当前位置:文档之家› 慧鱼系列移动机器人

慧鱼系列移动机器人

慧鱼系列移动机器人
慧鱼系列移动机器人

工学院毕业设计(论文)

移动机器人模型设计

专业:机电一体化技术

班级:机电0911

学号:

学生姓名:

指导教师:

二零一一年四月

I

目录

摘要 (1)

第1章绪论 (2)

1.1 慧鱼创意组合模型概述 (2)

1.2 课题的内容及意义 (2)

第2章移动机器人慧鱼模型设计 (4)

2.1 模型的总体设计 (4)

2.1.1 模型实物图 (4)

2.1.2 模型示意图 (4)

2.2 模块设计 (6)

2.2.1 升降模块设计 (6)

2.2.2 水平模块设计 (8)

2.2.3 底座智能旋转模块设计 (9)

2.2.4 智能判断模块设计 (11)

2.3 慧鱼模型接线图 (12)

第3章移动机器人调试 (13)

3.1 硬件调试 (13)

3.2 软件调试 (13)

第4章结论 (15)

谢辞 (16)

参考文献 (17)

摘要:在参考市场上的机器人的机构和外观后,根据慧鱼模型在符合自身情况的比例对机器人进行整体框架的设计。接着,在模型上安装数个电机提供机器人运动的动力,并用蜗轮蜗杆,齿轮等传动机构进行传动;安装若干限位开关来控制机器人运动的方向及转向的动作;最后,在符合以上条件的情况下,对整个模型进行处理使其具有最美观的外形。

关键词:移动机器人;慧鱼模型;限位开关;设计

第1章绪论

1.1 慧鱼创意组合模型概述

1964年,慧鱼创意组合模型(fischertechnik)诞生于德国,是技术含量很高的工程技术类智趣拼装模型,是展示科学原理和技术过程的理想教具,也是体现世界最先进教育理念的学具,为创新教育和创新实验提供了最佳的载体。

慧鱼创意组合模型的主要部件采用优质尼龙塑胶制造,尺寸精确,不易磨损,可以保证反复拆装的同时不影响模型结合的精确度;构件的工业燕尾槽专利设计使六面都可拼接,独特的设计可实现随心所欲的组合和扩充。

慧鱼创意组合模型主要有组合包、培训模型、工业模型三大系列,涵盖了机械、电子、控制、气动、汽车技术、能源技术和机器人技术等领域和高新学科,利用工业标准的基本构件(机械元件/电气元件/气动元件),辅以传感器、控制器、执行器和软件的配合,运用设计构思和实验分析,可以实现任何技术过程的还原,更可以实现工业生产和大型机械设备操作的模拟,从而为实验教学、科研创新和生产流水线可行性论证提供了可能,世界知名的德国西门子、德国宝马、美国IBM等一大批著名公司都采用慧鱼模型来论证生产流水线。

慧鱼创意组合模型体现不同学科知识点的各种组合包,不仅可以应用于中小学各个年级学科教学、还可以用于大学不同专业以及研究生工程实验和技术创新活动,现在以清华大学、上海交通大学为代表的一批高校建立的慧鱼创新实验室就是利用慧鱼模型组合包系列建立的工程技术实验室,是创新教育的一个全新平台。通过慧鱼模型的使用,不仅可以让我们的孩子将多学科多领域的综合知识融会贯通于实践过程中,更重要的是培养了他们的创新意识和创新能力。

1.2课题的内容及意义

本论文在参考市场上一些普通的移动机器人结构的基础上,通过慧鱼模型的结构组建和ROBO板的智能控制来完成移动机器人的设计。

通过慧鱼教学模型来组建出本设计移动机器人,通过各个机构的相互配合联系来控制移动机器人。设计的模型通过慧鱼软件来编写程序进行控制。接口板能转换软件命令,一旦程序被下载,接口就可以脱离与计算机的连接,独立于计算机执行程序,体现其智能化。通过本毕业设计的完成,可以使设计者使用慧鱼创意组合模型通过自己的构思设计出自己的模型,使设计者能更加深刻的了解机械结构设计和机械运动的规律,强化了通过慧鱼软件对机械运动的控制。使设计者能使用智能化来控制机械设备,智能化的设计也将是未来机械发展的一个重要趋向。

所以本次毕业设计对慧鱼造型设计能力是一个很好的锻炼机会,对日后从事工程设计方面的工作有会有不同程度上的帮助和提高。

第2章移动机器人慧鱼模型设计

2.1模型的总体设计

2.1.1 模型实物图

分析移动机器人的功能结构,根据它的的工作原理,来设计它的机构。利用慧鱼模型组合包来组建移动机器人的模型。如下图2.1所示就是慧鱼模型组建的移动机器人的模型。

图2.1模型实物图

2.1.2 模型示意图

本设计移动机器人,它能实现机器人的上下楼梯,判断平台,在平台上旋转方向后继续上下楼梯的功能。图2.2为此模型的结构简图。

如图2.2所示,通过电机带动底盘和触手的上升下降从而起到机器人的上下楼梯的支撑点的作用;限位开关控制上下行的程度;蜗轮蜗杆带动机器人旋转;电机带动螺旋杆使底盘及触手在螺旋杆的方向上进行上下移动,达到上下楼梯的目的。

1-上行限位开关2-触手3-上螺旋杆电机传动机构4-上下控制电机5-两电机连接并与上螺旋杆连接机构 6-下螺旋杆 7-底盘蜗轮与下螺旋杆连接机构 8-蜗轮蜗杆9-控制蜗杆的电机 10-触手底坐的限位开关 11-滑杆 12-上螺旋杆 13-下螺旋杆电机传动机构 14-底盘限位开关 15-水平放置的常闭限位开关 16-下螺旋杆

图2.2模型示意图

图2.3模型示意简图

2.2 模块设计

2.2.1 升降模块设计

升降模块是实现机器人上下楼梯的模块。通过电机传动,在底盘触地并进行下降运动时,通过反作用力使触手上行,达到上楼梯的目的。而在进行上行运动时,先是触手下行接触地面后,使蜗轮底盘上升达到上楼梯的目的。反之,下楼梯也是同样的升降原理。主要注意因为蜗轮底盘及螺旋杆块的重量而采用双电机并联或使用大功率电机使其有足够的动力带动上下运动。

升降模块ROBO模型控制流程,按下I1发送一个脉冲信号,系统接收到脉冲信号后,驱动电机M3开始转动,从而通过上面介绍的升降模块实现升降。按下I6发送一个脉冲信号,模块接收到脉冲信号后,停止电机M3,使升降模块停止。程序回到开始状态,继续待命。如下图2.4 为此模块的实物图,图2.5为此模块的示意图,图2.6为此模块的ROBO控制程序图。

图2.4升降模块实物简图

1—电机 2—减速箱 3—连接杆 4—齿条图2.5升降模块示意简图

图2.6升降模块控制流程图

2.2.2 水平模块设计

水平模块是控制机器人前进距离的模块。顾名思义:是用来使机器人前进的模块。因为该模块是斜方向的,所以能在升降模块达到一定程度时,通过该模块在螺旋杆的运动带动下进行上下楼梯的作用。

水平模块是由两边各一个电机及主动齿轮,传动齿轮,从动齿轮,螺旋杆和两根滑杆组成。构成了机器人的水平方向运动的框架,所以称之为水平模块。最终的运行原理步骤是电机转动,使齿轮传动带动从动齿轮,从动齿轮将电机的旋转力传递到斜的螺旋杆。通过螺旋杆的作用使机器人的触手在螺旋杆的方向上下运动,或者在触手不动的状态下整个水平模块前进后退,从而使机器人进行上下楼梯的运动。

如下图2.7和2.8是电机把力从主动齿轮传递到水平蜗杆轴的传递图,分别为模块实物图,模块示意图(三齿轮啮合图)。

图2.7水平模块实物图

图2.8水平模块示意图

2.2.3 底座智能旋转模块设计

机器人底座智能旋转模块是控制机器人底座自动旋转的模块。由于现代楼梯在平台上需要旋转90°才能继续上楼,所以设定了该模块。

机器人底座蜗轮转盘就是在机器人到达楼梯平台需要转弯才能继续工作的的运行机构。底盘电动机转动带动蜗杆转动从而使蜗轮转动。而在蜗杆的另一端有个开关,可以设置蜗杆转动的转数。即通过蜗轮与蜗杆转动2格,开关闭合断开一次。如下图2.9为局部放大图;1.10为整体实物图;2.11为示意图。

图2.9底座转盘局部放大实物图

图2.10底座转盘整体实物图

图2.11底座转盘示意图

如图2.12是蜗轮底座智能旋转模块的ROBO程序控制流程图。由于底座的旋转是在机器人触手上升的基础上进行,所以在选择之前应先时M3带动触手即升降模块带动上升。M4(底盘电机)转动带动另一端的齿轮旋转反复按压K7的开关。经过多次调试,得出是触手旋转90°的数据。如果旋转的不是90°那么可以根据比例来重新设定达到需要的角度。

图2.12蜗轮底座智能旋转模块ROBO控制流程图

2.2.4 智能判断模块设计

智能判断模块是本设计的重要模块之一。主要体现在机器人在下楼时,触手的底端在该层的最边缘,不然可能导致距离把握不好,而出现意外。

如图2.13模型实物图在机器人底端安装的两限位开关。当触手在M3(升降模块)M1(水平模块的上螺旋杆)左右下往前移动,然后下降前限位开关没闭合,而后限位开关却闭合了,则M1 M3往后运动一小段,并测试两开关的闭合情况,直到刚闭合时才完成测试判断阶段。此时机器人的触手正好仅靠着楼梯的边缘。

图2.13 模型实物图

图2.14智能判断模块ROBO控制流程图

如图2.14所示是智能判断模块的慧鱼控制程序流程。先通过M3使触手上升,然后在M1的作用下往台阶的边缘方向运动,运动了一段距离后,M3使触手下降触地。若双开关之一未闭合,则M1M3往楼梯边缘的反方向靠近一小段,并再次

触手下碰地判断,若还是未全部闭合则持续上面动作,直到都闭合为止。然后M3带动触手下降,触地后反作用力使底盘上升达到上限位开关K6闭合时停止,此时已经为下步下楼梯做好了最后准备。

2.3 慧鱼模型接线图

本设计的慧鱼模型接线图中主要由ROBO板、限位开关、马达、电池、电线等组成。电池是提电源的,I1—I7的限位开关为输入设备,M1—M4的马达为输出设备。如下图2.15为本设计的慧鱼模型接线图。

图2.15移动机器人慧鱼模型接线简图

第3章移动机器人调试

移动机器人的调试包括了硬件调试和软件调试。硬件调试是对于机器人模型的机械机构的传动类型、传动比、传动速度等的调试;软件调试是对于模型要求达到的功能来进行的ROBO Pro的程序调试。

3.1 硬件调试

硬件调试在设计过程中遇到较多困难。即要实现移动机器人的上下楼梯又要使机器人平稳的运动。因为要实现机器人的上下楼梯首先要判断楼梯的位置,使触手上的限位开关碰壁闭合。而楼梯每阶的宽度和机器人每次前移的距离是固定的,所以螺旋杆的长度和台阶的宽度要适当。而在台阶上的运动要比平台上少前移一次才(也就是限位开关在机器人多前移一次未碰壁闭合)。为了节约时间材料,所以在设计完机器人后经过反复计算并与实际作出的模型想结合,作出了适合该机器人的楼梯即机器人一次前移能上或下一格台阶。

机器人的平稳运动也是经过多次试验和计算才得出的。因为螺旋杆是用电动机来带动的。上螺旋杆与触手上的齿条齿轮连接,下螺旋与底盘蜗轮蜗杆机构连接,整个连接机构的重量是很大的。而触手的重量和螺旋杆的长度却无法与之匹配,所以导致在调试时多次因重心不稳而倒地。起初通过加大触手底的接触地面的长度来完成,但是随之而来却发现在上下楼梯时,因为长度关系而造成碰壁难度及在上下楼梯时触手的重心问题。最后通过加大螺旋杆与滑杆的水平距离使面积扩大,并在保持机器人的正常运动中最大限度的减轻重量。

3.2 软件调试

软件调试由于本设计使用的程序是ROBO板,所以用的是ROBO程序。

移动机器人由触手模块、滑杆螺旋杆模块、蜗轮蜗杆模块、升降模块。主要由计算机、ROBO Pro软件、智能接口板组成。

将ROBO Pro软件安装在计算机后,根据模型所要实现的功能编制程序。软件调试是本模型最为关键的部分,也是最有创新意义的亮点。根据智能接口板中所输入的程序不同可以实现不同楼梯宽度的上下。如下图3. 1的总控制程序图。

图3.1移动机器人慧鱼控制总流程图

慧鱼智能接口板自带微处理器,通过串口与计算机相连。在计算机上编写好的程序可以移植到接口板的微处理器上,它可以不用计算机独立地出来程序(在激活模式下)。检查好模型的机械搭载部分后,连接智能接口板与计算机以及智能接口板与模型的接口后进行软件的测试工作,最后在计算机上以ROBO Pro软件为平台,对设计好的控制程序与智能接口板进行通讯连接,然后对应地下载到

智能接口板中,从而达到真正无人操作的目的。

第4章结论

此次毕业设计是我们从大学毕业生走向未来工程师重要的一步。从最初的选题,开题到计算、绘图组建慧鱼模型直到完成设计。其间,查找资料,老师指导,与同学交流,反复修改慧鱼模型,每一个过程都是对自己能力的一次检验和充实。

通过本次慧鱼模型设计移动机器人的实物模型,更加强化对机构之间的配合使用。相对于设计的模型通过慧鱼软件来编写程序,通过计算机下载到ROBO板。接口板能转换软件命令,一旦程序被下载,接口就可以脱离和计算机的连接,独立于计算机执行程序,体现其智能化。本毕业设计的完成,是我理论和实践的综合使用,深化了机械设计及机械运动的规律,强化了慧鱼模型,ROBO板的使用。并锻炼了机械设计的能力,为今后的工作之路打下了坚实的基础。但是本人感觉最大的收获是能在理论之后,通过多次数据计算,得出最后结论之后才动手去做,,改变了以往想到什么做什么,最后与实际情况不符又得拆了重新设计。这样节约了时间,并能使自己更加自信。有了这一认识,能避免以后的工作,生活之路少走很多弯路。

但是毕业设计也暴露出自己专业基础的很多不足之处。比如缺乏综合应用专业知识的能力,对机构的不了解,等等。这次实践是对自己大学三年所学的一次大检阅,使我明白自己知识还很浅薄,虽然马上要毕业了,但是自己的求学之路还很长,以后更应该在工作中学习,努力使自己成为一个对社会有所贡献的人。

谢辞

三年光阴,白驹过隙。毕业论文今日终于完稿。

过去三年间,在我整个大学生活中,如果没有那么多人给予我信任和支持,这篇论文是无法完成的。我从来没有把众人的支持和信任看作是理所当然的事情,希望我的努力没有辜负大家。我在大学的学习的专业是机电一体化,因此在一年前我就对我国机械行业以及机械产品的发展状况产生了兴趣。这篇关于慧鱼模型的设计其实就是关于机械与电子的设计,承蒙我的指导老师--- 汪建武老师在从论文选题、研究方法到资料与数据的整理归纳各个环节的悉心指导。汪建武老师既是良师,又是益友,他治学严谨,又耐心细致,对拙作的成稿乃至今后的工作都有许多好处。

另外,我要感谢老师在我论文撰写过程中给予的帮助。老师们为人师表,身先垂范,他们的谆谆教诲学生定会铭记于心,终生不忘。

最后,不能忘记我的兄弟们---我的同学和朋友们,在论文写作的过程中乃至三年的学习生活里,他们与我朝夕相处,互相讨论,共同进步。感谢他们!感谢答辩组老师们的辛勤劳动。更要感谢我的父母,他们虽然不在我的身边,但三年来,他们无时无刻不在关注着我一点一滴的成长。谢谢我亲爱的爸爸、妈妈!

师恩永铭,友情难忘。

参考文献

[1] 廖常初.S7-200 PLC 基础教程.北京:机械工业出版社,2007

[2] 田效伍.电气控制与PLC应用技术.北京:机械工业出版社,2006

[3] 陈强、解云龙等.机械系统的微机控制[M].北京: 清华大学出版社.1999

[4] 慧鱼模型与创新教育[M]. “fischertechnik”慧鱼公司

[5] 张建民.机电一体化系统设计[M].北京:理工大学出版社.1996.

[6] 朱新涛等.基于fischertechnik模型对拖拉机耕地智能化技术的研究[C].

全国大学生“挑战杯”课外学术科技作品竞赛参赛作品论文集.2008

[7] 徐汇音,祖国庆等.机械设计基础. 西南交通大学出版社.2006

[8] 机械设计手册编委会.机械设计手册. 机械工业出版社.2004

智能机器人的现状和发展趋势

智能移动机器人的现状和发展 姓名 学号 班级:

智能移动机器人的现状及其发展 摘要:本文扼要地介绍了智能移动机器人技术的发展现状,以及世界各国智能移动机器人的发展水平,然后介绍了智能移动机器人的分类,从几个典型的方面介绍了智能移动机器人在各行各业的广泛应用,讨论了智能移动机器人的发展趋势以及对未来技术的展望,最后提出了自己的建议和设想,分析我国在智能移动机器人方面发展并提出期望。 关键词:智能移动机器人;发展现状;应用;趋势 1引言 机器人是一种可编程和多功能的,用来搬运材料、零件、工具的操作机,或是为了执行不同的任务而具有可改变和可编程动作的专门系统。智能移动机器人则是一个在感知 - 思维 - 效应方面全面模拟人的机器系统,外形不一定像人。它是人工智能技术的综合试验场,可以全面地考察人工智能各个领域的技术,研究它们相互之间的关系。还可以在有害环境中代替人从事危险工作、上天下海、战场作业等方面大显身手。一部智能移动机器人应该具备三方面的能力:感知环境的能力、执行某种任务而对环境施加影响的能力和把感知与行动联系起来的能 力。智能移动机器人与工业机器人的根本区别在于,智能移动机器人具有感知功 能与识别、判断及规划功能[1] 。 随着智能移动机器人的应用领域的扩大,人们期望智能移动机器人在更多领 域为人类服务,代替人类完成更复杂的工作。然而,智能移动机器人所处的环境 往往是未知的、很难预测。智能移动机器人所要完成的工作任务也越来越复杂; 对智能移动机器人行为进行人工分析、设计也变得越来越困难。目前,国内外对 智能移动机器人的研究不断深入。 本文对智能移动机器人的现状和发展趋势进行了综述,分析了国内外的智能 移动机器人的发展,讨论了智能移动机器人在发展中存在的问题,最后提出了对 智能移动机器人发展的一些设想。 1

移动机器人定位系统设计方案

移动机器人定位--传感器和技术 摘要 确切的了解车辆的位置是移动机器人应用的一个基本问题。在寻找解决方案时,研究人员和工程师们已经开发出不同的移动机器人定位系统、传感器以及技术。本文综述了移动机器人定位相关技术,总结了七种定位系统:1.里程法;2.惯性导航;3.磁罗盘;4.主动引导; 5.全球定位系统; 6.地标式导航和 7.模型匹配。讨论了各自的特点,并给出了现有技术的例子。 移动机器人导航技术正在蓬勃发展,正在开发更多的系统和概念。因为这个原因,本文给出的各种例子只代表各自的种类,不表示作者的倾向。在文献上可以发现许多巧妙的方法,只是限于篇幅,本文不能引用。 1。介绍 摘要概述了该技术在传感器、系统、方法和技术的目标,就是在一个移动机器人的工作环境中被找到。在测量文献中讨论这个问题,很明显,不同方法的基准比较是困难的,因为缺乏公认的测试标准和规的比较。使用的研究平台大不相同,用于不同的方法的关键假设也大不相同。再进一步,困难源自事实上不同的系统是处在其发展的不同阶段。例如,一个系统已经可以商业化;而另一个系统,也许有更好的性能,却只能实验室条件下作有限的测试。正是由于这些原因,我们一般避免比较甚至判断不同系统或技术的表现。在这篇文章里,我们也不考虑自动引导车(AGV)。AGV使用磁带、地下的引导线、或地面上的彩色条纹在作引导。这些小车不能自由设计路径,不能改变自己的道路,那样它们无法响应外部传感器输入(如避障)。然而,感兴趣的读者可能会在[Everett, 1995]找到AGV引导技术调查。 也许最重要的移动机器人定位文献的阅读结果,正是到目前为止,并没有真正完美的解决问题的方案。许多局部的解决办法大致分为两组:绝对的和相对的位置测量。因为缺乏一种完善的方法,开发移动机器人通常结合两种方法,从每个小组选一个方法。这些方法可以进一步分为以下七类: I:相对位置的测量(也称为Dead-reckoning) 1。里程法 2。惯性导航 II:绝对位置测量(基于参考的系统) 3。磁罗盘 4。主动发射引导 5。全球定位系统 6。地标式导航 7。模型匹配

移动机器人导航技术总结

移动机器人的关键技术分为以下三种: (1)导航技术 导航技术是移动机器人的一项核心技术之一[3,4]"它是指移动机器人通过传感器感知环境信息和自身状态,实现在有障碍的环境中面向目标的自主运动"目前,移动机器人主要的导航方式包括:磁导航,惯性导航,视觉导航等"其中,视觉导航15一7]通过摄像头对障碍物和路标信息拍摄,获取图像信息,然后对图像信息进行探测和识别实现导航"它具有信号探测范围广,获取信息完整等优点,是移动机器人导航的一个主要发展方向,而基于非结构化环境视觉导航是移动机器人导航的研究重点。 (2)多传感器信息融合技术多传感器信息融合技术是移动机器人的关键技术之一,其研究始于20世纪80年代18,9]"信息融合是指将多个传感器所提供的环境信息进行集成处理,形成对外部环境的统一表示"它融合了信息的互补性,信息的冗余性,信息的实时性和信息的低成本性"因而能比较完整地,精确地反映环境特征,从而做出正确的判断和决策,保证了机器人系统快速性,准确性和稳定性"目前移动机器人的多传感器融合技术的研究方法主要有:加权平均法,卡尔曼滤波,贝叶斯估计,D-S证据理论推理,产生规则,模糊逻辑,人工神经网络等"例如文献[10]介绍了名为Xavier的机器人,在机器人上装有多种传感器,如激光探测器!声纳、车轮编码器和彩色摄像机等,该机器人具有很高的自主导航能力。 (3)机器人控制器作为机器人的核心部分,机器人控制器是影响机器人性能的关键部分之一"目前,国内外机器人小车的控制系统的核心处理器,己经由MCS-51、80C196等8位、16位微控制器为主,逐渐演变为DSP、高性能32位微控制器为核心构成"由于模块化系统具有良好的前景,开发具有开放式结构的模块化、标准化机器人控制器也成为当前机器人控制器的一个研究热点"近几年,日本!美国和欧洲一些国家都在开发具有开放式结构的机器人控制器,如日本安川公司基于PC开发的具有开放式结构!网络功能的机器人控制器"我国863计划智能机器人主题也已对这方面的研究立项 视觉导航技术分类 机器人视觉被认为是机器人重要的感觉能力,机器人视觉系统正如人的眼睛一样,是机器人感知局部环境的重要“器官”,同时依此感知的环境信息实现对机器人的导航。机器人视觉信息主要指二维彩色CCD摄像机信息,在有些系统中还包括三维激光雷达采集的信息。视觉信息能否正确、实时地处理直接关系到机器人行驶速度、路径跟踪以及对障碍物的避碰,对系统的实时性和鲁棒性具有决定性的作用。视觉信息处理技术是移动机器人研究中最为关键的技术之一。

20通信系统概述

第一章通信系统概述 1.1 通信系统模型 一、通信的定义 1.信息:对收信者来说未知的、待传送、交换、存储或提取的内容 ﹙包括语音、图象、文字等﹚ 人与人之间要互通情报,交换消息,这就需要消息的传递。古代的烽火台、金鼓、旌旗,现代的书信、电报、电话、传真、电子信箱、可视图文等,都是人们用来传递信息的方式。 2.信号:与消息一一对应的电量。它是消息的物质载体,即消息是寄托在电信号的某一参量上。 3.通信就是由一地向另一地传递消息。 二、电通信 1.定义 利用“电”来传递信息,是一种最有效的传输方式,这种通信方式称为电通信。 2.特点 电通信方式能使消息几乎在任意的通信距离上实现既迅速、有效,而又准确、可靠的传递。 电通信一般指电信,即指利用有线电、无线电、光和其它电磁系统,对于消息、

情报、指令、文字、图象、声音或任何性质的消息进行传输。 (1)模拟信号与数字信号:按信号随时间分布的特性信号可分为模拟和数字信号。 模拟信号:信号的取值是连续的。 数字信号:信号的取值是离散的。 (2)基带信号与频带信号:按信号随频率分布的特性信号可分为基带和频带信号。 基带信号:发信源发出的信号。 频带信号:通过调制将基带信号变换为频带信号。 基带传输:在信道中直接传输的信号 (如直流电报、实线电话和有线广播等)。 频带传输:通过调制将基带信号变换为更适合在信道中传输的形式。(FM、AM、MODEM) 三、通信系统的模型 1.通信系统的一般模型 (1)通信系统:通信系统是指完成信息传输过程的全部设备和传输媒介。 (2)通信系统的基本模型

●发信源:是消息的产生来源,其作用是将消息变换成原始电信号。变换:将 非电物理量转换为掂量。 信源可分为模拟信源和离散信源。模拟信源(如电话机、电视摄像机)输出幅度连续的信号;离散信源(如电传机、计算机)输出离散的数字信号。 ●发送设备:作用是将信源产生的消息信号转换为适合于在信道中传输的信 号。它要完成调制、放大、滤波、发射等。在数字通信系统中还要包括编码 和加密。 ●信道:是传输的媒介。信道的传输性能直接影响到通信质量。 ●噪声源:将各种噪声干扰集中在一起并归结为由信道引入,这样处理是为了 分析问题的方便。 ●接收设备:完成发送设备的反变换,即进行解调、译码、解密等,将接收到 的信号转换成信息信号。 ●收信者:把信息信号还原为相应的消息。 2.模拟通信系统模型。

智能移动机器人的现状与发展论文 2

题目移动机器人的发展现状及趋势授课老师唐延柯 学生姓名 学号 专业电子信息工程 教学单位德州学院 完成时间 2013年11月16日

一、摘要 (2) 二、引言 (2) 三、智能机器人的构成 (3) 3.1硬件构成 (3) 3.2 软件构成 (3) 四、国内外在该领域的发展现状综述 (4) 五、智能移动机器人的应用及分类 (5) 5.1 智能机器人的应用 (5) 5.2 智能机器人分类 (7) 六、展望与讨论 (9) 6.1智能机器人的发展趋势展望 (9) 6.2 建议及设想 (10) 七、结论 (10) 八、参考文献 (11)

智能机器人的现状及其发展趋势 一、摘要 本文扼要地介绍了智能机器人技术的发展现状,以及世界各国智能机器人的发展水平,然后介绍了智能机器人的分类,从几个典型的方面介绍了智能机器人在各行各业的广泛应用,讨论了智能机器人的发展趋势以及对未来技术的展望,最后提出了自己的建议和设想,分析我国在智能机器人方面发展并提出期望。 关键词:智能机器人;发展现状;应用;趋势 The status and trends of intellectual robot Abstract:This paper briefly discusses the development, status of intellectual robot, development of intellectual robot in many countries. And then it presents the categories of intellectual robot, talks about the extensive applications in all works of life from several typical aspects and trends of intellectual robot. After that, it puts forward prospects for future technology, suggestion and a tentative idea of myself, and analyses the development of intellectual robot in China. Finally, it raises expectations of intellectual robot in China. Key words: intellectual robot; development status; application; trend 二、引言 机器人是一种可编程和多功能的,用来搬运材料、零件、工具的操作机,或是为了执行不同的任务而具有可改变和可编程动作的专门系统。智能机器人则是一个在感知- 思维- 效应方面全面模拟人的机器系统,外形不一定像人。它是人工智能技术的综合试验场,可以全面地考察人工智能各个领域的技术,研究它们相互之间的关系。还可以在有害环境中代替人从事危险工作、上天下海、战场作业等方面大显身手。一部智能机器人应该具备三方面的能力:感知环境的能力、执行某种任务而对环境施加影响的能力和把感知与行动联系起来的能力。智能机器人与工业机器人的根本区别在于,智能机器人具有感知功能与识别、判断及规划功能[1]。 随着智能机器人的应用领域的扩大,人们期望智能机器人在更多领域为人类服务,代替人类完成更复杂的工作。然而,智能机器人所处的环境往往是未知

移动机器人控制系统的发展方向

移动机器人控制系统的发展方向 摘要随着计算机技术、传感器技术的不断发展,对于机器人领域的发展具有一定的促进作用。而由于移动机器人具有能够自治与移动的特征,在机器人领域处于核心地位。在复杂、危险的环境中,移动机器人所发挥的作用是有目共睹的。对此,对当前国内外较为常见的移动机器人控制系统进行剖析,并在此基础上论述了该领域的未来发展方向。 【关键词】移动机器人控制系统发展方向 移动机器人属于能够自动执行工作任务的机器,不但能够按照事先编译的程序运行,同时人类还可对其指挥。当前主要被运用在生产业、建筑业以及航空航天领域,而该领域的发展情况直接关系到国家综合实力的提升速度,对此加强对移动机器人控制系统的发展情况,以及未来发展方向的研究势在必行。 1 国内外常见的移动机器人控制系统 相对于国内在移动机器人的研究状况,能够看出国外在该领域的研究是较早的,其中具有代表性的有Saphira、TeamBots以及ISR。而在国内方面,代表性的有OSMOR、ZJMR以及Agent。下面,便对较为常用的控制系统进行介绍:

1.1.1 Saphira控制系统 Saphira控制系统是移动机器人领域中最早的系统,是有SRI国际人工智能中心在1990年所研发的,此系统是基于本地感知空间的共享内存与黑板,来实现协调与通信进程。由于Saphira是采用C语言来进行开发的,同时支持Windows 与Unix系统,因此具有文档资料相对完整、系统资源占用少等特征。但是需注意的是,由于Saphira系统在定位方面无法达到当前的实际需求,因此运用是相对较少的。 1.1.2 TeamBots控制系统 本系统是基于Java包与Java应用程序而构建的,经过20余年的发展后,此系统截止到目前已经被运用到多种类型的机器人平台当中。除此之外,在适用的操作系统方面,其中具有代表性的有Windows、MacOS以及Linux等,因此其运用的范围是更加广泛的。 1.1.3 ISR控制系统 ISR是基于行为的控制模式,其中是有任务执行层、反映层以及推理层所构成的,是有CAS研究中心所研发的。其中,任务执行层的作用是执行推理层所传输的指令;反映层其中包含资源、控制器以及行为;推理层的功能是根据用户的指令来对决策进行制定。此外,ISR控制系统仅能够在Linux中进行操作,并且没有公开化使用。

GSM全球移动通信系统概述

GSM全球移动通信系统概述 ?无线通信系统的基本概念、蜂窝通信 ?GSM系统组成、网络结构、接口与协议、业务功能 ?GSM无线传输原理、标准、语音编码、信道编码与调制解调?移动台登记、漫游、切换、呼叫接续过程 1 蜂窝无线通信系统的基本概念 1.1无线通信系统的定义 表1.1列出了用来描述无线通信系统基本要素的术语定义。

频分双工(FDD)中,一对有着固定频率间隔的单向信道用作系统中的特定无线信道。在美国的AMPS标准中,反向信道比前向信道的频率低45MHz(即手机的发比收低45MHz)。模拟无线系统只采用FDD。 时分双工(TDD)方式,在时间上分享一条信道,将其一部分时间用于从基站向用户发送信息,而其余的时间用于从用户向基站发送信息。如果信道内的数据传输速率远大于终端用户的数据速率,就可以存储用户数据,即使在同一时刻不存在两条同步无线传输信道,仍能给用户提供全双工操作。TDD只在数字传输和数字调制时才可以使用。 1.2 蜂窝无线通信系统 蜂窝概念是解决频率不足和用户容量问题的一个重大突破,是一种系统级的概念。其思想是用许多小功率的发射机(小覆盖区)来代替单个的大功率发射机(大覆盖区),每一个小覆盖区只提供服务范围内的一小部分覆盖。每个基站分配整个系统可用信道中的一部分,相邻基站则分配另外一些不同的信道,这样基站之间(以及在它们控制下的移动用户之间)的干扰就最小。只要基站间的同频干扰在可以接受的范围以内,可用信道就可以尽可能的复用。 1.2.1 频率复用

蜂窝无线系统依赖于整个覆盖区域内信道的分配及复用。每一个蜂窝基站分配一组无线信道,这组无线信道作用于一个小区。给相邻小区的基站分配一个信道组,所包含的信道全部不能在相邻小区内使用。通过将基站天线的覆盖范围限制在小区边界以内,相同的信道组就可用于覆盖不同的小区,只要距离足够远,相互间的干扰就可以接受。为整个系统中的所有基站选择和分配信道组的设计过程就叫做频率复用(Frequency Reuse)。 现在考虑一个共有S个可用的双向信道的蜂窝系统。如果每个小区都分配k个信道(k

移动机器人控制系统设计

? 197 ? ELECTRONICS WORLD?技术交流 移动机器人控制系统设计 广东工业大学 侯晓磊 随着移动机器人在人们社会生活中的地位不断提高,设计一种 可靠、稳定的机器人控制系统越发的变得重要起来,以NI公司的MyRIO控制器以其安全可靠、编程开发简单而脱颖而出。本文基于上述控制器、L298N电机驱动芯片Labview设计一种移动机器人控制软硬件系统系统,经验证,该系统运行稳定、可靠、高效。 1.前言 新一轮科技革命引发新一轮产业革命。“互联网+制造”构建工业4.0,智能制造成为我国由制造大国向制造强国转变的关键一步,移动机器人作为智能制造中的一个组成部分,作用越发的变得举足轻重。本文给出一种以MyRIO+L298N+Labivew的移动机器人控制系统。 2.IN MyRIO控制器 NI myRIO是NI最新设计的嵌入式系统设计平台。NI myRIO中内含双核ARM Cortex-A9,实时性高,并且还可以便捷定制FPGA I/ O,给开发设计人员提供更好的设计复杂系统的平台。 NI myRIO作为可重配置控制器具有以下重要特点: 易于上手使用:引导性安装和启动界面可使开发人员更快地熟悉操作,协助开发人员快速了解工程概念,完成设计任务。编程设计简单,利用实时应用、内置WiFi等功能,开发人员可以实现远程部署应用,“无线”操控。 板载资源众多:有丰富的数字I/O接口,提供SPI串行外设接口、PWM脉宽调制输出端口、正交编码器输入端口、UART异步收发器端口和I2C总线接口、多个单端模拟输入、差分模拟输入和带参考的模拟输入等可供选择的资源。 另外,NI MyRIO还提供可靠性能较好的控制器保护电路,防止由于意外操作造成控制器不可恢复性损坏,总之,NI MyRIO为开发人员提供了一个编程简易,设计电路方便,不用刻意担心意外操作而影响控制器使用的平台。 3.L298N电机控制芯片 L298N是一种用来驱动电机的集成电路,可以较稳定的输出平稳电流和较强的功率。工作均电流为2A,最高可达4A,最高输出电压为50V,能够带动带有感性元件的负载。控制器可以直接通过输入输出口与电机驱动芯片联接,从而方便控制驱动芯片的输出。如将芯片驱动直流电机时,可以直接与步进电机相联接,通过调节控制器输出实现步进电机的的正反转功能当控制直流电机时,可以通过调节控制芯片的电压信号的极性,PWM波的占空比,从而实现直流电机转速和转向的调节。4.系统硬件部分设计 系统采用MyRIO整体框架,外围增设电机驱动电路、避障驱动电路、里程计电路、液晶显示电路、陀螺仪电路。通过MyRIO主控制发送控制信号驱动移动机器人运动,实时通过外围传感器获取位置信息反馈给主控制 器,然后控制器通过闭环系统调节当前位置以保证对目标位置的追踪。 图1 5.系统软件部分设计 系统软件部分采用经典控制理论的闭环控制系统,将电机、主控制器和外设传感器构成闭环系统,通过调节闭环统的参数,来使 移动机器人以较小偏差追踪按照预定轨迹。 图2 6.结束语 本文介绍了基于NI MyRIO控制器设计移动机器人控制系统,通过仿真和实物测试,能较好的完成对任务的追踪踪。 参考:From Student to Engineer:Preparing Future Innova-tors With the NI LabVIEW RIO Architecture https://www.doczj.com/doc/141677630.html,.2014-04-01;王曙光,袁立行,赵勇.机器人原理与设计.人民邮电出版社,2013 。

智能移动机器人

智能移动机器人 近年来,随着机器人研究的不断发展,机器人技术开始源源不断地向人类活动的各个领域渗透,结合这些领域的应用特点,各种各样的具有不同功能的机器人被研制出来,并且在不同的应用领域都得到了广泛的应用。 本文主要设计一个配置机械手的智能移动机器人,可以调速、转弯、抓取物体。涉及到双目摄像头定位、激光测距、电机控制、压力传感器等技术。 一、系统总体结构图 机器人系统主要由机械系统、驱动控制系统、视觉系统、传感器系统、上位机系统、电源系统以及人机交互系统等组成。 系统总体结构图如下: 智能机器人平台采用了主从结构的分布式处理方式,由上位机系统来协调控制各个子模块系统。各个子系统都有自己的数据处理机制,数据处理都在本模块的DSP处理器中完成。上位机只是负责数据融合、任务分解、策略选择制定、协调控制各子模块等工作。当上位机需要某个模块的数据时,子模块向上位机提供该模块经过处理以后的数据。由于大量的数据处理都在各个子模块中完成,上位机得到的都是经过处理后的小量数据,大大减少了上位机的负担。采用这种方式既提高了上位机的效率,又增加了系统的稳定性,方便系统的维护。 二、机械手

该机械手的设计仿照人类手臂的构造,总共有五个自由度,包括抬手臂转动关节,肩转动关节,肘转动关节,腕转动关节,手爪旋转关节与手爪开闭关节。这种多自由度的设计使得机械手具有较大的灵活度,以适应抓取不同目标物体的要求。 三、控制系统 1、感知系统 感知系统也就是传感器系统,本智能机器人系统的传感器系统可以只包含两个传感器,一个是测障、测距用激光传感器,一个是抓物时压力感测的压力传感器。 红外测距传感器(简称PSD:Poison Sensitive Detector): 通常采用光学三角测量方法来确定机器人同物体之间的距离:传感器的红外发光管发出红外光,当红外光没有碰到障碍的时候,红外光保持前行;当红外光碰到障碍的时候,红外光反射回来,并进入探测器。这样,在反射点,发射器,探测器之间形成一个三角形,探测器通过镜面反射,将红外光射入一个线性CCD中,由CCD测量反射光的角度,并由角度的大小来计算障碍物的距离。本机器人系统配置4路PSD传感器,分别以接近于90度的角度间距安装于机器人的前、后、左、右四个方向上和机械臂抓手的手掌内。 图2 PSD传感器位置示意图 压力传感器: 测得与物体接触的压力值返回给DSP分析处理:是否继续抓紧动作。装在机械臂抓手的每个手指上。 传感器系统结构图

GSM全球移动通信系统概述-2

4 GSM全球移动通信系统的工作过程 4.1移动台的位置登记 4.1.1 第一次登记 当移动台开机后,在它所处的小区,通过空中接口搜索BCCH(广播控制信道),内含有位置区域识别码(LAI)信息(在GSM900规范中定义小区分配编码占用16bit),这个信息在BCCH上规则的广播,以便手机知道自己目前的位置小区。BCCH是个小容量信道,每0.235 S传一个23字长的消息。移动台依靠收到的频率校正本身的频率,通过同步信息校正本身的信号,锁定到一个正确频率上,从该频率的信道上接收寻呼信号和其它信息。 假如此MS在寄存器中找不到LAI,它就向该业务区的MSC/VLR发送位置更新请求消息,通知网络它是此位置区的新用户。此消息经BSS到MSC,最后到VLR。VLR对消息中含有的国际移动用户识别码(IMSI)或临时移动台识别码(TMSI)以及位置信息进行分析。此时MSC/VLR就认为该MS被激活,在其数据字段中做“附着”标记,这个标记与I MSI有关。MSC/VLR向HLR发送位置更新请求信息。HLR位置更新操作完成后,向VLR发送位置更新接受消息。最后由MSC向MS发送位置更新证实信息,这个过程就算完成,至此MS已在HLR和VLR中注册登记。 4.1.2 分离与附着程序 当一个MS被激活时,对MS标有“附着”标记(IMSI标志);当MS关机时,有IMSI分离程序能使MS通知网络该移动用户为无效用户,此后不再发送寻呼此MS的消息。因此分离与附着程序都与IMSI有关。 当MS关机时,MS向网络发送的最后一条消息是处理分离请求消息,MSC/VLR收到“分离”消息后,就在该MS对应的IMSI上作“分离”标记。归属位置寄存器(HL R)并没有得到这个分离消息,只有拜访位置寄存器(VLR)已“分离”信息作了更新。当MS再开机时,若它仍处于发送分离消息时的位置区,则只要完成附着程序即可;若不在原位置区,它仍要执行位置更新程序。 4.2移动台的漫游与位置更新 4.2.1 漫游的解释 对于处在开机但空闲状态下的MS,它要不断地移动,在某一个时刻它被锁定于一个已定义的无线频率上,即某个小区的BCCH载频上。当MS向远离此小区的方向上移动时,信号强度就会减弱,当它移动到两个小区理论边界附近的某一点时,MS就会因原来小区的信号太弱而决定转到附近信号强的新的无线频率上。为了正确选择无线频率,MS要对周围的邻近小区的BCCH载频的信号强度进行连续测量,当发现新的BTS发出的BCCH 载频信号强度优于原小区时,MS就锁定于这个新的载频上,这就是移动台的切换。MS所接收的BCCH载频的改变并没通知给网络。 移动中的MS,由于接收信号质量的原因,通过无线空中接口不时地改变与网络的连接,这种能力就称为漫游。 4.2.2移动台的位置更新 位置更新过程是由MS引发。在GSM系统中有三个地方需要知道位置信息,即HL R、VLR和MS(或SIM卡)。当这个信息发生变化时,需要保持三者的一致。MS开机后就会对周围进行测试,并连接到接收性能最好的广播信道上。如图4-1所示,移动台所处的区有三种情况:

移动机器人路径规划技术综述

第25卷第7期V ol.25No.7 控制与决策 Control and Decision 2010年7月 Jul.2010移动机器人路径规划技术综述 文章编号:1001-0920(2010)07-0961-07 朱大奇,颜明重 (上海海事大学水下机器人与智能系统实验室,上海201306) 摘要:智能移动机器人路径规划问题一直是机器人研究的核心内容之一.将移动机器人路径规划方法概括为:基于模版匹配路径规划技术、基于人工势场路径规划技术、基于地图构建路径规划技术和基于人工智能的路径规划技术.分别对这几种方法进行总结与评价,最后展望了移动机器人路径规划的未来研究方向. 关键词:移动机器人;路径规划;人工势场;模板匹配;地图构建;神经网络;智能计算 中图分类号:TP18;TP273文献标识码:A Survey on technology of mobile robot path planning ZHU Da-qi,YAN Ming-zhong (Laboratory of Underwater Vehicles and Intelligent Systems,Shanghai Maritime University,Shanghai201306, China.Correspondent:ZHU Da-qi,E-mail:zdq367@https://www.doczj.com/doc/141677630.html,) Abstract:The technology of intelligent mobile robot path planning is one of the most important robot research areas.In this paper the methods of path planning are classi?ed into four classes:Template based,arti?cial potential?eld based,map building based and arti?cial intelligent based approaches.First,the basic theories of the path planning methods are introduced brie?y.Then,the advantages and limitations of the methods are pointed out.Finally,the technology development trends of intelligent mobile robot path planning are given. Key words:Mobile robot;Path planning;Arti?cial potential?eld;Template approach;Map building;Neural network; Intelligent computation 1引言 所谓移动机器人路径规划技术,就是机器人根据自身传感器对环境的感知,自行规划出一条安全的运行路线,同时高效完成作业任务.移动机器人路径规划主要解决3个问题:1)使机器人能从初始点运动到目标点;2)用一定的算法使机器人能绕开障碍物,并且经过某些必须经过的点完成相应的作业任务;3)在完成以上任务的前提下,尽量优化机器人运行轨迹.机器人路径规划技术是智能移动机器人研究的核心内容之一,它起始于20世纪70年代,迄今为止,己有大量的研究成果报道.部分学者从机器人对环境感知的角度,将移动机器人路径规划方法分为3种类型[1]:基于环境模型的规划方法、基于事例学习的规划方法和基于行为的路径规划方法;从机器人路径规划的目标范围看,又可分为全局路径规划和局部路径规划;从规划环境是否随时间变化方面看,还可分为静态路径规划和动态路径规划. 本文从移动机器人路径规划的具体算法与策略上,将移动机器人路径规划技术概括为以下4类:模版匹配路径规划技术、人工势场路径规划技术、地图构建路径规划技术和人工智能路径规划技术.分别对这几种方法进行总结与评价,展望了移动机器人路径规划的未来发展方向. 2模版匹配路径规划技术 模版匹配方法是将机器人当前状态与过去经历相比较,找到最接近的状态,修改这一状态下的路径,便可得到一条新的路径[2,3].即首先利用路径规划所用到的或已产生的信息建立一个模版库,库中的任一模版包含每一次规划的环境信息和路径信息,这些模版可通过特定的索引取得;随后将当前规划任务和环境信息与模版库中的模版进行匹配,以寻找出一 收稿日期:2009-08-30;修回日期:2009-11-18. 基金项目:国家自然科学基金项目(50775136);高校博士点基金项目(20093121110001);上海市教委科研创新项目(10ZZ97). 作者简介:朱大奇(1964?),男,安徽安庆人,教授,博士生导师,从事水下机器人可靠性与路径规划等研究;颜明重(1977?),男,福建泉州人,博士生,从事水下机器人路径规划的研究.

智能式移动机器人设计说明书

智能移动式送料机器人机械系统设计 摘要:智能移动式送料机器人以电动机作为驱动系统,运用单片机传感器等技术达到其智能移动的目的,实现行走、刹车、伸缩、回转等多种动作的操作。因此它具有机械化、程序化、可控化、适应性、灵活性强的特点。 前言:工业机器人是一种典型的机电一体化产品在现代生产中应用日益广泛,作用越来越重要,机器人技术是综合了计算机、控制、机构学、传感技术等多学科而形成的高新技术是当代研究十分活跃,应用日益广泛的领域。

现在,国际上对机器人的概念已经逐渐趋近一致。一般说来,人们都可以接受这种说法,即机器人是靠自身动力和控制能力来实现各种功能的一种机器。联合国标准化组织采纳了美国机器人协会给机器人下的定义:“一种可编程和多功能的,用来搬运材料、零件、工具的操作机;或是为了执行不同的任务而具有可改变和可编程动作的专门系统。”我国研制的排爆机器人不仅可以排除炸弹,利用它的侦察传感器还可监视犯罪分子的活动。监视人员可以在远处对犯罪分子昼夜进行观察,监听他们的谈话,不必暴露自己就可对情况了如指掌。 智能小车,又称轮式机器人,可以在人类无法

适应的恶劣和危险环境中代替人工作。它是一个集环境感知,规划决策,自动驾驶等功能于一体的智能系统。现如今已在诸多领域有广泛的应用。对于快要毕业的大学生来说也是一个实时、富有意义和挑战的设计课题。 正文: 设计方案: 一课题名称:智能移动式送料机器人设计 二机器人工作过程及设计要求 自主设计智能移动小车,设计一个取料 手爪装配到小车上,完成取料机器人的机械系统设计,并进行机器人运动规划和取料虚拟仿真,使机

器人完成如下动作:沿规定路径行驶——工件夹取——车体旋转——手爪张开,将工件从储存处送到运料车上。 三机器人设计的内容 一机械手的设计:

多移动机器人编队控制

基于Multi-Agent的多机器人编队控制 摘要:多移动机器人协调是当前机器人技术的一个重要发展方向。多移动机器人之间的协调与 合作将大大提高机器人行为的智能化程度,完成由单个机器人难以完成的更加复杂的作业。多 移动机器人协调技术的研究对提高机器人的智能化水平及加快机器人的实用化进程具有重要的 理论研究意义和实用价值。本文结合多智能体技术对多机器人编队控制进行了研究,同时根据 具体的多机器人系统,进行了仿真实验。验证了多智能体技术在机器人编队控制系统中的应用,完成了小规模的编队控制。 关键词:多智能体;多机器人;编队控制;协调控制;模糊控制 Multi-robot Formation Control Based on Multi - Agent Abstract :The problem of multi-robot cooperation and coordination is central to mobile robotics. Cooperation and coordination will improve the intelligent performance of robots and can complete lots of impossible missions for single robot.The research on multi-robot cooperation and coordination is of great academic and applied significance. The multi-robot formation is developed combined with the multi-agent technology in this dissertation, and the simulation is done with the multi-robot system. The application of multi-agent is verified in the multi-robot formation control through a small system adopt the fomation control. Key words: Multi-agent ;Multi-robot ;Formation control;Coordination control;Fuzzy control 1. 国内外机器人系统发展现状 自80年代末以来,基于多智能体系统理论研究多机器人协作受到了普遍的关注,从军事领域到工业与民用领域,从星际探险到海底考察,从比赛到教学,都取得了不同程度的进步。近年来,在IEEE R&A,IROS等著名的国际机器人学术会议上,几乎每次会议都有多智能体协作机器人系统的专题。一些机器人学术刊物出版了有关多智能体机器人的研究专辑。一些研究项目,如ACTRESS,CEBOT,GOFER,SWARM等,已进行了多年[1]。 目前,国内关于群体机器人系统的研究刚刚起步,基本上还处于基础技术的研究阶段,这方面的研究成果报道比较少。中科院沈阳自动化所机器人开放研究实验室是国内研究多机器人技术较早也较全面的科研单位。 (1)CEBOT(Cellular Robotic System) CEBOT是一种自重构机器人系统(Self-Reconfigurable Robotic System),它的研究是受生物细胞结构的启发,将系统中众多的具有相同和不同功能的机器人视为细胞元,这些细胞元可以移动,寻找和组合。 根据任务或环境的变化,细胞元机器人可以自组织成器官化机器人,多个器官化机器人可以进一步自组织,形成更加复杂的机器人系统。细胞结构机器人系统强调是单元体的组合如何根据任务和环境的要求动态重构。因此,系统具有多变的构型,可以具有学习和适应的系统智能(Group Intelligence),并具有分布式的体系结构[3]。 (2)ALLANCE/L-ALLANCE系统

移动机器人的发展史和应用领域

移动机器人的发展史和应用领域 移动机器人的发展史和应用领域电子元件知识11月29日讯,智能移动机器人,是一个集环境感知、动态决策与规划、行为控制与执行等多功能于一体的综合系统。它集中了传感器技术、信息处理、电子工程、计算机工程、自动化控制工程以及人工智能等多学科的研究成果,代表机电一体化的最高成就,是目前科学技术发展最活跃的领域之一。随着机器人性能不断地完善,移动机器人的应用范围大为扩展,不仅在工业、农业、医疗、服务等行业中得到广泛的应用,而且在城市安全、国防和空间探测领域等有害与危险场合得到很好的应用。因此,移动机器人技术已经得到世界各国的普遍关注。 移动机器人的研究始于60年代末期。斯坦福研究院(SRI)的NilsNilssen和CharlesRosen 等人,在1966年至1972年中研发出了取名Shakey的自主移动机器人。目的是研究应用人工智能技术,在复杂环境下机器人系统的自主推理、规划和控制。 什么是移动机器人? 根据移动方式来分,可分为:轮式移动机器人、步行移动机器人(单腿式、双腿式和多腿式)、履带式移动机器人、爬行机器人、蠕动式机器人和游动式机器人等类型;按工作环境来分,可分为:室内移动机器人和室外移动机器人;按控制体系结构来分,可分为:功能式(水平式)结构机器人、行为式(垂直式)结构机器人和混合式机器人;按功能和用途来分,可分为:医疗机器人、军用机器人、助残机器人、清洁机器人等; 一种由传感器、遥控操作器和自动控制的移动载体组成的机器人系统。移动机器人具有移动功能,在代替人从事危险、恶劣(如辐射、有毒等)环境下作业和人所不及的(如宇宙空间、水下等)环境作业方面,比一般机器人有更大的机动性、灵活性。 移动机器人是一种在复杂环境下工作的,具有自行组织、自主运行、自主规划的智能机器

智能移动机器人控制与感知系统

摘要 随着机器人的应用范围的不断拓宽,机器人所面临的工作环境也越来越复杂,往往是未知的、动态的、非结构化的,所以,要在这种环境下实时地完成各种任务,就对机器人的控制提出了新的挑战。 本文的主要工作和创新点包括:对移动机器人的硬件模块进行了分析。详细研究了移动机器人的感知系统,包括超声波传感器和视觉传感器两大模块。移动机器人采用了两款超声波传感器组合使用,用于探测更为全面的障碍物特征信息。通过对基于行为控制技术的论述,设计了一种用于移动机器人完成多目标任务的基于行为控制系统。另外机器人采用了 Sony EVI-D31 PTZ 摄像头,成功地实现了计算机串口控制,大大的扩展了机器人的视觉功能,可以更多的获取外界信息。 关键词:移动机器人、硬件模块、行为控制。

Abstract With the development of applied range, the work condition faced by robot is more complex, which always is unknown, dynamic and unstructured. So the control of robot t o fulfill a mission in real time under this environment has a new challenge. The ma in work and innovative ideas include. The structure of RIRA-Mobile robot is introduced. Furthermore, the driving model and power model are analyzed. The perception system of RIRA-Mobile robot is demonstrated particularly, which includes two models of vision and ultrasonic sensor. RIRA-Mobile robot uses two type s ultrasonic sensors so as to detect the general obstacles’ information. In addition, Sony EVI-D31 PTZ camera is also used, which can de controlled by computer serials that the vision function of robot is extended greatly to get more environment information. Through exploring the behavior-based control technology, a behavior-based control system has been designed for mobile robot fulfilling multiple objective missions. KEYWORDS:mobile robot; hardware modules; behavior control.

相关主题
文本预览
相关文档 最新文档