们到达最低点后又向上运动,在通过O点时它们仍然具有向上的速度,求: 1,质量为m时物块与木板碰撞后的速度; 2,质量为2m时物块向上运动到O的速度。 3.如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd静止,棒ab有指向棒cd的初速度0v,若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热Q最多是多少? (2)当ab棒的速度变为初速度的4/3时,cd棒的加速度a是多少?

动量与能量之难点解析专题5

动量与能量之难点解析 专题01 动量与能量分析之“碰撞模型” 专题02 动量与能量分析之“板-块模型” 专题03 动量与能量分析之“含弹簧系统” 专题04 动量与能量分析之“爆炸及反冲问题” 专题05 动量与能量观点在电磁感应中的应用 专题5 动量与能量观点在电磁感应中的应用 【方法总结】 解决电磁感应问题往往需要力电综合分析,在电磁感应问题中需要动量与能量分析求解时,学生往往无从下手,属于压轴考查,需要学生平时吃透典型物理模型和积累解题经验,现将动量与能量观点求解电磁感应综合问题时常出现典型模型和思路总结如下: 1. “双轨+双杆”模型 以“2019全国3卷第19题”物理情景为例:如图,方向竖直向下的匀强磁场中有两根位于同一水 平面内的足够长的平行金属导轨,两相同的光滑导体棒ab 、cd 静止在导轨上。t =0时,棒ab 以初速度v 0向右滑动。运动过程中,ab 、cd 始终与导轨垂直并接触良好: 模型分析:双轨和两导体棒组成闭合回路,通过两导体棒的感应电流相等,所受安培力大小也相等,ab 棒受到水平向左安培力,向右减速;cd 棒受到水平向右安培力,向右加速,最终导体棒ab 、cd 系统共速,感应电流消失,一起向右做匀速直线运动,该过程由导体棒ab 、cd 组成的系统合外力为零,动量守恒:共v m m v m cd ab ab )(0+= 2. 巧用“动量定理”求通过导体电荷量q 思路:动量定理得:p t BIL p t F ?=????=??安,由于t I q ??=,所以p BLq ?=,

即:BL p q ?= 【精选试题解析】 1. (2019全国Ⅲ卷)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的 平行金属导轨,两相同的光滑导体棒ab 、cd 静止在导轨上。t =0时,棒ab 以初速度v 0向右滑动。运动过程中,ab 、cd 始终与导轨垂直并接触良好,两者速度分别用v 1、v 2表示,回路中的电流用I 表示。下列图像中可能正确的是( ) 2. [多选]如图所示,两根相距为d 的足够长的光滑金属导轨固定在水平面上,导轨电阻不计。磁感应强度为B 的匀强磁场与导轨平面垂直,长度等于d 的两导体棒M 、N 平行地放在导轨上,且电阻均为R 、质量均为m ,开始时两导体棒静止。现给M 一个平行导轨向右的瞬时冲量I ,整个过程中M 、N 均与导轨接触良好,下列说法正确的是( ) A .回路中始终存在逆时针方向的电流 B .N 的最大加速度为B 2Id 2 2m 2R C .回路中的最大电流为BId 2mR D .N 获得的最大速度为I m 3. (2019浙江选考)如图所示,在间距L =0.2m 的两光滑平行水平金属导轨间存在方向垂直于 纸面(向内为正)的磁场,磁感应强度为分布沿y 方向不变,沿x 方向如下: 10.2{50.20.2 10.2Tx m B xT m x m Tx m >=-≤≤-<- 导轨间通过单刀双掷开关S 连接恒流源和电容C =1F 的未充电的电容器,恒流源可为电路提供恒定电流I =2A ,电流方向如图所示。有一质量m =0.1kg 的金属棒ab 垂直导轨静止放置于x 0=0.7m 处。开关S 掷向1,棒ab 从静止开始运动,到达x 3=-0.2m 处时,开关S 掷向2。已知棒ab 在运动过程中始终与导

(江浙选考1)202x版高考物理总复习 专题四 动量与能量观点的综合应用 考点强化练42 动量与能量

考点强化练42动量与能量观点的综合应用 1.如图所示,水平放置的宽L=0.5 m的平行导体框,质量为m=0.1 kg,一端接有R=0.2 Ω的电阻,磁感应强度B=0.4 T的匀强磁场垂直导轨平面方向向下。现有一导体棒ab垂直跨放在框架上,并能无摩擦地沿框架滑动,导体棒ab的电阻r=0.2 Ω。当导体棒ab以v=4.0 m/s的速度向右匀速滑动时,试求: (1)导体棒ab上的感应电动势的大小及感应电流的方向? (2)要维持导体棒ab向右匀速运动,作用在ab上的水平拉力为多大? (3)电阻R上产生的热功率为多大? (4)若匀速后突然撤去外力,则棒最终静止,这个过程通过回路的电荷量是多少? 2.(2018浙江嘉兴选考模拟)如图甲,两条足够长、间距为d的平行光滑非金属直轨道MN、PQ与水平面成θ角,EF上方存在垂直导轨平面的如图乙所示的磁场,磁感应强度在0~T时间内按余弦规律变化(周期为T、最大值为B0),T时刻后稳定为B0。t=0时刻,正方形金属框ABCD在平行导轨向上的恒定外力作用下静止于导轨上。T时刻撤去外力,框将沿导轨下滑,金属框在CD边、AB边经过EF 时的速度分别为v1和v2。已知金属框质量为m、边长为d、每条边电阻为R,余弦磁场变化产生的正弦交流电最大值E m=,求: (1)CD边刚过EF时,A、B两点间的电势差; (2)撤去外力到AB边刚过EF的总时间; (3)从0时刻到AB边刚过EF的过程中产生的焦耳热。

3.(2018浙江台州高三上学期期末质量评估)如图所示,两根相同平行金属直轨道竖直放置,上端用导线接一阻值为R的定值电阻,下端固定在水平绝缘底座上。底座中央固定一根绝缘弹簧,长L质量为m 的金属直杆ab通过金属滑环套在轨道上。在直线MN的上方分布着垂直轨道面向里,磁感应强度为B的足够大匀强磁场。现用力压直杆ab使弹簧处于压缩状态,撤去力后直杆ab被弹起,脱离弹簧后以速度为v1穿过直线MN,在磁场中上升高度h时到达最高点。随后直杆ab向下运动,离开磁场前做匀速直线运动。已知直杆ab与轨道的摩擦力大小恒等于杆重力的k倍(k<1),回路中除定值电阻外不计其他一切电阻,重力加速度为g。求: (1)杆ab向下运动离开磁场时的速度v2; (2)杆ab在磁场中上升过程经历的时间t。 4.(2018浙江宁波六校期末)如图所示,两根平行金属导轨MN、PQ相距d=1.0 m,两导轨及它们所在平面与水平面的夹角均为α=30°,导轨上端跨接一阻值R=1.6 Ω的定值电阻,导轨电阻不计。整个装置处于垂直两导轨所在平面且向上的匀强磁场中,磁感应强度大小B=1.0 T。一根长度等于两导轨间距的金属棒ef垂直于两导轨放置(处于静止),且与导轨保持良好接触,金属棒ef的质量m1=0.1 kg、电阻r=0.4 Ω,到导轨最底端的距离s1=3.75 m。另一根质量m2=0.05 kg的绝缘棒gh,从导轨最底端以速度v0=10 m/s沿两导轨上滑并与金属棒ef发生正碰(碰撞时间极短),碰后金属棒ef沿两导轨上滑s2=0.2 m后再次静止,此过程中电阻R产生的焦耳热Q=0.2 J。已知两棒(ef和gh)与导轨间的动摩擦因数均为μ=,g取10 m/s2,求:

能量和动量的综合应用(超详细)

【本讲主要内容】 能量和动量的综合应用 相互作用过程中的能量转化及动量守恒的问题 【知识掌握】 【知识点精析】 1. 应用动量和能量的观点求解的问题综述: 该部分是力学中综合面最广,灵活性最大,内容最为丰富的部分。要牢固树立能的转化和守恒思想,许多综合题中,当物体发生相互作用时,常常伴随多种能量的转化和重新分配的过程。因此,必须牢固地以守恒(系统总能量不变)为指导,这样才能正确无误地写出能的转化和分配表达式。 2. 有关机械能方面的综述: (1)机械能守恒的情况: 例如,两木块夹弹簧在光滑水平面上的运动,过程中弹性势能和木块的动能相互转化;木块冲上放在光滑面上的光滑曲面小车的过程,上冲过程中,木块的动能减少,转化成木块的重力势能和小车的动能。等等…… (2)机械能增加的情况: 例如,炸弹爆炸的过程,燃料的化学能转化成弹片的机械能;光滑冰面上两个人相互推开的过程,生物能转化成机械能。等等…… (3)机械能减少的情况: 例如,“子弹击木块”模型,包括“木块在木板上滑动”模型等;这类模型为什么动量守恒,而机械能不守恒(总能量守恒),请看下面的分析: 如图1所示,一质量为M 的长木板B 静止在光滑水平面上,一质量为m 的小滑块A 以水平速度v 0从长木板的一端开始在长木板上滑动,最终二者相对静止以共同速度一起滑行。 滑块A 在木板B 上滑动时,A 与B 之间存在着相互作用的滑动摩擦力,大小相等,方向相反,设大小为f 。 A 、 B 为系统,动量守恒。(过程中两个滑动摩擦力大小相等,方向相反,作用时间相同,对系统总动量没有影响,即系统的内力不影响总动量)。 由动量守恒定律可求出共同速度0 v m M m v += 上述过程中,设滑块A 对地的位移为s A ,B 对地位移为s B 。由图可知,s A ≠s B , 且s A =(s B +Δs ),根据动能定理: 对A :W fA =2020202B 2 1)(212121)(mv m M mv m mv mv s s f -+=-=?+-

动量和能量综合专题

动H和能H综合例析 例1、如图,两滑块A、B的质量分别为m i和m2, 皇8 . 置丁光滑的水平■面上,A、B问用一劲度系数7 77 // [/ 为K的弹簧相连。开始时两滑块静止,弹簧为原长。一质量为m的子弹以速度V 0沿弹簧长度方向射入滑块A并留在其中。试 求:(1)弹簧的最大压缩长度;(已知弹性势能公式E P=(1/2)KX2,其中K为劲度系数、X为弹簧的形变量);(2)滑块B相对丁地面的最大速度和最小速度。 【解】(1 )设子弹射入后A的速度为V】,有: V1 = — m V o= ( m + m i) Vi (1) 得:此时两滑块具有的相同速度为V,依前文中提到的解题策略有: )V (2) (m + m 1) Vi = (m + m i + m 2 十= -^(m + mj + 十 (2) mVo= (m + m 1) V2 + m?V3 :(皿*m])V技 +!也¥^ 由(1)、(4)、(5)式得:

V3 [ (m + m i+ m 2) V 3 — 2mV 0]=0 解得:V 3=0 (最小速度) 例2、如图,光滑水平面上有A 、B 两辆小车,C 球用0 .5 m 长的细线悬挂在A 车的 支架上,已知mA =m B =1kg , m c =0.5kg 。开始时B 车静止,A 车以V 。=4 m/s 的速度驶向B 车并与 其正碰后粘在一起。若碰撞时间极短且不计空气阻力, g 取10m/s 2 ,求C 球摆起的 最大高度。 【解】由丁 A 、B 碰撞过程极短,C 球尚未开始摆动, B A 1 _ ~~i I 1 ., “一橙一、厂 / / / / / / / / / / / / / / / 故对该过程依前文解题策略有: m A V °=(m A +m B )V I (1) -m A VQ 3 --C m A +m —)W E 内= 」 ⑵ B 、 C 有共同速度,该状态为终了状态,这个过程同样依解题策略处理有: (m A +mC )V 0=(m A +m B +m C )V 2 (3) 由上述方程分别所求出A 、B 刚粘合在一起的速度V 1=2 m / s, E 内=4 J, 系统最后的共同速度V 2= 2 .4 m/s,最后求得小球C 摆起的最大高度 h=0.16m 。 例3、质量为m 的木块在质量为 M 的长木板中央,木块与长木板间的动摩擦因数为 ,木 块和长木板一起放在光滑水平面上,并以速度 v 向右运动。为了使长木板能停在水平面上, 可以在木块上作用一时间极短的冲量。试求: (1) 要使木块和长木板都停下来,作用在木块上水平冲量的大小和方向如何? (2) 木块受到冲量后,瞬间获得的速度为多大?方向如何? (3) 长木板的长度要满足什么条件才行? 2mV 0 (最大速度) 对A 、B 、C 组成的系统,图示状态为初始状态, C 球摆起有最大高度时,A 、

专题20 动量与能量综合问题(解析版)

2021届高考物理一轮复习热点题型归纳与变式演练 专题20 动量与能量综合问题 【专题导航】 目录 热点题型一 应用动量能量观点解决“子弹打木块”模型 ..................................................................................... 1 热点题型二 应用动量能量观点解决“弹簧碰撞”模型 ......................................................................................... 4 热点题型三 应用动量能量观点解决“板块”模型 ............................................................................................... 9 热点题型四 应用动量能量观点解决斜劈碰撞现象 ............................................................................................. 13 【题型演练】 (16) 【题型归纳】 热点题型一 应用动量能量观点解决“子弹打木块”模型 子弹打木块实际上是一种完全非弹性碰撞。作为一个典型,它的特点是:子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动。下面从动量、能量和牛顿运动定律等多个角度来分析这一过程。 设质量为m 的子弹以初速度0v 射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。求木块对子弹的平均阻力的大小和该过程中木块前进的距离。 要点诠释:子弹和木块最后共同运动,相当于完全非弹性碰撞。 从动量的角度看,子弹射入木块过程中系统动量守恒:()v m M mv +=0……① 从能量的角度看,该过程系统损失的动能全部转化为系统的内能。设平均阻力大小为f ,设子弹、木块的位移大小分别为1s 、2s ,如图所示,显然有d s s =-21 对子弹用动能定理:20212 121mv mv s f -=?- ……① 对木块用动能定理:222 1 Mv s f =? ……① ①相减得:()() 2 22022121v m M Mm v m M mv d f +=+-= ? ……① 对子弹用动量定理:0 -mv mv t f -=? ……① s 2 d s 1 v 0

高中物理动量和能量知识点

学大教育设计人:马洪波 高考物理知识归纳(三) ---------------动量和能量 1.力的三种效应: 力的瞬时性(产生a)F=ma 、运动状态发生变化牛顿第二定律 时间积累效应( 冲量)I=Ft 、动量发生变化动量定理 空间积累效应( 做功)w=Fs 动能发生变化动能定理 2.动量观点:动量:p=mv= 2mE 冲量:I = F t K 动量定理:内容:物体所受合外力的冲量等于它的动量的变化。 公式: F 合t = mv ’一mv (解题时受力分析和正方向的规定是关键) I=F 合t=F 1t 1+F 2t 2+---= p=P 末-P 初=mv 末-mv 初 动量守恒定律:内容、守恒条件、不同的表达式及含义:' p p ;p 0;p1 - p 2 P=P′(系统相互作用前的总动量P 等于相互作用后的总动量P′) ΔP=0 (系统总动量变化为0) 如果相互作用的系统由两个物体构成,动量守恒的具体表达式为 P1+P2=P1′+P2′(系统相互作用前的总动量等于相互作用后的总动量) m1V 1+m2V 2=m1V 1′+m2V2′ ΔP=-ΔP'(两物体动量变化大小相等、方向相反) 实际中应用有:m1v1+m2v2= ' ' m1v m v ;0=m1v1+m2v2 m1v1+m2v2=(m1+m2)v 1 2 2 共 原来以动量(P)运动的物体,若其获得大小相等、方向相反的动量(-P),是导致物体静止或反向运动的临界条件。即:P+(-P)=0 注意理解四性:系统性、矢量性、同时性、相对性 矢量性:对一维情况,先选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负,把矢 量运算简化为代数运算。 相对性: 所有速度必须是相对同一惯性参照系。 同时性:表达式中v1 和v2 必须是相互作用前同一时刻的瞬时速度,v ’和v ’必须是相互作用后同一时刻 1 2 的瞬时速度。 解题步骤:选对象,划过程;受力分析。所选对象和过程符合什么规律?用何种形式列方程;(先要规定正方向)求解并讨论结果。 3.功与能观点: 功W = Fs cos (适用于恒力功的计算)①理解正功、零功、负功②功是能量转化的量度 W= P ·t ( p= w t = F S t =Fv) 功率:P = W t (在t 时间内力对物体做功的平均功率) P = Fv (F 为牵引力,不是合外力;V 为即时速度时,P 为即时功率;V 为平均速度时,P 为平均功率;P 一定时,F 与V 成正比) 动能:E K= 1 2 mv 2 2 p 2m 重力势能E p = mgh (凡是势能与零势能面的选择有关)

高中物理运用动量和能量观点解题的思路

运用动量和能量观点解题的思路 动量守恒定律、机械能守恒定律、能量守恒定律比牛顿运动定律的适用范围更广泛,是自然界中普遍适用的基本规律,因此是高中物理的重点,也是高考考查的重点之一。试题常常是综合题,动量与能量的综合,或者动量、能量与平抛运动、圆周运动、热学、电磁学、原子物理等知识的综合。试题的情景常常是物理过程较复杂的,或者是作用时间很短的,如变加速运动、碰撞、爆炸、打击、弹簧形变等。 冲量是力对时间的积累,其作用效果是改变物体的动量;功是力对空间的积累,其作用效果是改变物体的能量;冲量和动量的变化、功和能量的变化都是原因和结果的关系,在此基础上,还很容易理解守恒定律的条件,要守恒,就应不存在引起改变的原因。能量还是贯穿整个物理学的一条主线,从能量角度分析思考问题是研究物理问题的一个重要而普遍的思路。 应用动量定理和动能定理时,研究对象一般是单个物体,而应用动量守恒定律和机械能守恒定律时,研究对象必定是系统;此外,这些规律都是运用于物理过程,而不是对于某一状态(或时刻)。因此,在用它们解题时,首先应选好研究对象和研究过程。对象和过程的选取直接关系到问题能否解决以及解决起来是否简便。选取时应注意以下几点:1.选取研究对象和研究过程,要建立在分析物理过程的基础上。临界状态往往应作为研究过程的开始或结束状态。 2.要能视情况对研究过程进行恰当的理想化处理。 3.可以把一些看似分散的、相互独立的物体圈在一起作为一个系统来研究,有时这样做,可使问题大大简化。 4.有的问题,可以选这部分物体作研究对象,也可以选取那部分物体作研究对象;可以选这个过程作研究过程,也可以选那个过程作研究过程;这时,首选大对象、长过程。 确定对象和过程后,就应在分析的基础上选用物理规律来解题,规律选用的一般原则是:1.对单个物体,宜选用动量定理和动能定理,其中涉及时间的问题,应选用动量定理,而涉及位移的应选用动能定理。 2.若是多个物体组成的系统,优先考虑两个守恒定律。 3.若涉及系统内物体的相对位移(路程)并涉及摩擦力的,要考虑应用能量守恒定律。 例1图1中轻弹簧的一端固定,另一端与滑块B相连,B静止在水平直导轨上,弹簧处于原长状态。另一质量与B相同的滑块A,从导轨上的P点以某一初速度向B滑行。当A 滑过距离时,与B相碰,碰撞时间极短,碰后A、B紧贴在一起运动,但互不粘连。已知最后A恰好回到出发点P并停止。滑块A和B与导轨的摩擦因数都为,运动过程中弹簧最大形变量为,重力加速度为。求A从P点出发时的初速度。 解析:首先要将整个物理过程分析清楚,弄清不同阶段相互作用的物体和运动性质,从而为正确划分成若干阶段进行研究铺平道路。即A先从P点向左滑行过程,受摩擦力作用做 匀减速运动。设A刚接触B时的速度为,对A根据动能定理,有

物理高考总复习动量与能量的综合压轴题(各省市高考题,一模题答案详解)

高考第2轮总复习首选资料 动量的综合运用 1.(20XX 年重庆卷理科综合能力测试试题卷,T25 ,19分) 某兴趣小组用如题25所示的装置进行实验研究。他们在水平桌面上固定一内径为d 的圆柱形玻璃杯,杯口上放置一直径为 2 3 d,质量为m 的匀质薄原板,板上放一质量为2m 的小物体。板中心、物块均在杯的轴线上,物块与板间动摩擦因数为μ,不计板与杯口之间的摩擦力,重力加速度为g ,不考虑板翻转。 (1)对板施加指向圆心的水平外力F ,设物块与板 间最大静摩擦力为max f ,若物块能在板上滑动,求F 应满足的条件。 (2)如果对板施加的指向圆心的水平外力是作用时间极短的较大冲击力,冲量为I , ①I 应满足什么条件才能使物块从板上掉下? ②物块从开始运动到掉下时的位移s 为多少? ③根据s 与I 的关系式说明要使s 更小,冲量应如何改变。 答案: (1)设圆板与物块相对静止时,它们之间的静摩擦力为f ,共同加速度为a 由牛顿运动定律,有 对物块 f =2ma 对圆板 F -f =ma 两物相对静止,有 f ≤f max 得 F≤ 32 f max 相对滑动的条件 m a x 3 2 F f > (2)设冲击刚结束的圆板获得的速度大小为0v ,物块掉下时,圆板和物块速度大小分别为1v 和2v 由动量定理,有0I mv = 由动能定理,有 对圆板2210311 2()422mg s d mv mv μ-+=- 对物块221 2(2)02 mgs m v μ-=- 由动量守恒定律,有 0122mv mv mv =+ 要使物块落下,必须12v v > 由以上各式得

3 2 I > s = 2 12g μ ? ?? ? 分子有理化得 s =2 3 12md g μ?? ? 根据上式结果知:I 越大,s 越小. 2.(20XX 年湛江市一模理综) 如图所示,光滑水平面上有一长板车,车的上表面0A 段是一长为己的水平粗 糙轨道,A 的右侧光滑,水平轨道左侧是一光滑斜面轨道,斜面轨道与水平轨道在O 点平 滑连接。车右端固定一个处于锁定状态的压缩轻弹簧,其弹性势能为Ep ,一质量为m 的小物体(可视为质点)紧靠弹簧,小物体与粗糙水平轨道间的动摩擦因数为μ,整个装置处于静止状态。现将轻弹簧解除锁定,小物体被弹出后滑上水平粗糙轨道。车的质量为 2m ,斜面轨道的长度足够长,忽略小物体运动经过O 点处产生的机械能损失,不计空气阻力。求: (1)解除锁定结束后小物体获得的最大动能; (2)当∥满足什么条件小物体能滑到斜面轨道上,满足此条件时小物体能上升的最 大高度为多少? 解析:(1)设解锁弹开后小物体的最大速度饷大小为v 1,小物体的最大动啦为E k ,此时长板车的速度大小为v 2,研究解锁弹开过程小物体和车组成的系统,根据动量守恒和机械能守恒,有 ①(2分) ②(3分) ③(1分) 联立①②③式解得 ④(2分) (2)小物体相对车静止时,二者有共同的速度设为V 共 ,长板车和小物体组成的系统水平方向动量守恒 ⑤(2分) 所以v 共=0 ⑥(1分) 120mv mv -=221211 .222p E mv mv = +2111 2 k E mv =12 3k p E E =(2)0m m v +=共

弹簧的动量和能量问题#(精选.)

弹簧的动量和能量问题 班级__________ 座号_____ 姓名__________ 分数__________ 一、知识清单 1.弹性势能的三种处理方法 弹性势能E P=?kx2,高考对此公式不作要求,因此在高中阶段出现弹性势能问题时,除非题目明确告诉了此公式,否则不需要此公式即可解决,其处理方法常有以下三种: ①功能法:根据弹簧弹力做的功等于弹性势能的变化量计算;或根据能量守恒定律计算出弹性势能; ②等值法:压缩量和伸长量相同时,弹簧对应的弹性势能相等,在此过程中弹性势能的变化量为零; ③“设而不求”法:如果两次弹簧变化量相同,则这两次弹性势能变化量相同,两次作差即可消去。 二、例题精讲 2.(2006年·天津理综)如图所示,坡道顶端距水平面高度为h,质量为m1的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,一端与质量为m2的档板B相连,弹簧处于原长时,B恰位于滑道的末端O点.A与B碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM段A、B与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g,求:(1)物块A在与挡板B碰撞前瞬间速度v的大小; (2)弹簧最大压缩量为d时的弹性势能E p(设弹簧处于原长时弹性势能为零). 3.如图所示,在竖直方向上,A、B两物体通过劲度系数为k=16 N/m的轻质弹簧相连,A放在水平地面上,B、C两物体通过细线绕过轻质定滑轮相连,C放在倾角α=30°的固定光滑斜面上. 用手拿住C,使细线刚刚拉直但无拉力作用,并保证ab段的细线竖直、cd段的细线与斜面平行.已知A、B的质量均为m=0.2 kg,重力加速度取g=10 m/s2,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放C后,C沿斜面下滑,A刚离开地面时,B获得最大速度,求:

高中物理专题练习:动量与能量问题综合应用

高中物理专题练习:动量与能量问题综合应用 时间:60分钟满分:100分 一、选择题(本题共6小题,每小题8分,共48分.其中 1~4为单选,5~6为多选) 1.如图所示,在光滑水平面上的两小车中间连接有一根处于压缩状态的轻弹簧,两手分别 按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中错误的是( ) A.两手同时放开后,系统总动量始终为零 B.先放开左手,再放开右手之后动量不守恒 C.先放开左手,后放开右手,总动量向左 D.无论何时放手,在两手放开后、弹簧恢复原长的过程中,系统总动量都保持不变,但系统 的总动量不一定为零 答案 B 解析当两手同时放开时,系统所受的合外力为零,所以系统的动量守恒,又因开始时总动 量为零,故两手同时放开后系统总动量始终为零,A正确;先放开左手,左边的物体向左运动,再 放开右手后,系统所受合外力为零,故系统在两手都放开后动量守恒,且总动量方向向左,故B 错误,C、D正确. 2.(湖南六校联考)如图所示,质量为m的均匀木块静止在光滑水平面上,木块左右两侧各 有一位拿着完全相同步枪和子弹的射手.首先左侧射手开枪,子弹水平射入木块的最大深度为 d ,然后右侧射手开枪,子弹水平射入木块的最大深度为d2.设子弹均未射穿木块,且两颗子弹1 与木块之间的作用力大小均相同.当两颗子弹均相对于木块静止时,下列判断正确的是( ) A.木块静止,d1=d2B.木块向右运动,d1

可得:m 弹v 弹+0-m 弹v 弹=(2m 弹+m )v 共,解得v 共=0.开枪前后系统损失的机械能等于子弹射入木块时克服阻力所做的功,左侧射手开枪后,右侧射手开枪前,把左侧射手开枪打出的子弹和木块看做一个系统,设子弹射入木块时受到的平均阻力大小为f ,则由动量守恒定律有:m 弹v 弹 +0=(m 弹+m )v 共′,则v 共′= m 弹m 弹+m v 弹,左侧射手射出的子弹射入木块中时,该子弹和木块组 成的系统损失的机械能ΔE 1=12m 弹v 2 弹-12(m 弹+m )v 共′2=fd 1,右侧射手开枪打出的子弹射入木 块时,则有-m 弹v 弹+(m 弹+m )v 共′=(2m 弹+m )v 共,系统损失的机械能ΔE 2=12m 弹v 2弹 +1 2 (m 弹+m )v 共′2-0=fd 2,ΔE 1<ΔE 2,故d 1

高中物理动量和能量知识归纳

高考物理知识归纳(三) ---------------动量和能量 1.力的三种效应: 力的瞬时性(产生a )F=ma 、?运动状态发生变化?牛顿第二定律 时间积累效应(冲量)I=Ft 、?动量发生变化?动量定理 空间积累效应(做功)w=Fs ?动能发生变化?动能定理 2.动量观点:动量:p=mv= K mE 2 冲量:I = F t 动量定理:内容:物体所受合外力的冲量等于它的动量的变化。 公式: F 合t = mv ’ 一mv (解题时受力分析和正方向的规定是关键) I=F 合t=F 1t 1+F 2t 2+---=?p=P 末-P 初=mv 末-mv 初 动量守恒定律:内容、守恒条件、不同的表达式及含义:'p p =;0p =?;21p -p ?=? P =P ′ (系统相互作用前的总动量P 等于相互作用后的总动量P ′) ΔP =0 (系统总动量变化为0) 如果相互作用的系统由两个物体构成,动量守恒的具体表达式为 P 1+P 2=P 1′+P 2′ (系统相互作用前的总动量等于相互作用后的总动量) m 1V 1+m 2V 2=m 1V 1′+m 2V 2′ ΔP =-ΔP ' (两物体动量变化大小相等、方向相反) 实际中应用有:m 1v 1+m 2v 2=' 22' 11v m v m +; 0=m 1v 1+m 2v 2 m 1v 1+m 2v 2=(m 1+m 2)v 共 原来以动量(P)运动的物体,若其获得大小相等、方向相反的动量(-P),是导致物体静止或反向运动的临界条件。即:P+(-P)=0 注意理解四性:系统性、矢量性、同时性、相对性 矢量性:对一维情况,先选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负,把矢量运算 简化为代数运算。 相对性:所有速度必须是相对同一惯性参照系。 同时性:表达式中v 1 和v 2 必须是相互作用前同一时刻的瞬时速度,v 1 ’和v 2’ 必须是相互作用后同一时刻的瞬时 速度。 解题步骤:选对象,划过程;受力分析。所选对象和过程符合什么规律?用何种形式列方程;(先要规定正方向)求解并讨论结果。 3.功与能观点: 功W = Fs cos ? (适用于恒力功的计算)①理解正功、零功、负功②功是能量转化的量度 W= P ·t (?p= t w =t FS =Fv) 功率:P = W t (在t 时间内力对物体做功的平均功率) P = F v

高中物理:《动量和能量的综合应用》教案

动量和能量的综合应用 一. 教学内容: 动量和能量的综合应用 二. 重点、难点: 1. 重点:分过程及状态使用动量守恒和能量规律 2. 难点:动量和能量的综合应用 【典型例题】 [例1](1)如图,木块B 与水平桌面的接触是光滑的,子弹A 沿水平方向射入木块后,留在木块内,将弹簧压缩到最短,现将子弹、木块和弹簧(质量不可忽略)合在一起作为研究对象(系统),此系统从子弹开始射入到弹簧压缩到最短的整个过程中,动量是否守恒。 (2)上述情况中动量不守恒而机械能守恒的是( ) A. 子弹进入物块B 的过程 B. 物块B 带着子弹向左运动,直到弹簧压缩量达最大的过程 C. 弹簧推挤带着子弹的物块B 向右移动,直到弹簧恢复原长的过程 D. 带着子弹的物块B 因惯性继续向右移动,直到弹簧伸长量达最大的过程 答案:(1)不守恒;(2)BCD 解析:以子弹、弹簧、木块为研究对象,分析受力。在水平方向,弹簧被压缩是因为受 到外力,所以系统水平方向动量不守恒。由于子弹射入木块过程,发生剧烈的摩擦,有摩擦力做功,系统机械能减少,也不守恒。 [例2] 在光滑水平面上有A 、B 两球,其动量大小分别为10kg ·m/s 与15kg ·m/s ,方向均为向东,A 球在B 球后,当A 球追上B 球后,两球相碰,则相碰以后,A 、B 两球的动量可能分别为( ) A. 10kg ·m/s ,15kg ·m/s B. 8kg ·m/s ,17kg ·m/s C. 12kg ·m/s ,13kg ·m/s D. -10kg ·m/s ,35kg ·m/s 答案:B 解析:① A 与B 相碰时,B 应做加速,故p B ′>p B ,即B 的动量应变大,故A 、C 不对, 因A 、C 两项中的动量都不大于p B =15kg ·m/s 。② A 、B 相碰时,动能不会增加,而D 选项 碰后E k ′=B A B A m m m m 2152102352012 222+>+ 故不合理。 [例3] 在光滑的水平地面上,质量m 1=0.1kg 的轻球,以V 1=10m/s 的速度和静止的重球发生正碰,重球质量为m 2=0.4kg ,若设V 1的方向为正,并以V 1’和V 2’分别表示m 1 和m 2的碰后速度,判断下列几组数据出入不可能发生的是( ) A. V’1=V’2=2m/s B. V’1=0,V’2=2.5m/s

高考物理一轮复习课时跟踪检测(二十一) 动量与能量的综合问题

课时跟踪检测(二十一) 动量与能量的综合问题 [A 级——基础小题练熟练快] 1.(多选)(2020·青岛市模拟)如图,轻质弹簧上端悬挂于天花板,下端系一 圆盘A ,处于静止状态。一圆环B 套在弹簧外,与圆盘A 距离为h ,让环自 由下落撞击圆盘,碰撞时间极短,碰后圆环与圆盘共同向下开始运动,下列 说法正确的是( ) A .整个运动过程中,圆环、圆盘与弹簧组成的系统机械能守恒 B .碰撞后环与盘一起做匀加速直线运动 C .碰撞后环与盘一块运动的过程中,速度最大的位置与h 无关 D .从B 开始下落到运动到最低点过程中,环与盘重力势能的减少量大于弹簧弹性势能的增加量 解析:选CD 圆环与圆板碰撞过程,时间极短,内力远大于外力,系统总动量守恒,由于碰后速度相同,为完全非弹性碰撞,机械能不守恒,故A 错误;碰撞后环与盘一起向下运动过程中,受重力,弹簧弹力,由于弹力增大,整体受到的合力变化,所以加速度变化,故B 错误;碰撞后平衡时,有kx =(m +M )g ,即碰撞后新平衡位置与下落高度h 无关,故C 正确;从B 开始下落到运动到最低点过程中,环与盘发生完全非弹性碰撞,有能量损失,故环与盘重力势能的减少量大于弹簧弹性势能的增加量,故D 正确。 2.(多选)(2019·南昌模拟)如图甲所示,在光滑水平面上,轻质弹簧一端固定,物体A 以速度v 0向右运动压缩弹簧,测得弹簧的最大压缩量为x 。现让弹簧一端连接另一质量为m 的物体B (如图乙所示),物体A 以2v 0的速度向右压缩弹簧,测得弹簧的最大压缩量仍为x ,则( ) A .物体A 的质量为3m B .物体A 的质量为2m C .弹簧压缩量最大时的弹性势能为32 m v 02 D .弹簧压缩量最大时的弹性势能为m v 02 解析:选AC 对题图甲,设物体A 的质量为M ,由机械能守恒定律可得,弹簧压缩x 时弹性势能E p =12 M v 02;对题图乙,物体A 以2v 0的速度向右压缩弹簧,物体A 、B 组成的

10.4电磁感应与动量、能量的综合应用

1 电磁感应与动量、能量的综合应用 题组一:动量守恒、动量定理 【例1】如图所示,两根间距为l 的光滑金属导轨(不计电阻),由一段圆弧部分与一段无限长的水平段部分组成。其水平段加有竖直向下方向的匀强磁场,其磁感应强度为B ,导轨水平段上静止放置一金属棒 cd ,质量为2m 。,电阻为2r 。另一质量为m ,电阻为r 的金属棒ab ,从圆弧段M 处由静止释放下滑至N 处 进入水平段,圆弧段MN 半径为R ,所对圆心角为60°,求: (1)ab 棒在N 处进入磁场区速度多大?此时棒中电流是多少? (2)cd 棒能达到的最大速度是多大? (3)cd 棒由静止到达最大速度过程中,系统所能释放的热量是多少? 【例2】(动量定律)如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =0.50T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。导轨间的距离l=0.20m 。两根质量均为 m=0.10kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻 为R =0.50Ω。在t =0时刻,两杆都处于静止状态。现有一与导轨平行、大小为0.20N 的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动。经过t =5.0s ,金属杆甲的加速度为a =1.37m/s 2 ,问此时两金属杆的速度各为多少? 【例3】两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少. (2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?

相关主题
文本预览
相关文档 最新文档