当前位置:文档之家› 物理动能定理的综合应用题20套(带答案)及解析

物理动能定理的综合应用题20套(带答案)及解析

物理动能定理的综合应用题20套(带答案)及解析
物理动能定理的综合应用题20套(带答案)及解析

物理动能定理的综合应用题20套(带答案)及解析

一、高中物理精讲专题测试动能定理的综合应用

1.如图所示,一条带有竖直圆轨道的长轨道水平固定,底端分别与两侧的直轨道相切,半径R =0.5m 。物块A 以v 0=10m/s 的速度滑入圆轨道,滑过最高点N ,再沿圆轨道滑出,P 点左侧轨道光滑,右侧轨道与物块间的动摩擦因数都为μ=0.4,A 的质量为m =1kg (A 可视为质点) ,求:

(1)物块经过N 点时的速度大小; (2)物块经过N 点时对竖直轨道的作用力; (3)物块最终停止的位置。

【答案】(1)5m/s v =;(2)150N ,作用力方向竖直向上;(3)12.5m x = 【解析】 【分析】 【详解】

(1)物块A 从出发至N 点过程,机械能守恒,有

22011

222

mv mg R mv =?+ 得

20445m /s v v gR =-=

(2)假设物块在N 点受到的弹力方向竖直向下为F N ,由牛顿第二定律有

2

N v mg F m R

+=

得物块A 受到的弹力为

2

N 150N v F m mg R

=-=

由牛顿第三定律可得,物块对轨道的作用力为

N N 150N F F '==

作用力方向竖直向上

(3)物块A 经竖直圆轨道后滑上水平轨道,在粗糙路段有摩擦力做负功,动能损失,由动能定理,有

2

0102

mgx mv μ-=-

12.5m x =

2.如图光滑水平导轨AB 的左端有一压缩的弹簧,弹簧左端固定,右端前放一个质量为m =1kg 的物块(可视为质点),物块与弹簧不粘连,B 点与水平传送带的左端刚好平齐接触,传送带的长度BC 的长为L =6m ,沿逆时针方向以恒定速度v =2m/s 匀速转动.CD 为光滑的水平轨道,C 点与传送带的右端刚好平齐接触,DE 是竖直放置的半径为R =0.4m 的光滑半圆轨道,DE 与CD 相切于D 点.已知物块与传送带间的动摩擦因数μ=0.2,取g =10m/s 2.

(1)若释放弹簧,物块离开弹簧,滑上传送带刚好能到达C 点,求弹簧储存的弹性势能

p E ;

(2)若释放弹簧,物块离开弹簧,滑上传送带能够通过C 点,并经过圆弧轨道DE ,从其最高点E 飞出,最终落在CD 上距D 点的距离为x =1.2m 处(CD 长大于1.2m ),求物块通过E 点时受到的压力大小;

(3)满足(2)条件时,求物块通过传送带的过程中产生的热能. 【答案】(1)p 12J E =(2)N =12.5N (3)Q =16J 【解析】 【详解】

(1)由动量定理知:2102

mgL mv μ-=-

由能量守恒定律知:2

p 12E mv =

解得:p 12J E =

(2)由平抛运动知:竖直方向:2122

y R gt == 水平方向:E x v t =

在E 点,由牛顿第二定律知:2

E v N mg m R

+=

解得:N =12.5N

(3)从D 到E ,由动能定理知:2211

222

D E mg R mv mv -?=

-

解得:5m /s D v =

从B 到D ,由动能定理知2211

22

D B mv mg v L m μ--= 解得:7m /s B v =

对物块2

B D

v v L t +=

解得:t =1s ;

621m 8m s L vt ?=+=+?=相对

由能量守恒定律知:mgL Q s μ=??相对 解得:Q =16J

3.质量为m =2kg 的小玩具汽车,在t =0时刻速度为v 0=2m/s ,随后以额定功率P =8W 沿平直公路继续前进,经t =4s 达到最大速度。该小汽车所受恒定阻力是其重力的0.1倍,重力加速度g =10m/s 2。求: (1)小汽车的最大速度v m ; (2)汽车在4s 内运动的路程s 。 【答案】(1)4 m/s ,(2)10m 。 【解析】 【详解】

(1)当达到最大速度时,阻力等于牵引力:

m m P Fv fv == 0.1f mg =

解得:m 4m/s v =;

(2)从开始到t 时刻根据动能定理得:

22m 01122

Pt fs mv mv -=

- 解得:10m s =。

4.如图所示,在粗糙水平面上有一质量为M 、高为h 的斜面体,斜面体的左侧有一固定障碍物Q,斜面体的左端与障碍物的距离为d .将一质量为m 的小物块置于斜面体的顶端,小物块恰好能在斜面体上与斜面体一起保持静止;现给斜面体施加一个水平向左的推力,使斜面体和小物块一起向左匀加速运动,当斜面体到达障碍物与其碰撞后,斜面体立即停止运动,小物块水平抛出,最后落在障碍物的左侧P 处(图中未画出),已知斜面体与地面间的动摩擦因数为μ1,斜面倾角为θ,重力加速度为g,滑动摩擦力等于最大静摩擦力,求:

(1)小物块与斜面间的动摩擦因数μ2;

(2)要使物块在地面上的落点P 距障碍物Q 最远,水平推力F 为多大; (3)小物块在地面上的落点P 距障碍物Q 的最远距离. 【答案】

(1)2tan μθ= (2)()()1sin cos tan M m g F M m g sin θ

μθθθ

+=++

-(3)

tan h

θ

【解析】 【分析】

对m 受力分析,由共点力平衡条件可以求出动摩擦因数;以m 为研究对象,求出最大加速度,以系统为研究对象,由牛顿第二定律求出最大推力;对系统由动能定理求出最大速度,然后由平抛运动规律求出最大水平位移. 【详解】

(1)对m 由平衡条件得:mgsinθ-μ2mgcosθ=0 解得:μ2=tanθ

(2)对m 设其最大加速度为a m ,由牛顿第二定律得 水平方向:Nsinθ+μ2Ncosθ=ma m 竖直方向:Ncosθ-μ2Nsinθ-mg =0 解得:2sin cos tan sin g a θ

θθθ

=

-

对M 、m 整体由牛顿第二定律得:F -μ1(M +m )g =(M +m )a m 解得:()()12sin cos tan sin M m g F M m g θ

μθθθ

+=++- 

(3)对M 、m 整体由动能定理得:()()211

2

Fd M m gd M m v μ-+=+ 

解得:v =

对m 由平抛运动规律得: 水平方向:tan p h

x vt θ

+= 竖直方向:212

h gt =

解得:tan p h

x θ

= 【点睛】

本题主要考查了应用平衡条件、牛顿第二定律、动能定理、平抛运动规律即可正确解题.

5.如图所示,一质量为m 的滑块从高为h 的光滑圆弧形槽的顶端A 处无初速度地滑下,槽的底端B 与水平传送带相接,传送带的运行速度恒为v 0,两轮轴心间距为L ,滑块滑到传送带上后做匀加速运动,滑到传送带右端C 时,恰好加速到与传送带的速度相同,求:

(1)滑块到达底端B 时的速度大小v B ; (2)滑块与传送带间的动摩擦因数μ;

(3)此过程中,由于克服摩擦力做功而产生的热量Q. 【答案】(12gh 2)20

22v gh gl μ-=(3)

(2

022

m v gh

-

【解析】

试题分析:(1)滑块在由A 到B 的过程中,由动能定理得:2

102

B mgh mv -=, 解得:2B gh ν=

(2)滑块在由B 到C 的过程中,由动能定理得:μmgL =

12mv 02?1

2

mv B 2, 解得,2022v gh

gL

μ-=;

(3)产生的热量:Q=μmgL 相对,()2

2

00(2)2B gh L g

相对

νννμ--=

(或200(2) gh ν-), 解得,2

01(2)2

Q m gh ν=; 考点:动能定理

【名师点睛】本题考查了求物体速度、动摩擦因数、产生的热量等问题,分析清楚运动过程,熟练应用动能定理即可正确解题.

6.如图所示,光滑斜面AB 的倾角θ=53°,BC 为水平面,BC 的长度l BC =1.10 m ,CD 为光滑的

1

4

圆弧,半径R =0.60 m .一个质量m =2.0 kg 的物体,从斜面上A 点由静止开始下滑,物体与水平面BC 间的动摩擦因数μ=0.20.轨道在B ,C 两点光滑连接.当物体到达D 点时,继续竖直向上运动,最高点距离D 点的高度h =0.20 m ,sin 53°=0.8,cos 53°=0.6.g 取10 m/s 2.求:

(1)物体运动到C 点时速度大小v C (2)A 点距离水平面的高度H

(3)物体最终停止的位置到C 点的距离s . 【答案】(1)4 m/s (2)1.02 m (3)0.4 m 【解析】 【详解】

(1)物体由C 点到最高点,根据机械能守恒得:()212c mg R h mv += 代入数据解得:4/C v m s =

(2)物体由A 点到C 点,根据动能定理得:2

102

BC c mgH mgl mv μ-=- 代入数据解得: 1.02H m =

(3)从物体开始下滑到停下,根据能量守恒得:mgx mgH μ= 代入数据,解得: 5.1x m = 由于40.7BC x l m =+

所以,物体最终停止的位置到C 点的距离为:0.4s m =. 【点睛】

本题综合考查功能关系、动能定理等;在处理该类问题时,要注意认真分析能量关系,正确选择物理规律求解.

7.一质量为m =0.1kg 的滑块(可视为质点)从倾角为θ=37°、长为L =6m 的固定租糙斜面顶端由静止释放,滑块运动到斜面底端时的速度大小为v ,所用的时间为t .若让此滑块从斜面底端以速度v 滑上斜面,利滑块在斜面上上滑的时间为1

2

t .已知重力加速度g 取10m/s 2,sin37°=0.6,cos37°=0.8.求: (1)滑块通过斜面端时的速度大小v ;

(2)滑块从斜而底端以速度v 滑上斜面又滑到底端时的动能. 【答案】(1)43;(2)1.2J 【解析】 【详解】

解:(1)设滑块和斜面间的动摩擦因数为μ,滑块下滑时的加速度大小为1a ,滑块上滑时的加速度大小为2a ,由牛顿第二定律可得 滑块下滑时有1mgsin mgcos ma θμθ-=

滑块上滑时有2mgsin mgcos ma θμθ+= 由题意有122

t v a t a == 联立解得μ=0.25

则滑块在斜面上下滑时的加速度1a =4m/s 2,滑块上滑时的加速度大小2a =8m/s 2

由运动学公式有2

12v a L =

联立解得43v =m/s

(2)设滑块沿斜面上滑的最大位移为x ,则有2

22v a x =

解得:x =3m

则滑块从斜面底端上滑到下滑到斜面底端的过程中,由动能定理有:

21

cos 22

k mg x E mv μθ-?=-

解得:k E =1.2J

8.如图所示,质量为 1.0kg m =的小物体从A 点以 5.0m/s A v =的初速度沿粗糙的水平面匀减速运动距离 =1.0 m s 到达B 点,然后进入半径R =0.4m 竖直放置的光滑半圆形轨道,小物体恰好通过轨道最高点C 后水平飞出轨道,重力加速度g 取l0m/s 2。求:

(1)小物体到达B 处的速度B v ;

(2)小物体在B 处对圆形轨道压力的大小N F ; (3)粗糙水平面的动摩擦因数μ。

【答案】(1)25m/s ;(2)60N ;(3)0.25。 【解析】 【详解】

(1)小物体恰好通过最高点C ,由重力提供向心力,则:

2C

v mg m R

=

得到:

2m/s c v gR ==

小物体从B 点运动到C 点过程中机械能守恒,则:

22

11222

B C mv mv mg R =+?

得到:

2

425m/s =+=B C v v gR ;

(2)设小物体在B 处受到的支持力为'

N F ,根据牛顿第二定律有:

2

'B

N

v F mg m R -=

得到:

'660N ==N F mg

根据牛顿第三定律可知,小物块对轨道的压力N F 大小为60N ,方向竖直向下。 (3)小物体由A 到B 过程,由动能定理得到:

22

1122

B A mgs mv mv μ-=

- 得到:

0.25μ=。

【点睛】

本题关键是恰好通过最高点,由重力提供向心力,然后再根据牛顿第二定律、机械能守恒

和动能定理结合进行求解。

9.如图所示,摩托车做特技表演时,以v 0=10m /s 的速度从地面冲上高台,t =5s 后以同样大小的速度从高台水平飞出.人和车的总质量m =1.8×102kg ,台高h =5.0m .摩托车冲上高台过程中功率恒定为P =2kW ,不计空气阻力,取g =10m /s 2.求:

(1) 人和摩托车从高台飞出时的动能E k ; (2) 摩托车落地点到高台的水平距离s ; (3) 摩托车冲上高台过程中克服阻力所做的功W f . 【答案】(1)9×103J (2)10m (3)1×103J 【解析】 【分析】 【详解】

试题分析:根据动能表达式列式求解即可;人和摩托车从高台飞出做平抛运动,根据平抛的运动规律即可求出平抛的水平距离;根据动能定理即可求解克服阻力所做的功. (1)由题知,抛出时动能:2

30019102

k E mv J =

=? (2)根据平抛运动规律,在竖直方向有:212

h gt = 解得:t=1s

则水平距离010s v t m ==

(3)摩托车冲上高台过程中,由动能定理得:0f Pt mgh W --= 解得:3

110f W J =? 【点睛】

本题考查了动能定理和平抛运动的综合,知道平抛运动水平方向和竖直方向上的运动规律,以及能够熟练运用动能定理.

10.如图所示,倾角 θ=30°的斜面足够长,上有间距 d =0.9 m 的 P 、Q 两点,Q 点以上斜面光滑,Q 点以下粗糙。可视为质点的 A 、B 两物体质量分别为 m 、2m 。B 静置于 Q 点,A 从 P 点由静止释放,与 B 碰撞后粘在一起并向下运动,碰撞时间极短。两物体与斜面粗糙部分的动摩擦因数均为23

5

μ=

取 g =10 m/s 2,求: (1)A 与 B 发生碰撞前的速度 v 1 (2)A 、B 粘在一起后向下运动的距离

【答案】(1)3m/s (2)0.5m 【解析】 【详解】

(1)A 在PQ 段下滑时,由动能定理得:

211

sin 02

mgd mv θ=-

得:

v 1=3 m/s

(2)A 、B 碰撞后粘在一起,碰撞过程动量守恒,则有:

1(2)AB mv m m v =+

之后A 、B 整体加速度为:

3sin 3cos 3AB mg mg ma θμθ-?=

得:

a AB =-1m/s 2

即A 、B 整体一起减速下滑,减速为零时:

22

02AB AB AB v a x -=

得:

x AB=0.5 m

11.滑雪者为什么能在软绵绵的雪地中高速奔驰呢?其原因是白雪内有很多小孔,小孔内充满空气.当滑雪板压在雪地时会把雪内的空气逼出来,在滑雪板与雪地间形成一个暂时的“气垫”,从而大大减小雪地对滑雪板的摩擦.然而当滑雪板对雪地速度较小时,与雪地接触时间超过某一值就会陷下去,使得它们间的摩擦力增大.假设滑雪者的速度超过4 m/s 时,滑雪板与雪地间的动摩擦因数就会由μ1=0.25变为μ2=0.125.一滑雪者从倾角为

θ=37°的坡顶A由静止开始自由下滑,滑至坡底B(B处为一光滑小圆弧)后又滑上一段水平雪地,最后停在C处,如图所示.不计空气阻力,坡长为l=26 m,g取10 m/s2,sin 37°=0.6,cos 37°=0.8.求:

(1)滑雪者从静止开始到动摩擦因数发生变化经历的时间;

(2)滑雪者到达B处的速度;

(3)滑雪者在水平雪地上运动的最大距离.

【答案】1s99.2m

【解析】

【分析】

由牛顿第二定律分别求出动摩擦因数恒变化前后的加速度,再由运动学知识可求解速度、位移和时间.

【详解】

(1)由牛顿第二定律得滑雪者在斜坡的加速度:a1==4m/s2

解得滑雪者从静止开始到动摩擦因数发生变化所经历的时间:t==1s

(2)由静止到动摩擦因素发生变化的位移:x1=a1t2=2m

动摩擦因数变化后,由牛顿第二定律得加速度:a2==5m/s2

由v B2-v2=2a2(L-x1)

解得滑雪者到达B处时的速度:v B=16m/s

(3)设滑雪者速度由v B=16m/s减速到v1=4m/s期间运动的位移为x3,则由动能定理有:

;解得x3=96m

速度由v1=4m/s减速到零期间运动的位移为x4,则由动能定理有:

;解得 x4=3.2m

所以滑雪者在水平雪地上运动的最大距离为x=x3+x4=96+ 3.2=99.2m

12.如图所示,某工厂车间有甲、乙两辆相同的运料小车处于闲置状态,甲车与乙车、乙

车与竖直墙面间的距离均为L ,由于腾用场地,需把两辆小车向墙角处移动。一工人用手猛推了一下甲车,在甲车与乙车碰撞瞬间,立即通过挂钩挂到了一起,碰后两车沿甲车原来的运动方向继续向前运动,在乙车运动到墙角时刚好停下。已知两车的质量均为m ,与水平地面间的摩擦力均为车重的k 倍,重力加速度大小为g ,求: (1)两车将要相碰时甲车的速度大小; (2)工人推甲车时对甲车的冲量大小。

【答案】(1)v 1=22kgL 2)10I m kgL =【解析】⑴设甲乙车钩挂在一起后的速度为2v ,从甲乙车钩挂一起到停下过程 根据动能定理: 221

2022

kmgL mv -=-

? (注:用牛顿第二定律和运动方程解的也给分) 甲乙两车碰撞前后动量守恒,设碰撞前甲车速度为1v , 根据动量守恒定律: 122mv mv = 得: 122v kgL =⑵在甲车在与乙车碰撞前运动L 的过程,设离开人手瞬间速度为0v 根据动能定理: 221011

22

kmgL mv mv -=

- 人将甲车从静止推至获得速度0v 的过程 根据动量定理: 00I mv =- 得: 10I m kgL =【点睛】动量守恒和能量的转化与守恒的结合.应用动量守恒定律解题要注意“四性”,①、系统性.②、矢量性.③、同时性.

高考物理总复习--物理动能与动能定理及解析

高考物理总复习--物理动能与动能定理及解析 一、高中物理精讲专题测试动能与动能定理 1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求: (1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ; (3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】 (1)在B 点时有v B = cos60? v ,得v B =6m/s (2)从B 点到E 点有2 102 B mgh mgL mgH mv μ--=- ,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有 2 1'202 B mgh mgh mg L mv μ--?=-,得h ′=1.2m

(word完整版)高中物理动能定理经典计算题和答案

动能和动能定理经典试题 例1 一架喷气式飞机,质量m =5×103kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k =0.02),求飞机受到的牵引力。 例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。(g 取10m/s 2) 例3 一质量为0.3㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( ) A .Δv=0 B. Δv =12m/s C. W=0 D. W=10.8J 例4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( ) A. gh v 20+ B. gh v 20- C. gh v 220+ D. gh v 220- 例5 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( ) A. mgl cos θ B. mgl (1-cos θ) C. Fl cos θ D. Flsin θ 例6 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力 作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的 拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大 拉力的过程中,绳的拉力对球做的功为________. 例7 如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持 v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件2-7-3 θ F O P Q l h H 2-7-2

物理必修动能和动能定理专题复习资料

物理必修动能和动能定理专题复习资料 Revised as of 23 November 2020

高一物理重点突破(1) 动能和动能定理 辅导教师:林裕光 知识链接 一、动能 1.定义式: 2.动能是描述物体运动状态的一种形式的能,它是标量. 二、动能定理 1.表达式: 2.意义:表示合力功与动能改变的对应关系. 3.应用动能定理解题的基本步骤 (1)确定研究对象,研究对象可以是一个单体也可以是一个系统. (2)分析研究对象的受力情况和运动情况,是否是求解“力、位移与速率关系”问题. (3)若是,根据W合=E k2-E k1列式求解. 与牛顿定律观点比较,动能定理只需考查一个物体运动过程的始末两个状态有关物理量的关系,对过程的细节不予细究,这正是它的方便之处;动能定理还可求解变力做功的问题. 重点、难点、疑点突破 1 一架喷气式飞机,质量m=5×103kg,起飞过程中从静止开始滑跑的路程为s =×102m时,达到起飞的速度v =60m/s,在此过程中飞机受到的平均阻力是飞机重量的倍(k=),求飞机受到的牵引力。 2 将质量m=2kg的一块石头从离地面H=2m高处由静止开始释放,落入泥潭并陷入泥中h=5cm深处,不计空气阻力,求泥对石头的平均阻力。(g取10m/s2)

3 一质量为㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( ) A .Δv=0 B. Δv =12m/s C. W=0 D. W= 4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( ) A. gh v 20+ B. gh v 20- C. gh v 220 + D. gh v 220- 5 一质量为m 的小球,用长为l 的轻绳悬挂于O 点。小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( ) A. mgl cos θ B. mgl (1-cos θ) C. Fl cos θ D. Flsin θ 6 如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件轻轻地放在传送带底端,由传送带传送至h =2m 的高处。已知工件与传送带间的动摩擦因数2 3 = μ,g 取10m/s 2。 (1)试通过计算分析工件在传送带上做怎样的运动 2-7-3

高一物理动能、动能定理练习题

高一物理动能、动能定 理练习题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

动能、动能定理练习 1、下列关于动能的说法中,正确的是( )A 、动能的大小由物体的质量和速率决定,与物体的运动方向无关 B 、物体以相同的速率分别做匀速直线运动和匀速圆周运动时,其动能不同.因为它在这两种情况下所受的合力不同、运动性质也不同 C 、物体做平抛运动时,其动能在水平方向的分量不变,在竖直方向的分量增大 D 、物体所受的合外力越大,其动能就越大 2、一质量为2kg 的滑块,以4m/s 的速度在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力.经过一段时间,滑块的速度方向变为向右,大小为4m/s.在这段时间里水平力做的功为( ) A 、0 B 、8J C 、16J D 、32J 3、质量不等但有相同动能的两物体,在动摩擦因数相同的水平地面上滑行直到停止,则( ) A 、质量大的物体滑行距离小 B 、它们滑行的距离一样大 C 、质量大的物体滑行时间短 D 、它们克服摩擦力所做的功一样多 4、一辆汽车从静止开始做加速直线运动,运动过程中汽车牵引力的功率保持恒定,所受的阻力不变,行驶2min 速度达到10m/s.那么该列车在这段时间内行的距离( ) A 、一定大于600m B 、一定小于600m C 、一定等于600m D 、可能等于1200m 5、质量为1.0kg 的物体,以某初速度在水平面上滑行,由于摩擦阻力的作用,其动能随位移变化的情况如下图所示,则下列判断正确的是(g=10m/s 2 )( ) A 、物体与水平面间的动摩擦因数为0.30 B 、物体与水平面间的动摩擦因数为0.25 C 、物体滑行的总时间是2.0s D 、物体滑行的总时间是4.0s 6、一个小物块从斜面底端冲上足够长的斜面后,返回到斜面底端,已知小物块的初动能为E ,它返回斜面底端的速度大小为υ,克服摩擦阻力做功为E/2.若小物块冲上斜面的初动能变为2E ,则有( ) A 、返回斜面底端的动能为E B 、返回斜面底端时的动能为3E/2 C 、返回斜面底端的速度大小为2υ D 、返回斜面底端的速度大小为 2υ 7、以初速度v 0急速竖直上抛一个质量为m 的小球,小球运动过程中所受阻力f 大小不变,上升最大高度为h ,则抛出过程中,人手对小球做的功( ) A. 12 02mv B. mgh C. 12 02 mv mgh + D. mgh fh + 8、如图所示,AB 为1/4圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R ,一质量为m 的物 体,与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A 从静止开始下落,恰好运动到C 处停止,那么物体在AB 段克服摩擦力所做的功为 A. 1 2 μmgR B. 1 2 mgR C. mgR D. ()1-μmgR 9、 质量为m 的物体静止在粗糙的水平地面上,若物体受水平力F 的作用从静止起通过位移s 时的动能为E 1,当物体受水平力2F 作用,从静止开始通过相同位移s ,它的动能为E 2,则: A 、E 2=E 1 B 、E 2=2E 1 C 、E 2>2E 1 D 、 E 1<E 2<2E 1 10.质量为m ,速度为V 的子弹射入木块,能进入S 米。若要射进3S 深,子弹的初速度应为原来的 (设子弹在木块中的阻力不变) ( ) A .3倍 B . 3 倍 C .9倍 D .2 3 倍 11.质量为m 的物体A 由静止开始下滑至B 而停止,A 、B 离水平地面的高度分别为h 及2 h ,如图所 示。若用平行于接触面的力把它沿原路径从B 拉回到A 处,则拉力的功至少应为 ( ) h / 2 h 图 5 - 17 h B V 0

高中物理 动能 动能定理资料

动能动能定理 动能定理是高中教学重点内容,也是高考每年必考内容,由此在高中物理教学中应提起高度重视。 一、教学目标 1.理解动能的概念: (1)知道什么是动能。 制中动能的单位是焦耳(J);动能是标量,是状态量。 (3)正确理解和运用动能公式分析、解答有关问题。 2.掌握动能定理: (1)掌握外力对物体所做的总功的计算,理解“代数和”的含义。 (2)理解和运用动能定理。 二、重点、难点分析 1.本节重点是对动能公式和动能定理的理解与应用。 2.动能定理中总功的分析与计算在初学时比较困难,应通过例题逐步提高学生解决该问题的能力。 3.通过动能定理进一步加深功与能的关系的理解,让学生对功、能关系有更全面、深刻的认识,这是本节的较高要求,也是难点。 三、主要教学过程 (一)引入新课 初中我们曾对动能这一概念有简单、定性的了解,在学习了功的概念及功和能的关系之后,我们再进一步对动能进行研究,定量、深入地理解这一概念及其与功的关系。 (二)教学过程设计 1.什么是动能?它与哪些因素有关?这主要是初中知识回顾,可请学生举例回答,然后总结作如下板书: 物体由于运动而具有的能叫动能,它与物体的质量和速度有关。 下面通过举例表明:运动物体可对外做功,质量和速度越大,动能越大,物体对外做功的能力也越强。所以说动能是表征运动物体做功的一种能力。 2.动能公式 动能与质量和速度的定量关系如何呢?我们知道,功与能密切相关。因此我们可以通过做功来研究能量。外力对物体做功使物体运动而具有动能。下面我们就通过这个途径研究一个运动物体的动能是多少。 列出问题,引导学生回答: 光滑水平面上一物体原来静止,质量为m,此时动能是多少?(因为物体没有运动,所以没有动能)。在恒定外力F作用下,物体发生一段位移s,得到速度v (如图1),这个过程中外力做功多少?物体获得了多少动能?

高考物理动能与动能定理试题经典及解析

高考物理动能与动能定理试题经典及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。一质量m =1kg 的小滑块从A 点正上方h =1 m 处的P 点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10 m/s 2。 (1)求滑块第一次运动到B 点时对轨道的压力。 (2)求滑块在粗糙斜面上向上滑行的最大距离。 (3)通过计算判断滑块从斜面上返回后能否滑出A 点。 【答案】(1)70N ; (2)1.2m ; (3)能滑出A 【解析】 【分析】 【详解】 (1)滑块从P 到B 的运动过程只有重力做功,故机械能守恒,则有 ()21 2 B mg h R mv += 那么,对滑块在B 点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且 ()2 N 270N B mg h R mv F mg mg R R +=+=+= 故由牛顿第三定律可得:滑块第一次运动到B 点时对轨道的压力为70N ,方向竖直向下。 (2)设滑块在粗糙斜面上向上滑行的最大距离为L ,滑块运动过程只有重力、摩擦力做功,故由动能定理可得 cos37sin37cos370mg h R R L mgL μ+-?-?-?=() 所以 1.2m L = (3)对滑块从P 到第二次经过B 点的运动过程应用动能定理可得 ()21 2cos370.542 B mv mg h R mgL mg mgR μ'=+-?=> 所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出A 点。 【点睛】 经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。

高中物理动能定理典型练习题含答案.doc

动能定理典型练习题 典型例题讲解 1.下列说法正确的是( ) A 做直线运动的物体动能不变,做曲线运动的物体动能变化 B 物体的速度变化越大,物体的动能变化也越大 C 物体的速度变化越快,物体的动能变化也越快 D 物体的速率变化越大,物体的动能变化也越大 【解析】 对于给定的物体来说,只有在速度的大小(速率)发生变化时它的动能才改变,速度的变化是矢量,它完全可以只是由于速度方向的变化而引起.例如匀速圆周运动.速度变化的快慢是指加速度,加速度大小与速度大小之间无必然的联系. 【答案】D 2.物体由高出地面H 高处由静止自由落下,不考虑空气阻力,落至沙坑表面进入沙坑h 停止(如图5-3-4所示).求物体在沙坑中受到的平均阻力是其重力 的多少倍? 【解析】 选物体为研究对象, 先研究自由落体过程,只有重力做功,设物体质量为m ,落到沙坑表面时速 度为v ,根据动能定理有 02 12 -= mv mgH ① 再研究物体在沙坑中的运动过程,重力做正功,阻做负功,根据动能定理有 22 1 0mv Fh mgh -=- ② 由①②两式解得 h h H mg F += 另解:研究物体运动的全过程,根据动能定理有 000)(=-=-+Fh h H mg 解得h h H mg F += 3.如图5-3-5所示,物体沿一曲面从A 点无初速度滑下,滑至曲面的最低点B 时,下滑高度为5m ,若物体的质量为lkg ,到B 点时的速度为6m/s ,则在下滑过程中,物体克服阻力所做的功为多少?(g 取10m/s 2) 【解析】设物体克服摩擦力 图5-3-5 H h 图5-3-4

图5-3-6 图5-3-7 所做的功为W ,对物体由A 运动到B 用动能定理得 22 1mv W mgh = - J mv mgh W 32612 1 51012122=??-??=-= 即物体克服阻力所做的功为32J. 课后创新演练 1.一质量为1.0kg 的滑块,以4m/s 的初速度在光滑水平面上向左滑行,从某一时刻起一向右水平力作用于滑块,经过一段时间,滑块的速度方向变为向右,大小为4m/s ,则在这段时间内水平力所做的功为( A ) A .0 B .8J C .16J D .32J 2.两物体质量之比为1:3,它们距离地面高度之比也为1:3,让它们自由下落,它们落地时的动能之比为( C ) A .1:3 B .3:1 C .1:9 D .9:1 3.一个物体由静止沿长为L 的光滑斜面下滑当物体的速度达到末速度一半时,物体沿斜面下滑了( A ) A .4L B .L )12(- C .2L D .2 L 4.如图5-3-6所示,质量为M 的木块放在光滑的水平面上,质量为m 的子弹以速度v 0沿水平射中木块,并最终留在木块中与木块一起以速度v 运动.已知当子弹相对木块静止时,木块前进距离L ,子弹进入木块的深度为s .若木块对子弹的阻力f 视为恒定,则下列关系式中正确的是( ACD ) A .fL =21Mv 2 B .f s =2 1mv 2 C .f s =21mv 02-21(M +m )v 2 D .f (L +s )=21mv 02-2 1mv 2 5.如图5-3-7所示,质量为m 的物体静放在水平光滑平台上,系在物体上的绳子跨过光滑的定滑轮由地面以速度v 0向右匀速走动的人拉着,设人从地面上且从平台的 边缘开始向右行 至绳和水平方向 成30°角处,在此 过程中人所做的功 为( D ) A .mv 02/2 B .mv 02

人教版高中物理必修二高一物理动能定理机械能守恒检测(计算题)

高中物理学习材料 金戈铁骑整理制作 高一物理动能定理机械能守恒检测(计算题) 1.“绿色奥运”是2008年北京奥运会的三大理念之一,奥委组决定在各比赛场馆适用新型节能环保电动车,届时奥运会500名志愿者将担任司机,负责接送比赛选手和运输器材。在检测某款电动车性能的某次试验中,质量为8×102kg 的电动车由静止开始沿平直公路行驶,达到的最大速度为15m/s,利用传感器测得此过程中不同的时刻电动车的牵引力F 与对应的速度v ,并描绘出F —1/v 图像(图中AB 、BO 均为直线)。假设电动车在行驶中所受的阻力恒定,求: (1)根据图线ABC ,判断该环保电动车做什么 运动并计算环保电动车的额定功率 (2)此过程中环保电动车做匀加速直线运动的 加速度大小 (3)环保电动车由静止开始运动,经过多长时间 速度达到2m/s? 2.如图所示,粗糙的斜面通过一段极小的圆弧与光滑的半圆 轨道在B 点相连,整个轨道在竖直平面内,且C 点的切线水平。 现有一个质量为m 且可视为质点的小滑块,从斜面上的A 点由 静止开始下滑,并从半圆轨道的最高点C 飞出。已知半圆轨道的 半径R=1m, A 点到水平底面的高度h=5m, 斜面的倾角θ=450,滑块 与斜面间的动摩擦因数μ=0.5, 空气阻力不计,求小滑块在斜面上的 落点离水平面的高度。(g=10m/s 2) 3.在光滑的水平面有一个静止的物体。现以水平恒力甲推这一物体,作用一段时间后,换成相反方向的水平恒力乙推这一物体,当恒力乙作用时间与恒力甲作用时间相同时,物体恰好回到原处,此时物体的动能为32J 。则在整个过程中,恒力甲、乙对物体做的功分别是多少? 4.从倾角为θ的斜面上,水平抛出一个小球,小球的初动能为E K0, F / N C B A 151 2000 400 V 1/s.m -1 O C O · y R A B H θ x C θ

高中物理动能与动能定理题20套(带答案)

高中物理动能与动能定理题20套(带答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,圆弧轨道AB是在竖直平面内的1 4 圆周,B点离地面的高度h=0.8m,该处切 线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求: (1)圆弧轨道的半径 (2)小球滑到B点时对轨道的压力. 【答案】(1)圆弧轨道的半径是5m. (2)小球滑到B点时对轨道的压力为6N,方向竖直向下. 【解析】 (1)小球由B到D做平抛运动,有:h=1 2 gt2 x=v B t 解得: 10 410/ 220.8 B g v x m s h ==?= ? A到B过程,由动能定理得:mgR=1 2 mv B2-0 解得轨道半径R=5m (2)在B点,由向心力公式得: 2 B v N mg m R -= 解得:N=6N 根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下 点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动. 2.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在A点用一弹射装置可将静止的小滑块以v0水平速度弹射出去,沿水平直线轨道运动到B点后,进入半径R=0.3m 的光滑竖直圆形轨道,运行一周后自 B点向C点运动,C点右侧有一陷阱,C、D两点的竖直高度差h=0.2m,水平距离s=0.6m,水平轨道AB长为L1=1m,BC长为 L2 =2.6m,

高一物理动能定理经典题型汇总(全)

高一物理动能定理经典题型汇总(全)

————————————————————————————————作者:————————————————————————————————日期:

1、动能定理应用的基本步骤 应用动能定理涉及一个过程,两个状态.所谓一个过程是指做功过程,应明确该过程各外力所做的总功;两个状态是指初末两个状态的动能. 动能定理应用的基本步骤是: ①选取研究对象,明确并分析运动过程. ②分析受力及各力做功的情况,受哪些力?每个力是否做功?在哪段位移过程中做功?正功?负功?做多少功?求出代数和. ③明确过程始末状态的动能E k1及E K2 ④列方程 W=E K2一E k1,必要时注意分析题目的潜在条件,补充方程进行求解. 2、应用动能定理的优越性 (1)由于动能定理反映的是物体两个状态的动能变化与其合力所做功的量值关系,所以对由初始状态到终止状态这一过程中物体运动性质、运动轨迹、做功的力是恒力还是变力等诸多问题不必加以追究,就是说应用动能定理不受这些问题的限制. (2)一般来说,用牛顿第二定律和运动学知识求解的问题,用动能定理也可以求解,而且往往用动能定理求解简捷.可是,有些用动能定理能够求解的问题,应用牛顿第二定律和运动学知识却无法求解.可以说,熟练地应用动能定理求解问题,是一种高层次的思维和方法,应该增强用动能定理解题的主动意识. (3)用动能定理可求变力所做的功.在某些问题中,由于力F 的大小、方向的变化,不能直接用W=Fscos α求出变力做功的值,但可由动能定理求解. 一、整过程运用动能定理 (一)水平面问题 1、一物体质量为2kg ,以4m/s 的速度在光滑水平面上向左滑行。从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s ,在这段时间内,水平力做功为( ) A. 0 B. 8J C. 16J D. 32J 2、 一个物体静止在不光滑的水平面上,已知m=1kg ,u=0.1,现用水平外力F=2N ,拉其运动5m 后立即撤去水平外力F ,求其还能滑 m (g 取2 /10s m ) 3、总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭油门,除去牵 S L V V

高中物理必修二动能和动能定理

高中物理必修二动能和动能定理 【知识整合】 1、动能:物体由于_____________而具有的能量叫动能。 ⑴动能的大小:_________________ ⑵动能是标量。 ⑶动能是状态量,也是相对量。 2、动能定理: ⑴动能定理的内容和表达式:____________________________________________ ⑵物理意义:动能定理指出了______________________和_____________________的关系,即外力做的总功,对应着物体动能的变化,变化的大小由________________来度量。 我们所说的外力,既可以是重力、弹力、摩擦力,又可以是电场力、磁场力或其他力。物体动能的变化是指_____________________________________________。 ⑶动能定理的适用条件:动能定理既适用于直线运动,也适用于________________。 既适用于恒力做功,也适用于______________________。力可以是各种性质的力,既可以同时做用,也可以____________________,只要求出在作用过程中各力做功的多少和正负即可,这些正是动能定理解题的优越性所在。 【重难点阐释】 1、应用动能定理解题的基本步骤: ⑴选取研究对象,明确它的运动过程。 ⑵分析研究对象的受力情况和各力做功的情况:受哪些力?每个力是否做功?做正功还是负功?做多少功?然后求各力做功的代数和。 ⑶明确物体在过程的始末状态的动能E k1和E k2 ⑷列出动能定理的方程W合=E k2-E k1及其它必要的解题方程,进行求解。 2、动能定理的理解和应用要点: (1)动能定理的计算式为W合=E k2-E k1,v和s是想对于同一参考系的。 (2)动能定理的研究对象是单一物体,或者可以看做单一物体的物体系。 (3)动能定理不仅可以求恒力做功,也可以求变力做功。在某些问题中由于力F的大小发生变化或方向发生变化,中学阶段不能直接利用功的公式W=FS来求功,,此时我们利用动能定理来求变力做功。 (4)动能定理不仅可以解决直线运动问题,也可以解决曲线运动问题,而牛顿运动定律和运动学公式在中学阶段一般来说只能解决直线运动问题(圆周和平抛有自己独立的方法)。(5)在利用动能定理解题时,如果物体在某个运动过程中包含有几个运动性质不同的分过程(如加速和减速的过程),此时可以分段考虑,也可整体考虑。如能对整个过程列动能定理表达式,则可能使问题简化。在把各个力代入公式:W1﹢W2﹢……﹢Wn=E k2-E k1时,要把它们的数值连同符号代入,解题时要分清各过程各力做功的情况。 【典型例题】 另一端施加大小为F1的拉力作用,在水平面上 做半径为R1的匀速圆周运动今将力的大小改变

高一物理动能、动能定理练习题

动能、动能定理练习 1、下列关于动能的说法中,正确的是( )A、动能的大小由物体的质量和速率决定,与物体的运动方向无关 B、物体以相同的速率分别做匀速直线运动和匀速圆周运动时,其动能不同.因为它在这两种情况下所受的合力不同、运动性质也不同 C、物体做平抛运动时,其动能在水平方向的分量不变,在竖直方向的分量增大 D、物体所受的合外力越大,其动能就越大 2、一质量为2kg的滑块,以4m/s的速度在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力.经过一段时间,滑块的速度方向变为向右,大小为4m/s.在这段时间里水平力做的功为( ) A、0 B、8J C、16J D、32J 3、质量不等但有相同动能的两物体,在动摩擦因数相同的水平地面上滑行直到停止,则( ) A、质量大的物体滑行距离小 B、它们滑行的距离一样大 C、质量大的物体滑行时间短 D、它们克服摩擦力所做的功一样多 4、一辆汽车从静止开始做加速直线运动,运动过程中汽车牵引力的功率保持恒定,所受的阻力不变,行驶2min速度达到10m/s.那么该列车在这段时间内行的距离( ) A、一定大于600m B、一定小于600m C、一定等于600m D、可能等于1200m 5、质量为1.0kg的物体,以某初速度在水平面上滑行,由于摩擦阻力的作用,其动能随位移变化的情况如下图所示,则下列判断正确的是(g=10m/s2)( ) A、物体与水平面间的动摩擦因数为0.30 B、物体与水平面间的动摩擦因数为0.25 C、物体滑行的总时间是2.0s D、物体滑行的总时间是4.0s 6、一个小物块从斜面底端冲上足够长的斜面后,返回到斜面底端,已知小物块的初动能为E,它返回斜面底端的速度大小为υ,克服摩擦阻力做功为E/2.若小物块冲上斜面的初动能变为2E,则有( ) A、返回斜面底端的动能为E B、返回斜面底端时的动能为3E/2 C、返回斜面底端的速度大小为2υ D、返回斜面底端的速度大小为2υ 7、以初速度v0急速竖直上抛一个质量为m的小球,小球运动过程中所受阻力f大小不变,上升最大高度为h,则抛出过程中,人手对小球做的功() A. 1 20 2 mv B. mgh C. 1 20 2 mv mgh + D. mgh fh + 8、如图所示,AB为1/4圆弧轨道,BC为水平直轨道,圆弧的半径为R,BC的长度也是R,一质量为m的物 体,与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A从静止开始下落,恰好运动到C处停止,那么物体在AB段克服摩擦力所做的功为 A. 1 2 μmgR B. 1 2 mgR C. mgR D. () 1-μmgR 9、质量为m的物体静止在粗糙的水平地面上,若物体受水平力F的作用从静止起通过位移s时的动能为 E1,当物体受水平力2F作用,从静止开始通过相同位移s,它的动能为E2,则: A、E2=E1 B、E2=2E1 C、E2>2E1 D、E1<E2<2E1 10.质量为m,速度为V的子弹射入木块,能进入S米。若要射进3S深,子弹的初速度应为原来的(设子弹在木块中的阻力不变)( ) h/2 h 图5-17

高一物理 动能定理练习题

动能定理练习 巩固基础 一、不定项选择题(每小题至少有一个选项) 1.下列关于运动物体所受合外力做功和动能变化的关系,下列说法中正确的是( ) A .如果物体所受合外力为零,则合外力对物体所的功一定为零; B .如果合外力对物体所做的功为零,则合外力一定为零; C .物体在合外力作用下做变速运动,动能一定发生变化; D .物体的动能不变,所受合力一定为零。 2.下列说法正确的是( ) A .某过程中外力的总功等于各力做功的代数之和; B .外力对物体做的总功等于物体动能的变化; C .在物体动能不变的过程中,动能定理不适用; D .动能定理只适用于物体受恒力作用而做加速运动的过程。 3.在光滑的地板上,用水平拉力分别使两个物体由静止获得相同的动能,那么可以肯定( ) A .水平拉力相等 B .两物块质量相等 C .两物块速度变化相等 D .水平拉力对两物块做功相等 4.质点在恒力作用下从静止开始做直线运动,则此质点任一时刻的动能( ) A .与它通过的位移s 成正比 B .与它通过的位移s 的平方成正比 C .与它运动的时间t 成正比 D .与它运动的时间的平方成正比 5.一子弹以水平速度v 射入一树干中,射入深度为s ,设子弹在树中运动所受的摩擦阻力是恒定的,那么子弹以v /2的速度射入此树干中,射入深度为( ) A .s B .s/2 C .2/s D .s/4 6.两个物体A 、B 的质量之比m A ∶m B =2∶1,二者动能相同,它们和水平桌面的动摩擦因数相同,则二者在桌面上滑行到停止所经过的距离之比为( ) A .s A ∶s B =2∶1 B .s A ∶s B =1∶2 C .s A ∶s B =4∶1 D .s A ∶s B =1∶4 7.质量为m 的金属块,当初速度为v 0时,在水平桌面上滑行的最大距离为L ,如果将金属块的质量增加到2m ,初速度增大到2v 0,在同一水平面上该金属块最多能滑行的距离为( ) A .L B .2L C .4L D .0.5L 8.一个人站在阳台上,从阳台边缘以相同的速率v 0,分别把三个质量相同的球竖直上抛、竖直下抛、水平抛出,不计空气阻力,则比较三球落地时的动能( ) A .上抛球最大 B .下抛球最大 C .平抛球最大 D .三球一样大 9.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则此过程中物块克服空气阻力所做的功等于( ) A .2022121mv mv mgh -- B .mgh mv mv --2022 121 C .2202121mv mv mgh -+ D .2022121mv mv mgh -- 10.水平抛出一物体,物体落地时速度的方向与水平面的夹角为θ,取地面为参考平面,则物体刚被抛出时,其重力势能与动能之比为( ) A .sin 2θ B .cos 2θ C .tan 2θ D .cot 2θ 11.将质量为1kg 的物体以20m /s 的速度竖直向上抛出。当物体落回原处的速率为16m/s 。在此过程中物体克服阻力所做的功大小为( ) A .200J B .128J C .72J D .0J

高考物理动能与动能定理解题技巧及练习题(含答案)

高考物理动能与动能定理解题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

高中物理动能与动能定理题20套(带答案)及解析

高中物理动能与动能定理题20套(带答案)及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,斜面ABC 下端与光滑的圆弧轨道CDE 相切于C ,整个装置竖直固定,D 是最低点,圆心角∠DOC =37°,E 、B 与圆心O 等高,圆弧轨道半径R =0.30m ,斜面长L =1.90m ,AB 部分光滑,BC 部分粗糙.现有一个质量m =0.10kg 的小物块P 从斜面上端A 点无初速下滑,物块P 与斜面BC 部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g =10m/s 2,忽略空气阻力.求: (1)物块第一次通过C 点时的速度大小v C . (2)物块第一次通过D 点时受到轨道的支持力大小F D . (3)物块最终所处的位置. 【答案】(1)32m/s (2)7.4N (3)0.35m 【解析】 【分析】 由题中“斜面ABC 下端与光滑的圆弧轨道CDE 相切于C”可知,本题考查动能定理、圆周运动和机械能守恒,根据过程分析,运用动能定理、机械能守恒和牛顿第二定律可以解答. 【详解】 (1)BC 长度tan 530.4m l R ==o ,由动能定理可得 21 ()sin 372 B mg L l mv -=o 代入数据的 32m/s B v = 物块在BC 部分所受的摩擦力大小为 cos370.60N f mg μ==o 所受合力为 sin 370F mg f =-=o 故 32m/s C B v v == (2)设物块第一次通过D 点的速度为D v ,由动能定理得 2211 (1cos37)22 D C mgR mv mv -= -o

高中物理专题汇编物理动能与动能定理(一)

高中物理专题汇编物理动能与动能定理(一) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37?角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。 (1)求小物块经过B 点时对轨道的压力大小; (2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。 【答案】(1)62N (2)60N (3)10m 【解析】 【详解】 (1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==? 解得:04 m /5m /cos370.8 A v v s s = ==? 小物块经过A 点运动到B 点,根据机械能守恒定律有: ()2211cos3722 A B mv mg R R mv +-?= 小物块经过B 点时,有:2 B NB v F mg m R -= 解得:()232cos3762N B NB v F mg m R =-?+= 根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有: 22011222 C B mgL mg r mv mv μ--?= - 在C 点,由牛顿第二定律得:2 C NC v F mg m r += 代入数据解得:60N NC F = 根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N

最新高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)

最新高考物理动能与动能定理常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)及解析

高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,斜面ABC 下端与光滑的圆弧轨道CDE 相切于C ,整个装置竖直固定,D 是最低点,圆心角∠DOC =37°,E 、B 与圆心O 等高,圆弧轨道半径R =0.30m ,斜面长L =1.90m ,AB 部分光滑,BC 部分粗糙.现有一个质量m =0.10kg 的小物块P 从斜面上端A 点无初速下滑,物块P 与斜面BC 部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g =10m/s 2,忽略空气阻力.求: (1)物块第一次通过C 点时的速度大小v C . (2)物块第一次通过D 点时受到轨道的支持力大小F D . (3)物块最终所处的位置. 【答案】(1)32m/s (2)7.4N (3)0.35m 【解析】 【分析】 由题中“斜面ABC 下端与光滑的圆弧轨道CDE 相切于C”可知,本题考查动能定理、圆周运动和机械能守恒,根据过程分析,运用动能定理、机械能守恒和牛顿第二定律可以解答. 【详解】 (1)BC 长度tan 530.4m l R ==o ,由动能定理可得 21 ()sin 372 B mg L l mv -=o 代入数据的 32m/s B v = 物块在BC 部分所受的摩擦力大小为 cos370.60N f mg μ==o 所受合力为 sin 370F mg f =-=o 故 32m/s C B v v == (2)设物块第一次通过D 点的速度为D v ,由动能定理得 2211 (1cos37)22 D C mgR mv mv -= -o

高中物理动能定理的运用归纳及总结

一、整过程运用动能定理 (一)水平面问题 1、一物体质量为2kg ,以4m/s 的速度在光滑水平面上向左滑行。从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s ,在这段时间内,水平力做功为( ) A. 0 B. 8J C. 16J D. 32J 2、 一个物体静止在不光滑的水平面上,已知m=1kg ,u=0.1,现用水平外力F=2N ,拉其运 动5m 后立即撤去水平外力F ,求其还能滑 m (g 取2 /10s m ) 【解析】对物块整个过程用动能定理得: ()0 00=+-s s umg Fs 解得:s=10m 3、总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭油门,除去牵引力,如图所示。设运动的阻力与质量成正比,机车的牵引力是恒定的。当列车的两部分都停止时,它们的距离是多少? 【解析】对车头,脱钩后的全过程用动能定理得: 201)(2 1 )(V m M gS m M k FL --=-- 对车尾,脱钩后用动能定理得: 2022 1 mV kmgS -=- 而21S S S -=?,由于原来列车是匀速前进的, 所以F=kMg 由以上方程解得m M ML S -=?。 (二)竖直面问题(重力、摩擦力和阻力) 1、人从地面上,以一定的初速度 v 将一个质量为m 的物体竖直向上抛出,上升的最大高度 为h ,空中受的空气阻力大小恒力为f ,则人在此过程中对球所做的功为( ) A. 2021mv B. fh mgh - C. fh mgh mv -+2021 D. fh mgh + S 2 S 1 L V 0 V 0

相关主题
文本预览
相关文档 最新文档