当前位置:文档之家› 回火工艺基础知识大全

回火工艺基础知识大全

回火工艺基础知识大全
回火工艺基础知识大全

1.回火的定义与目的

回火是将淬火后的金属成材或零件加热到某一温度,保温一定时间后,以一定方式冷却的热处理工艺,回火是淬火后紧接着进行的一种操作,通常也是工件进行热处理的最后一道工序,因而把淬火和回火的联合工艺称为最终热处理。

钢件在淬火状态下有以下三个主要特征。

(1)组织特征

根据钢件尺寸、加热温度、时间、转变特征及利用的冷却方式,钢件淬火后的组织主要由马氏体或马氏体+残余奧氏体组成,此外,还可能存在一些未溶碳化物。马氏体和残余奥氏体在室温下都处于亚稳定状态,它们都有向铁衆体加渗碳体的稳定状态转化的趋势。

(2)硬度特征

由碳原子引起的点阵畸变通过硬度表示出来,它随过饱和度(即含碳量)的增加而增加。淬火组织硬度、强度高,塑性、韧性低。

(3)应力特征

包括微观应力和宏现应力,前者与碳原子引起的点阵畸变有关,尤其是与髙碳马氏体达到最大值有关,说明淬火时马氏体处于紧张受力状态之中;后者是由于淬火时横截面上形成的温差而产生的,工件表面或心部所处的应力状态是不同的,有拉应力或压应力,在工件内部保持平衡。如不及时消除淬火钢件的内应力,会引起零件的进一步变形乃至开裂。

综上所述,淬火工件虽有髙硬度与髙强度,但跪性大,组织不稳定,且存在较大的淬火内应力,因此必须经过回火处理才能使用。一般来说,回火工艺是钢件淬火后必不可少的后续工艺,它也是热处理过程的最后一道工序,它賦予工件最后所需要的性能。

回火是将淬火钢加热到Ac1以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺。它的主要目的为:

(1)合理地调整钢的硬度和强度,提高钢的韧性,使工件满足使用要求;

(2)稳定组织,使工件在长期使用过程中不发生组织转变,从而稳定工件的形状与尺寸;

(3) 降低或消除工件的淬火内应力,以减少工件的变形,并防止开裂。

2.淬火钢回火时的组织转变

淬火钢件回火时,按回火温度的髙低和组织转变的特征,可将钢的回火过程分为以下5个阶段。

(1)马氏体中碳原子的偏聚

马氏体是C在α-Fe中的过饱和间隙固溶体,C原子分布在体心立方的扁八面体间隙之中,造成了很大的弹性畸变,因此升高了马氏体的能量,使之处于不稳定的状态。在100℃以下回火时,C、N等间隙原子只能短距离扩散迁移,在晶体内部重新分布形成偏聚状态,以降低弹性应变能。对于板条马氏体,因有大量位错,C原子便偏聚于位错线附近,所以淬火钢在室温附近放置时,碳原子向位错线附近偏聚。对于片状马氏体,C原子则偏聚在一定晶面上,形成薄片状偏聚区。这些偏聚区的含碳量高于马氏体的平均含碳量,为碳化物的析出创造了条件。

(2)马氏体的分解

当回火温度超过80℃时,马氏体将发生分解,马氏体中的碳浓度逐渐降低,晶格常数c减小,a增大,正方度c/a减小。马氏体的分解一直延续到350℃以上,在高合金钢中甚至可以延续到600℃。

不同含碳量的马氏体的碳浓度随回火温度的变化规律。随着回火温度的升高,马氏体中含碳量不断降低。高碳钢的碳浓度随回火温度升髙降低很快,含碳量较低的钢中碳浓度降低较缓。

马氏体的碳浓度与回火时间的关系:回火时间对马氏体中含碳量的影响较小,马氏体的碳浓度在回火初期下降很快,随后趋于平缓。回火温度越高,回火初期碳浓度下降越多。

片状马氏体在100?250℃回火时,固溶于马氏体中的过饱和碳原子脱溶,沿着马氏体的一定晶面沉淀析出ε-FexC的碳化物(x≈2?3),其晶格结构为密排六方晶格,与母相之间有共格关系,并保持一定的晶体学位向关系。

含碳量低于0.2%的板条马氏体,在淬火冷却时已经发生自回火,绝大部分碳原子都偏聚到位错线附近,所以在200℃以下回火时没有ε-碳化物析出。

高碳钢在350℃以下回火时,马氏体分解后形成的α相和弥散的ε-碳化物组成的复相组织称为回火马氏体。回火马氏体中的α相仍保持针状形态,由于它是两相组成的,较淬火马氏体容易腐蚀,故在金相显微镜下呈黑色针状组织,与下贝氏体很相似。

(3)残余奥氏体的转变

淬火的中、髙碳钢,组织中总含有少量残余奥氏体,在230?300℃温度区间回火时,残余奥氏体将发生分解,分解时遵循与过冷奥氏体分解相同的规律,转变产物为α相与碳化物,其中。α相的含碳量与同温下的回火马氏体是一致的,因此统称为回火马氏体。碳化物的粒子有所长大,但仍是很细很薄的片,并与母体保持着共格关系。残余奥氏体在更高温度(如600℃左右)恒温分解产物应是珠光体,而在这两个温度之间也有一奥氏体分解的稳定区,回火过程未能完全分解的残余奧氏体在随后的冷却过程中有可能再一次转变为马氏体,这就是二次淬火现象。这对髙碳钢尤其是高合金钢的热处理工艺有很大的实际意义,生产实践中往往利用这一原理来进一步提高钢的硬度。合金元索对残余奥氏体分解的影响和对过冷奥氏体的影响基本相同。

(4)碳化物的转变

在250?400℃温度区间回火时,马氏体内过饱和的碳原子几乎全部脱溶,α相的含碳量几乎已达到平衡含碳量(0.001%--0.02%),在低温下析出的碳化物(FexC)将转变为粒状碳化物化(Fe3C),α相在降低含碳量的同时,点阵晶格畸变开始消失。嵌镶块遂渐长大,变成多边形晶粒,也就是铁素体的恢复。这种由针状α相和与其无共格联系的细小顆粒与片状碳化物组成的机械混合物一般称为回火屈氏体。其组织特征是铁素体基体内分布着极细小的粒状碳化物。

(5)渗碳体的聚集长大和α相回复、再结晶

回火温度高于400℃后,析出的渗碳体开始聚集球化与粗化,这一过程是逋过小顆粒溶解,大颗粒沉积长大的机制进行的。在400℃以上回火时,α相已开始明显回复,即铁素体中的位错密度降低,剩下的位错通过重排、多边化形成位错网络、将铁素体晶粒分割成许多亚晶粒,但仍保持马氏体的外形。回火温度高于600℃时,α相开始再结晶,通过界面移动逐渐长大成等轴状晶粒,这时粒状渗碳体均勻分布在铁素体内,同时,马氏体的针状形态消失。这种等轴状铁素体和细颗粒状渗碳体的机械混合物称为回火索氏体。

综上所述,碳钢或低合金钢的回火分为5个阶段,并主要得到:回火马氏体组织、回火屈氏体组织和回火索氏体组织。由于回火的各阶段受扩散因素所控制,因此其转变取决于回火温度和时间,其中温度是最主要的因素。合金元素对回火转变有很大影响,一般都起阻碍作用,使回火转变的各阶段温度向高温推移。

3.淬火钢回火时力学性能的变化

淬火钢回火时,由于组织发生了变化,故其力学性能也发生了相应的变化。

(1)硬度

淬火钢回火时硬度的变化规律。总的变化趋势是随着回火温度升高,钢的硬度连续下降。但含碳量大于的高碳钢在100℃左右回火时,硬度反而略有升高,这是由于马氏体中碳原子的偏聚及ε-碳化物析出引起弥散硬化造成的。在200?300℃回火时,硬度下降平缓。这是由于一方面马氏体分解,使硬度降低,另一方面残余奥氏体转变为下

贝氏体或回火马氏体,使硬度升高,二者综合影响的结果。回火温度超过300℃以后,由于ε-碳化物转变为渗碳体,共格关系被破坏,以及渗碳体聚集长大,使钢的硬度呈直线下降。

钢中合金元素能在不同程度上减小回火过程中硬度下降的趋势,提高回火稳定性。强碳化物形成元素还可在髙温回火时析出弥散的特殊碳化物,使钢的硬度显著升高,造成二次硬化。

(2)强度和韧性

随着回火温度的提高,一般来说,钢的强度指标屈服点(σs )、抗拉强度(σb )不断下降,而塑性指标伸长率(δ)、断面收缩率(ψ)不断上升。在350℃左右回火时,钢的弹性极限达到极大值,在400℃以上回火时,钢的伸长率(δ)、断面收缩率(ψ)上升最显著。45钢淬火后的强度并不高,且塑性很差。如在200?300℃回火得到回火马氏体,且由于内应力消除,使其强度达到极大值;在350?500℃回火,组织为回火屈氏体,弹性极隈最高,韧性也较好!在450?600℃回火,得到的组织为回火索氏体,具有良好的综合力学性能,即较高的强度与良好的塑性、韧性相配合。

4.二次硬化

铁碳合金在一次或多次回火后提髙了硬度的现象称为二次硬化,这种硬化现象是由于特殊碳化物的离位析出和(或)残余奥氏体转变为马氏体或贝氏体所致。某些髙合金

钢(如髙速钢、高辂模具钢等)尤为突出,它们在一定温度回火后,工件硬度不仅不降低,反而比其淬火态要髙得多。产生二次硬化的原因有以下两个方面。

(1)马氏体转变过程中的弥散强化作用

钢中含有强烈碳化物形成元素如Cr、Mo、W、V、Ti、Nb等,富集于渗碳体中。当回火温度较高时(400℃以上),这些强烈碳化物形成元索在渗碳体中富集到超过其饱和浓度后,便发生由渗碳体转变为特殊碳化物的过程。这些特珠碳化物比渗碳体更为坚硬,而且它形成时,以高度弥散的粒子析出于基体中,不易聚集长大,引起α相固溶碳量增大并钉扎位错阻碍运动,起着弥散强化作用。

(2)残余奥氏体转变成回火马氏体或下贝氏体

这类钢中的残余奥氏体在回火加热、保温过程中不发生分解,而在随后的回火冷却过程中转变为马氏体或下贝氏体,这种现象称为二次淬火。二次淬火也是二次硬化的原因之一,但它与析出特殊碳化物的弥散强化相比,其作用较小,只有当淬火钢中残余奥氏体量很高时,其作用才较显著。

5.回火脆性

一般情况下,随着回火温度的提髙,总的趋势是钢的强度、硬度降低,而塑性、韧性增高。但在许多钢(主要是结构钢)中发现,回火温度升高时,钢的冲击韧性并非连

续提髙,而是在某些温度区间回火时,冲击韧性反而显著下降,这种脆化现象称为钢的回火脆性。

(1)第一类回火脆性

淬火钢在250?400℃范围回火出现冲击韧性显著降低的现象,称为第一类回火脆性,也称低温回火脆性。几乎所有工业用钢都在一定程度上具有这类回火脆性,而且脆性的出现与回火时冷却速度的快慢无关。

产生低温回火脆性的原因尚未十分淸楚,一般认为与马氏体分解时渗碳体的初期形核有关,并且认为是由于具有某种临界尺寸的薄膜状碳化物在马氏体晶界和亚晶界上形成的结果。也有人认为,脆性的出现与S、P、Sb、As等微量元素在晶界、相界或亚晶界的偏聚有关。此外,残余奥氏体分解时沿晶界、亚晶界或其他界面析出脆性的碳化物,以及韧性的残余奥氏体的消失,也是导致脆性的重要原因。这类回火脆性产生以后无法消除,故又称为不可逆回火脆性。

为了避免低温回火脆性,一般应不在脆化温度范围(特别是韧性最低值所对应的温度)回火,或改用等温淬火工艺,或加入从Mo、W等合金元素减轻第一类回火脆性。

(2)第二类回火脆性

淬火钢在450?650℃范围回火后缓冷出现冲击韧性显著降低的现象,称为第二类回火脆性,也称髙温回火脆性。将这类已产生回火脆性的钢重新加热到650℃以上回火,

然后快速冷却,则脆性消失,若再次于脆化温度区间回火,然后缓冷,则脆性又重新出现,故又称之为可逆回火脆性。这类脆性的产生与否和钢的化学成分、回火温度、回火时间以及回火后的冷却速度有密切关系。第二类回火脆性主要在合金结构钢中出现,碳素钢一般不出现这类回火脆性。

第二类回火脆性的产生机制至今尚未彻底摘清楚,近年来的研究指出,是由于回火时Sb、Sn、As、P等微量杂质元素在原奥氏体晶界上偏聚或以化合物形式析出所致,钢中的Cr、Mn、Ni等合金元素不但能促进上述杂质元素向晶界偏聚,而且本身也向晶界偏聚,进一步降低晶界的强度,增大脆性傾向。

6.回火稳定性

淬火钢在回火时抵抗硬度下降的能力称回火稳定性。由于合金元索对淬火钢在回火时的组织转变起阻碍或延缓作用,可推迟马氏体的分解和残余奥氏体的转变,提髙铁素体的再结晶温度,使碳化物不易聚集长大,而保持较大的弥散度。因此合金钢的回火稳定性较碳钢为好。具有较高回火稳定性的钢可采用较髙的回火温度,淬火应力消除得更彻底一些,其回火后的综合力学性能也能好一些。

7.时效现象

把有浓度变化的固溶体单相合金(如铁素体)加热到某一高温后迅速冷却,便可得到过饱和的面溶体,它与淬火所不同的是在这一冷却中并不产生相变。这种把合金加热到溶解度线以上保温后迅速冷却而得到单相过饱和固溶体的处理称为面溶处理。固溶

处理后的组织处于亚稳定状态,在一定条件下将发生分解,析出第二相质点,同时使固溶体贫化,这一过程就是时效过程,时效可在室温下进行(称为自然时效、也可加热以加速时效过程〔称为人工时效〕。

时效对金属材料性能有很大影响,对很多特殊钢、髙温合金、特殊性能合金及有色合金,往往用来提髙其强度和永磁性能,而对低碳钢则往往产生不利的作用。

(工艺技术)第章铸造工艺设计基础

第1章铸造工艺设计基础 § 1-1零件结构的铸造工艺性分析 § 1-2铸造工艺方案的确定 § 1-3铸造工艺参数的确定 § 1-4砂芯设计 铸造生产周期较长,工艺复杂繁多。为了保证铸件质量,铸造工作者应根据铸件特点,技术条件和生产批量等制订正确的工艺方案,编制合理的铸造工艺流程,在确保铸件质量的 前提下,尽可能地降低生产成本和改善生产劳动条件。本章主要介绍铸造工艺设计的基础知 识,使学生掌握设计方法,学会查阅资料,培养分析问题和解决问题的能力。 § 1-1零件结构的铸造工艺性分析 铸造工艺性,是指零件结构既有利于铸造工艺过程的顺利进行,又有利于保证铸件质量。 还可定义为:铸造零件的结构除了应符合机器设备本身的使用性能和机械加工的要求外,还应符合铸造工艺的要求。这种对铸造工艺过程来说的铸件结构的合理性称为铸件的铸造工艺性。 另定义:铸造工艺性是指零件的结构应符合铸造生产的要求,易于保证铸件品质,简化 铸造工艺过程和降低成本。 铸造工艺性不好,不仅给铸造生产带来麻烦,不便于操作,还会造成铸件缺陷。因此,为了简化铸造工艺,确保铸件质量,要求铸件必须具有合理的结构。 一、铸件质量对铸件结构的要求 1 .铸件应有合理的壁厚 某些铸件缺陷的产生,往往是由于铸件结构设计不合理而造成的。采用合理的铸件结构,可防止许多缺陷。 每一种铸造合金,都有一个合适的壁厚范围,选择得当,既可保证铸件性能(机械性能)要求,又便于铸造生产。在确定铸件壁厚时一般应综合考虑以下三个方面:保证铸件达到所需要的强度和刚度;尽可能节约金属;铸造时没有多大困难。 (1 )壁厚应不小于最小壁厚 在一定的铸造条件下,铸造合金能充满铸型的最小壁厚称为该铸造合金的最小壁厚。为了避免铸件的浇不足和冷隔等缺陷,应使铸件的设计壁厚不小于最小壁厚。各种铸造工艺条件下,铸件最小允许壁厚见表7-1?表7-5 表1-1砂型铸造时铸件最小允许壁厚(单位:mm) 合金种类铸件最大轮廓尺寸为下列值时/ mm

回火热处理优缺点及常见问题解决方法

回火热处理优缺点及常见问题解决方法 100℃热水回火之优点 低温回火常使用180℃至200℃左右来回火,使用油煮回火。其实若使用100℃的热水来进行回火,会有许多优点,包括:(1)100℃的回火可以减少磨裂的发生;(2)100℃回火可使工件硬度稍增,改善耐磨性;(3)100℃的热水回火可降低急速加热所產生裂痕的机会;(4)进行深冷处理时,降低工件发生深冷裂痕的机率,对残留沃斯田体有缓衝作用,增加材料强韧性;(5)工件表面不会產生油焦,表面硬度稍低,适合磨床研磨加工,亦不会產生油煮过热乾烧之现象。二次硬化之高温回火处理 对於工具钢而言,残留应力与残留沃斯田体均对钢材有著不良的影响,浴消除之就要进行高温回火处理或低温回火。高温回火处理会有二次硬化现象,以SKD11而言,530℃回火所得钢材硬度较200℃低温回火稍低,但耐热性佳,不会產生时效变形,且能改善钢材耐热性,更可防止放电加工之加工变形,益处甚多。 在300℃左右进行回火处理,為何会產生脆化现象? 部分钢材在约270℃至300℃左右进行回火处理时,会因残留沃斯田体的分解,而在结晶粒边界上析出碳化物,导致回火脆性。二次硬化工具钢当加热至500℃~600℃之间时才会引起分解,在300℃并不会引起残留沃斯田体的分解,故无300℃脆化的现象產生。 回火產生之回火裂痕 以淬火之钢铁材料经回火处理时,因急冷、急热或组织变化之故而產生之裂痕,称之為回火裂痕。常见之高速钢、SKD11模具钢等回火硬化钢在高温回火后急冷也会產生。此类钢材在第一次淬火时產生第一次麻田散体变态,回火时因淬火產生第二次麻田散体变态(残留沃斯田体变态成麻田散体),而產生裂痕。因此要防止回火裂痕,最好是自回火温度作徐徐冷却,同时淬火再回火的作业中,亦应避免提

热处理名词解释

(1)退火:指金属材料加热到适当的温度,保持一定的时间,然后缓慢冷却的热处理工艺。常见的退火工艺有:再结晶退火,去应力退火,球化退火,完全退火等。退火的目的:主要是降低金属材料的硬度,提高塑性,以利切削加工或压力加工,减少残余应力,提高组织和成分的均匀化,或为后道热处理作好组织准备等。 (2)正火:指将钢材或钢件加热到Ac3 或Acm(钢的上临界点温度)以上30~50℃,保持适当时间后,在静止的空气中冷却的热处理的工艺。正火的目的:主要是提高低碳钢的力学性能,改善切削加工性,细化晶粒,消除组织缺陷,为后道热处理作好组织准备等。 (3)淬火:指将钢件加热到Ac3 或Ac1(钢的下临界点温度)以上某一温度,保持一定的时间,然后以适当的冷却速度,获得马氏体(或贝氏体)组织的热处理工艺。常见的淬火工艺有盐浴淬火,马氏体分级淬火,贝氏体等温淬火,表面淬火和局部淬火等。淬火的目的:使钢件获得所需的马氏体组织,提高工件的硬度,强度和耐磨性,为后道热处理作好组织准备等。 (4)回火:指钢件经淬硬后,再加热到Ac1 以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺。常见的回火工艺有:低温回火,中温回火,高温回火和多次回火等。回火的目的:主要是消除钢件在淬火时所产生的应力,使钢件具有高的硬度和耐磨性外,并具有所需要的塑性和韧性等。 (5)调质:指将钢材或钢件进行淬火及回火的复合热处理工艺。使用于调质处理的钢称调质钢。它一般是指中碳结构钢和中碳合金结构钢。 (6)化学热处理:指金属或合金工件置于一定温度的活性介质中保温,使一种或几种元素渗入它的表层,以改变其化学成分,组织和性能的热处理工艺。常见的化学热处理工艺有:渗碳,渗氮,碳氮共渗,渗铝,渗硼等。化学热处理的目的:主要是提高钢件表面的硬度,耐磨性,抗蚀性,抗疲劳强度和抗氧化性等。 (7)固溶处理:指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。固溶处理的目的:主要是改善钢和合金的塑性和韧性,为沉淀硬化处理作好准备等。 (8)沉淀硬化(析出强化):指金属在过饱和固溶体中溶质原子偏聚区和(或)由之脱溶出微粒弥散分布于基体中而导致硬化的一种热处理工艺。如奥氏体沉淀不锈钢在固溶处理后或经冷加工后,在400~500℃或700~800℃进行沉淀硬化处理,可获得很高的强度。 (9)时效处理:指合金工件经固溶处理,冷塑性变形或铸造,锻造后,在较高的温度放置或室温保持,其性能,形状,尺寸随时间而变化的热处理工艺。若采用将工件加热到较高温度,并较长时间进行时效处理的时效处理工艺,称为人工时效处理,若将工件放置在室温或自然条件下长时间存放而发生的时效现象,称为自然时效处理。时效处理的目的,消除工件的内应力,稳定组织和尺寸,改善机械性能等。 (10)淬透性:指在规定条件下,决定钢材淬硬深度和硬度分布的特性。钢材淬透性好与差,常用淬硬层深度来表示。淬硬层深度越大,则钢的淬透性越好。钢的淬透性主要取决于它的化学成分,特别是含增大淬透性的合金元素及晶粒度,加热温度和保温时间等因素有关。淬透性

机械加工工艺基础知识点总结精编版

机械加工工艺基础知识 点总结 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

机械加工工艺基础知识点总结 一、机械零件的精度 1.了解极限与配合的术语、定义和相关标准。理解配合制、公差等级及配合种类。掌握极限尺寸、偏差、公差的简单计算和配合性质的判断。 基本术语:尺寸、基本尺寸、实际尺寸、极限尺寸、尺寸偏差、上偏差、下偏差、(尺寸)公差、标准公差及等级(20个公差等级,IT01精度最高;IT18最低)、公差带位置(基本偏差,了解孔、轴各28个基本偏差代号)。 配合制: (1)基孔制、基轴制;配合制选用;会区分孔、轴基本偏差代号。 (2)了解配合制的选用方法。 (3)配合类型:间隙、过渡、过盈配合 (4)会根据给定的孔、轴配合制或尺寸公差带,判断配合类型。 公差与配合的标注 (1)零件尺寸标注 (2)配合尺寸标注 2.了解形状、位置公差、表面粗糙度的基本概念。理解形位公差及公差带。 几何公差概念: 1)形状公差:直线度、平面度、圆度、圆柱度、线轮廓度、面轮廓度。 2)位置公差:位置度、同心度、同轴度。作用:控制形状、位置、方向误差。3)方向公差:平行度、垂直度、倾斜度、线轮廓度、面轮廓度。 4)跳动公差:圆跳动、全跳动。 几何公差带: 1)几何公差带 2)几何公差形状 3)识读 3.正确选择和熟练使用常用通用量具(如钢直尺、游标卡尺、千分尺、量缸表、直角尺、刀口尺、万能角尺等)及专用量具(如螺纹规、平面样板等),并能对零件进行准确测量。 常用量具: (1)种类:钢直尺、游标卡尺、千分尺、量缸表、直角尺、刀口尺、万能角尺。 (2)识读:刻度,示值大小判断。 (3)调整与使用及注意事项:校对零点,测量力控制。 专用量具: (1)种类:螺纹规、平面角度样板。 (2)调整与使用及注意事项 量具的保养 (1)使用前擦拭干净 (2)精密量具不能量毛坯或运动着的工伯 (3)用力适度,不测高温工件 (4)摆放,不能当工具使用 (5)干量具清理

热处理名词解释

热处理名词解释 (1)退火:指金属材料加热到适当的温度,保持一定的时间,然后缓慢冷却的热处理工艺。常见的退火工艺有:再结晶退火,去应力退火,球化退火,完全退火等。退火的目的:主要是降低金属材料的硬度,提高塑性,以利切削加工或压力加工,减少残余应力,提高组织和成分的均匀化,或为后道热处理作好组织准备等。 (2)正火:指将钢材或钢件加热到Ac3 或Acm(钢的上临界点温度)以上30~50℃,保持适当时间后,在静止的空气中冷却的热处理的工艺。正火的目的:主要是提高低碳钢的力学性能,改善切削加工性,细化晶粒,消除组织缺陷,为后道热处理作好组织准备等。 (3)淬火:指将钢件加热到Ac3 或Ac1(钢的下临界点温度)以上某一温度,保持一定的时间,然后以适当的冷却速度,获得马氏体(或贝氏体)组织的热处理工艺。常见的淬火工艺有盐浴淬火,马氏体分级淬火,贝氏体等温淬火,表面淬火和局部淬火等。淬火的目的:使钢件获得所需的马氏体组织,提高工件的硬度,强度和耐磨性,为后道热处理作好组织准备等。 (4)回火:指钢件经淬硬后,再加热到Ac1 以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺。常见的回火工艺有:低温回火,中温回火,高温回火和多次回火等。回火的目的:主要是消除钢件在淬火时所产生的应力,使钢件具有高的硬度和耐磨性外,并具有所需要的塑性和韧性等。 (5)调质:指将钢材或钢件进行淬火及回火的复合热处理工艺。使用于调质处理的钢称调质钢。它一般是指中碳结构钢和中碳合金结构钢。 (6)化学热处理:指金属或合金工件置于一定温度的活性介质中保温,使一种或几种元素渗入它的表层,以改变其化学成分,组织和性能的热处理工艺。常见的化学热处理工艺有:渗碳,渗氮,碳氮共渗,渗铝,渗硼等。化学热处理的目的:主要是提高钢件表面的硬度,耐磨性,抗蚀性,抗疲劳强度和抗氧化性等。 (7)固溶处理:指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。固溶处理的目的:主要是改善钢和合金的塑性和韧性,为沉淀硬化处理作好准备等。 (8)沉淀硬化(析出强化):指金属在过饱和固溶体中溶质原子偏聚区和(或)由之脱溶出微粒弥散分布于基体中而导致硬化的一种热处理工艺。如奥氏体沉淀不锈钢在固溶处理后或经冷加工后,在400~500℃或700~800℃进行沉淀硬化处理,可获得很高的强度。 (9)时效处理:指合金工件经固溶处理,冷塑性变形或铸造,锻造后,在较高的温度放置或室温保持,其性能,形状,尺寸随时间而变化的热处理工艺。若采用将工件加热到较高温度,并较长时间进行时效处理的时效处理工艺,称为人工时效处理,若将工件放置在室温或自然条件下长时间存放而发生的时效现象,称为自然时效处理。时效处理的目的,消除工件的内应力,稳定组织和尺寸,改善机械性能等。 (10)淬透性:指在规定条件下,决定钢材淬硬深度和硬度分布的特性。钢材淬透性好与差,常用淬硬层深度来表示。淬硬层深度越大,则钢的淬透性越好。钢的淬透性主要取决于它的化学成分,特别是含增大淬透性的合金元素及晶粒度,加热温度和保温时间等因素有关。淬透性好的钢材,可使钢件整个截面获得均匀一致的力学性能以及可选用钢件淬火应力小的淬火剂,以减少变形和开裂。 (11)临界直径(临界淬透直径):临界直径是指钢材在某种介质中淬冷后,心部得到全部马氏体或50%马氏体组织时的最大直径,一些钢的临界直径一般可以通过油中或水中的淬透性试验来获得。 (12)二次硬化:某些铁碳合金(如高速钢)须经多次回火后,才进一步提高其硬度。这种硬化现象,称为二次硬化,它是由于特殊碳化物析出和(或)由于参与奥氏体转变为马氏体或贝氏体所致。 (13)回火脆性:指淬火钢在某些温度区间回火或从回火温度缓慢冷却通过该温度区间的脆化现象。回火脆性可分为第一类回火脆性和第二类回火脆性。第一类回火脆性又称不可逆回火脆性,主要发生在回火温度为250~400℃时,在重新加热脆性消失后,重复在此区间回火,不再发生脆性,第二类回火脆性又称可逆回火脆性,发生的温度在400~650℃,当重新加热脆性消失后,应迅速冷却,不能在400~650℃区间长时间停留或缓冷,否则会再次发生催化现象。回火脆性的发生与钢中所含合金元素有关,如锰,铬,硅,镍会产生回火脆性倾向,而钼,钨有减弱回火脆性倾向。

锻造基础知识大汇集

forming1950专注锻造、冲压、钣金成形行业,汇聚作者与读者、用户与装配商、行业与市场最新动态,通过行业市场类、技术交互类、技术文章类题材为锻压行业打造一流的交流学习、技术传播、信息服务平台。锻造工艺(Forging Process)是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法,锻压(锻造与冲压)的两大组成部分之一。 变形温度 钢的开始再结晶温度约为727℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻。 坯料 根据坯料的移动方式,锻造可分为自由锻、镦粗、挤压、模锻、闭式模锻、闭式镦锻。 1、自由锻。利用冲击力或压力使金属在上下两个抵铁(砧块)间产生变形以获得所需锻件,主要有手工锻造和机械锻造两种。 2、模锻。模锻又分为开式模锻和闭式模锻.金属坯料在具有一定形状的锻模膛内受压变形而获得锻件,又可分为冷镦、辊锻、径向锻造和挤压等等。 3、闭式模锻和闭式镦锻由于没有飞边,材料的利用率就高。用一道工序或几道工序就可能完成复杂锻件的精加工。由于没有飞边,锻件的受力面积就减少,所需要的荷载也减少。但是,应注意不能使坯料完全受到限制,为此要严格控制坯料的体积,控制锻模的相对位置和对锻件进行测量,努力减少锻模的磨损。 锻模 根据锻模的运动方式,锻造又可分为摆辗、摆旋锻、辊锻、楔横轧、辗环和斜轧等方式。摆辗、摆旋锻和辗环也可用精锻加工。为了提高材料的利用率,辊锻和横轧可用作细长材料的前道工序加工。与自由锻一样的旋转锻造也是局部成形的,它的优点是与锻件尺寸相比,锻造力较小情况下也可实现形成。包括自由锻在内的这种锻造方式,加工时材料从模具面附近向自由表面扩展,因此,很难保证精度,所以,将锻模的运动方向和旋锻工序用计算机控制,就可用较低的锻造力获得形状复杂、精度高的产品,例如生产品种多、尺寸大的汽轮机叶片等锻件。锻造设备的模具运动与自由度是不一致的,根据下死点变形限制特点,锻造设备可分为下述四种形式: 1、限制锻造力形式:油压直接驱动滑块的油压机。 2、准冲程限制方式:油压驱动曲柄连杆机构的油压机。 3、冲程限制方式:曲柄、连杆和楔机构驱动滑块的机械式压力机。 4、能量限制方式:利用螺旋机构的螺旋和磨擦压力机。 重型航空模锻液压机进行热试为了获得高的精度应注意防止下死点处过载,控制速度和模具位置。因为这些都会对锻件公差、形状精度和锻模寿命有影响。另外,为了保持精度,还应注意调整滑块导轨间隙、保证刚度,调整下死点和利用补助传动装置等措施。 滑块 还有滑块垂直和水平运动(用于细长件的锻造、润滑冷却和高速生产的零件锻造)方式之分,利用补偿装置可

铸造工艺设计基础样本

铸造工艺设计基础 铸造生产周期较长, 工艺复杂繁多。为了保证铸件质量, 铸造 工作者应根据铸件特点, 技术条件和生产批量等制订正确的工艺 方案, 编制合理的铸造工艺流程, 在确保铸件质量的前提下, 尽 可能地降低生产成本和改进生产劳动条件。本章主要介绍铸造工艺设计的基础知识, 使学生掌握设计方法, 学会查阅资料, 培养分 析问题和解决问题的能力。 §1-1 零件结构的铸造工艺性分析 铸造工艺性, 是指零件结构既有利于铸造工艺过程的顺利进行, 又有利于保证铸件质量。 还可定义为: 铸造零件的结构除了应符合机器设备本身的使 用性能和机械加工的要求外, 还应符合铸造工艺的要求。这种对铸造工艺过程来说的铸件结构的合理性称为铸件的铸造工艺性。 另定义: 铸造工艺性是指零件的结构应符合铸造生产的要求, 易于保证铸件品质, 简化铸造工艺过程和降低成本。 铸造工艺性不好, 不但给铸造生产带来麻烦, 不便于操作, 还 会造成铸件缺陷。因此, 为了简化铸造工艺, 确保铸件质量, 要求铸件必须具有合理的结构。 一、铸件质量对铸件结构的要求 1.铸件应有合理的壁厚

某些铸件缺陷的产生, 往往是由于铸件结构设计不合理而造成的。采用合理的铸件结构, 可防止许多缺陷。 每一种铸造合金, 都有一个合适的壁厚范围, 选择得当, 既可保证铸件性能( 机械性能) 要求, 又便于铸造生产。在确定铸件壁厚时一般应综合考虑以下三个方面: 保证铸件达到所需要的强度和刚度; 尽可能节约金属; 铸造时没有多大困难。 ( 1) 壁厚应不小于最小壁厚 在一定的铸造条件下, 铸造合金能充满铸型的最小壁厚称为该铸造合金的最小壁厚。为了避免铸件的浇不足和冷隔等缺陷, 应使铸件的设计壁厚不小于最小壁厚。各种铸造工艺条件下, 铸件最小允许壁厚见表7-1~表7-5 表1-1 砂型铸造时铸件最小允许壁厚( 单位: ㎜) 表1-2 熔模铸件的最小壁厚( 单位: ㎜)

正火,回火,退火,淬火处理

正火,回火,退火,淬火的区别 1.退火 把钢加热到一定温度并在此温度下保温,然后缓慢冷却到室温. 退火有完全退火、球化退火、去应力退火等几种。 a将钢加热到预定温度,保温一段时间,然后随炉缓慢冷却称为完全退火.目的是降低钢的硬度,消除钢中不均匀组织和内应力. b,把钢加热到750度,保温一段时间,缓慢冷却至500度下,最后在空气中冷却叫球化退火.目的是降低钢的硬度,改善切削性能,主要用于高碳钢. c,去应力退火又叫低温退火,把钢加热到500~600度,保温一段时间,随炉缓冷到300度以下,再室温冷却.退火过程中组织不发生变化,主要消除金属的内应力. 2.正火 将钢件加热到临界温度以上30-50℃,保温适当时间后,在静止的空气中冷却的热处理工艺称为正火。 正火的主要目的是细化组织,改善钢的性能,获得接近平衡状态的组织。 正火与退火工艺相比,其主要区别是正火的冷却速度稍快,所以正火热处理的生产周期短。故退火与正火同样能达到零件性能要求时,尽可能选用正火。 3.淬火

将钢件加热到临界点以上某一温度(45号钢淬火温度为840-860℃,碳素工具钢的淬火温度为760~780℃),保持一定的时间,然后以适当速度在水(油)中冷却以获得马氏体或贝氏体组织的热处理工艺称为淬火。 淬火与退火、正火处理在工艺上的主要区别是冷却速度快,目的是为了获得马氏体组织。马氏体组织是钢经淬火后获得的不平衡组织,它的硬度高,但塑性、韧性差。马氏体的硬度随钢的含碳量提高而增高。 4.回火 钢件淬硬后,再加热到临界温度以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺称为回火。 淬火后的钢件一般不能直接使用,必须进行回火后才能使用。因为淬火钢的硬度高、脆性大,直接使用常发生脆断。通过回火可以消除或减少内应力、降低脆性,提高韧性;另一方面可以调整淬火钢的力学性能,达到钢的使用性能。根据回火温度的不同,回火可分为低温回火、中温回火和高温回火三种。 A 低温回火150~250.降低内应力,脆性,保持淬火后的高硬度和耐磨性. B 中温回火350~500;提高弹性,强度. C 高温回火500~650;淬火钢件在高于500℃的回火称为高温回火。淬火钢件经高温淬火后,具有良好综合力学性能(既有一定的强度、硬度,又有一定的塑性、韧性)。所以一般中碳钢和中碳合金钢常采用淬火后的高温回火处理。轴类零件应用最多。

最新铸造工艺学期末考试复习汇总

一.绪论 1,材料成形工艺(有时也称材料成形技术),是将材料制造成所需形状及尺寸的毛坯或成品的所有加工方法或手段的总称。 2 成形方法的选择原则 1)适用性原则满足使用要求;适应成形加工性能。2)经济性原则获得最大的经济效益。3)与环境相宜原则环境保护问题,对环境友好。 3成形方法选择的主要依据 (1)产品功能及其结构、形状尺寸和使用要求等;2)产量;3)生产条件 铸造 1概念:铸造是将液态金属在重力或外力作用下充填到铸型腔中使之冷却、凝固,从而获得所需形状及尺寸的毛坯或零件的方法,所铸出的产品称为铸件。 金属液态成形金属液态成型近净形化生产 2 分类通常从铸型材料、充型和凝固等方面对铸造进行分类。 1)按铸型材料、充型和凝固条件铸造方法分为砂型铸造(用砂型作铸型在重力下充型和凝固的铸造方法)和特种铸造(在铸型材料、充型和凝固等方面与砂型铸造有显著差别的铸造方法的统称) 2)按液态合金充型和凝固条件铸造方法分为重力铸造(如砂型铸造、壳型铸造、陶瓷型铸造、熔模铸造、金属型铸造)和非重力铸造(如压力铸造、低压铸造、挤压铸造和离心铸造)。 3)按铸型材料铸造方法分为一次型铸造(如砂型铸造、壳型铸造和熔模铸造,铸型材料为非金属材料)和永久型铸造(如金属型铸造、压力铸造和低压铸造,铸型材料为金属材料)。 4特点 1)优点 (1)适用范围广合金种类、铸件的形状和大小及质量几乎不受限制; (2)铸件具有一定的尺寸精度通常比普通锻件高,熔模铸件可达到无加工余量;(3)成本较低原材料来源广,价格低廉;铸件与零件形状和尺寸相近,节省材料。2)缺点 (1)铸件晶粒粗大,组织疏松,易产生缩孔和气孔等缺陷; (2)铸件力学性能较低,尤其是冲击韧性较低; (3)生产工序多,铸件质量难以精确控制。

铸造工艺基础要点

铸造工艺基础知识 一、铸造方法 常见的铸造方法有以下几种: 1、砂型铸造:砂型铸造是将原砂和粘结剂、辅助材料按一定比例混 制好以后,用模型造出砂型,浇入液体金属而形成铸 件的一种方法。砂型铸造是应用最普遍的一种铸造方 法。 2、熔模铸造:熔模铸造又称“失蜡铸造”,通常是在蜡模表面涂上数 层耐火材料,待其硬化干燥后,将其中的蜡模熔去而 制成型壳,再经过焙烧,然后进行浇注,而获得铸件 的一种方法。由于获得的铸件具有较高的尺寸精度和 表面粗糙度,所以又称“熔模精密铸造”。 3、金属型铸造:金属型铸造又称硬模铸造,它是将液体金属用重力 浇注法浇入金属铸型,以获得铸件的一种铸造方法。 所以又称“重力铸造”。 4、低压铸造:低压铸造是液体金属在压力作用下由下而上的充填型 腔,以形成铸件的一种方法。由于所用的压力较低, 所以叫低压铸造。 5、压力铸造:压力铸造简称压铸,是在高压作用下,使液态或半液 态金属以较高的速度充填压铸型型腔,并在压力作用 下凝固而获得铸件的一种方法。

6、离心铸造:离心铸造是将液体金属浇入旋转的铸型中,使液体金 属在离心力的作用下充填铸型和凝固成形的一种铸造 方法。 7、连续铸造:连续铸造是将熔融的金属不断浇入一种叫做结晶器的 特殊金属型中,凝固了的铸件连续不断的从结晶器的 另一端拉出,从而获得任意长度或特定长度铸件的一 种方法。 8、消失模铸造:消失模铸造是采用泡沫气化模造型,浇注前不用取 出模型,直接往模型上浇注金属液,模型在高温下 气化,腾出空间由金属液充填成型的一种铸造方法。 也叫“实型铸造”。 二、零件结构的铸造工艺性分析 零件结构的铸造工艺性通常指的是零件的本身结构应符合铸造生产的要求,既便于整个铸造工艺过程的进行,又利于保证产品质量。 对产品零件图进行分析有两方面的作用:第一,审查零件结构是否符合铸造生产的工艺要求。因为零件的设计者往往不完全了解铸造工艺。如发现结构设计有不合理的地方,就要与有关方面进行研究,在不影响使用要求的前提下,予以改进。这对简化工艺过程、保证质量及降低成本均有极大作用。第二,在既定的零件结构条件下,考虑在铸造过程中可能出现的主要缺陷,在工艺设计中采取相应工艺措施予以避免。 (一)从避免缺陷方面审查铸件结构的合理性

锻造基本知识

锻造是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法,锻压(锻造与冲压)的两大组成部分之一。通过锻造能消除金属在冶炼过程中产生的铸态疏松等缺陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。相关机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。 1.变形温度 钢的开始再结晶温度约为727℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻,在室温下进行锻造的称为冷锻。用于大多数行业的锻件都是热锻,温锻和冷锻主要用于汽车、通用机械等零件的锻造,温锻和冷锻可以有效的节材。 2.锻造类别 上面提到,根据锻造温度,可以分为热锻、温锻和冷锻。 根据成形机理,锻造可分为自由锻、模锻、碾环、特殊锻造。 1)自由锻。指用简单的通用性工具,或在锻造设备的上、下砧铁之间直接对坯料施加外力,使坯料产生变形而获得所需的几何形状及内部质量的锻件的加工方法。采用自由锻方法生产的锻件称为自由锻件。自由锻都是以生产批量不大的锻件为主,采用锻锤、液压机等锻造设备对坯料进行成形加工,获得合格锻件。自由锻的基本工序包括镦粗、拔长、冲孔、切割、弯曲、扭转、错移及锻接等。自由锻采取的都是热锻方式。 2)模锻。模锻又分为开式模锻和闭式模锻.金属坯料在具有一定形状的锻模膛内受压变形而获得锻件,模锻一般用于生产重量不大、批量较大的零件。模锻可分为热模锻、温锻和冷锻。温锻和冷锻是模锻的未来发展方向,也代表了锻造技术水平的高低。 按照材料分,模锻还可分为黑色金属模锻、有色金属模锻和粉末制品成形。顾名思义,就是材料分别是碳钢等黑色金属、铜铝等有色金属和粉末冶金材料。 挤压应归属于模锻,可以分为重金属挤压和轻金属挤压。 闭式模锻和闭式镦锻属于模锻的两种先进工艺,由于没有飞边,材料的利用率就高。用一道工序或几道工序就可能完成复杂锻件的精加工。由于没有飞边,锻件的受力面积就减少,所需要的荷载也减少。但是,应注意不能使坯料完全受到限制,为此要严格控制坯料的体积,控制锻模的相对位置和对锻件进行测量,努力减少锻模的磨损。

回火实用工艺基础知识大全

1.回火的定义与目的 回火是将淬火后的金属成材或零件加热到某一温度,保温一定时间后,以一定方式冷却的热处理工艺,回火是淬火后紧接着进行的一种操作,通常也是工件进行热处理的最后一道工序,因而把淬火和回火的联合工艺称为最终热处理。 钢件在淬火状态下有以下三个主要特征。 (1)组织特征 根据钢件尺寸、加热温度、时间、转变特征及利用的冷却方式,钢件淬火后的组织主要由马氏体或马氏体+残余奧氏体组成,此外,还可能存在一些未溶碳化物。马氏体和残余奥氏体在室温下都处于亚稳定状态,它们都有向铁衆体加渗碳体的稳定状态转化的趋势。 (2)硬度特征 由碳原子引起的点阵畸变通过硬度表示出来,它随过饱和度(即含碳量)的增加而增加。淬火组织硬度、强度高,塑性、韧性低。 (3)应力特征 包括微观应力和宏现应力,前者与碳原子引起的点阵畸变有关,尤其是与髙碳马氏体达到最大值有关,说明淬火时马氏体处于紧受力状态之中;后者是由于淬火时横截面上形成的温差而产生的,工件表面或心部所处的应力状态是不同的,有拉应力或压应力,在工件部保持平衡。如不及时消除淬火钢件的应力,会引起零件的进一步变形乃至开裂。

综上所述,淬火工件虽有髙硬度与髙强度,但跪性大,组织不稳定,且存在较大的淬火应力,因此必须经过回火处理才能使用。一般来说,回火工艺是钢件淬火后必不可少的后续工艺,它也是热处理过程的最后一道工序,它賦予工件最后所需要的性能。 回火是将淬火钢加热到Ac1以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺。它的主要目的为: (1)合理地调整钢的硬度和强度,提高钢的韧性,使工件满足使用要求; (2)稳定组织,使工件在长期使用过程中不发生组织转变,从而稳定工件的形状与尺寸; (3) 降低或消除工件的淬火应力,以减少工件的变形,并防止开裂。 2.淬火钢回火时的组织转变 淬火钢件回火时,按回火温度的髙低和组织转变的特征,可将钢的回火过程分为以下5个阶段。 (1)马氏体中碳原子的偏聚 马氏体是C在α-Fe中的过饱和间隙固溶体,C原子分布在体心立方的扁八面体间隙之中,造成了很大的弹性畸变,因此升高了马氏体的能量,使之处于不稳定的状态。在100℃以下回火时,C、N等间隙原子只能短距离扩散迁移,在晶体部重新分布形成偏聚状态,以降低弹性应变能。对于板条马氏体,因有大量位错,C原子便偏聚于位错线附近,所以淬火钢在室温附近放置时,碳原子向位错线附近偏聚。对于片状马氏体,C原子则偏聚在一定晶面上,形成薄片状偏聚区。这些偏聚区的含碳量高于马氏体的平均含碳量,为碳化物的析出创造了条件。

铸造工艺标准设计基础学习知识

铸造工艺设计基础 铸造生产周期较长,工艺复杂繁多。为了保证铸件质量,铸造工作者应根据铸件特点,技术条件和生产批量等制订正确的工艺方案,编制合理的铸造工艺流程,在确保铸件质量的前提下,尽可能地降低生产成本和改善生产劳动条件。本章主要介绍铸造工艺设计的基础知识,使学生掌握设计方法,学会查阅资料,培养分析问题和解决问题的能力。 §1-1 零件结构的铸造工艺性分析 铸造工艺性,是指零件结构既有利于铸造工艺过程的顺利进行,又有利于保证铸件质量。 还可定义为:铸造零件的结构除了应符合机器设备本身的使用性能和机械加工的要求外,还应符合铸造工艺的要求。这种对铸造工艺过程来说的铸件结构的合理性称为铸件的铸造工艺性。 另定义:铸造工艺性是指零件的结构应符合铸造生产的要求,易于保证铸件品质,简化铸造工艺过程和降低成本。 铸造工艺性不好,不仅给铸造生产带来麻烦,不便于操作,还会造成铸件缺陷。因此,为了简化铸造工艺,确保铸件质量,要求铸件必须具有合理的结构。 一、铸件质量对铸件结构的要求 1.铸件应有合理的壁厚 某些铸件缺陷的产生,往往是由于铸件结构设计不合理而造成的。采用合理的铸件结构,可防止许多缺陷。

每一种铸造合金,都有一个合适的壁厚范围,选择得当,既可保证铸件性能(机械性能)要求,又便于铸造生产。在确定铸件壁厚时一般应综合考虑以下三个方面:保证铸件达到所需要的强度和刚度;尽可能节约金属;铸造时没有多大困难。 (1)壁厚应不小于最小壁厚 在一定的铸造条件下,铸造合金能充满铸型的最小壁厚称为该铸造合金的最小壁厚。为了避免铸件的浇不足和冷隔等缺陷,应使铸件的设计壁厚不小于最小壁厚。各种铸造工艺条件下,铸件最小允许壁厚见表7-1~表7-5 表1-2 熔模铸件的最小壁厚(单位:㎜)

机械加工工艺基础知识点知识讲解

机械加工工艺基础知识点 0总体要求 掌握常用量具的正确使用、维护及保养,了解机械零件几何精度的国家标准,理解极限与配合、形状和位置公差的含义及标注方法;金属切削和刀具的一般知识、常用夹具知识;能正确选用常用金属材料,了解一般机械加工的工艺路线与热处理工序。 一、机械零件的精度 1.了解极限与配合的术语、定义和相关标准。理解配合制、公差等级及配合种类。掌握极限尺寸、偏差、公差的简单计算和配合性质的判断。 1.1基本术语:尺寸、基本尺寸、实际尺寸、极限尺寸、尺寸偏差、上偏差、下偏差、(尺寸)公差、标准公差及等级(20个公差等级,IT01精度最高;IT18最低)、公差带位置(基本偏差,了解孔、轴各28个基本偏差代号)。 1.2配合制: (1)基孔制、基轴制;配合制选用;会区分孔、轴基本偏差代号。 (2)了解配合制的选用方法。 (3)配合类型:间隙、过渡、过盈配合 (4)会根据给定的孔、轴配合制或尺寸公差带,判断配合类型。 1.3公差与配合的标注 (1)零件尺寸标注 (2)配合尺寸标注 2.了解形状、位置公差、表面粗糙度的基本概念。理解形位公差及公差带。 2.1几何公差概念: 1)形状公差:直线度、平面度、圆度、圆柱度、线轮廓度、面轮廓度。 2)位置公差:位置度、同心度、同轴度。作用:控制形状、位置、方向误差。3)方向公差:平行度、垂直度、倾斜度、线轮廓度、面轮廓度。 4)跳动公差:圆跳动、全跳动。

2.2几何公差带: 1)几何公差带 2)几何公差形状 3)识读 3.正确选择和熟练使用常用通用量具(如钢直尺、游标卡尺、千分尺、量缸表、直角尺、刀口尺、万能角尺等)及专用量具(如螺纹规、平面样板等),并能对零件进行准确测量。 3.1常用量具: (1)种类:钢直尺、游标卡尺、千分尺、量缸表、直角尺、刀口尺、万能角尺。(2)识读:刻度,示值大小判断。 (3)调整与使用及注意事项:校对零点,测量力控制。 3.2专用量具: (1)种类:螺纹规、平面角度样板。 (2)调整与使用及注意事项 3.3量具的保养 (1)使用前擦拭干净 (2)精密量具不能量毛坯或运动着的工伯 (3)用力适度,不测高温工件 (4)摆放,不能当工具使用 (5)干量具清理 (6)量具使用后,擦洗干净涂清洁防锈油并放入专用的量具盒内。 二、金属材料及热处理 1.理解强度、塑性、硬度的概念。 2.了解工程用金属材料的分类,能正确识读常用金属材料的牌号。 2.1金属材料分类及牌号的识读: 2.1.1黑色金属: (1)定义:通常把以铁及以铁碳为主的合金(钢铁)称为黑色金属。

常见零件的热处理方式

一、齿轮 1.渗碳及碳氮共渗齿轮的工艺流程 毛坯成型→预备热处理→切削加工→渗碳(碳、氮共渗)、淬火及回火→(喷丸)→精加工2.感应加热和火焰加热淬火齿轮用钢及制造工艺流程 配料→锻造→正火→粗加工→精加工→感应或火焰加热淬火→回火→珩磨或直接使用调质 3.高频预热和随后的高频淬火工艺流程 锻坯→正火→粗车→高频预热→精车(内孔、端面、外圆)滚齿、剃齿→高频淬火→回火→珩齿 二、滚动轴承 1.套圈工艺流程 棒料→锻制→正火→球化退火 棒料→钢管退火磨→补加回火→精磨→成品 2.滚动体工艺流程 (1)冷冲及半热冲钢球 钢丝或条钢退火→冷冲或半热冲→低温退火→锉削加工→软磨→淬火→冷处理→低温回火→粗磨→补加回火→精磨→成品 (2)热冲及模锻钢球 棒料→热冲或模锻→球化退火→锉削加工→软磨→淬火→冷处理→低温回火→粗磨→补加回火→精磨→成品 (3)滚子滚针 钢丝或条钢(退火)→冷冲、冷轧或车削→淬火→冷处理→低温回火→粗磨→附加回火→精磨→成品 三、弹簧 1.板簧的工艺流程

切割→弯制主片卷耳→加热→弯曲→余热淬火→回火→喷丸→检查→装配→试验验收 2.热卷螺旋弹簧工艺流程 下料→锻尖→加热→卷簧及校正→淬火→回火→喷丸→磨端面→试验验收 3.冷卷螺旋弹簧工艺流程 下料→锻尖→加热→卷簧及校正→去应力回火→淬火→回火→喷丸→磨端面→试验验收 四、汽车、拖拉机零件的热处理 1.铸铁活塞环的工艺流程 (1)单体铸造→机加工→消除应力退火→半精加工→表面处理→精加工→成品 (2)简体铸造→机加工→热定型→内外圆加工→表面处理→精加工→成品 2.活塞销的工艺流程 棒料→粗车外圆→渗碳→钻内孔→淬火、回火→精加工→成品 棒料→退火→冷挤压→渗碳→淬火、回火→精加工→成品 热轧管→粗车外圆→渗碳→淬火、回火→精加工→成品 冷拔管→下料→渗碳→淬火、回火→精加工→成品 3.连杆的工艺流程 锻造→调质→酸洗→硬度和表面检验→探伤→校正→精压→机加工→成品 4.渗碳钢气门挺杆的工艺流程 棒料→热镦→机加工成型→渗碳→淬火、回火→精加工→磷化→成品 5.合金铸铁气门挺杆的工艺流程 合金铸铁整体铸造(间接端部冷激)→机械加工→淬火、回火→精加工→表面处理→成品合金铸铁整体铸造(端部冷激)→机械加工→消除应力退火→精加工→表面处理→成品钢制杆体→堆焊端部(冷激)→回火→精加工→成品 钢制杆体→对焊→热处理→精加工→表面处理→成品 6.马氏体型耐热钢排气阀的工艺流程 马氏体耐热钢棒料→锻造成型→调质→校直→机加工→尾部淬火→抛光→成品 7.半马氏体半奥氏体型耐热钢(Gr13Ni7Si2)排气阀的工艺流程

产品工艺基本知识

一、雷士产品主要有: ①灯具;②镇流器;③电器箱;④光源 二、雷士照明产品主要用原材料: ①五金件;②塑胶件;③玻制品;④电子原器件;⑤陶制品。 三、五金件分为: ①车制件如:外环固定器,LH226灯头、万向头 ②冲压件如:灯盒、电器箱盒 ③压铸件如:天花灯、吸顶、路轨灯 四、五金件制造的主要工序及品质要求。 ①车制件工艺 锁紧初胚——上刀——调机——车外径——车内径——钻床钻孔——扩孔——攻牙——处理披锋——清洗 ②冲压件工艺 开料——处理披锋——压形——冲孔——处理披锋——打字印——清洗 ③压铸件工艺 原材入溶缺——装模——调机——去水口——锉披锋——钻孔——冲孔——处理披锋——打磨——清洗 ④品质要求: 尺寸符合要求,材质符合要求,无披锋刮手,严重凹痕,划伤、异色等缺陷。 五、我司用塑胶主要有哪几种: ①PC;②ABS;③PVC;④PBT 六、塑胶的生产工艺及品质要求; ①生产工艺 配料——煮料——调啤机——去水口位——去披锋; ②品质要求: a、耐高温、阻燃的工程塑胶; b、尺寸、材质、颜色符合要求; c、无气泡、划痕、异色、披锋、 凹痕等严重缺陷; 七、玻制品分类: ①钢化玻璃,如灯具玻璃罩。 ②非钢化玻璃如玻环、水晶灯罩。 八、玻制品主要生产工艺:

①非钢化玻璃 配料——熔制池窑——压延机——模槽——退火窑——表面处理 ②钢化玻璃 玻璃原片准备——切载——磨边——洗涤——干燥——电炉加热——风栅淬冷——套模检验 ③品质要求 尺寸颜色符合要求,承受耐温实验,钢化承受落地实验,气泡,凹痕,划痕不超过规定之要求。 九、玻制品毛管生产工艺: 玻管来料检验——切割玻管——弯形——清洗——上粉——烘干——去边口粉——单端封口——U形管对接——插入电极——封电极端口——抽真空——注汞真气——封口——检验——老化。 十、陶制灯头生产主要工艺: 拌料——铸形——窑池烧——退火。 十一、烤漆生产工艺及品质要求: ①生产工艺:除油、除锈——水洗——表调——磷化——烤干——刷灰——吹灰、打磨——上挂 ——喷涂——烘烤——品检——包装; ②品质要求:颜色、附着力、硬度符合检验要求。 十二、电镀生产工艺及品质要求: ①除油、除锈——水洗——镀缸——出色——肋架——烤干——电镀——品检、包装 ②品质要求:颜色、附着力符合要求,表面无划时代伤,刮花、异色等。 十三、电器箱生产工艺 上固线器—固定保险丝—焊保险丝引线—套、吹热缩管—拧固定镇流器螺母—固定镇流器—触发接引线—拆卸电容、触发器螺母—固定电容、触发器—焊线—固定端子台—端子台接线—固定黄绿地线—固线器输出端穿线—通电测试—高压检测——固定面盖——贴标签、装PE胶袋——盖印盖——拆卡退——装箱——抱包——入库 十四、灯杯生产工艺 灯杯印丝印——调配灯杯粉——填充灯杯粉——插灯珠——清理灯珠脚——外观检查——打光测试 品质要求:焊接附的粘附力;灯珠不能歪斜;焊泥高度 十五、灯具组装生产工艺(NDL50A B S系列)。

必备工艺基础知识大全

必备工艺基础知识大全 1、何位注水强度、吸水指数、注水系统效率? 答:注水强度:注水井中单位有效厚度油层的日注水量。吸水指数:单位注水压差下的日注水量。注水系统效率是指从注水站到注水井井底整个注水工艺流程系统能量的利用程度 2、什么是启动压力、静水柱压力? 答:启动压力:注水井地层开始吸水时的压力叫启动压力。 3、注水方式有哪几种? 答:油田注水方式分边外注水和边内注水两大类。边内注水可分为行列式内部切割注水,面积注水,腰部注水,顶部注水,不规则注水5种。 4、什么是井间干扰? 答: 5、生产测井包括哪些内容? 答: 6、什么叫沉没度? 答:

7、什么叫防冲距? 答: 8、深井泵的理论排量如何计算? 答: 9、深井泵的泵效如何计算? 答: 10、完井方法主要有哪几种?目前最常用的是哪种完井方法? 答: 11、常规抽油泵的工作原理? 答:抽汲过程中,柱塞在泵筒内随抽油杆做上下往复运动。上冲程时,游动阀关闭,泵筒内压力下降,在沉没压力下作用下,固定阀开启,井内液体进入泵内腔室;与此同时,柱塞将泵上腔室液体排到泵上油管内。下冲程时,固定阀关闭,泵筒内压力升高,当超过柱塞上油管内液体压力后,游动阀开启,泵下腔室的液体经游动阀排到泵上腔室。柱塞不断上下往复运动,便将井内液体不断的抽汲进油管,并排到地面。 12、防砂卡泵的工作原理及应用范围?

答:长柱塞防砂卡泵是一种特殊结构的管式泵。柱塞长,泵筒短;抽油时活塞始终在泵筒外,砂粒不易进入泵筒,可有效避免砂卡抽油泵。泵筒外有一个外筒,与泵筒构成环行空间;下部接有桥式孔,原油从侧面进入泵内。油液中的砂粒通过环行空间,下沉到泵下尾管中。 应用范围:停抽易导致砂卡的有杆泵抽油井(含砂量≤0.8‰) 13、泄油器的作用是什么? 答:在管式泵起泵时,泄油器将油管中的残油泄入套管内,便于修井作业。或者抽油泵配套使用设备,在油井作业时,用来连通油套通道,待油管内液体泻入井内,做到起出油管柱不带井喷,以改善井口操作条件,减少井厂污染。 14、我厂常用的泄油器有哪几种?分别用什么方法打开? 答:压缩式泻油器:作业时,先将抽油杆起出,然后起油管,当油管见液面时,将开泻体接1-2根抽油杆投入油管内,当开泻体下落到泻油器外管上部时,由于此处内径大,开泻体打开,外形尺寸大于滑套内径,坐落于滑套上,在抽油杆重力作用下压缩弹簧,滑套下行,露出泻油孔泻油。 撞滑式泻油器:泻油时先将抽油杆提出,投入撞击头,撞击头直径大于滑套内径,撞击头落在滑套上,再投1-3根抽油杆,在抽油杆撞击力作用下撞断固定滑套的销钉,露出泻油孔泻油。

光刻工艺基础知识

光刻工艺基础知识PHOTO 光刻工艺基础知识PHOTO (注:引用资料) 光刻工艺基础知识 PHOTO PHOTO 流程? 答:上光阻→曝光→显影→显影后检查→CD量测→Overlay量测 何为光阻?其功能为何?其分为哪两种? 搭:Photoresist(光阻).是一种感光的物质,其作用是将Pattern从光罩(Reticle)上传递到Wafer上的一种介质。其分为正光阻和负光阻。 何为正光阻? 答:正光阻,是光阻的一种,这种光阻的特性是将其曝光之后,感光部分的性质会改变,并在之后的显影过程中被曝光的部分被去除。 何为负光阻? 答:负光阻也是光阻的一种类型,将其曝光之后,感光部分的性质被改变,但是这种光阻的特性与正光阻的特性刚好相反,其感光部分在将来的显影过程中会被留下,而没有被感光的部分则被显影过程去除。 何谓Photo? 答:Photo=Photolithgraphy,光刻,将图形从光罩上成象到光阻上的过程。 Photo主要流程为何? 答:Photo的流程分为前处理,上光阻,Soft Bake, 曝光,PEB,显影,Hard Bake 等。 何谓PHOTO区之前处理? 答:在Wafer上涂布光阻之前,需要先对Wafer表面进行一系列的处理工作,以使光阻能在后面的涂布过程中能够被更可靠的涂布。前处理主要包括Bake,HDMS等过程。其中通过Bake将Wafer表面吸收的水分去除,然后进行HDMS(六甲基乙硅氮烷,以增加光阻与晶体表面附着的能力)工作,以使Wafer表面更容易与光阻结合。 何谓上光阻? 答:上光阻是为了在Wafer表面得到厚度均匀的光阻薄膜。光阻通过喷嘴(Nozzle)被喷涂在高速旋转的Wafer表面,并在离心力的作用下被均匀的涂布在Wafer的表面。 何谓Soft Bake?

相关主题
文本预览
相关文档 最新文档