当前位置:文档之家› 整流电路习题

整流电路习题

整流电路习题
整流电路习题

第3章交流-直流变换器习题(1)

第1部分:填空题

1.电阻负载的特点是,在单相半波可控整流电阻性负载电路中,晶闸管控制角α的最大移相范围是。

2.阻感负载的特点是,在单相半波可控整流带阻感负载并联续流二极管的电路中,晶闸管控制角α的最大移相范围是,其承受的最大正反向电压均为,续流二极管承受的最大反向电压为(设U2为相电压有效值)。

3.单相桥式全控整流电路中,带纯电阻负载时,α角移相范围为,单个晶闸管所承受的最大正向电压和反向电压分别为和;带阻感负载时,α角移相范围为,单个晶闸管所承受的最大正向电压和反向电压分别为

和;带反电动势负载时,欲使电阻上的电流不出现断续现象,可在主电路中直流输出侧串联一个。

4.单相全控桥反电动势负载电路中,当控制角α大于不导电角时,晶闸管的导通角

= ; 当控制角小于不导电角时,晶闸管的导通角= 。

5.从输入输出上看,单相桥式全控整流电路的波形与的波形基本相同,只是后者适用于输出电压的场合。

6.电容滤波单相不可控整流带电阻负载电路中,空载时,输出电压为,随负载加重U d逐渐趋近于,通常设计时,应取RC≥T,此时输出电压为U d≈U2(U2为相电压有效值)。

7.填写下表

单相整流电路比较

第2部分:简答题

1.如题图3-1所示的单相桥式半控整流电路中可能发生失控现象,何为失控,怎样抑制失控

题图3-1 题图3-2

2.单相全波可控整流电路与单相桥式全控整流电路从直流输出端或从交流输入端看均是基本一致的,那么二者是否有区别呢

3.题图3-2为具有变压器中心抽头的单相全波可控整流电路,问该变压器还有直流磁化问题吗试说明:①晶闸管承受的最大反向电压为2;②当负载是电阻或电感时,其输出电压和电流的波形与单相全控桥时相同。

第3部分:计算和画图题

1.单相桥式全控整流电路,U2=100V,负载中R=2Ω,L值极大,当α=30°时,要求:①作出ud、id、和i2的波形;②求整流输出平均电压Ud、电流Id,变压器二次电流有效值I2;

③考虑安全裕量,确定晶闸管的额定电压和额定电流。

2.单相桥式全控整流电路带电阻负载工作,设交流电压有效值U2=220V,控制角=rad,负载电阻Rd=5Ω,试求:(1)输出电压的平均值Ud ;(2)输出电流有效值I。

3.晶闸管串联的单相半控桥(桥中VT1、VT2为晶闸管,电路如题图3-3所示,U2=100V,电阻电感负载,R=2Ω,L值很大,当=60°时求流过器件电流的有效值,并作出ud、id、iVT、iD的波形。

题图3-3

第3章交流-直流变换器习题(2)

第1部分:填空题

1.电阻性负载三相半波可控整流电路中,晶闸管所承受的最大正向电压U Fm等

于,晶闸管控制角α的最大移相范围是,使负载电流连续的条件为

(U2为相电压有效值)。

2.三相半波可控整流电路中的三个晶闸管的触发脉冲相位按相序依次互差,当它带阻感负载时,的移相范围为。

3.三相桥式全控整流电路带电阻负载工作中,共阴极组中处于通态的晶闸管对应的是

的相电压,而共阳极组中处于导通的晶闸管对应的是的相电压;这种电路角的移相范围是,u d波形连续得条件是。

4.电容滤波三相不可控整流带电阻负载电路中,电流id 断续和连续的临界条件

是,电路中的二极管承受的最大反向电压为U2。

5.填写下表

三相整流电路比较

第2部分:简答题

1.三相半波整流电路的共阴极接法与共阳极接法,a、b两相的自然换相点是同一点吗如果不是,它们在相位上差多少度

2.有两组三相半波可控整流电路,一组是共阴极接法,一组是共阳极接法,如果它们的触发角都是,那么共阴极组的触发脉冲与共阳极组的触发脉冲对同一相来说,例如都是阿相,在相位上差多少度

3.在三相桥式全控整流电路中,电阻负载,如果有一个晶闸管不能导通,此时的整流电

u波形如何如果有一个晶闸管被击穿而短路,其它晶闸管受什么影响

d

4.单相桥式全控整流电路、三相桥式全控整流电路中,当负载分别为电阻负载或电感负载时,要求的晶闸管移相范围分别是多少

第3部分:计算和画图题

1.三相桥式全控整流电路带电阻负载工作,设交流电压有效值U2=400V,负载电阻R d =10Ω, 控制角=rad, 试求:(1)输出电压平均值U d;(2)输出电流平均值I d。

2.在三相半波整流电路中,如果a相的触发脉冲消失,试绘出在电阻性负载和电感性负载下整流电压u d的波形。

3.三相半波可控整流电路,U2=100V,带电阻电感负载,R=5Ω,L值极大,当=60°时,要求:①画出u d、i d和i VT1的波形;②计算U d、I d、I dT和I VT。

4.三相桥式全控整流电路,U2=100V,带电阻电感负载,R=5Ω,L值极大,当=60°时,要求:①画出u d、i d和i VT1的波形;②计算U d、I d、I dT和I VT。

提示:可在下图基础上绘制波形图。

第3章交流-直流变换器习题(3)

第1部分:填空题

1.实际工作中,整流电路输出的电压是周期性的非正弦函数,当从0°~90°变化时,整流输出的电压u d的谐波幅值随的增大而,当从90°~180°变化时,整流输出的电压ud 的谐波幅值随的增大而。

2.三相桥式全控整流电路带阻感负载时,设交流侧电抗为零,直流电感L为足够大。当=30°时,三相电流有效值与直流电流的关系为I=Id ,交流侧电流中所含次谐波次数为,其整流输出电压中所含的谐波次数为。

3.对于三相半波可控整流电路,换相重迭角的影响,将使输出电压平均值。

4.带平衡电抗器的双反星形可控整流电路适用于的场合,当它带电感负载时,移相范围是,带电阻负载时,移相范围是;如果不接平衡电抗器,则每管最大的导通角为,每管的平均电流为I d。

5.多重化整流电路可以提高,其中移相多重联结有和两大类。

整流电路可分为和两大类,目前研究和应用较多的是PWM整流电路。

整流电路的控制方法有和,基于系统的静态模型设计、动态性能较差的是,电流响应速度快、系统鲁棒性好的是。

第2部分:简答题

1.无功功率和谐波对公用电网分别有那些危害

2.单相桥式全控整流电路,其整流输出电压中含有哪些次数的谐波其中幅值最大的是哪一次变压器二次侧电流中含有哪些次数的谐波其中主要的是哪几次

3.三相桥式全控整流电路,其整流输出电压中含有哪些次数的谐波其中幅值最大的是哪一次变压器二次侧电流中含有哪些次数的谐波其中主要的是哪几次

4.单相桥式不可控整流带电容滤波电路和三相桥式不可控整流带电容滤波电路,它们交流侧谐波组成有什么规律

5.带平衡电抗器的双反星形可控整流电路与三相桥式全控整流电路相比有何主要异同

6.整流电路多重化的主要目的是什么

7.变压器漏感对整流电路有何影响

8.什么是PWM整流电路它和相控整流电路的工作原理和性能有何不同

9.在PWM整流电路中,什么是间接电流控制什么是直接电流控制

第3部分:计算题

1.三相桥式全控整流电路,U2=100V,带阻感负载,R=5Ω,L值极大,当α=60°时,回答下列问题。

(1)变压器二次侧电流中含有哪些次数的谐波其中主要的是哪几次(2)求整流电路交流侧功率因数。

(提示:有关电流波形及其傅立叶级数)

2.三相全控桥,反电动势阻感负载,E=200V,R=1Ω,L=∞,U2=220V,=60°,当①L B=0和②L B=1mH情况下分别求Ud、Id的值,后者还应求。

第3章交流-直流变换器习题(4)

第1部分:填空题

1.逆变电路中,当交流侧和电网连结时,这种电路称为,欲实现有源逆变,只能采用型可控整流电路,当控制角0<<时,整流电路工作在状态;时,整流电路工作在状态。

2.在整流电路中,能够实现有源逆变的有、等(可控整流电路均可),其工作在有源逆变状态的条件是和。

3.晶闸管直流电动机系统工作于整流状态,当电流连续时,电动机的机械特性为一

组,当电流断续时,电动机的理想空载转速将,随的增加,进入断续区的电流。

4.直流可逆电力拖动系统中电动机可以实现四象限运行,当其处于第一象限时,电动机作运行,电动机转,正组桥工作在状态;当其处于第四象限时,电动机做运行,电动机转,组桥工作在逆变状态。

5.大、中功率的变流器广泛应用的是触发电路,同步信号为锯齿波的触发电路,可分为三个基本环节,即、和。

第2部分:简答题

1.使变流器工作于有源逆变状态的条件是什么

2.什么是逆变失败如何防止逆变失败

3.锯齿波触发电路由哪些部分组成各部分的主要作用是什么

4.画出双桥反并联可逆直流拖动系统的结构简图, 当电机在4个象限的运行时,说明其运行方式, 并在图中标出工作桥的工作状态及电压、电流方向和电能的传递方向。

第3部分:计算题

1.三相全控桥变流器,反电动势阻感负载,R=1Ω,L=∞,U2=220V,当EM=-400V,=60°时求U d、I d的值,此时送回电网的有功功率是多少作出u d的波形。

2.单相全控桥,反电动势阻感负载,R=1Ω,L=∞,U2=100V,当EM=-99V,=60°时求U d、

I d的值。作出u d的波形。

整流二极管的作用及其整流电路

整流二极管的作用及其整流电路 整流二极管的作用及其整流电路 一种将交流电能转变为直流电能的半导体器件。通常它包含一个PN结,有阳极和阴极两个端子。 P区的载流子是空穴,N区的载流子是电子,在P区和N区间形成一定的位垒。外加使P区相对N区为正的电压时,位垒降低,位垒两侧附近产生储存载流子,能通过大电流,具有低的电压降(典型值为0.7V),称为正向导通状态。 若加相反的电压,使位垒增加,可承受高的反向电压,流过很小的反向电流(称反向漏电流),称为反向阻断状态。整流二极管具有明显的单向导电性,。 整流二极管可用半导体锗或硅等材料制造。硅整流二极管的击穿电压高,反向漏电流小,高温性能良好。通常高压大功率整流二极管都用高纯单晶硅制造。这种器件的结面积较大,能通过较大电流(可达上千安),但工作频率不高,一般在几十千赫以下。整流二极管主要用于各种低频整流电路。 二极管整流电路 一、半波整流电路 图5-1、是一种最简单的整流电路。它由电源变压器B 、整流二极管D 和负载电阻Rfz ,组成。变压器把市电电压(多为220伏)变换为所需要的交变电压e2,D 再把交流电变换为脉动直流电。 下面从图5-2的波形图上看着二极管是怎样整流的。

变压器砍级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的波形如图5-2(a)所示。在0~K时间内,e2为正半周即变压器上端为正下端为负。此时二极管承受正向电压面导通,e2通过它加在负载电阻Rfz上,在π~2π时间内,e2为负半周,变压器次级下端为正,上端为负。这时D承受反向电压,不导通,Rfz,上无电压。在π~2π时间内,重复0~π时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过Rfz,在Rfz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电压Usc。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。 这种除去半周、留下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压 Usc =0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。 二、全波整流电路(单向桥式整流电路) 如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。图5-3 是全波整流电路的电原理图。

单相桥式整流电路教学及反思

单相桥式整流电路由于其优点突出、实用性强,在生活及实践中得到了广泛的应用,它也是中职教材《电子技术基础与技能》的重点内容。本人从事电子专业教学十多年,对该内容的教学想谈谈自己的见解。 一、教材的处理和创新:在“理实一体”和“任务驱动”模式的指导下,将本节内容设置成一个任务:桥式整流电路的搭建与测试,需两课时完成。以手机充电器为载体将该任务分解成识一识、连一连、做一做、测一测四个子任务,以“任务驱动、行动导向”来完成本课任务。 二、教学目标: 1.知识目标:掌握单相桥式整流电路的组成、特点和应用;理解单相桥式整流电路的工作原理。 2.能力目标:会识读桥式整流电路原理图;会根据电路图搭建电路;会用合适的仪器进行测试。 3.情感目标:增强学生专业学习的自信心和求知欲,获得成功的喜悦;培养学生团队协作精神以及严谨、细致、规范的职业素养。 三、教学重点、难点:桥式整流电路的连接规则,搭建并测试桥式整流电路;如何理解桥式整流电路的工作原理。 四、教学策略:主要采用任务驱动、直观演示、体验探究、小跨步教学和对比讨论等教学方法。 五、教学过程: 1.创设情境,引出任务。播放一段视频:一位男士正在家里用手机通话,突然手机没电了,他一脸无奈,但很快他拿出手机充电器插上电源又继续开始通话。看完视频,我结合手机充电器实物(投影展示电路板图片),问:这里面的元器件大家认识吗?我请一位学生说出图中各种元器件的名称,并将该电路的组成器件与之前学过的半波整流电路作一个比较,然后得出该电路有别于半波整流电路,顺理成章地导入新课。 2.任务引导,探索新知。为了降低难度,便于任务的实施,我将任务进行了分解。 (1)识一识。首先,用ppt展示桥式整流电路的电路图,要求学生观察并以大组(六人一大组)为单位讨论四个整流二极管是如何与电源变压器和负载相连的。从“个数”和“极性”两个方面做了引导,四个二极管在与变压器的两个抽头和负载两端相连时,每一头上接了几个二极管?与电源变压器每一抽头相连时,二极管的极性有何特点?与电阻相连时又有何特点?学生们通过观察、讨论得出“两两相连、源反阻同”的连接规则。 (2)连一连。按照实验模板上元器件的位置排布,要求学生以大组为单位讨论后得出连接图,每组派一位代表上台通过实物投影展示并讲解给其他同学听,以达到共同学习、共同进步的目的。 (3)做一做。要求学生按照上面的连接图在实验模板上搭建一个桥式整流电路,这次以两人一小组为单位进行实践操作。电路搭建好之后,我让各组交叉评判改正后接上交流电源,教师检查无误后才通电。这样做是为了让学生养成胆大心细、严谨有序的职业素养,体现安全第一的岗位原则。 (4)测一测。先利用仿真软件演示一下电路与仪器仪表的连接以及示波器上显示的输入输出波形,然后让学生按照学案上的测量要求去进行测试并做好记录。测试完毕后,让学生以大组为单位,交流他们的测试结果,并对比半波整流电路的输出波形,讨论桥式整流电路有哪些优点。 通过实验,学生知道了桥式整流属于全波整流,引导学生产生质疑:为什么桥式整流能把交流电转化成全波脉动直流电?我们能不能用所学的知识来解释这种现象?借助于ppt动画演示,由学生在教师的引导下分析归纳桥式整流电路的工作原理。 3.拓展应用,延伸知识。桥式整流电路由于其电源利用率高、输出电压大、波形脉动小等优点,得到了广泛的应用,可让学生结合生活实际,举例介绍桥式整流电路的几个应用。

电力电子技术复习题及答案 (3)

电力电子技术复习 一、选择题(每小题10分,共20分) 1、单相半控桥整流电路的两只晶闸管的触发脉冲依次应相差A度。 A、180°, B、60°, c、360°, D、120° 2、α为C度时,三相半波可控整流电路,电阻性负载输出的电压波形,处于连续和断续的临界状态。 A,0度, B,60度, C,30度, D,120度, 3、晶闸管触发电路中,若改变 B 的大小,则输出脉冲产生相位移动,达到移相控制的目的。 A、同步电压, B、控制电压, C、脉冲变压器变 比。 4、可实现有源逆变的电路为A。 A、三相半波可控整流电路, B、三相半控桥整流桥电路, C、单相全控桥接续流二极管电路, D、单相半控桥整流电路。 5、在一般可逆电路中,最小逆变角βmin选在下面那一种范围合理A。 A、30o-35o, B、10o-15o, C、0o-10o, D、0o。 6、在下面几种电路中,不能实现有源逆变的电路有哪几种BCD。 A、三相半波可控整流电路。 B、三相半控整流 桥电路。 C、单相全控桥接续流二极管电路。 D、单相半控桥整流电路。 7、在有源逆变电路中,逆变角的移相范围应选B为最好。 A、=90o∽180o, B、=35o∽90o, C、 =0o∽90o,

8、晶闸管整流装置在换相时刻(例如:从U相换到V相时)的输出电压等于C。 A、U相换相时刻电压u U , B、V相换相时 刻电压u V , C、等于u U +u V 的一半即: 9、三相全控整流桥电路,如采用双窄脉冲触发晶闸管时,下图中哪一种双 窄脉冲间距相隔角度符合要求。请选择B。 10、晶闸管触发电路中,若使控制电压U C =0,改变C的大小, 可使直流电动机负载电压U d =0,使触发角α=90o。达到调定移相控制范围,实现整流、逆变的控制要求。 B、同步电压, B、控制电压, C、 偏移调正电压。 11、下面哪种功能不属于变流的功能(C) A、有源逆变 B、交流调压 C、变压器降压 D、直流斩波 12、三相半波可控整流电路的自然换相点是( B ) A、交流相电压的过零点; B、本相相电压与相邻相电压正、负半周的交点处; C、比三相不控整流电路的自然换相点超前30°; D、比三相不控整流电路的自然换相点滞后60°。 13、如某晶闸管的正向阻断重复峰值电压为745V,反向重复峰值电压为 825V,则该晶闸管的额定电压应为(B) A、700V B、750V C、800V D、850V

种精密整流电路的详解

1.第一种的模拟电子书上(第三版442页)介绍的经典电路。A1用的是半波整流并且放 大两倍,A2用的是求和电路,达到精密整流的目的。(R1=R3=R4=R5=2R2) 2.第二种方法看起来比较简单A1是半波整流电路,是负半轴有输出,A2的电压跟随器的 变形,正半轴有输出,这样分别对正负半轴的交流电进行整流!(R1=R2) 3.第三种电路

仿真效果如下: 这个电路真是他妈的坑爹,经过我半天的分析才发现是这样的结论:Uo=-|Ui|,整出来的电路全是负的,真想不通为什么作者放到这里,算了先把分析整理一下: 当Ui>0的时候电路等效是这样的

放大器A是同相比例电路,Uo1=(1+R2/R1)Ui=2Ui 放大器B是加减运算电路,Uo2=(1+R2/R1)Ui-(R4/R3)Uo1=-Ui 当Ui<0的时候电路图等效如下: 放大器A是电压跟随器,放大器B是加减运算电路 式子整理:Uo2=(1+R4/(R2+R3))Ui- R4/(R2+R3)Ui=Ui 以上是这个电路的全部分析,但是想达到正向整流的效果就应该把二极管全部反向过来电路和仿真效果如下图所示

4.第四种电路是要求所有电阻全部相等。这个仿真相对简单。 电路和仿真效果如下 计算方法如下: 当Ui>0时,D1导通,D2截止(如果真是不清楚为什么是这样分析,可以参照模拟电子技术书上对于第一种电路的分析),这是电路图等效如下(R6是为了测试信号源用的跟这个电路没有直接的关系,不知道为什么不加这个电阻就仿真不了)

放大器A构成反向比例电路,uo1=-ui, 这时在放大器B的部分构成加减运算电路,uo2=-uo1=-(-ui) 注意:这里放大器B的正相输入端是相当于接地的,我刚开始一直没有想通,后来明白了,这一条线路上是根本就没有电流的,根本就没有办法列出方程来。(不知道这么想是不是正确的) 当Ui<0的时候,D1截止,D2导通,电路图等效如下: 这时就需要列方程了 Ui<0时Ui/R1=-(U2/R5+U2/(R2+R3))计算得到U2=-2/3 Ui 再根据U2/(R2+R3)=(U0-U2)/R4 得到U0=3/2 U2 带入得到U0=-Ui

三相全控桥式整流电路

课程设计任务书 学生:专业班级:自动化0602班 指导教师:工作单位:自动化学院 题目:三相桥式全控整流电路的设计(带反电动势负载) 初始条件: 1.反电动势负载,E=60V,电阻R=10Ω,电感L无穷大使负载电流连续; 2.U2=220V,晶闸管触发角α=30°; 3.其他器件如晶闸管自己选取。 要求完成的主要任务:(包括课程设计工作得及其技术要求,以及说明书撰写待具体要求) 1.主电路的设计及原理说明; 2.触发电路设计,每个开关器件触发次序及相位分析; 3.保护电路的设计,过流保护,过电压保护原理分析; 4.各参数的计算(输出平均电压,输出平均电流,输出有功功率计算,输出波形分析); 5.应用举例; 6.心得小结。 时间安排: 7月6日查阅资料 7月7日方案设计 7月8日- 9日馔写电力电子课程设计报告 7月10日提交报告,答辩 指导教师签名:年月日 系主任(或责任教师)签名:年月日

摘要 整流电路就是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。 关键词:整流,变压,触发,过电压,保护电路。

(完整版)桥式整流电路教案.docx

授课教案 (2008 年全国骨干教师培训) 课题:桥式单相全波整流电路 单位:天津市塘沽第一职业中专 授课人:张利 时间: 2008-12-1

桥式单相全波整流电路 知识目标: 识记 V L、V2、I V、 I L的关系 能复述桥式全波整流电路的工作原理 掌握桥式整流电路的连接方法并会进行电路故障分析 能力目标: 体验科学探究过程 提高知识迁移能力 能应用桥式全波整流电路解决简单问题 情感目标: 通过引导学生设计新的整流电路,让学生体验学习过程的快乐,保持学习电子线路 课程的热情 重点:发展科学探究能力,桥式全波整流电路的组成及工作原理的理解 难点:桥式全波整流电路的原理的理解和故障分析教 学方法:讲授法启发法质疑法教学用具:计算机 投影仪 教学课时: 2 课时 教学过程: 一、复习回顾 通过大屏幕显示单相半波整流电路和变压器中心抽头单相全波整流电路及波形,提问:单相半波整流电路和变压器中心抽头单相全波整流电路各有何优、缺点?(让学 生通过观测电路图及波形来回答) 1.单相半波整流电路 ( 大屏幕显示 ) (a)电路 有什么优点和缺点?(老师提问,通过学生回答后课件屏幕显示: (优点:电路简单,变压器无抽头。缺点:电源利用率低,输出电压脉动大。)

2.单相全波整流电路 有什么优点和缺点? (老师提问,通过学生回答后课件屏幕显示: 优点:整流效率高, 输出电压波动小。 缺点:变压器必须有中心抽头, 二极管承受的反向电压高。: (课件屏幕显示) 二、引入新课: 前面我们学习了单相半波整流电路和变压器中心抽头单相全波整流电路,它们各自有其优缺点,在实际应用中比较少用,那么我们能否把二者结合起来设计一种新型的电 路,既可以实现全波整流有可以降低二极管所能承受的反向电压同时还可以将电路结构 简单化充分体现二者的优点呢?这就是我们本节课要学习的另一种整流电路——桥式 单相全波整流电路 三、讲授新课 1.分析其电路组成:(板书) (大屏幕显示桥式单相全波整流电路。) I V V 4V 1 V1v2 I L V 2 V 3 I V V L 2.工作原理分析:(板书)

四种整流电路的特性比较

表1 四种整流电路的特性比较 电路名称 半波整流电路 全波整流电路 桥式整流电路 倍压整流电路 脉动性直流电的频率 50Hz ,不利于滤波 100Hz ,有利于滤波 100Hz ,有利于滤波 整流效率 低,只用半周 交流电 高,使用正、负半周交流电 高,使用正、负半周交流电 高,使用正、负半周交流电 对电源变压器的要求 不要求有抽头,变压器成本低 要求有抽头, 变压器成本高 不要求有抽头,变压器成本低 不要求有抽头,变压器成本低 整流二极管承受的反向电压 低 高 低 低 电路结构 简单 一般 复杂 一般 所用二极管数量 一只 两只 四只 最少两只 2.四种整流电路分析小结 如表2所示是半波、全波、桥式和倍压整流的电路分析小结。 表2 半波、全波、桥式和倍压整流的电路分析小结

成分主要是100Hz的,这是因为整流电路将输入交流电压的半个周期转换了极性,使输出的直流脉动性电压的频率比输入交流电压的频率提高了一倍,这一频率的提高有利于滤波电路的滤波。 分辨三种整流电路方法全波整流电路要求电源变压器的次级线圈设有中心抽头,其他两种电路对电源变压器没有抽头的要求。 另外,半波整流电路中只要一只二极管,全波整流电路中要用两只二极管,而桥式整流电路中则要用四只二极管。根据上述两个特点,可以方便地分辨出三种整流电路的类型,但要注意以电源变压器有无抽头这一点来分辨三种整流电路比较准确。 整流二极管承受反峰电压情况半波整流电路中,当整流二极管截止时,变压器次级线圈的交流电压峰值全部加到二极管两端。 对于全波整流电路而言,当一只二极管导通时,另一只二极管截止,承受变压器次级线圈两端的交流峰值电压。因为这种整流电路变压器次级线圈是半波的2倍,所以,对这种整流电路,要求电路中的整流二极管其承受反向峰值电压的能力较高。 对于桥式整流电路而言,两只二极管导通时,另两只二极管截止,它们相当于并联起来承受反向峰值电压,就是变压器次级线圈两端的峰值电压,所以对这一电路中整流二极管承受反向峰值电压的能力要求较低和半波整流一样。 直流输出电压大小问题在要求直流电压相同的情况下,全波整流电路的电源变压器次级线圈抽头至上端和下端的交流电压相等,且等于桥式整流电路中电源变压器次级线圈的输出电压,这样,全波整流电路中的电源变压器相当于绕了两组次级线圈。 输入交流电压正、负半周转换在全波和桥式两种整流电路中,都是将输入交流电压的负半周转换到正半周(在负极性整流电路中是将正半周转换到负半周),这一点与半波整流电路不同。在半波整流电路中,将输入交流电压的半个周期去除了。 管压降不计在整流电路中,输入交流电压的幅值远大于二极管导通后的管压降,所以整流二极管导通之后,二极管的管压降与交流输入电压相比很小,管压降对直流输出电压大小的影响可以忽略不计。 倍压整流电路特性对于倍压整流电路,它能够输出比输入交流电压更高的直流电压,但是这种电路输出电流的能力较差,所以它具有高电压、小电流的输出特性。 二极管特性运用分析各种整流电路时,主要用二极管的单向导电特性,整流二极管的导通电流由输入交流电压提供。

十种精密全波整流电路图

十种精密全波整流电路图 图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计. 图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益。 图2优点是匹配电阻少,只要求R1=R2

图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3 图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点。 图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计。

图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K 图8的电阻匹配关系为R1=R2 图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称。

图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性。 图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡。 精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态。 结论: 虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种。 图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波。 图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了。 图3的优势在于高输入阻抗。 其它几种,有的在D2导通的半周内,通过A2的复合实现A1的负反馈,对有些运放会出现自激. 有的两个半波的输入阻抗不相等,对信号源要求较高。

单相半波整流电路教案 - 1

单相半波整流电路教案 教材分析 在小功率整流电路中,单相半波整流电路凭借其电路结构简单的特点广泛应用于电工电子技术中。学好本节的内容将为后续课程内容单相全波整流电路、单相桥式整流电路、 教学重点和难点 单相半波整流电路的工作原理分析,输出电压极性和波形分析及负载直流电压电流的计算。 (一):师生互动环节(教师展示手机充电器对锂电池充电过程) 师:同学们我们现在使用的手机锂电池的低压直流电能是从哪里得来的呢? 生:是手机充电器供给的(学生异口同声的回答) 师:是的。充电器直接引入的是市电220V,50H Z的交流电能,而手机锂电池需要存储的是低压直流电能,那么请同学们思考下充电器是如何给锂电池充电的呢? 生:先降压后变换(少数学生能回答) 换成脉动的低压直流电能--------单相半波整流电路(板书) (一):单相半波整流电路的结构与工作原理(板书)(约43分钟) 教师提示:“单相”一词是指输入整流电路的交流电是单相交流电。而“半波”一词同学们可在下面讲授的半波整流原理中自己总结,到时老师请同学们回答。(任务驱动法教学可集中学生的听课注意力) 1:电路结构组成(板书) 2:工作原理(板书) 教师引导:输入整流电路的交流电压来自于电源变压器的二次绕组输出端,在分析整流原理时应将交流电压分成正、负半周两种情况来考虑。另外为了分析方便,变压器T应假设为无损耗的理想元件,整流二极管V应为理想二极管,负载为纯电阻性负载。 教师提问:①:上面分析了半波整流电路的工作原理,由此可以回答什么是半波整流。 (请学生回答) ②:若在上面图中把整流二极管V极性对调后整理电路的原理又怎样分析

各类整流电路图及工作原理

桥式整流电路图及工作原理介绍 桥式整流电路如图1所示,图(a)、(b)、(c)是桥式整流电路的三种不同画法。由电源变压器、四只整流二极管D1~4 和负载电阻RL组成。四只整流二极管接成电桥形式,故称桥式整流。 图1 桥式整流电路图 桥式整流电路的工作原理 如图2所示。

在u2的正半周,D1、D3导通,D2、D4截止,电流由TR次级上端经D1→ RL →D3回到TR 次级下端,在负载RL上得到一半波整流电压。 在u2的负半周,D1、D3截止,D2、D4导通,电流由Tr次级的下端经D2→ RL →D4 回到Tr次级上端,在负载RL 上得到另一半波整流电压。 这样就在负载RL上得到一个与全波整流相同的电压波形,其电流的计算与全波整流相同,即 UL = 0.9U2 IL = 0.9U2/RL 流过每个二极管的平均电流为 ID = IL/2 = 0.45 U2/RL 每个二极管所承受的最高反向电压为 什么叫硅桥,什么叫桥堆 目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图Z图1(c)的形式。桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反压大的缺点,但多用了两只二极管。在半导体器件发展快,成本较低的今天,此缺点并不突出,因而桥式整流电路在实际中应用较为广泛。 二极管整流电路原理与分析 半波整流 二极管半波整流电路实际上利用了二极管的单向导电特性。

当输入电压处于交流电压的正半周时,二极管导通,输出电压v o=v i-v d。当输入电压处于交 流电压的负半周时,二极管截止,输出电压v o=0。半波整流电路输入和输出电压的波形如图所 示。 二极管半波整流电路 对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。但对于电子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。平滑处理电路实际上就是在半波整流的输出端接一个电容,在交流电压正半周时,交流电源在通过二极管向负载提供电源的同时对电容充电,在交流电压负半周时,电容通过负载电阻放电。 电容输出的二极管半波整流电路仿真演示 通过上述分析可以得到半波整流电路的基本特点如下: (1)半波整流输出的是一个直流脉动电压。 (2)半波整流电路的交流利用率为50%。 (3)电容输出半波整流电路中,二极管承担最大反向电压为2倍交流峰值电压(电容输出 时电压叠加)。 (3)实际电路中,半波整流电路二极管和电容的选择必须满足负载对电流的要求。

单相半波整流电路教案

实验一、单相半波整流电路教案 教材分析 在小功率整流电路中,单相半波整流电路凭借其电路结构简单的特点广泛应用于电工电子技术中。学好本节的内容将为后续课程内容单相全波整流电路、单相桥式整流电路等打下良好的基础;同时也就是教材前面半导体二极管知识的一个重要应用,所以本节内容在顺序安排上起到了承上启下的作用。本节主要介绍了单相半波整流电路的结构、工作原理以及负载电压与电流,在讲授时教师应吃透教材,深入浅出,利用实验现象直观地帮助学生掌握本节知识,并设计问题给学生以启迪。 学生分析 电子电路理论普遍具有抽象性,而我们中职类学生基础较薄弱,所以中技生在学习基础理论的过程就较吃力,针对这一特点,本人直接通过实验的方法,利用直观现象来激发学生的学习兴趣,集中学生的听课注意力。在讲授本节内容时,本人在课堂上亲自演示用示波器测量单相半波整流电路的输入输出波形,学生可直观波形,对比波形来理解整流的作用与目的。另外结合整流电路应用于日常生活的电器(例如手机、MP3的充电器)来激发学生的学习整流电路的兴趣;在讲授整流原理时进行讲练结合,用任务驱动法来展开教学。整个教学过程中应充分利用教师的示范及学生亲自动手分析等,使学生逐步掌握分析电路的技能.要注意教给学生分析电路的方法,提高演示实验的可见度。在演示实验时最好边讲解,边操作.教师的演示将对学生起示范作用,因此要注意操作的规范性。 教学目标与价值观 情感目标:利用实物展示、演示实验现象来引导学生理解整流的概念与作用,激发学生的兴趣,促进教学的配合。 能力目标:帮助学生掌握单相半波整流电路的结构、工作原理及负载电压与电流的计算。 价值观:培养学生分析与检修整流电路故障的能力。 教学重点与难点 单相半波整流电路的工作原理分析,输出电压极性与波形分析及负载直流电压电流的计算。 课前教具准备 1N4007小功率整流二极管一只、手机充电器及其配套锂电池、示波器与事先制作好的单相半波整流电路。 教学方法 实物展示法、实验演示法、讲练结合法、启发诱导法 教学活动 一、复习提问(约3分钟) (1):教师拿出一个1N4007的小功率整流二极管复习半导体二极管的结构与符号。 (2):提问二极管的单向导电性并请同学们画出二极管的正、反向偏置电压的电路图。

(完整版)整流与稳压电路习题(2)

第6章整流与稳压电路习题 6.1 单相桥式整流电路 一、填空题: 1.整流是指将变换成的过程,整流电路中起整流作用的是具有性质的或。 2、把交流电变换成直流电的电路称为___________电路中,整流电路中起整流作用的是__________。 3、单相半波整流电路中滤波电容器的容量是_________,耐压是________,单相半波整流电路中滤波电容器的容量是_________,耐压是________. 4、将________变成_________的过程称为整流,在单相半波整流电路中,常见的整流形式有_________,________,________. 5.单相半波整流有载电路中,若U2=20V,则输出电压,UO=_____,IL_____, URM=_____。 6.在单向桥式整流电路中,如果负载电流是20A,则流过每只二极管的电流是 A。 7.硅二极管的正向压降约为 V,锗二极管的正向压降约为 V;硅二极管的死区电压约为 V,锗二极管的死区电压约为 V。 二、选择题: 1. 交流电通过整流电路后,所得到的输出电压是( )倍。 A.交流电压 B. 稳定的直流电压 C. 脉动的直流电压 D. 平滑的直流电压 2. 单相桥式整流电路的输出电压是输入电压的( )倍。 A.0.5 B. 1.2 C. 0.9 D. 1 3.桥式整流电路的输入电压为10V,负载是2Ω,则每个二极管的平均电流是( )。 A.9A B. 2.25 A C. 4. 5 A D. 5 A 4. 桥式整流电路每个二极管承受的反向电压是输入电压的( )倍。 A.2 B. 0.9 C .1.2 D. 0.45 5. 单相桥式整流电路中,如果一只整流二极管接反,则 ( )。 A.引起电源短路 B. 成为半波整流电路 C. 仍为桥式整流电路,但输出电压减小 D. 仍为桥式整流电路,但输出电压上升 6.在单相桥式整流电路中,整流二极管的反向电压最大值出现在二极管()。A.截止时B.由截止转为导通时 C.由导通转为截止时D.导通时 7.在单相桥式整流电路中,每个二极管的平均电流等于输出平均电流的()。A.1/4 B.1/2 C.1/3 D.2 8. 整流的目的是()。 A.将交流变为直流 B.将正弦波变为方波 C.将低频信号变为高频信号 D.将直流变为交流信号 9. 某单相桥式整流电路,变压器二次电压为U2,当负载开路时,整流输出

10种精密整流电路的详解

1. 第一种的模拟电子书上(第三版442页)介绍的经典电路。A1用的是半波整流并且放 大两倍,A2用的是求和电路,达到精密整流的目的。(R1=R3=R4=R5=2R2) 2. 第二种方法看起来比较简单A1是半波整流电路,是负半轴有输岀,A2的电压跟随器的 变形,正半轴有输岀,这样分别对正负半轴的交流电进行整流! (R1=R2) 3. 第三种电路 图3咼输入阻抗型 图4等值电阻型 R1 U1 ZOR ^^7 R2 1OK R3 20K ar R1 R2 20K 10K Ui R3 1 0K 謝https://www.doczj.com/doc/145180999.html, 1 >1 图6单运放三箱形 图5单运放T 型 ? 8壊益等于1复合放大器型 R2 R4 ■叭 R1 01 -DH- D2 Uo 丄 R3 图9复合放大器输入不对称型 因10单电源运放元二极管型

这个电路真是他妈的坑爹,经过我半天的分析才发现是这样的结论:Uo=-|Ui|,整出来的电路全是负的,真想不通为什么作者放到这里,算了先把分析整理一下:当Ui>0的时候电路等效是这样的

放大器B是加减运算电路.Uo2= (1+R^Rl) Ui- (R§R3) Uol=-Ui 当Ui<0的时候电路图等效如下: 以上是这个电路的全部分析,但是想达到正向整流的效果就应该把二极管全部反向过来电路和仿真效果如下图所示

4. 第四种电路是要求所有电阻全部相等。这个仿真相对简单。 电路和仿貞?效果如下 计算方法如下: 当Ui>0时,D1导通,D2截止(如果真是不淸楚为什么是这样分析,可以参照模拟电 子技术书上对于第一种电路的分析),这是电路图等效如下(R6是为了测试信号源用的 跟这个电路没有直接的关系,不知道为什么不加这个电阻就仿真不了) / Z — ' 1— 厶丿 r% R 8 uv D3 4 ?> Poston th 10 I mart Au?n Oro Shot Cursors mV LM3 少 AC OC GND CFF AC [F Ml Channel A U2:A ClkimielC ZA+IH 10K 10K Ro I0K CM :# SOLTC? 8 C nn= DI00E ?:TEXT : 〔 U2:B

各种整流电路详解(推荐)

各种整流电路 桥式整流电路图及工作原理介绍 桥式整流电路如图1所示,图(a)、(b)、(c)是桥式整流电路的三种不同画法。由电源变压器、四只整流二极管D1~4 和负载电阻RL组成。四只整流二极管接成电桥形式,故称桥式整流。 图1 桥式整流电路图 桥式整流电路的工作原理如图2所示。 图2 桥式整流电路原理图 在u2的正半周,D1、D3导通,D2、D4截止,电流由TR次级上端经D1→ RL →D3回到TR 次级下端,在负载RL上得到一半波整流电压;在u2的负半周,D1、D3截止,D2、D4导通,电流由Tr次级的下端经D2→ RL →D4 回到Tr次级上端,在负载RL 上得到另一半波整流电压。 这样就在负载RL上得到一个与全波整流相同的电压波形,其电流的计算与全波整流相同,即 UL = 0.9U2;IL = 0.9U2/RL 流过每个二极管的平均电流为:ID = IL/2 = 0.45 U2/RL 什么叫硅桥,什么叫桥堆 目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图1(c)的形式。 桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反压大的缺点,但多用了两只二极管。在半导体器件发展快,成本较低的今天,此缺点并不突出,因而桥式整流电路在实际中应用较为广泛。 电设计网(https://www.doczj.com/doc/145180999.html,)

二极管整流电路原理与分析 半波整流 二极管半波整流电路实际上利用了二极管的单向导电特性。 当输入电压处于交流电压的正半周时,二极管导通,输出电压v o=v i-v d。当输入电压处于交流电压的负半周时,二极管截止,输出电压v o=0。半波整流电路输入和输出电压的波形如图所示。 电设计网(https://www.doczj.com/doc/145180999.html,) 图3二极管半波整流电路 对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。但对于电子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。平滑处理电路实际上就是在半波整流的输出端接一个电容,在交流电压正半周时,交流电源在通过二极管向负载提供电源的同时对电容充电,在交流电压负半周时,电容通过负载电阻放电。 图4电容输出的二极管半波整流电路 通过上述分析可以得到半波整流电路的基本特点如下: (1)半波整流输出的是一个直流脉动电压。

桥式整流电路教案

课题:单相桥式全波整流电路知识目标: 识记V L 、V 2 、I V 、I L 的关系 能复述桥式全波整流电路的工作原理 掌握桥式整流电路的连接方法并会进行电路故障分析 能力目标: 体验科学探究过程 提高知识迁移能力 能应用桥式全波整流电路解决简单问题 情感目标: 通过引导学生设计新的整流电路,让学生体验学习过程的快乐,保持学习电子线路课程的热情 重点:发展科学探究能力,桥式全波整流电路的组成及工作原理的理解 难点:桥式全波整流电路的原理的理解和故障分析 教学方法:讲授法启发法质疑法 教学用具:计算机投影仪 教学课时: 1课时 教学过程: 一、复习回顾 通过大屏幕显示单相半波整流电路,提问:单相半波整流电路有何优、缺点?(让学生通过观测电路图及波形来回答) 1.单相半波整流电路 (大屏幕显示) (优点:电路简单,变压器无抽头。缺点:电源利用率低,输出电压脉动大。)二、引入新课: 前面我们学习了单相半波整流电路,它们各自有其优缺点,在实际应用中比较少用,那么我们能否把二者结合起来设计一种新型的电路,既可以实现全波整流有可以降低二极

管所能承受的反向电压同时还可以将电路结构简单化充分体现二者的优点呢?这就是我们本节课要学习的另一种整流电路——桥式单相全波整流电路 三、讲授新课 1.分析其电路组成: (大屏幕显示桥式单相全波整流电路。) 2.工作原理分析: ①屏幕显示以下幻灯片,结合二极管的特性分析在V L 的正半周和负半周时流过负载R L 的电流方向。 桥式整流电路工作原理 正半周:电流通过V1.V3;V2.V4截止。 电流从右向左通过负载。 (老师分析正半周,然后让学生自己分 析负半周,从而锻炼学生分析问题的 能力) 负半周:电流通过V2.V4;V1.V3截止。 电流从右向左通过负载。 结论:通过负载R L 的电流I L 是全波脉动直流,R L 两端电压是全波脉动直流电压V L ②屏幕显示以下幻灯片,用动画将分析过的桥式整流电路(前面为了便于学生观察,没有画成书上常见的图形),成为标准全波整流电路图。要求学生画标准全波整流电路图。 3.波形分析 V 1 V 3 V 4 V 2 v V L I I I V V V V v V I I V I V 单相桥式整流电路原理图

PWM整流电路工作原理

PWM整流电路的原理分析 摘要:无论是不控整流电路,还是相控整流电路,功率因数低都是难以克服的缺点.PWM整流电路是采用PWM控制方式和全控型器件组成的整流电路,本文以《电力电子技术》教材为基础,详细分析了单相电压型桥式PWM整流电路的工作原理和四种工作模式。通过对PWM整流电路进行控制,选择适当的工作模式和工作时间间隔,交流侧的电流可以按规定目标变化,使得能量在交流侧和直流侧实现双向流动,且交流侧电流非常接近正弦波,和交流侧电压同相位,可使变流装置获得较高的功率因数。 1 概述 传统的整流电路中,晶闸管相控整流电路的输人电流滞后于电压,其滞后角随着触发角的增大而增大,位移因数也随之降低。同时输人中谐波分量也相当大,因此功率因数很低。而二极管不控整流电路虽然位移因数接近于1,但输人电流中谐波分量很大,功率因数也较低。 PWM整流电路是采用PWM控制方式和全控型器件组成的整流电路,它能在不同程度上解决传统整流电路存在的问题。把逆变电路中的SPWM控制技术用于整流电路,就形成了PWM整流电路。通过对PWM整流电路进行控制,使其输人电流非常接近正弦波,且和输人电压同相位,则功率因数近似为1。因此,PWM整流电路也称单位功率因数变流器。 参考文献[1]在第6章“PWM控制技术”中增添了“PWM整流电路及其控制方法”这一部分内容。但在PWM整流电路的工作原理中介绍篇幅较少,只是针对PWM整流电路的运行方式相量图进行分析,没有分析其工作过程。对PWM 整流电路不熟悉的教师在了解这部分内容时普遍感觉吃力。 1 单相电压型桥式PWM整流电路 电压型单相桥式PWM整流电路最早用于交流机车传动系统,为间接式变频电源提供直流中间环节,其电路如图I所示。每个桥臂由一个全控器件和反并联的整流二极管组成。L为交流侧附加的电抗器,在PWM整流电路中是一个重要的元件,起平衡电压、支撑无功功率和储存能量的作用。为简化分析,可以忽略L的电阻。 图 1 电压型单相桥式PWM整流电路 除必须具有输人电感外,PWM整流器的电路结构和PWM逆变电路是相同的。按照

电子人必须知道的10个整流电路

描述: 图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益 图1 经典型 图2优点是匹配电阻少,只要求R1=R2 图2 四个二极管型 图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3 图3 高输入阻抗型 图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点.

图4 等值电阻型 图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计 图5 单运放T型 图6 单运放三角型 图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K 图7 增益大于1的复合放大器型 图8的电阻匹配关系为R1=R2 图8 增益等于1的复合放大器型

图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称. 图9 复合放大器输入不对称型 图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性. 图10 单电源运放无二极管型 图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡. 精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态. 结论: 虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种. 图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波. 图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了. 图3的优势在于高输入阻抗. 其它几种,有的在D2导通的半周内,通过A2的复合实现A1的负反馈,对有些运放会出现自激. 有的两个半波的输入阻抗不相等,对信号源要求较高. 两个单运放型虽然可以实现整流的目的,但是输入\输出特性都很差.需要输入\输出都加跟随器或同相放大器隔离. 各个电路都有其设计特色,希望我们能从其电路的巧妙设计中,吸取有用的.例如单电源全波电路的设计,复合反馈电路的设计,都是很有用的设计思想和方法,如果能把各个图的电路原理分析并且推导每个公式,会有受益的.

全桥整流电路(仅供参考)

全桥整流电路 全桥整流电路图: 全桥整流电路图 看完了全桥整流电路图,我们再来看一个关于全桥整流电路问题实例: 交流220v的全桥整流电路的输入端能否直接输入直流310v电源?为什么? 能得到峰值为310伏的脉动直流电压。如果得到纯直流电还要需要接电容电感等一系列的原件进行滤波。得到310伏的电压不容易。 如果工作电压或电流超过了二极管的极限参数那都要损坏。和多高电压多大电流无关。前提是在正常的工作范围内。 得到的高压经整流过后得到的高电压一般可看作虚电压。接上负载以后电压通常保持不再这个值。这个你可以用低压试验试试看。

最后电子元件技术网再来给大家讲讲全桥式整流电路工作原理: 电子系统的正常运行离不开稳定的电源,除了在某些特定场合下采用太阳能电池或化学电池作电源外,多数电路的直流电是由电网的交流电转换来的。这种直流电源的组成以及各处的电压波形如图所示。直流电源的组成 图中各组成部分的功能如下:⑴电源变压器:将电网交流电压(220V或380V)变换成符合需要的交流电压,此交流电压经过整流后可获得电子设备所需的直流电压。因为大多数电子电路使用的电压都不高,这个变压器是降压变压器。 ⑵整流电路:利用具有单向导电性能的整流元件,把方向和大小都变化的50Hz交流电变换为方向不变但大小仍有脉动的直流电。 ⑶滤波电路:利用储能元件电容器C两端的电压(或通过电感器L的电流)不能突变的性质,把电容C(或电感L)与整流电路的负载RL并联(或串联),就可以将整流电路输出中的交流成分大部分加以滤除,从而得到比较平滑的直流电。在小功率整流电路中,经常使用的是电容滤波。 ⑷稳压电路:当电网电压或负载电流发生变化时,滤波电路输出的直流电压的幅值也将随之变化,因此,稳压电路的作用是使整流滤波后的直流电压基本上不随交流电网电压和负载的变化而变化。 利用二极管的单向导电性组成整流电路,可将交流电压变为单向脉动电压。本章为便于分析整流电路,把整流二极管当作理想元件,即认为它的正向导通电阻为零,而反向电阻为无穷大。但在实际应用中,应考虑到二极管有内阻,整流后所得波形,其输出幅度会减少0.6~1V,当整流电路输入电压大时,这部分压降可以忽略。但输入电压小时,例如输入为3V,则输出只有2V多,需要考虑二极管正向压降的影响。 在小功率直流电源中,常见的几种整流电路有单相半波、全波、桥式和三相整流电路等。 整流(和滤波)电路中既有交流量,又有直流量。对这些量经常采用不同的表述方法:输入(交流)——用有效值或最大值;输出(直流)——用平均值;二极管正向电流——用平均值;二极管反向电压——用最大值。 单相全波桥式整流电路的工作原理

相关主题
文本预览
相关文档 最新文档