当前位置:文档之家› 数学建模模型的建立

数学建模模型的建立

数学建模模型的建立
数学建模模型的建立

数学建模期中作业

姓名:赵洪

学号:200806002910

班级:信计08-1

工厂升级方案的优化模型

摘要:随着科学技术的飞速发展,各种产品日新月异,工厂面临着提高产品科技含量和优化改革方案的双重挑战。本文讨论工厂升级的优化问题,即分配各工厂的升级以使公司获得最大的利润,需要对其建立模型并借助LINGO软件对非线性规划问题进行了求解,通过比较利润最大值和收益率得出了两个方案的优劣性并在此基础上给出一个更好的提案。

关键词:工厂升级、优化、非线性规划、目标函数、约束条件

问题重述:

某公司所属的高新技术研究所开发了一种新的产品W200X,该公司现有三个工厂,都生产普通的产品W100X。公司计划将现有工厂升级,升级后的工厂将能产生W100X和W200X

其中A1离该公司的研究所最近,A2是最新最大的工厂。升级过程需要一周,在此期间,工厂将停产。该公司在过去的几个月进行了市场调研,W100X现有的批发价为400元。

工人的工资是45元/小时。工厂一星期做工40小时。工人数为固定数值。W100X的零件成本40元,需1.5小时工作量;W200X的零件成本为64元,需1.75小时工作量;每个W100X产品需要两个老芯片,每个W200X产品需要两个新芯片,该公司提供芯片的生产方程为:

公司老板要求:

两位副总裁分别提出了方案1,方案2,如下:

方案1:只让A1工厂升级,只生产新产品W200X;

方案2:所有工厂都升级,可生产两种产品。

要求:

(1)研究每一种方案,包括你自己的一个提案,总裁希望基于你的研究推出一个最好的方案,他非常非货币损失和利益。

(2)问题陈述,方案的模型和分析,寻求最佳方案的方法,结果的分析。

(3)下个月第几个工厂升级,每种产品的产量和定价。

问题分析:

题目给出了某公司三个工厂的人数,升级费用,以及对所生产产品的市场调查。对与工厂如何升级,题目分别给出了两套方案,并要求用作对比。

考虑到产品的市场批发价与市场需求量有着必然的关系,我们考虑首先将两种产品的市场批发价与需求量数据进行三次曲线拟合得到市场价与需求量的函数关系。建立模型,将纯利润作为目标函数,对于拟合曲线,当价格很高时市场需求量便降到很低的水平,显然这是不合理的,于是我们将价格水平限制在一个比较合理的水平作为一个约束条件。又生产产品数量不大于市场需求量,生产产品数量不大与工厂的生产水平等,我们就可以建立一个完整的非线性规划了。

符号说明:

Y2:W100X 产品的批发价格。

Y1:W200X产品的批发价格。

X4:A1工厂生产W100X 产品的数量。

X1:A1工厂生产W200X产品的数量。

X2:A2工厂生产W100X 产品的数量。

X5:A2工厂生产W200X 产品的数量。

X3:A3工厂生产W100X 产品的数量。

X6:A3工厂生产W200X 产品的数量。

Mi: Ai工厂升级与否。

模型假设:

1.假设价格与需求量之间的关系稳定。

2.假设每月按四星期计算。

3.假设工厂升级为1,不升级为0。

模型建立与求解:

方案1的模型建立与求解:

假设A1工厂升级当月生产X1件W200X 产品,价格为y1 ; A2工厂和A3工厂每月生产(X2+X3) 件W100X 产品,价格为y2 。则升级当月的总收入为:X1*y1+(X2+X3)*y2

升级当月总支出为:100000+45*X1*1.75+(X2+X3)*1.5*45+(X2+X3)*40+64*X1

目标函数:总收入-总支出

约束条件如下:

(1)该公司提供芯片的总数不超过最大值10万个,即16*(x2+x3)+6*x1≤100000。(2)A1工厂生产W200X 产品的工作时不超过3600小时,即1.75*X1≤3600。

(3)A2 工厂生产W100X 产品的工作时不超过6400小时,即1.5*X2≤6400。

(4)A3工厂生产W100X 产品的工作时不超过9600小时,即1.5*X3≤9600。

(5)W100X 产品的价格与需求量满足的变化规律,y2≥240; y2≤800;

x2+x3≤15630-2688*y2^(1/2)+6724*y2^(1/3);

(6)W200X 产品的价格与需求量满足的变化规律,y1 ≥400; y1 ≤1200;

x1 ≤178500+7383*y1^(1/2)-40620*y1^(1/3);

(7)所有决策变量为非负。

综合以上分析,建立的数学模型如下:

m ax x1*y1+(x2+x3)*y2-100000-45*x1*1.75-(x2+x3)*1.5*45-(x2+x3)*40-64*x1 S.T 16*(x2+x3)+6*x1 100000

1.75*x1 3600

1.5*x2 6400

1.5*x3 ≤≤≤≤9600

y2 240

y2 800

y1 400

y1 1200

x1 178500+7383*y1^(1/2)-40620*y1^(1/3)

x2+x3 15630-2688*y2^(1/2)+6724≥≤≥≤≤≤*y2^(1/3)

xi 0 yj 0 i=1,2,3 j=1,2

??

???

??

???

??

???

???≥≥? 由LINGO 软件解得:

Local optimal solution found at iteration: 226252

Objective value: 5014751.

Variable Value Reduced Cost X1 2057.000 -1057.250

Y1 1200.000 0.000000

X2 3594.000 -297.5196

X3 1884.000 -297.5196

Y2 644.1900 0.000000

Row Slack or Surplus Dual Price 1 5014751. 1.000000

2 10.00000 0.000000

3 0.2500000 0.000000

4 1009.000 0.000000

5 6774.000 0.000000

6 404.1900 0.000000

7 155.8100 0.000000

8 800.0000 0.000000

9 0.000000 2057.000

10 545.7114 0.000000

11 -0.3879980E-04 239.1704

方案2的模型建立与求解:

假设A1工厂、A2 工厂和 A3工厂升级当月生产X1 、X5、X6 件W200X 产品,价格为y1 。A1工厂、A2 工厂和 A3工厂升级当月生产X2 、X3、x4 件 W100X 产品,价格为y2 。则升级当月的总收入为:(x1+x5+x6)*y1+(X2+X3+x4)*y2

升级当月总支出为:

475000+45*(x1+x5+x6)*1.75+(X2+X3+x4)*1.5*45+(X2+X3+x4)*40+64*(x1+x5+x6) 目标函数:总收入-总支出

约束条件如下:

(1)该公司提供芯片的总数不超过最大值 ,即16*(X2+X3+x4)+6*(x1+x5+x6)≤100000 。

(2)A1工厂生产W200X 产品和W100X 产品的工作时不超过4800小,即

1.75*X1+1.5*x4 ≤3600 。

(3)A2 工厂生产W200X 产品和W100X 产品的工作时不超过6400小时,即

1.5*X2 +1.75*x5≤4800。

(4)A3工厂生产W200X 产品和W100X 产品的工作时不超过9600小时,即

1.5*X3+1.75*x6 ≤7200 。

(5)W100X 产品的价格与需求量满足的变化规律,y2 ≥240; y2 ≤800;

x2+x3+x4 ≤15630-2688*y2^(1/2)+6724*y2^(1/3);

(6)W200X 产品的价格与需求量满足的变化规律,y1 ≥400; y1 ≤1200;

(x1+x5+x6) ≤178500+7383*y1^(1/2)-40620*y1^(1/3);

(7)所有决策变量为非负。

综合以上分析,建立的数学模型如下:

M AX (x1+x5+x6)*y1+(x2+x3+x4)*y2-47.5e+004-(x1+x5+x6)*1.75*45-(x2+x3+x4)*1.5*45-(x2+x3+x4)*40-(x1+x5+x6)*64S.T 16*(x2+x3+x4)+6*(x1+x5+x6)100000 1.75*x1+1.5*x43600

1.5*x ≤≤2+1.75*x54800

1.5*x3+1.75*x67200 y2240

y2800

y1400 y11200

x1+x5+x6178500+7383*y1^(1/2)-40620*y1^(1/3) x2+x3+x415630-2≤≤≥≤≥≤≤≤688*y2^(1/2)+6724*y2^(1/3)

xi 0 yj 0 i=1,2,3,4,5 ,6 j=1,2;

???

??

?????

???

???

??≥≥?

由LINGO软件解得:

Local optimal solution found at iteration: 3954

Objective value: 6736364.

Variable Value Reduced Cost

X1 372.0000 0.000000

X5 2478.000 0.000000

X6 3030.000 0.000000

Y1 994.1869 0.000000

X2 309.0000 -0.1968419

X3 1265.000 -0.1968432

X4 1966.000 -0.1968494

Y2 730.3574 0.000000

Row Slack or Surplus Dual Price

1 6736364. 1.000000

2 8080.000 0.000000

3 0.000000 308.2956

4 0.000000 308.2956

5 0.000000 308.2956

6 490.3574 0.000000

7 69.64260 0.000000

8 594.1869 0.000000

9 205.8131 0.000000

10 0.000000 311.9196

11 0.000000 160.2172

综合以上分析可知:方案2比方案1的总收入大,故方案2优于方案1;但方案2的收益率却没有方案1的高。在这两个方案的基础上给出一个更好的提案如下:

假设A1工厂升级当月生产(m1*s1+(1-m1)*r1) 件W100X 产品,价格为y2 ; A2工厂升级当月生产(m2*s2+(1-m2)*r2) 件W100X 产品,价格为y2 ; A3工厂升级当月生产(m3*s3+(1-m3)*r3) 件W100X 产品,价格为y2 ; A1工厂、A2工厂和A3 工厂升级当月生产t1 、t2、t3 件W200X产品,价格为y1 。则升级当月的总收入为:

(m1*s1+(1-m1)*r1)*y2+m1*t1*y1+(m2*s2+(1-m2)*r2)*y2+m2*t2*y1+(m3*s3+(1-m3)*r3)*y 2+m3*t3*y1

升级当月总支出为:

((m1*s1+(1-m1)*r1)*1.5+m1*t1*1.75)*45+((m2*s2+(1-m2)*r2)*1.5+m2*t2*1.75)*45+((m3* s3+(1-m3)*r3)*1.5+m3*t3*1.75)*45+(m1*s1+(1-m1)*r1)*40+m1*t1*64+(m2*s2+(1-m2)*r2) *40+m2*t2*64+(m3*s3+(1-m3)*r3)*40+m3*t3*64+m1*100000+m2*175000+m3*200000 目标函数:总收入-总支出

约束条件如下:

(1) 该公司提供芯片的总数不超过最大值 ,即

16*(m1*s1+m2*s2+m3*s3+(1-m1)*r1+(1-m2)*r2+(1-m3)*r3)+6*(m1*t1+m2*t2+m3*t3)<=100000

(2) A1工厂生产W100X 产品和W200X 产品的总工作时不超过3600小时,即

1.5*(m1*s1+(1-m1)*r1)+1.75*m1*t1<=(120*m1+(1-m1)*160)*30

(3) A2工厂生产W100X 产品和W200X 产品的工作时不超过4800小时,即

1.5*(m2*s2+(1-m2)*r2)+1.75*m2*t2<=(120*m2+(1-m2)*160)*40

(4)A3 工厂生产W100X 产品和W200X 产品的工作时不超过7200小时,即

1.5*(m3*s3+(1-m3)*r3)+1.75*m3*t3<=(120*m3+(1-m3)*160)*60

(5)W100X 产品的价格与数量满足的变化规律:y2 ≥240; y2 ≤800

m1*s1+(1-m1)*r1+m2*s2+(1-m2)*r2+m3*s3+(1-m3)*r3<=15630-2688*y2^(1/2)+6742*y2^(1/3)

(6)W200X 产品的价格与数量满足的变化规律:y1 ≥400; y1 ≤1200

m1*t1+m2*t2+m3*t3<=178500+7387*y1^(1/2)-40620*y1^(1/3)

(7)所有决策变量为非负。

综合以上分析,建立的数学模型如下:

Max

(m1*s1+(1-m1)*r1)*y2+m1*t1*y1+(m2*s2+(1-m2)*r2)*y2+m2*t2*y1+(m3*s3+(1-m3)*r3)*y2+m3*t3*y1-((m1*s1+(1-m1)*r1)*1.5+m1*t1*1.75)*45-((m2*s2+(1-m2)*r2)*1.5+m2*t2*1.75)*45-((m3*s3+(1-m3)*r3)*1.5+m3*t3*1.75)*45-(m1*s1+(1-m1)*r1)*40-m1*t1*64-(m2*s2+(1-m2)*r2)*40-m2*t2*64-(m3*s3+(1-m3)*r3)*40-m3*t3*64-m1*100000-m2*175000-m3*200000

S.T

16*(m 1*s1+m 2*s2+m 3*s3+(1-m 1)*r1+(1-m 2)*r2+(1-m 3)*r3)+6*(m 1*t1+m 2*t2+m 3*t3)100000

1.5*(m 1*s1+(1-m 1)*r1)+1.75*m 1*t1(120*m 1+(1-m 1)*160)*30

1.5*(m 2*s2+(1-m 2)*r2)+1.75*m 2*t2(120*m 2+(1-m 2)*160)*40

1.5*(m 3*s ≤≤≤3+(1-m 3)*r3)+1.75*m 3*t3(120*m 3+(1-m 3)*160)*60

y1400

y11200

y2240

y2800

m 1*s1+(1-m 1)*r1+m 2*s2+(1-m 2)*r2+m 3*s3+(1-m 3)*r315630-2688*y2^(1/2)+6742*y2^(1/3)m 1*t1+m 2*t2+m 3*t3178500+7387*y1^(1/2)-40620*y1^≤≥≤≥≤≤≤(1/3)

m1=1或0

m2=1或0

m3=1或

利用LINGO软件得到:

Local optimal solution found at iteration: 547

Objective value: 8306154.

Variable Value Reduced Cost

M1 0.4188255E-05 -0.4417072E+11

S1 0.2478480E+09 0.000000

R1 0.000000 0.000000

Y2 771.3236 0.000000

T1 0.4424507E+09 -0.4180827E-03

Y1 823.7849 0.000000

M2 0.5425600E-05 -0.4266005E+11

S2 242.0000 0.3657762E-06

R2 1560.997 0.000000

T2 0.4274452E+09 -0.5414900E-03

M3 0.4095522E-05 -0.1327501E+12

S3 0.1051691E+08 0.7818241E-07

R3 0.000000 0.000000

T3 0.1330426E+10 -0.4086531E-03

Row Slack or Surplus Dual Price

1 8306154. 1.000000

2 0.4689206E-04 33.89452

3 0.4377739E-05 0.1275463E-01

4 0.000000 0.000000

5 0.2926847E-05 0.1275478E-01

6 423.7849 0.000000

7 376.2151 0.000000

8 531.3236 0.000000

9 28.67635 0.000000

10 0.2012296E-05 121.5113

11 0.2449280E-05 377.8516

结果分析:

由上述分析得出当三个工厂都升级并且A1和A3升级后不再生产W100X产品,只有A2工厂两种产品都生产时为利润最大,最大利润8306154元。

模型评价:

该模型假设了只考虑三种显成本;同时假设了模型的建立是出于供需平衡的前提下,这样生产出来的产品不会产生积压并能够直接变现,从而不会出现产品储存成本,这大大简化

了模型的建立,利于分析。由于公司老板非常重视货币的损益,从而我们建立的非线性模型以利润最大化为目标值很合理。在总裁所提的两个升级方案基础上,基于自己的分析,提出了一个更加优越的升级方案,即三个工厂都升级并且A1和A3升级后不再生产W100X产品,只有A2工厂两种产品都生产。但该模型还是存在一定的缺陷,比如模型假设过于理想,而实际的生产决策很难达到这么理想的状态,进而所提方案的优势并没有那么突出,这是需要改进的地方。

数学建模常用模型方法总结精品

【关键字】设计、方法、条件、动力、增长、计划、问题、系统、网络、理想、要素、工程、项目、重点、检验、分析、规划、管理、优化、中心 数学建模常用模型方法总结 无约束优化 线性规划连续优化 非线性规划 整数规划离散优化 组合优化 数学规划模型多目标规划 目标规划 动态规划从其他角度分类 网络规划 多层规划等… 运筹学模型 (优化模型) 图论模型存 储论模型排 队论模型博 弈论模型 可靠性理论模型等… 运筹学应用重点:①市场销售②生产计划③库存管理④运输问题⑤财政和会计⑥人事管理⑦设备维修、更新和可靠度、项目选择和评价⑧工程的最佳化设计⑨计算器和讯息系统⑩城市管理 优化模型四要素:①目标函数②决策变量③约束条件 ④求解方法(MATLAB--通用软件LINGO--专业软件) 聚类分析、 主成分分析 因子分析 多元分析模型判别分析 典型相关性分析 对应分析 多维标度法 概率论与数理统计模型 假设检验模型 相关分析 回归分析 方差分析 贝叶斯统计模型 时间序列分析模型 决策树 逻辑回归

传染病模型马尔萨斯人口预测模型微分方程模型人口预 测控制模型 经济增长模型Logistic 人口预测模型 战争模型等等。。 灰色预测模型 回归分析预测模型 预测分析模型差分方程模型 马尔可夫预测模型 时间序列模型 插值拟合模型 神经网络模型 系统动力学模型(SD) 模糊综合评判法模型 数据包络分析 综合评价与决策方法灰色关联度 主成分分析 秩和比综合评价法 理想解读法等 旅行商(TSP)问题模型 背包问题模型车辆路 径问题模型 物流中心选址问题模型 经典NP问题模型路径规划问题模型 着色图问题模型多目 标优化问题模型 车间生产调度问题模型 最优树问题模型二次分 配问题模型 模拟退火算法(SA) 遗传算法(GA) 智能算法 蚁群算法(ACA) (启发式) 常用算法模型神经网络算法 蒙特卡罗算法元 胞自动机算法穷 举搜索算法小波 分析算法 确定性数学模型 三类数学模型随机性数学模型 模糊性数学模型

建立数学模型的方法、步骤、特点及分类

建立数学模型的方法、步骤、特点及分类 [学习目标] 1.能表述建立数学模型的方法、步骤; 2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非 预制性、条理性、技艺性和局限性等特点;; 3.能表述数学建模的分类; 4.会采用灵活的表述方法建立数学模型; 5.培养建模的想象力和洞察力。 一、建立数学模型的方法和步骤 —般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(System Identification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数. 可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。 建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从 §16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示. 图16-5 建模步骤示意图 模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.

数学建模之减肥问题的数学模型

数学建模之减肥问题的 数学模型 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

东北大学秦皇岛分校 数学模型课程设计报告 减肥问题的数学建模 学院数学与统计学院 专业信息与计算科学 学号5133117 姓名楚文玉 指导教师张尚国刘超 成绩 教师评语: 指导教师签字: 2016年01月09日

摘要 肥胖已成为公众日益关注的卫生健康问题. 肥胖是与目前严重危害人类健康疾病,如糖尿病、高血压、冠心病、血脂异常、胆囊疾病、痛风、骨关节病、阻塞性睡眠呼吸暂停、某些癌症等的发病有明显相关的危险因素之一. 但是实际情况却是人们不会理性的对待自己的身体状况,经常使用一些不健康的方式减肥,到最后适得其反,给自己的身体造成很大的伤害. 本文特别的从数学模型的角度来考虑和认识问题,通过该模型的建立,科学的解释了肥胖的机理,引导群众合理科学的减肥. 本文建立了减肥的数学模型,从数学的角度对有关身体肥胖的规律做进一步的探讨和分析. 在研究此问题时,体重的实时变化数据是我们研究的核心数据,这就会使我们联系到变量的变化率或导数,这样所得到变量之间的关系式就是微分方模型. 微分方程模型反映的是变量之间的间接关系,因此,在研究体重,能量与运动之间的关系时,得到直接关系就得求解微分方程. 本文利用了微分方程模型求解减肥的实际问题,根据基本规律写出了平衡关系式 [()()][()()]t t t D A B R t t ωωω+?-=-+? 再利用一定的转换条件进行转化为简单明了的式子,求解出模型关系式 然后根据建立的模型表达式来解决一些实际的减肥问题,给出数学模型所能解答的一些实际建议. 关键字: 微分方程模型 能量守恒 能量转换系数 1 问题重述 课题的背景 随着社会的进步和发展,人们的生活水平在不断提高,饮食营养摄入量的改善和变化、生活方式的改变,使得肥胖成了社会关注的一个问题. 为此,联合国世界卫生组织曾颁布人体体重指数(简记BMI ):体重(单位:kg )除以身高(单位:m )的平方,规定BMI 在至25为正常,大于25为超重,超过30则为肥胖.据悉我国有关机构针对东方人的特点,拟将上述规定中的25改为24,30改为29.无论从健康的角度,是从审美的角度,人们越来越重视减肥,大量的减肥机构和商品出现,不少自感肥胖的

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

减肥问题的数学模型

减肥问题的数学模型 一、 问题的提出 现今社会,随着物质生活水平的提高,肥胖已成为困扰人们身体健康的一大疾病,减肥已日趋大众化。如何有效地,健康地减肥成为一个亟待解决的问题。下面本文从减肥机理的角度出发建立合理的数学模型来解决这个问题。 二、 问题的分析 肥胖困扰着很大一部分人群。如何耗去多余的脂肪,提高身体健康质量,成为人们的共识。本题要求我们从减肥的机理角度出发说明怎样有效地减肥。 根据生物知识,减肥就是要消耗体内多余的脂肪,也即把多余的脂肪转化为能量释放出来。实际上,我们吃的食物都是以能量的形式被人体吸收,当摄入能量为λE 时,减肥效果取决于能量的消耗E 。若E λE ?,他的能量消耗大于摄入,将达到减肥的目的;若E λE =,他的体重将维持原状;若E λE ?,则他不但不能减肥,反而会增胖。 每日摄入能量的来源有:碳水化合物、蛋白质和脂肪,设它们被消化后产生的热量为Q i =i i m λ(i=1,2,3)(其中i i m ,λ分别为上述三种物质的燃烧值和摄入质量)。则摄入的总能量为E λ=∑=3 1i i i m λ 每日消耗的能量E=1.1×(Q 0+Q P ),而Q 0=W Q ω,Q P =Q 0k ,k =∑=4 1 j j j k ω 故E=1.1×WQ ω(1+∑=4 1 j j j k ω) 从而,我们比较λE 与E 的大小,可以得出体重的变化。 三、 问题的假设: (1) 燃烧相同质量的人体各部位脂肪产生的热量相同。 (2) 同一人在一段时间内每天各种强度活动所占比例一定。

(3) 人体健康状况良好,体内的生理活动稳定。 四、 符号说明: E ——— 每天消耗的能量 E λ———正常人体每天摄入的能量 m i ————每天摄入的碳水化合物、蛋白质、脂肪的质量 i λ(I=1,2,3)——单位质量的碳水化合物、蛋白质、脂肪燃烧放出的热量。 W ——减肥前的体重(单位:斤) Q 0——人体基础代谢需要的基本热量 Q p ——体力活动所需要的热量 Q ω——人体单位体重基础代谢需要的基本热量 k j (j=1,2,3,4)——各类型活动的活动强度系数(极轻、轻、中、重) j ω(j=1,2,3,4)——每天各强度活动所占比例(∑=4 1 j j w =1) m ? ——自身脂肪变化的质量 五、 模型的建立与求解 在问题的分析中我们已得出: E λ= ∑=3 1i i i m λ (i=1,2,3) E=1.1×Q ωW (1+∑=4 1j j j k ω) (j=1,2,3,4) 因而我们有 m ? = 3 λλE E -= 3 4 1 3 1 ) 1(1.1λλ∑∑==+-j j j w i i i w k Q m 下面我们分三种情形: (1) 0??m 即E E ?λ时,结果是人体增胖 (2) 0=?m 即E=E λ时,维持原状不变。

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

建立数学模型的方法步骤特点及分类

§16.3 建立数学模型的方法、步骤、特点及分类 [学习目标] 1.能表述建立数学模型的方法、步骤; 2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非预制性、条理 性、技艺性和局限性等特点;; 3.能表述数学建模的分类; 4.会采用灵活的表述方法建立数学模型; 5.培养建模的想象力和洞察力。 一、建立数学模型的方法和步骤 —般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.§16.2节的示例都属于机理分析方法。测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(System Identification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数. 可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。 建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从§16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示. 图16-5 建模步骤示意图 模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份

数学建模的基本步骤

数学建模的基本步骤 一、数学建模题目 1)以社会,经济,管理,环境,自然现象等现代科学中出现的新问题为背景,一般都有一个比较确切的现实问题。 2)给出若干假设条件: 1. 只有过程、规则等定性假设; 2. 给出若干实测或统计数据; 3. 给出若干参数或图形等。 根据问题要求给出问题的优化解决方案或预测结果等。根据问题要求题目一般可分为优化问题、统计问题或者二者结合的统计优化问题,优化问题一般需要对问题进行优化求解找出最优或近似最优方案,统计问题一般具有大量的数据需要处理,寻找一个好的处理方法非常重要。 二、建模思路方法 1、机理分析根据问题的要求、限制条件、规则假设建立规划模型,寻找合适的寻优算法进行求解或利用比例分析、代数方法、微分方程等分析方法从基本物理规律以及给出的资料数据来推导出变量之间函数关系。 2、数据分析法对大量的观测数据进行统计分析,寻求规律建立数学模型,采用的分析方法一般有: 1). 回归分析法(数理统计方法)-用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式。 2). 时序分析法--处理的是动态的时间序列相关数据,又称为过程统计方法。 3)、多元统计分析(聚类分析、判别分析、因子分析、主成分分析、生存数据分析)。 3、计算机仿真(又称统计估计方法):根据实际问题的要求由计算机产生随机变量对动态行为进行比较逼真的模仿,观察在某种规则限制下的仿真结果(如蒙特卡罗模拟)。 三、模型求解: 模型建好了,模型的求解也是一个重要的方面,一个好的求解算法与一个合

适的求解软件的选择至关重要,常用求解软件有matlab,mathematica,lingo,lindo,spss,sas等数学软件以及c/c++等编程工具。 Lingo、lindo一般用于优化问题的求解,spss,sas一般用于统计问题的求解,matlab,mathematica功能较为综合,分别擅长数值运算与符号运算。 常用算法有:数据拟合、参数估计、插值等数据处理算法,通常使用spss、sas、Matlab作为工具. 线性规划、整数规划、多元规划、二次规划、动态规划等通常使用Lindo、Lingo,Matlab软件。 图论算法,、回溯搜索、分治算法、分支定界等计算机算法, 模拟退火法、神经网络、遗传算法。 四、自学能力和查找资料文献的能力: 建模过程中资料的查找也具有相当重要的作用,在现行方案不令人满意或难以进展时,一个合适的资料往往会令人豁然开朗。常用文献资料查找中文网站:CNKI、VIP、万方。 五、论文结构: 0、摘要 1、问题的重述,背景分析 2、问题的分析 3、模型的假设,符号说明 4、模型的建立(局部问题分析,公式推导,基本模型,最终模型等) 5、模型的求解 6、模型检验:模型的结果分析与检验,误差分析 7、模型评价:优缺点,模型的推广与改进 8、参考文献 9、附录 六、需要重视的问题 数学建模的所有工作最终都要通过论文来体现,因此论文的写法至关重要:

关于减肥计划的数学模型

2011第一学期数学建模选修课期末作业 名称:减肥计划 学号:1008054311 系别:计算机系 姓名:宛笛 上课时间:周四晚上 是否下学期上课:是

减肥计划 摘要:近年来,随着人们生活水平的提高,肥胖现象也日趋普遍,越来越多的人开始关注和解决肥胖问题,与此同时,各类减肥食品充斥市场,却达不到好的效果,或者不能维持,有的还会对消费者的身体带来一定损害. 本文中,我们建立了节食与运动的模型,通过控制饮食和适当的运动,在不伤害身体的前提下,达到减轻体重并维持下去的目标. 关键字:肥胖节食运动不伤害减轻体重 1问题重述 当今社会,人们对于健康越来越重视,而肥胖也成为困扰很多人的健康问题,肥胖者通过各种方式减肥,但很多人收效甚微,本文通过制定合理的节食和运动计划科学的直到肥胖者减肥. 2 问题分析 (1) 体重变化由体内能量守恒破坏引起; (2)人体通过饮食(吸收热量)引起体重增加; (3)代谢和运动(消耗热量)引起体重减少 3符号说明 1)K: 表示第几周; 2)ω(k):表示第k周的体重; 3)C(k):表示第k周吸收的热量; 4)α:表示热量转换系数[α =1/8000(kg/kcal)]; 5)β:表示代谢消耗系数(因人而异); 6) β’:表示通过运动代谢消耗系数在原有的基础上增加,即可表为β’=β+β1, β1有运动形式和时间决定. 4模型假设 1)体重增加正比于吸收的热量——每8000千卡增加体重1千克; 2)代谢引起的体重减少正比于体重——每周每公斤体重消耗200千卡 ~ 320千卡(因人而异),相当于70千克的人每天消耗2000千卡 ~ 3200千卡; 3)运动引起的体重减少正比于体重,且与运动形式有关; 4)为了安全与健康,每周体重减少不宜超过1.5千克,每周吸收热量不要小于10000千卡。 5 减肥计划 事例:某甲体重100千克,目前每周吸收20000千卡热量,体重维持不变。现欲减肥至75千克。 1)在不运动的情况下安排一个两阶段计划。 第一阶段:每周减肥1千克,每周吸收热量逐渐减少,直至达到下限(10000千卡); 第二阶段:每周吸收热量保持下限,减肥达到目标 2)若要加快进程,第二阶段增加运动,试安排计划。 3)给出达到目标后维持体重的方案。

数学模型的定义

一、数学模型的定义 现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明: 数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。 二、建立数学模型的方法和步骤 1. 模型准备 要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 5. 模型分析 对模型解答进行数学上的分析。“横看成岭侧成峰,远近高低各不同”,能否对模型结果

数学建模模型的建立

数学建模期中作业 姓名:赵洪 学号:200806002910 班级:信计08-1

工厂升级方案的优化模型 摘要:随着科学技术的飞速发展,各种产品日新月异,工厂面临着提高产品科技含量和优化改革方案的双重挑战。本文讨论工厂升级的优化问题,即分配各工厂的升级以使公司获得最大的利润,需要对其建立模型并借助LINGO软件对非线性规划问题进行了求解,通过比较利润最大值和收益率得出了两个方案的优劣性并在此基础上给出一个更好的提案。 关键词:工厂升级、优化、非线性规划、目标函数、约束条件 问题重述: 某公司所属的高新技术研究所开发了一种新的产品W200X,该公司现有三个工厂,都生产普通的产品W100X。公司计划将现有工厂升级,升级后的工厂将能产生W100X和W200X 其中A1离该公司的研究所最近,A2是最新最大的工厂。升级过程需要一周,在此期间,工厂将停产。该公司在过去的几个月进行了市场调研,W100X现有的批发价为400元。 工人的工资是45元/小时。工厂一星期做工40小时。工人数为固定数值。W100X的零件成本40元,需1.5小时工作量;W200X的零件成本为64元,需1.75小时工作量;每个W100X产品需要两个老芯片,每个W200X产品需要两个新芯片,该公司提供芯片的生产方程为: 公司老板要求: 两位副总裁分别提出了方案1,方案2,如下: 方案1:只让A1工厂升级,只生产新产品W200X; 方案2:所有工厂都升级,可生产两种产品。 要求: (1)研究每一种方案,包括你自己的一个提案,总裁希望基于你的研究推出一个最好的方案,他非常非货币损失和利益。 (2)问题陈述,方案的模型和分析,寻求最佳方案的方法,结果的分析。 (3)下个月第几个工厂升级,每种产品的产量和定价。 问题分析:

数学建模减肥计划

减肥计划——节食与运动 摘要:肥胖已成为公众日益关注的卫生健康问题。肥胖是与目前严重危害人类健康疾病,如糖尿病、高血压、冠心病、血脂异常、胆囊疾病、痛风、骨关节病、阻塞性睡眠呼吸暂停、某些癌症等的发病有明显相关的危险因素之一。但是实际情况确是违禁广告屡禁不止。之所以造成这种情况的原因很多,但是有一个重要原因就是科学素质低,不知道应该从生理机理,特别是从数学模型的角度来考虑和认识问题。数学模型的优点是科学的解释了肥胖的机理,引导群众合理科学的减肥。 关键词:减肥饮食合理运动 一、问题重述 联合国世界卫生组织颁布的体重指数(简记BMI)定义为体重(单位:kg)除以身高(单位:m)的平方,规定BMI在18.5至25为正常,大于25为超重,超过30则为肥胖。据悉,我国有关机构对东方人的特点,拟将上述规定中的25改为24,30改为29。 在国人初步过上小康生活以后,不少自感肥胖的人纷纷奔向减肥食品的柜台。可是大量事实说明,多数减肥食品达不到减肥的目标,或者即使能减肥一时,也难以维持下去。许多医生和专家的意见是,只有通过控制饮食和适当的运动,才能在不伤害身体的条件下,达到减轻体重并维持下去的目的。 肥胖是与目前严重危害人类健康疾病,如糖尿病、高血压、冠心病、血脂异常、胆囊疾病、痛风、骨关节病、阻塞性睡眠呼吸暂停、某些癌症等的发病有明显相关的危险因素之一。肥胖也是身体健康的晴雨表,反映着体内多方面的变化。很多人在心理上害怕自己变得肥胖,追求苗条,因而减肥不仅是人们经常听到的话题,更有人花很多的时间和金钱去付诸实践的活动,从而也就造成了各种减肥药、器械和治疗方法的巨大的市场。各种假药或对身体有害的药品和治疗方法、夸大疗效的虚假广告等等就应运而生了,对老百姓造成了不应有的伤害。 情况的严重使得国家广电总局、新闻出版总署等不得不发出通知,命令所有电视台自2006年8月1日起停止播出丰胸、减肥等产品的电视购物节目。但是实际情况确是违禁广告屡禁不止。之所以造成这种情况的原因很多,但是有一个重要原因就是科学素质低,不知道应该从生理机理,特别是从数学模型的角度来考虑和认识问题。 二、模型分析

建立数学模型的方法、步骤、特点及分类 ()

薅§16.3建立数学模型的方法、步骤、特点及分类 螁[学习目标] 蚀1.能表述建立数学模型的方法、步骤; 蒆2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非预制性、条理性、技艺性和局限性等特点;; 羆3.能表述数学建模的分类; 蒃4.会采用灵活的表述方法建立数学模型; 葿5.培养建模的想象力和洞察力。 薆一、建立数学模型的方法和步骤 膃—般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.§16.2节的示例都属于机理分析方法。测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(SystemIdentification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数. 袁可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。 膈建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从 薆§16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示. 薄图16-5建模步骤示意图 蚃模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 芁模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.

数学建模中常见的十大模型

数学建模中常见的十大 模型 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。

数学建模减肥

数学建模论文 学院:理学院 专业:物理10-1 题目:运动与摄食减肥问题班级:10-1 姓名:黄首亚 2012年03月29日

1.题目:运动与摄食减肥问题 2.摘要 随着社会的进步和发展,人们的生活水平不断提高。由于饮食营养摄入量的不断改善和提高,“肥胖”已经成为全社会关注的一个重要的问题。减肥的方法也有很多。如何正确对待减肥是我们必须考虑的问题。于是了解减肥的机理成为关键。背景材料: 根据中国生理科学会修订并建议的我国人民的每日膳食指南可知: (1)每日膳食中,营养素的供给量是作为保证正常人身体健康而提出的膳食质量标准。如果人们在饮食中摄入营养素的数量低于这个数量,将对身体产生不利的影响。 (2)人体的体重是评定膳食能量摄入适当与否的重要标志。 (3)人们热能需要量的多少,主要决定于三个方面:维持人体基本代谢所需的能量、从事劳动和其它活动所消耗的能量以及食物的特殊动力作用(将食物转化为人体所需的能量)所消耗的能量。 (4)一般情况下,成年男子每一千克体重每小时平均消耗热量为4200焦耳。 (5)一般情况下,食用普通的混合膳食,食物的特殊动力作用所需要的额外的能量消耗相当于基础代谢的10%。 3.问题重述 随着人们的生活水平的日渐提高,饮食营养摄入的不断改善和提高“,

肥胖”已成为全社会关注的一个重要问题,肥胖无论从审美或健康的角度,都严重地威胁到人们,各种减肥食品、药物或是健美中心如雨后春笋般出现,现在我们也利用减肥的基本原理以及在减肥过程中应注意的问题利用科学的原理,组建一个减肥的数学模型,从数学的角度对有关的规律做进一步的探讨和分析。所以我们可以通过引入人的体重与时间的函数关系,建立了一个微分方程模型,采用离散化方法,以天为单位,从数学的角度解决了每天的饮食摄入量、运动强度与体重的关系,以探索减肥的科学方法。 4.模型假设 (1) 人体的脂肪是存储和提供能量的主要方式,而且也是减肥的主要目标。对于一个成年人来说体重主要由三部分组成:骨骼、水和脂肪。骨骼和水大体上可以认为是不变的,我们不妨以人体脂肪的重量作为体重的标志。已知脂肪的能量转换率为100%,每千克脂肪可以转换为4.2×107焦耳的能量。记D=4.2×107焦耳/千克,称为脂肪的能量转换系数。 (2)人体的体重仅仅看成是时间t的函数w(t),而与其他因素无关,这意味着在研究减肥的过程中,我们忽略了个体间的差异(年龄、性别、健康状况等)对减肥的影响。 (3)体重随时间是连续变化的,即w(t)是连续函数且充分光滑,因此可以认为能量的摄取和消耗是随时发生的。 (4)不同的活动对能量的消耗是不同的,例如:体重分别为50千克和100千克的人都跑1000米,所消耗的能量显然是不同的。可见,活

数学建模统计模型

数学建模

论文题目: 一个医药公司的新药研究部门为了掌握一种新止痛剂的疗效,设计了一个药物试验,给患有同种疾病的病人使用这种新止痛剂的以下4个剂量中的某一个:2 g,5 g,7 g和10 g,并记录每个病人病痛明显减轻的时间(以分钟计). 为了解新药的疗效与病人性别和血压有什么关系,试验过程中研究人员把病人按性别及血压的低、中、高三档平均分配来进行测试. 通过比较每个病人血压的历史数据,从低到高分成3组,分别记作,和. 实验结束后,公司的记录结果见下表(性别以0表示女,1表示男). 请你为该公司建立一个数学模型,根据病人用药的剂量、性别和血压组别,预测出服药后病痛明显减轻的时间.

一、摘要 在农某医药公司为了掌握一种新止痛药的疗效,设计了一个药物实验,通过观测病人性别、血压和用药剂量与病痛时间的关系,预测服药后病痛明显减轻的时间。我们运用数学统计工具m i n i t a b软件,对用药剂量,性别和血压组别与病痛减轻

时间之间的数据进行深层次地处理并加以讨论概率值P (是否<)和拟合度R-S q的值是否更大(越大,说明模型越好)。 首先,假设用药剂量、性别和血压组别与病痛减轻时间之间具有线性关系,我们建立了模型Ⅰ。对模型Ⅰ用m i n i t a b 软件进行回归分析,结果偏差较大,说明不是单纯的线性关系,然后对不同性别分开讨论,增加血压和用药剂量的交叉项,我们在模型Ⅰ的基础上建立了模型Ⅱ,用m i n i t a b软件进行回归分析后,用药剂量对病痛减轻时间不显着,于是我们有引进了用药剂量的平方项,改进模型Ⅱ建立了模型Ⅲ,用m i n i t a b 软件进行回归分析后,结果合理。最终确定了女性病人服药后病痛减轻时间与用药剂量、性别和血压组别的关系模型: Y=1x 3x 1x 3x 2 1 x 对模型Ⅱ和模型Ⅲ关于男性病人用m i n i t a b软件进行回归分析,结果偏差依然较大,于是改进模型Ⅲ建立了模型Ⅳ,用m i n i t a b软件进行回归分析后,结果合理。最终确定了男性病人服药后病痛减轻时间与用药剂量、性别和血压组别的关系模 型:Y=1x1x 3x 2 1 x关键词止痛剂药剂量性别病痛减轻时 间

数学建模_微分方程之减肥问题

摘要:在研究实际问题时,常常会联系到某些变量的变化率或导数,这样所得到变量之间的关系式就是微分方模型。微分方程模型反映的是变量之间的间接关系,因此,在研究能量与运动之间的关系时,得到直接关系,就得求微分方程。 本文利用了微分方程模型求解实际问题,根据基本规律写出了平衡关系式,再利用一定的转换条件进行转化为简单明了的式子,求解出结果,对于第一问,利用微分方程反解出时间t(天),从而得到每个人达到自己理想目标的天数,同理,对于第二和第三问,利用以上方法,加上运动所消耗的能量,也可得出确切的时间,和所要保持体重所消耗的能量。 【关键字】:微分方程转化能量转换系数 1.问题重述 现有五个人,身高、体重和BMI指数分别入下表一所示,体重长期不变,试为他们按照以下方式制定减肥计划,使其体重减至自己的理想目标,并维持下去: 题目要求如下: (1)在基本不运动的情况下安排计划,,每天吸收的热量保持下限,减肥达到目标; (2)若是加快进程,增加运动,重新安排计划,经过调差资料得到以下各项运动每小时每kg体重的消耗的热量入下表二所示: (3)给出达到目标后维持体重的方案。 2. 问题的背景与分析 随着社会的进步和发展,人们的生活水平在不断提高,饮食营养摄入量的改

善和变化、生活方式的改变,使得肥胖成了社会关注的一个问题,为此,联合国世界卫生组织曾颁布人体体重指数(简记BMI ):体重(单位:kg )除以身高(单位:m )的平方,规定BMI 在18.5至25为正常,大于25为超重,超过30则为肥胖,据悉我国有关机构针对东方人的特点,拟将上述规定中的25改为24.,30改为29。无论从健康的角度,是从审美的角度,人们越来越重视减肥,大量的减肥机构和商品出现.不少自感肥胖的人加入了减肥的行列,盲目的减肥,使得人们感到不理想,如何对待减肥问题,不妨通过组建模型,从数学的角度,对有关的规律作一些探讨和分析。 根据背景知识,我们知道任何人通过饮食摄取的能量不能低于用于维持人体正常生理功能所需要的能量,因此作为人体体重极限值的减肥效果指标一定存在一个下限1ω,当1*ωω<时表明能量的摄入过低并致使维持他本人正常的生理功能的所需,这是减肥所得到的结果不能认为是有效的,它将危机人的身体健康,是危险的,称1ω为减肥的临界指标,另外,人们认为减肥所采取的各种体力运动对能量的消耗也有一个所能承受的范围,记为0

相关主题
文本预览
相关文档 最新文档