当前位置:文档之家› 微晶纤维素USP

微晶纤维素USP

微晶纤维素USP
微晶纤维素USP

Microcrystalline Cellulose

Cellulose [9004-34-6].

DEFINITION

Microcrystalline Cellulose is purified, partially depolymerized cellulose prepared by treating alpha cellulose, obtained as a pulp from fibrous plant material, with mineral acids. IDENTIFICATION

? A. Procedure

Iodinated zinc chloride solution: Dissolve 20 g of zinc chloride and 6.5 g of potassium iodide in 10.5 mL of water. Add 0.5 g of iodine, and shake for 15 min.

Sample: 10 mg

Analysis: Place the Sample on a watch glass, and disperse in 2 mL of Iodinated zinc chloride solution.

Acceptance criteria: The substance takes on a violet-blue color.

氯化锌碘试液:取氯化锌20g、碘化钾6.5g,加水10.5ml。再加碘0.5g,振摇15min。

测定:取本品10mg,置表面皿上,加氯化锌碘试液2ml。

标准规定:应变为蓝紫色。

Change to read:

? B. Procedure

Sample: 1.3 g of Microcrystalline Cellulose, accurately weighed to 0.1 mg

Analysis: Transfer the Sample to a 125-mL conical flask. Add 25.0 mL of water and 25.0 mL of 1.0 M cupriethylenediamine hydroxide solution. Immediately purge the solution with nitrogen, insert the stopper, and shake on a wrist-action shaker, or other suitable mechanical shaker, until completely dissolved. Transfer an appropriate volume of the Sample solution to a calibrated number 150 Cannon-Fenske, or equivalent, viscometer. Allow the solution to equilibrate at 25 ±0.1 for NLT 5 min. Time the flow between the two marks on the viscometer, and record the flow time, t1, in s.

取本品1.3g,精密称定,置125mL具塞锥形瓶中,精密加入水25ml,再精密加入1mol/L 双氢氧化乙二胺铜溶液25ml,立即通入氮气以排除瓶中空气,密塞,强力振摇,使微晶纤维素溶解;取适量,置25±0.1℃水浴中,约5min后,移至刻度为150的坎农-芬斯克毛细管粘度计或同等的黏度计内(毛细管内径为0.7 ~1.0mm,选用适宜粘度计常数K1 ),照黏度测定法,于25±0.1℃水浴中测定。记录供试品溶液流经黏度计上下两刻度时的时间t1,按下式计算供试品溶液的运动黏度。

Calculate the kinematic viscosity, (KV)1, of the Microcrystalline Cellulose taken:

微晶纤维素的运动黏度(KV)1按下式计算:

Result = t1 × k1

t1 = flow time (s)

k1 = viscometer constant (see Viscosity—Capillary Methods 911 (CN 1-May-2015) )

Obtain the flow time, t2, for 0.5 M cupriethylenediamine hydroxide solutions using a number 100 Cannon-Fenske, or equivalent, viscometer.

用刻度为100的坎农-芬斯克毛细管粘度计或同等的黏度计测定0.5M双氢氧化乙二胺铜溶液流经黏度计上下两刻度时的时间t2,按下式计算空白溶液的运动黏度。

Calculate the kinematic viscosity, (KV)2, of the solvent:

空白溶液的运动黏度(KV)2按下式计算:

Result = t2 × k2

t2 = flow time for 0.5 M cupriethylenediamine hydroxide solutions (s)

t2 =0.5M双氢氧化乙二胺铜溶液流经黏度计上下两刻度时的时间(s)

k2 = viscometer constant

k2 =黏度计常数

Determine the relative viscosity,ηrel, of the Microcrystalline Cellulose specimen taken:

按下式计算微晶纤维素的相对黏度ηrel:

Result = (KV)1/(KV)2

(KV)1 = = kinematic viscosity of the Microcrystalline Cellulose taken

(KV)1 =微晶纤维素的运动黏度

(KV)2 = = kinematic viscosity of the solvent

(KV)1 =空白溶液的运动黏度

Determine the intrinsic viscosity, [η]c, by interpolation, using the Intrinsic Viscosity Table in the Reference Tables section.

在附表中查找特性黏数[η]c

Calculate the degree of polymerization, P:

按下式计算聚合度P:

Result = [(95) × [η]c]/{WS × [(100 - %LOD)/100]}

[η]c = intrinsic viscosity

[η]c =特性黏数

WS = weight of the Microcrystalline Cellulose taken (g)

WS =微晶纤维素质量(g)

%LOD = value obtained from the test for Loss on Drying

%LOD =干燥失重值

Acceptance criteria: The degree of polymerization is not greater than 350.

标准规定:聚合度应不超过350。

IMPURITIES

Inorganic Impurities

? Residue on Ignition 281: NMT 0.1%

本实验依照美国药典炽灼残渣<281>项下方法测定;

标准规定:不得过0.1%。

Delete the following:

? Heavy Metals, Method II 231: NMT 10 ppm(Official 1-Dec-2015)

本实验依照美国药典重金属<231>项下方法II测定;(Official 1-Dec-2015)

标准规定:不得过10 ppm

SPECIFIC TESTS

? Microbial Enumeration Tests 61 and Tests for Specified Microorganisms 62: The total aerobic microbial count does not exceed 1000 cfu/g, and the total combined molds and yeasts count does not exceed 100 cfu/g. It meets the requirements of the tests for absence of Staphylococcus aureus and Pseudomonas aeruginosa and for the absence of Escherichia coli and Salmonella species.

本试验依照美国药典微生物限度检查<61>和指定微生物限度<62>项下方法测定,

微生物限度:需氧菌总数不得过1000cfu/g,霉菌和酵母菌总数不得过100cfu/g。不得检出金黄色葡萄球菌、铜绿假单胞菌、大肠埃希菌和沙门菌。

? Conductivity /电导率

Sample: 5 g

样品:5g

Analysis: Shake the Sample with 40 mL of water for 20 min, and centrifuge. Retain the supernatant for use in the pH test. Using an appropriate conductivity meter that has been standardized with a potassium chloride conductivity calibration standard having a conductivity of 100 μS/cm, measure the conductivity of the supernatant after a stable reading is obtained, and measure the conductivity of the water used to prepare the test specimen.

Acceptance criteria: The conductivity of the supernatant does not exceed the conductivity of the water by more than 75 μS/cm.

取本品5.0g,加水40ml,振摇20min,离心,取一部分上清液测定PH用。取合适的电导率仪,用氯化钾溶液标化电导率校正曲线,使电导率为100μS/cm,取上清液,测定电导率,同法测定制备供试品溶液所用水的电导率,两者之差不得过75 μS/cm。

? pH 791: 5.0–7.5 in the supernatant obtained in the Conductivity test

本实验依照美国药典PH<791>项下方法测定;

供试品溶液:取电导率测定项下离心上清液作为供试品溶液;

标准规定:PH应为 5.0–7.5

? Loss on Drying 731: Dry a sample at 105 for 3 h: it loses NMT 7.0% of its weight, or some other lower percentage, or is within a percentage range, as specified in the labeling.

Loss on Drying/干燥失重

本实验依照美国药典干燥失重<731>项下方法测定;

测定: 取本品于105℃下干燥3h;

标准规定:不得过7.0%。

? Bulk Density

堆密度

Analysis: Use a volumeter that has been fitted with a 10-mesh screen. The volumeter is freestanding of the brass or stainless steel cup, which is calibrated to a capacity of 25.0 ± 0.05 mL and has an inside diameter of 30.0 ± 2.0 mm. Weigh the empty cup, position it under the chute, and slowly pour the powder from a height of 5.1 cm (2 in) above the funnel through the volumeter, at a rate suitable to prevent clogging, until the cup overflows. [Note—If excessive clogging of the screen occurs, remove the screen. ] Level the excess powder, and weigh the filled cup. Calculate the bulk density by dividing the weight of the powder in the cup by the volume of the cup. Acceptance criteria: The bulk density is within the labeled specification.

10号筛板的容积计,经校准容积为25.0 ± 0.05 mL ,内径为30.0 ± 2.0 mm黄铜或不锈钢制圆柱杯。称量圆柱杯质量,放在漏斗下方,在容积计的漏斗上方5.1 cm处小心倒入本品,

控制速度以免堵塞,直至本品溢出圆柱杯。除去溢出部分,称量装满的圆柱杯重量,计算溶积密度。

标准规定:

? Particle Size Distribution

粒度分布

[Note—In cases where there are no functionality-related concerns regarding the particle size distribution of the article, this test may be omitted. ]

Where the labeling states the particle size distribution, determine the particle size distribution as directed in Particle Size Distribution Estimation by Analytical Sieving 786, or by a suitable validated procedure.

? Water-Soluble Substances

水中溶解物

Sample: 5.0 g

Analysis: Shake the Sample with 80 mL of water for 10 min, and pass with the aid of a vacuum through filter paper (Whatman No. 42 or equivalent) into a vacuum flask. Transfer the filtrate to a tared beaker, evaporate to dryness without charring, dry at 105 for 1 h, cool in a desiccator, and weigh.

测定:去本品5g,加入80 mL水,振摇10 min,减压过滤,滤纸为Whatman No. 42 或同等规格滤纸,转移滤液至去皮烧杯中,蒸干,105℃干燥1h,干燥器中降至室温,称重。Acceptance criteria: The difference between the weight of the residue and the weight obtained from a blank determination does not exceed 12.5 mg (0.25%).

标准规定:残渣重量不得过12.5 mg (0.25%).

? Ether-Soluble Substances

乙醚中溶解物

Sample: 10.0 g

Analysis: Place the Sample in a chromatographic column having an internal diameter of about 20 mm, and pass 50 mL of peroxide-free ether through the column. Evaporate the eluate to dryness in a previously dried and tared evaporating dish with the aid of a current of air in a fume hood. After all the ether has evaporated, dry the residue at 105 for 30 min, cool in a desiccator, and weigh.

样品:10g

测定:取样品10g,置内径为20 mm色谱柱中,50ml无过氧化物的乙醚洗脱。用预先经过干燥并称重的表面皿收集洗脱液,空气吹干,乙醚全部蒸发后,于105℃干燥30 min,干燥器中降至室温,称重。

Acceptance criteria: The difference between the weight of the residue and the weight obtained from a blank determination does not exceed 5.0 mg (0.05%).

标准规定:残渣重量不得过5 mg (0.05%).

ADDITIONAL REQUIREMENTS

? Packaging and Storage: Preserve in tight contai ners.

密封保存。

? Labeling: The labeling indicates the nominal loss on drying, bulk density, and degree of polymerization values. Degree of polymerization compliance is determined using Identification test B. Where the particle size distribution is stated in the labeling, proceed as directed in the test for Particle Size Distribution. The labeling indicates with which technique the particle size

distribution was determined if a technique other than analytical sieving was used; and the labeling indicates the d10, d50, and d90 values and the range for each.

Auxiliary Information— Please check for your question in the FAQs before contacting USP. Topic/Question Contact Expert Committee

Monograph Kevin T. Moore, Ph.D.

Manager, Pharmacopeial Harmonization

(301) 816-8369 (EXC2010) Monographs - Excipients

61 Radhakrishna S Tirumalai, Ph.D.

Principal Scientific Liaison

(301) 816-8339 (GCM2010) General Chapters - Microbiology

62 Radhakrishna S Tirumalai, Ph.D.

Principal Scientific Liaison

(301) 816-8339 (GCM2010) General Chapters - Microbiology

USP38–NF33 Page 6596

Pharmacopeial Forum: V olume No. 31(5) Page 1421

Chromatographic Column—

MICROCRYSTALLINE CELLULOSE

Chromatographic columns text is not derived from, and not part of, USP 38 or NF 33.

微晶纤维素USP

Microcrystalline Cellulose Cellulose [9004-34-6]. DEFINITION Microcrystalline Cellulose is purified, partially depolymerized cellulose prepared by treating alpha cellulose, obtained as a pulp from fibrous plant material, with mineral acids. IDENTIFICATION ? A. Procedure Iodinated zinc chloride solution: Dissolve 20 g of zinc chloride and 6.5 g of potassium iodide in 10.5 mL of water. Add 0.5 g of iodine, and shake for 15 min. Sample: 10 mg Analysis: Place the Sample on a watch glass, and disperse in 2 mL of Iodinated zinc chloride solution. Acceptance criteria: The substance takes on a violet-blue color. 氯化锌碘试液:取氯化锌20g、碘化钾6.5g,加水10.5ml。再加碘0.5g,振摇15min。 测定:取本品10mg,置表面皿上,加氯化锌碘试液2ml。 标准规定:应变为蓝紫色。 Change to read: ? B. Procedure Sample: 1.3 g of Microcrystalline Cellulose, accurately weighed to 0.1 mg Analysis: Transfer the Sample to a 125-mL conical flask. Add 25.0 mL of water and 25.0 mL of 1.0 M cupriethylenediamine hydroxide solution. Immediately purge the solution with nitrogen, insert the stopper, and shake on a wrist-action shaker, or other suitable mechanical shaker, until completely dissolved. Transfer an appropriate volume of the Sample solution to a calibrated number 150 Cannon-Fenske, or equivalent, viscometer. Allow the solution to equilibrate at 25 ±0.1 for NLT 5 min. Time the flow between the two marks on the viscometer, and record the flow time, t1, in s. 取本品1.3g,精密称定,置125mL具塞锥形瓶中,精密加入水25ml,再精密加入1mol/L 双氢氧化乙二胺铜溶液25ml,立即通入氮气以排除瓶中空气,密塞,强力振摇,使微晶纤维素溶解;取适量,置25±0.1℃水浴中,约5min后,移至刻度为150的坎农-芬斯克毛细管粘度计或同等的黏度计内(毛细管内径为0.7 ~1.0mm,选用适宜粘度计常数K1 ),照黏度测定法,于25±0.1℃水浴中测定。记录供试品溶液流经黏度计上下两刻度时的时间t1,按下式计算供试品溶液的运动黏度。 Calculate the kinematic viscosity, (KV)1, of the Microcrystalline Cellulose taken: 微晶纤维素的运动黏度(KV)1按下式计算: Result = t1 × k1 t1 = flow time (s) k1 = viscometer constant (see Viscosity—Capillary Methods 911 (CN 1-May-2015) ) Obtain the flow time, t2, for 0.5 M cupriethylenediamine hydroxide solutions using a number 100 Cannon-Fenske, or equivalent, viscometer.

GMP-微晶纤维素检验操作规程

1 目的 确定微晶纤维素检验的操作程序和方法,确保合格的微晶纤维素投入生产。 2 适用范围 适用于本厂质监科化验室对本厂生产所需的微晶纤维素的检验。 3 责任 化验员有责任按照本操作规程对生产所需的微晶纤维素进行检验、判定,并对检验结果负责。 4 内容 4.1仪器和设备 电热恒温干燥箱、马弗炉、药筛、分析天平、酸度计、锥形瓶、烧杯、称量瓶、坩埚、蒸发皿、比色管等。 4.2试剂及配制 4.2.1氯化锌碘试液 取氯化锌20g,加水10ml使溶解,加碘化钾2g溶解后,再加碘使饱和,即得。本液应置棕色玻璃瓶内保存。 4.2.2碘试液 可取用碘滴定液(0.1mol/L)。 4.2.3标准氯化钠溶液 称取氯化钠0.165g,精密称定,置1000ml量瓶中,加水适量使溶解并稀释至刻度,摇匀,作为贮备液。 临用前,精密吸取贮备液10ml,置100ml量瓶中,加水稀释至刻度,摇匀,即得(每1ml相当于10μg的cl)。

4.2.4稀硝酸 取硝酸105ml,加水稀释至1000ml,摇匀,即得。 4.2.5硝酸银试液 取硝酸银1.75g,加水适量使溶解成100ml,摇匀,贮存于棕色试剂瓶中。 4.2.6标准铅溶液 称取硝酸铅0.160g,置1000ml量瓶中,加硝酸5ml,与水50ml溶解后,用水稀释至刻度,摇匀,作为贮备液。 临用前,精密量取贮备液10ml,置100ml量瓶中加水稀释至刻度,摇匀,即得(每1ml相当于10μg的Pb)。 注意:配制与贮存用的玻璃容器均不得含铅。 4.2.7醋酸盐缓冲溶液(PH3.5) 取醋酸铵25g,加水25ml溶解后,加盐酸液(7mol/L)38ml,用盐酸液(2mol/L)或氨试液(5mol/L)准确调节PH值至3.5(电位法指示),用水稀释至100ml即得。 4.2.8 7mol/L盐酸溶液 取630ml盐酸加水适量,使成1000ml,摇匀,即得。 4.2.9 2mol/L盐酸溶液 取盐酸180ml,加水适量使成1000ml,摇匀,即得。 4.2.10硫代乙酰胺试液 取硫代乙酰胺4g,加水溶解成100ml,置冰箱中保存。临用前取混合液[由氢氧化钠液(1mol/L)15ml,水5.0ml及甘油20ml组成]5.0ml,加4%硫代乙酰胺溶液1.0ml,置水浴上加热20秒钟,冷却,立即使用。

微晶纤维素制备、应用及市场前景的研究

微晶纤维素制备、应用及市场前景的研究 曲阜天利药用辅料有限公司生产技术部,山东曲阜273105 摘要:纤维素是自然界中最丰富的天然高分子材料。对解决目前世界面临的资源短缺、环境恶化、可持续发展等问题具有重要意义。纤维素在一定条件下进行酸水解,当聚合度下降到趋于平衡时所得到的产品称为微晶纤维素( micro.crystalline cellulose,MCC)。微晶纤维素为白色或类白色、无臭、无味的多孔性微晶状颗粒或粉末,具有高度可变形性,是可自由流动的纤维素晶体组成的天然聚合物,通常 MCC的粒径大小一般在20-80微米之间,它广泛用于食品、医药及其他工业领域。 关键词:微晶纤维素;MCC;制备;应用;市场前景。 Microcrystalline cellulose preparation, application and market prospect of research QuFuTianLi medicinal materials co., LTD., production technology department shandong qufu 273105 Abstract:Cellulose is the most abundant natural polymer materials in the nature。To solve the shortage of resources in the world, the problem such as environmental degradation, sustainable development is of great significance。Cellulose under certain conditions with acid hydrolysis,When the polymerization degree decline to tend to balance the resulting product is called the microcrystalline cellulose(micro.crystalline cellulose,MCC)。Microcrystalline cellulose is white or kind of white, odorless, tasteless porous micro crystalline granular or powder,With high deformability,Is the free flow of natural polymer composed of cellulose crystal,Usually the particle size of MCC generally between 20 to 80 microns,It is widely used in food, medicine and other industrial fields。 Key words: microcrystalline cellulose, MCC. Preparation; Application; Market prospect 正文:微晶纤维素[1]为白色或类白色无臭、无味的多孔性微晶状颗粒或粉末,具有高度可变形性 ,对主药具有较大的容纳性 ,可作为片剂的填充剂、干燥粘合剂 ,同时具有崩解作用 ,广泛应用于医药、食品、轻工业等国民经济各部门。 在生产微晶纤维素时国外主要采用木材为原材料[2],先收集木浆纤维素酸部分水解后的结晶部分,再经干燥粉碎而得到聚合度约200的结晶纤维素,我国棉花产量较高,成本较木材低,因此国内多以棉浆为原材料。决定微晶纤维素性能的主要因素[3]是制备方法和产品的质量控制标准。随着科技的发展,为了更大程

微晶纤维素的研究进展_何耀良

基金项目:广西科学基金资助项目(桂科自0991024Z);广西培养新世纪学术和技术带头人专项资金资助项目(2004224) 收稿日期:2009-06-19 综述与进展 微晶纤维素的研究进展 何耀良1,廖小新2,3,黄科林1,6,吴 睿4,王 5 ,刘宇宏1,黄尚顺1,李卫国1 (1.广西化工研究院,广西南宁 530001;2.广西大学商学院,广西南宁 530004; 3.广西桂林市建筑设计研究院,广西桂林 541002; 4.广西民族大学化学与生态工程学院,广西南宁 530006; 5.广西大学化学化工学院,广西南宁 530004; 6.广西新晶科技有限公司,广西南宁 530001) 摘 要:微晶纤维素是天然纤维素水解至极限聚合度得到的一种聚合物,广泛用于食品、医药及其他工业领域,本文综述了国内外微晶纤维素的制备研究进展。 关键词:微晶纤维素;研究进展;制备 中图分类号:T Q 352 文献标识码:A 文章编号:1671-9905(2010)01-0012-05 微晶纤维素(Microcrystalline cellulose,M CC)是天然纤维素经稀酸水解至极限聚合度(LOOP)的可自由流动的极细微的短棒状或粉末状多孔状颗粒,颜色为白色或近白色,无臭、无味,颗粒大小一般在20~80L m,极限聚合度(LODP)在15~375;不具纤维性而流动性极强。不溶于水、稀酸、有机溶剂和油脂,在稀碱溶液中部分溶解、润涨,在羧甲基化、乙酰化、酯化过程中具有较高的反应性能。由于具有较低聚合度和较大的比表面积等特殊性质,微晶纤维素被广泛应用于医药、食品、化妆品以及轻化工行业。 自1875年Girard 首次将纤维素稀酸水解的固体产物命名为/水解纤维素0后,100多年以来,微晶纤维素的研究,一直是纤维素高分子领域中的一个热点课题。美国粘胶纤维公司于1957年研究出微晶纤维素的生产方法,于1961年获得原始专利并工业化生产。美国FMC 公司于1961年研究开发生产微晶纤维素,目前已经是全美甚至世界上最大生产公司[1]。我国在微晶纤维素研究方面起步较晚,但从20世纪70年代开始我国在微晶纤维素方面生产已初见成效,20世纪80年代国内厂家生产的微晶纤维素逐步取代国外如西方石油公司、日本等公司的产品,到20世纪90年代我国研制的微晶纤维素质量达到国外同类产品的质量标准。 随着科技的发展,为了更大程度降低成本,有效利用资源和加强环保,人们也在不断研究采用更好的原料和更好的方法来生产微晶纤维素,并进一步探究其可能的用途。本文主要根据国内外的有关文献报道综述了利用不同原料制备微晶纤维素的研究进展。 1 国内微晶纤维素研究进展 111 甘蔗渣微晶纤维素的制备研究 甘蔗渣纤维素的聚合度(DP)一般在500~700之间,水解后的平衡聚合度(DP)在100~200之间。甘蔗渣由于灰分高、白度低(灰分为112%~118%,白度为70%~80%),因此要用它来制备微晶纤维素必须进行增白和降低灰分处理。罗素娟[2]选择盐酸(工业级)来催化水解制备微晶纤维素,其流程见图1。其中固液比为1B 15,水解进行35min,即达到平衡聚合度。研究表明以甘蔗渣浆粕为原料生产微晶纤维素是可行的,产品质量符合标准要求,其中得率为82118%,聚合度为120,其颗粒数量分布较均匀,粒径较小,中位粒径1112L m,小于25L m 的产品占9211%,水分2142%,灰分0113%,白度90198%,经应用试验,效果良好,母液可以循环使用。生产废水经处理后达到排放要求。 第39卷 第1期2010年1月 化 工 技 术 与 开 发Technology &Development of Chemical Industry Vol 139 No 11 Jan 12010

微晶纤维素

微晶纤维素是一种白色、无臭、无味、多孔、易流动粉末,不溶于水、烯酸、氢氧化钠溶液及一般有机溶剂。聚合度约220,结晶度高。为高度多孔颗粒或粉末。 一、微晶纤维素主要有三大特性: 1、吸附性:为多孔性微细粉末,可以吸附其他物质如水、油及药物等。比表面积随无定形 区比例的增大而增大。 2、分散性:微晶纤维素在水中经剧烈搅拌,易于分散生成奶油般的凝胶体。胶态微晶纤维 素因含有亲水性分散剂,在水中能形成稳定的悬浮液,程不透明的“奶油”状或凝胶状。 3、反应性能:在稀碱液中少部分溶解,大部分膨化,表现出较高的反应性能。 二、微晶纤维素在国内应用领域: 1、医药卫生:①微晶纤维素分子之间存在氢键,受压时氢键缔合,故具有高度的可压性, 常被用作于粘合剂;压制的片剂遇到液体后,水分迅速进入含有微晶纤维素的片剂内部,氢键即刻断裂,因此可做为崩解剂。此外微晶纤维素的密度较低,比溶剂较大,粒度分布较宽,又常被用作稀释剂。②医药行业中MCC主要被用在两个方面,一是利用他在水中强搅拌下易于形成凝胶的特性,用于制备膏状或悬浮状类药物;二是利用其成型作用,而用于医用压片的赋形剂。目前医药行业中压片赋形剂可分为两类,一是传统方法使用淀粉赋形剂;第二类是利用新型的纤维素赋形剂。使用淀粉的工艺必须经过造粒阶段,而使用MCC则因为其流动性好,本身具有一定的粘合性直接压片,因此能工艺简化,生产效率得以提高,例外使用MCC还有服用后崩解效果好、药效快、分散好等优点,因此使用MCC在压片赋形剂上得以广泛推广应用。 2、微晶纤维素在食品工业领域的应用:

微晶纤维素作为食品添加剂的主要作用有:泡沫稳定性;高温稳定性;液体的胶化剂; 悬浮剂;乳化稳定性等。其中乳化稳定性是微晶纤维素在食品工业领域最主要的功能。 3、微晶纤维素在轻工化工领域的应用: ①陶瓷业:陶瓷厂在陶土中添加微晶纤维素,不仅能增湿坯强度,提高半成品率,而 且焙烧时烧除微晶纤维质使陶瓷具有质轻透明的特色。 ②玻璃业:微晶纤维素胶液能在玻璃表面形成极黏的膜涂层,能为玻璃纤维提供纤维 素的表层,使其能用一般的纺织机器加工。 ③涂料业:在涂料中添加微晶纤维素,能使涂料具有触变性,以控制涂料的粘度、流 动性及涂刷性能。 4、微晶纤维素在日常化学工业中的应用: ①某些等级的微晶纤维素用于化妆及皮肤护理品的制造,甚至包含尿素这样难以掺和 的配料,同起耐热稳定剂的作用。 ②微晶纤维素与细砂、高岭土等混合,可制成含磨料的卫浴、厨房及手部皮肤的清洁 剂。 ③将微晶纤维素与羧甲基纤维素钠盐、有机物及水混合,可制成服装洗涤过程的保护 性胶体。 三、医药行业中微晶纤维素用于粉末直接压片的特点: ①可以使易吸潮的药物(土霉素、食母生、酵母片等)避免湿热的阴影,克服粘冲、 劣片的现象,有利于提高片剂的质量。

微晶纤维素2015版中国药典标准

微晶纤维素 Weijing Xianweisu Microcrystalline Cellulose C 6n H 10n+2O 5n+1 [9004-34-6] 本品系含纤维素植物的纤维浆制得的α-纤维素,在无机酸的作用下部分解聚,纯化而得。 【性状】本品为白色或类白色粉末或颗粒状粉末;无臭,无味。 本品在水、乙醇、乙醚、稀硫酸或5%氢氧化钠溶液中几乎不溶。 【鉴别】(1)取本品lO mg,置表面皿上,加氣化锌碘试液2ml,即变蓝色。 (2)取本品约1.3g ,精密称定,置具塞锥形瓶中,精密加25ml ,振摇使微晶纤维素分散并润湿,通入氮气以排除瓶中的空气,在保持通氮气的情况下,精密加lmol/L 双氢氧化乙二胺铜溶液25ml ,除去氮气管,密塞,强力振摇,使微晶纤维素溶解,作为供试品溶液;取适量,置25℃士0.1℃ :水浴中,约5分钟后,移至乌氏黏度计内(毛细管内径为 0.7?1.0mm ,选用适宜黏度计常数),照黏度测定法(通则 0633第二法),于25℃士0.1℃ 水浴中测定。记录供试品溶液流经黏度计上下两刻度时的时间A ,按下式计算供试品溶液的运动黏度ν1: ν1=t 1 × K 1 分别精密量取水和lmol/L 双氢氧化乙二胺铜溶液各25ml ,混匀,作为空白溶液,取适量,置25℃士0.1℃水浴中,约5分钟后,移至乌氏黏度计内(毛细管内径为0.5?0.6mm,黏度计常数约为0.01),照黏度测定法(通则0633第二法),于25℃士0.1℃水浴中测定。记录空白溶液流经黏度计上下两刻度时的时间按下式计算空白溶液的运动黏度v2: ν1=t 2× K 2 照下式计算微晶纤维素的相对黏度: ηrel =ν1/ν2 根据计算所得的相对黏度值(ηrel ),査附表,得〔特性黏数[>](ml/g)和浓度C(g/100ml)的乘积〕,计算聚合度(P),应不得过350。 式中m 为供试品取样量,g ,以干燥品计算。

进口药品注册标准JX20040038微晶纤维素-羧甲基纤维素钠标准

微晶纤维素-羧甲基纤维素钠标准 Weijing xian wei su-suo jia ji xian wei su na Microcrystalline Cellulose and Carboxymenthylcellulose Sodium (进口药品注册标准JX20040038) 本品是由微晶纤维素和羧甲基纤维素钠组成的胶状混合物。按干燥品计算,含羧甲基纤维素钠应为标示量的75.0%~125.0%。 【性状】本品为白色或类白色或微黄色的粉末,无臭,无味。 【鉴别】(1)取本品6.0g,称定,置搅拌器中,加水300ml,搅拌5分钟(18000rpm)。应出现白色不透明的分散液,静置后不分散。 (2)取鉴别(1)的分散液,滴几滴于氯化铝溶液(1→10)中,均应形成白色不透明的小球,静置后不分散。 (3)取碘试液3ml,加入鉴别(1)的分散液中,应不产生蓝色或蓝紫色。 【检查】黏度(在室温20±1℃下测定) 取本品,以干燥品计算,按本品水性分散液的标示浓度,制备600g的分散液,以旋转式黏度计测定(中国药典2000年版二部附录ⅥG第二法)。 测定法精密称取适量的水,置圆柱形层析缸[高度x直径(180×83mm)]内,置入棒状机械搅拌器(棒状机械搅拌器为德国制造,型号:T25BS4,固定转速为18000rpm),启动搅拌器,使水旋转,停止搅拌,移出搅拌器,在水仍在旋转时小心加入精密称取的本品适量,并立即计时,再置入搅拌器,棒头距缸底约25mm,15秒钟时,立即启动搅拌器(注意,样品不能粘住搅拌棒和缸壁,可上下约10mm移动或慢慢转动层析缸,必要时可用玻棒帮助消除粘住的样品)准确计时2分钟,停止搅拌,迅速将层析缸移离搅拌器,把适当的转子(带保护框)降入分散液中并调节转子的刻度至分散液的平面(Brookfield DV-Ⅱ+黏度计和1号转子适用),停止搅拌30秒钟时,启动旋转黏度计,在20rmp的速度下,测得读数应在全刻度的10~90%之间,在旋转30秒钟时立刻读取数值。重复测定三次,计算平均黏度,每次测定值与平均值之差不得超过平均值的±3%。黏度应为表示黏度的60.0%~140.0%。 酸碱度取黏度检查项下的分散液,依法测定(中国药典2000年版二部附录ⅥH),PH值为6.0~8.0。 干燥失重取本品,在105℃干燥3小时,减失重量不得过8.0%(中国药典2000年版二部附录ⅧL)。

微晶纤维素

简介 微晶纤维素 拼音名:Weijing Xianweisu 英文名:Microcrystalline Cellulose 书页号:2000年版二部-978 本品系纯棉纤维经水解制得的粉末,按干燥品计算,含纤维素应为97.0%~102.0%。 性状 本品为白色或类白色粉末,无臭,无味。本品在水、乙醇、丙酮或甲苯中不溶。 鉴别 取本品10mg,置表面皿上,加氯化锌碘试液2mg ,即变蓝色。 检查 细度取本品20.0g ,置药筛内,不能通过七号筛的粉末不得过5.0%,能通过九号筛的粉末不得少于50.0%。酸碱度取本品2.0g,加水100ml ,振摇5分钟,滤过,取滤液,依法测定(附录ⅥH),pH值应为5.0 ~7.5 。水中溶解物取本品5.0g,加水80ml,振摇10分钟,滤过,滤液置恒重的蒸发皿中,在水浴上蒸干,并在105℃干燥1小时,遗留残渣不得过0.2%。氯化物取本品0.10g,加水35ml,振摇,滤过,取滤液,依法检查(附录Ⅷ A),与标准氯化钠溶液3.0ml制成的对照液比较,不得更浓(0.03%) 。淀粉取本品0.1g,加水5ml ,振摇,加碘试液0.2ml ,不得显蓝色。干燥失重取本品,在105 ℃干燥至恒重,减失重量不得过5.0 %(附录Ⅷ L)。炽灼残渣取本品1.0g,依法测定(附录Ⅷ N),遗留残渣不得过0.2 %。重金属取炽灼残渣项下遗留的残渣,依法检查(附录Ⅷ H第二法)含重金属不得过百万分之十。砷盐取本品1.0g,加氢氧化钙1.0g,混合,加水搅拌均匀,干燥后,先用小火烧灼使炭化,再在600 ℃炽灼使完全灰化,放冷,加盐酸5ml 与水23ml使溶解,依法检查附录Ⅷ J第一法),应符合规定(0.0002%)。 含量测定 取本品约0.125g,精密称定,置锥形瓶中,加水25ml,精密加重铬酸钾溶液(取基准重铬酸钾4.903g,加水适量使溶解并稀释至200ml )50ml,

微晶纤维素的研究进展

微晶纤维素的研究进展

微晶纤维素的研究进展 高分子材料2班刘卓君 20080402B020 摘要:微晶纤维素是可自由流动的纤维素晶体组成的天然聚合物,它是天然纤维素经稀酸水解并经一系列处理后得到的极限聚合度的产物。广泛用于食品、医药及其他工业领域,本文综述了微晶纤维素的特性、理化性质、制备方法以及国内外微晶纤维素的研究进展。 关键词:微晶纤维素;结晶度;聚合度;可压性;流动性;制备;研究进展 正文:微晶纤维素(MCC)是由天然纤维素经稀无机酸水解达到极限聚合度的极细微的白色短棒状或无定形结晶粉末,无臭、无味。颗粒大小一般在20-80微米,极限聚合度(L0DP)在15~375;不具纤维性而流动性极强。不溶于水、稀酸、有机溶剂和油脂,在稀碱溶液中部分溶解、润涨,在羧甲基化、乙酰化、酯化过程中具有较高的反应性能。由于具有较低聚合度和较大的比表面积等特殊性质,微晶纤维素被广泛应用于医药、食品、化妆品以及轻化工行业。

微晶纤维素有两种主要形式:细粉末和胶体状。前者用于吸附剂或粘合剂,后者作为液体中的分散剂。粉末状微晶纤维素的应用范围是作为抗结块剂,它有防结块和帮助流动的作用。另外,微晶纤维素还是食品中非营养部分,用作健康食品中的食用纤维。作为功能食用纤维,微晶纤维素可起到诸多保健作用。微晶纤维素有吸油特性,所以粉末化的微晶纤维素还被用作香精和香料油的载体。另外,它常被用于某些挤出食品的助流剂。胶体状微晶纤维素的多功能性表现在:乳化和泡沫稳定性;高温下稳定性;非营养性填充物和增稠剂;液体的稳定和胶化剂;改善食品结构;悬浮剂;冷冻甜食中控制冰晶形成。 随着科技的发展,为了更大程度降低成本,有效利用资源和加强环保,人们也在不断研究采用更好的原料和更好的方法来生产微晶纤维素,并进一步探究其可能的用途。 1.微晶纤维素的理化性质 MCC 的用途广泛,用以描述的指标很多,主要有聚合度、结晶度、粒度、吸水值、润湿热、比表面积、填积密度、过滤指数和特性粘数等。

微晶纤维素简介

片剂常用辅料——微晶纤维素(MCC)简介 北京大学药学院微晶纤维素( Microcrystalline cellulose, MCC) 是天然纤维素经稀酸水解至极限聚合度( LOOP) 的可自由流动的极细微的短棒状或粉末状多孔状颗粒,颜色为白色或近白色, 无臭、无味, 颗粒大小一般在20~ 80 L m, 极限聚合度( LODP) 在15~ 375; 不具纤维性而流动性极强。不溶于水、稀酸、有机溶剂和油脂, 在稀碱溶液中部分溶解、润涨, 在羧甲基化、乙酰化、酯化过程中具有较高的反应性能。由于具有较低聚合度和较大的比表面积等特殊性质, 微晶纤维素被广泛应用于医药、食品、化妆品以及轻化工行业。1 评价微晶纤维素性质的物化指标有很多。常用的主要有结晶度、聚合度、结晶形态、吸水值、润湿热、粒度、容重、比表值、流动性、凝胶性能、反应性能、学成分等。2在制药工业中,微晶纤维素常用作吸附剂、助悬剂、稀释剂、崩解剂。微晶纤维素广泛应用于药物制剂,主要在口服片剂和胶囊中用作稀释剂和粘合剂,不仅可用于湿法制粒也可用于干法直接压片。还有一定的润滑和崩解作用,在片剂制备中非常有用。 由于微晶纤维素分子之间存在氢键,受压时氢键缔合,故具有高度的可压性,,常被用作于黏合剂;压制的片剂遇到液体后,,水分迅速进入含有微晶纤维素的片剂内部, 氢键即刻断裂, 所以可作为崩解剂。因此, 它是片剂生产中广泛使用的一种辅料, 能够提高片剂的硬度。例如,在制备利福平药片中可用MCC与淀粉(6.25:1质量比) 和各种原料混合均匀后直接压片, 产品在lm in 内崩散成雾状. 而且在有效期内含量不变,并能很好地提高药物稳定性。又如, 由于加人微晶纤维素, 醋酸泼尼松与醋酸黄连素(盐酸小劈碱) 片剂的溶出度提高到80% 以上。用微晶纤维素做辅料压片时不需经过传统的造粒过程, 例如在制备咳必清药片中由于加人了MCC , 解决了咳必清湿法造粒压片易吸潮而出现的严重黏冲现象, 并且崩解迅速。 微晶纤维素也可用作药品的缓释剂。缓释过程是由活性物质进人载体的多孔结构. 活性物质被分子间氢键包含, 干燥后活性物质被固定。活性物质释放时由于水在聚合物载体的毛细管系统内扩散引起润胀, 载体经基和被固定的活性物质之间的化合键被破坏, 活性物质缓慢地释放出来。 微晶纤维素粉末在水中能形成稳定的分散体系, 将其与药物配合可制成奶油状或悬浮状的药液, 同时还可用作胶囊剂。微晶纤维素在水中经强力搅拌生成凝胶,也可用于制造膏 1何耀良,廖小新,黄科林,吴睿等微晶纤维素的研究进展化工技术与开发2010 年1 月 2曹永梅,黄科林等微晶纤维素的性质、应用及市场前景企业科技与发展2009年第12 期

微晶纤维素的研究进展思路

微晶纤维素的研究进展 高分子材料2班刘卓君 20080402B020 摘要:微晶纤维素是可自由流动的纤维素晶体组成的天然聚合物,它是天然纤维素经稀酸水解并经一系列处理后得到的极限聚合度的产物。广泛用于食品、医药及其他工业领域,本文综述了微晶纤维素的特性、理化性质、制备方法以及国内外微晶纤维素的研究进展。 关键词:微晶纤维素;结晶度;聚合度;可压性;流动性;制备;研究进展 正文:微晶纤维素(MCC)是由天然纤维素经稀无机酸水解达到极限聚合度的极细微的白色短棒状或无定形结晶粉末,无臭、无味。颗粒大小一般在20-80微米,极限聚合度(L0DP)在15~375;不具纤维性而流动性极强。不溶于水、稀酸、有机溶剂和油脂,在稀碱溶液中部分溶解、润涨,在羧甲基化、乙酰化、酯化过程中具有较高的反应性能。由于具有较低聚合度和较大的比表面积等特殊性质,微晶纤维素被广泛应用于医药、食品、化妆品以及轻化工行业。 微晶纤维素有两种主要形式:细粉末和胶体状。前者用于吸附剂或粘合剂,后者作为液体中的分散剂。粉末状微晶纤维素的应用范围是作为抗结块剂,它有防结块和帮助流动的作用。另外,微晶纤维素还是食品中非营养部分,用作健康食品中的食用纤维。作为功能食用纤维,微晶纤维素可起到诸多保健作用。微晶纤维素有吸油特性,所以粉末化的微晶纤维素还被用作香精和香料油的载体。另外,它常被用于某些挤出食品的助流剂。胶体状微晶纤维素的多功能性表现在:乳化和泡沫稳定性;高温下稳定性;非营养性填充物和增稠剂;液体的稳定和胶化剂;改善食品结构;悬浮剂;冷冻甜食中控制冰晶形成。 随着科技的发展,为了更大程度降低成本,有效利用资源和加强环保,人们也在不断研究采用更好的原料和更好的方法来生产微晶纤维素,并进一步探究其可能的用途。 1.微晶纤维素的理化性质 MCC 的用途广泛,用以描述的指标很多,主要有聚合度、结晶度、粒度、吸水值、润湿热、比表面积、填积密度、过滤指数和特性粘数等。 1. 1 结晶度 结晶度是指结晶区占纤维素整体的百分率。结晶度的大小对纤维素纤维的尺寸稳定性和密度等都有影响,常规测量方法X2射线衍射法和红外光谱法。通过分析后表明,MCC 都保留有纤维素I 的结晶,结晶度与晶体大小都比纤维原料的要大,结晶度Kp 一般都在0. 60 以上。 1. 2 聚合度 聚合度是指纤维素中重复的葡萄糖结构单元的数目。不同原料得到的MCC 的聚合度差别较大,如表1所示。MCC 的分散性越小, 说明MCC 的分布均一。从理论上讲,纤维素原料都可以生产不同聚合度范围的MCC 产品。 1. 3 比表面积

指定标准-18食品添加剂微晶纤维素

食品添加剂微晶纤维素 1 范围 本标准适用于用纤维植物原料与无机酸捣成浆状,制成α-纤维素,再经处理使纤维素作部分解聚,然后再除去非结晶部分并提纯而得的食品添加剂微晶纤维素。 白色或近乎白色细小粉末。不溶于水、稀酸、稀碱溶液和大多数有机溶剂。 2 技术要求 应符合表1的规定。 表1

附 录 A 检验方法 A.1 一般规定 除非另有说明,在分析中仅使用确认为分析纯的试剂和GB/T 6682-2008中规定的水。分析中所用标准滴定溶液、杂质测定用标准溶液、制剂及制品,在没有注明其他要求时,均按GB/T 601、GB/T 602、GB/T 603的规定制备。本试验所用溶液在未注明用何种溶剂配制时,均指水溶液。 A.2 鉴别试验 A.2.1 用带38μm筛子的空气喷嘴筛过筛20g 试样5min 。若未过筛量大于5%,则将30g 试样溶于270mL 水中;否则将45g 试样溶于255mL 水中。此为试样溶液。将试样溶液在高速捣碎机(18000rpm 以上)中混合5min 。取100mL 该混合溶液,移入一100mL 刻度量筒中,静置3h 。在表面应有白色、不透明、无气泡的上层分散液(保留此分散液用于鉴别试验A.2.2)出现。 A.2.2 取鉴别试验A.2.1中的分散液为试样溶液,在20mL 试样溶液中加入几滴碘试液,无紫至蓝色或蓝色出现。 A.3 碳水化合物含量(以纤维素计,以干基计)的测定 A.3.1 分析步骤 准确称取约125mg 试样,用约25mL 水将其移入一300mL 锥形烧瓶中。加50.0mL 浓度为0.5mol/L 的重铬酸钾溶液,混合。然后小心地加入100mL 硫酸并加热至沸。移去热源,于室温下静置15min ,于水浴中冷却后移入一250mL 容量瓶中。用水稀释至将近刻度,冷却至25℃,再用水稀释定容,混合。取该液50.0mL ,加2~3滴1,10-菲罗啉-亚铁指示剂,用0.1mol/L 硫酸亚铁铵液滴定,记录所耗滴定液为S (mL )。同时进行空白试验,记录0.1mol/L 硫酸亚铁铵液的消耗量为B (mL )。 A.3.2 结果计算 碳水化合物含量X 1按式(A.1)计算: ()W S B 338X 1?-= ……………………………(A.1) 式中: X 1——试样中碳水化合物的含量,%; W ——所取试样质量,单位为毫克(mg ),并按实测干燥减量值进行校正; S ——滴定时消耗0.1mol/L 硫酸亚铁铵液的毫升数(mL ); B ——空白试验消耗0.1mol/L 硫酸亚铁铵液的毫升数(mL )。 实验结果以平行测定结果的算术平均值为准。 A.4 pH 的测定 称取5g 试样,加水40mL ,振摇20min ,离心分离。然后用酸度计测定上清液的pH 值。 A.5 水不溶物的测定

微晶纤维素的研究现状及发展趋势

微晶纤维素的研究现状及发展趋势 摘要:微晶纤维素(MCC)是可以自由流动的纤维素晶体组成的天然聚合物,它是天然纤维素经过稀酸水解并且经一系列处理后得到的极限聚合度产物。微晶纤维素作为天然植物纤维原料在化工、轻工、日用化学品等领域得到广泛的应用。本文论述了微晶纤维素的性质、研究现状、应用及其市场前景,较为全面地介绍了微晶纤维素。 关键词:微晶纤维素(MCC) 性质制备市场前景 微晶纤维素(Microcrystal1ine cellulose,MCC)是由可自由流动的纤维素晶体组成的天然聚合物,它是纤维原料经稀酸水解并且经一系列处理后得到的极限聚合度的产物[1]。自1875年Girard第一次将纤维素稀酸水解的固体产物命名为“水解纤维素”后,一百多年来,微晶纤维素的研究,一直是纤维素高分子领域中一个热点课题。随着科学技术不断进步,这一曾被视为无法利用的产品,如今却在生产与应用方面取得了迅速发展。人们对它的制备方法、结构、性质进行了不断深入的研究,并将其广泛应用于食品、医药、化妆品以及轻化工部门。由于纤维素广泛地存在于自然界,根据专家估计,全球每年可生产数千亿吨的纤维素,是石油无法比拟的可再生重大资源。 1 微晶纤维素的性质 微晶纤维素主要有三个基本的特征:①平均聚合度达极限聚合度值;②具有纤维素I的晶格特征(晶胞中:心与四角子链按同一方向平行排列),且结晶度高于原纤维素;③具有极强吸水性,且在水介质中经强力剪切作用后有生成凝胶体的能力。通常所说的水解纤维素是各类降解纤维素混合产物的总称,而微晶纤维素仅限于具有上述三个特征的水解纤维素。这个特征是衡量与检验是否是微晶纤维素的唯一标准,也是区分微晶纤维素与水解纤维素的主要的标准。 表明微晶纤维素性质的物化指标有很多,主要有结晶度、聚合度、结晶形态、吸水值、润湿热、容重、粒度、比表值、流动性、反应性能、凝胶性能、化学成

药用辅料—微晶纤维素(MCC)在药剂上的应用

药用辅料—微晶纤维素(MCC)在药剂上的应用 尹建1黄桂华2杨春凤1 1山东阿华制药有限公司,山东聊城252000;2山东大学药学院,山东济南250012 一、前言 药用辅料(pharmaceutical excipients)广义上指的是能将药理活性物质制备成药物制剂的各种添加剂。国际药用辅料协会(IPEC)的定义是:药用辅料是药品制剂成型时,以保持稳定性、安全性或均质性,或为适应制剂的特性以促进溶解、缓释等为目的而添加的物质。它的作用有:(1)在药物制剂制备过程中有利于成品的加工;(2)加强药物制剂的稳定性,提高生物利用度和病人的顺应性;(3)有助于从外观鉴别药物制剂;(4)增加药物制剂在贮存或应用时的安全性或有效性。 近年来国内外对药物制剂的要求,不仅有药物的纯度、均匀溶出度(释放度)和稳定性等,而且要求药物在体内达到所需的血药浓度(生物利用度),以提高药物的治疗效果,减少副作用。为此,应用新型的辅料,研究新工艺和新剂型,已成为国内外制剂工作者的重要手段。随着药用高分子材料的发展,制剂新辅料正在不断涌现。 微晶纤维素(MCC)是由天然纤维经强酸在加热条件下水解后除去其中无定形纤维而得到的棒状或颗粒状的晶体。微晶纤维素分子之间存在氢键,受压时氢键缔合,故具有高度的可压性,常被用作于粘合剂;压制的片剂遇到体液后,水分迅速进入含有微晶纤维素的片剂内部,氢键即刻断裂,因此可作为崩解剂。此外,微晶纤维素的密度较低,比容积较大,粒度分布较宽,又常被用于作稀释剂。因此它是片剂生产中广泛使用的一种辅料。目前在国内外.根据微晶纤维素的物理化学性能不同,巳形成多种规格品种,广泛应用于医药、食品、化妆品、轻化工、农业等各生产部门。由于它具有多方面的功能作用和优良性能,国内外需求日益增长,且新用途正在不断地被开发出来,某些药用微晶纤维素品种巳形成系列化。 MCC目前进入国内市场的有德国JRS公司、日本旭化成株式会社等,其中德国JRS公司规格较齐全,质量较佳,受到市场欢迎。最常用有PH102、103、301、112、200等可直接压片,PROSOLV技术的应用,使MCC具有更好的流动性和亲水性,对药物有较大的吸附力,加速了片剂的崩解,增加了难溶性药物的溶出度和生物利用度。国内山东阿华制药有限公司等生产的MCC,其质量可与德国JRS公司的产品相媲美,在国内市场供不应求。 二.MCC在制剂上应用 医药行业中MCC主要被用作两个方面,一是利用它在水中强力搅拌下易于形成凝胶的特性,而用于制备膏状或悬浮状类药物;二是利用其成型作用,而用于医药压片的赋型剂。目前,医药行业中压片赋型剂可分成两类。一类是传统的方法,使用淀粉赋型剂;第二类是使用新型的纤维素赋型剂。使用淀粉的工艺必须经过造粒阶段。而使用MCC则因为其流动性好,本身具有一定的粘合性而能直接压片.因此能使工艺简化,生产效率得以提高。另外.使用MCC,还有服用后崩解力好、药效快、分散好等优点,因而使MCC在压片赋型剂上得以广泛应用。

药剂学一些辅料的用途

总结 一、一些辅料的用途 1.乳糖 :片剂:填充剂,尤其是粉末直接压片的填充剂;注射剂:冻干保护剂 2.微晶纤维素:片剂:粉末直接压片的填充剂;“干粘合剂”;片剂中含20%微晶纤维素时有崩解剂的作用 3.甲基纤维素:片剂:黏合剂;混悬剂:助悬剂;缓(控)释制剂:亲水凝胶骨架材料(弱) 4.羧甲基纤维素钠:片剂:黏合剂;混悬剂:助悬剂;缓(控)释制剂:亲水凝胶骨架材料 5.乙基纤维素:片剂:黏合剂(不溶于水);缓(控)释制剂:骨架材料或膜控材料;固体分散体:难溶性载体材料 6.羟丙基纤维素:片剂:黏合剂、薄膜包衣材料;混悬剂:助悬剂;缓(控)释制剂:亲水凝胶骨架材料、微孔膜包衣片的致孔剂 7.羟丙甲纤维素(羟丙基甲基纤维素):片剂:黏合剂、薄膜包衣材料;混悬剂:助悬剂;缓控释制剂:亲水凝胶骨架材料、微孔膜包衣片的致孔剂 8.醋酸纤维素酞酸酯:肠溶材料 9.羟丙甲纤维素酞酸酯:肠溶材料 10.醋酸羟丙甲纤维素琥珀酸酯:肠溶材料 11.邻苯二甲酸聚乙烯醇酯(PVAP):肠溶材料 12.苯乙烯马来酸共聚物(StyMA):肠溶材料 13.丙烯酸树脂(肠溶型I、II、III号)、Eudragit L,Eudragit S(有时出现Eudragit L100或Eudragit S 100):肠溶材料 14.Eudragit RL,Eudragit RS::难溶性载体材料 15.Eudragit E(与丙烯酸树脂IV号相当):胃溶型高分子材料 16.醋酸纤维素:水不溶型材料,可用于包衣或制备渗透泵片剂 17.聚乙烯吡咯烷酮(聚维酮 PVP)类:片剂:黏合剂;片剂:胃溶型薄膜衣材料;微丸:硝苯地平微丸(固体分散物);混悬剂:助悬剂; 固体分散物:水溶型载体材料;缓(控)释制剂:亲水胶体骨架材料;缓(控)释制剂:微孔膜包衣片中的致孔剂 18.聚乙烯醇:膜剂:成膜材料、助悬剂 19.羧甲基淀粉钠:片剂:崩解剂 20.交联聚维酮:片剂:崩解剂 21.交联羧甲基纤维素钠:片剂:崩解剂 22.低取代羟丙基纤维素:片剂:崩解剂 23.聚乳酸:生物可降解高分子材料,用于制备微球、纳米粒等 24.甘油(山梨醇丙二醇的作用与甘油比较接近) 液体制剂:溶剂、注射剂溶剂、助悬剂、保湿剂

纤维素降解菌研究概况及发展趋势

纤维素降解菌研究概况及发展趋势 赵斌 (山东农业大学生命科学学院 2010级生物工程三班) 摘要 纤维素是地球上最丰富的可再生有机资源,因为难分解大部分未被人类利用。另外,纤维素是造纸废水的COD和SS的主要来源之一。分解纤维素并将其转化成动物易吸收或利用的能源、食物、饲料或化工原料,是纤维素合理应用的重要途径。筛选高效纤维素分解菌,确定其酶学性质是降解纤维素的关键。 关键词:微生物;纤维素;降解;纤维素酶 Abstract Cellulose is the earth's most abundant renewable organic resources, because the majority is not difficult to break down human use. In addition, the cellulose is one of the main sources of the papermaking wastewater COD and SS. Into the animal's susceptibility to absorption or utilization of energy, food, feed or chemical raw materials decompose cellulose and cellulose reasonable application. Screening cellulolytic to determine the nature of its enzymatic degradation of cellulose. 纤维素是地球上最丰富、来源最广泛的碳水化合物,同时也是地球上最大的可再生资源,占地球生物量的约50%[1]。纤维素分子本身的致密结构以及由木质素和半纤维素形成的保护层造成纤维素不容易降解而难以被充分利用或被大多数微生物直接作为碳源物质而转化利用。中国每年仅农业生产中形成的农作物残渣(稻草、秸秆等)就约有7亿吨, 工业生产中还有数百万吨的纤维素废弃物, 但都没有得到充分利用,相当大的一部分被废弃、焚烧, 不仅严重污染环境,同时也浪费了可利用的有用资源和能源。另外,纤维素是造纸废水的COD和SS的主要来源之一,造纸废水中含有大量的纤维素,造纸黑液难以处理,严重污染水环境[2]。 因此有效的开发利用纤维素资源已是目前的一个研究热点,分解纤维素并将其转化成动物易吸收或利用的能源、食物、饲料或化工原料,是纤维素合理应用的重要途径[1]。目前纤维素降解主要是酸解、酶解和微生物降解,无论是酶解还是微生物降解都离不开高效纤维素降解菌株。微生物对纤维素的降解与转化不仅是自然界中碳素转化的主要环节,也是土壤微生物能量代谢的主要来源。纤维素的分解主要依靠微生物产生的胞外酶完成,纤维素酶是水解纤维素生成纤维二糖及葡萄糖的一类酶的总称[3]。 一、纤维素降解菌的研究现状 1.1纤维素的结构及微生物降解过程

相关主题
文本预览
相关文档 最新文档