当前位置:文档之家› 数学实验分形实例

数学实验分形实例

数学实验分形实例
数学实验分形实例

数学实验报告

学院:

班级:

学号:

姓名:

完成日期:

实验二分形

(一)练习题1

一.实验目的

1.了解分形几何的基本情况;

2.了解通过迭代方式,产生分形图的方法;

3.了解matlab软件中简单的程序结构。

二. 问题描述

对一个等边三角形,每条边按照Koch曲线的方式进行迭代,产生的分形图称为Koch雪花。编制程序绘制出它的图形,并计算Koch雪花的面积,以及它的分形维数。

三.实验过程

仿照Koch曲线代码对三角形的每条边进行Koch曲线化,建立函数“snow”的输入参数有三角形的边长R和迭代次数k,输出Koch雪花图形以及雪花所围面积S.

源代码如下:

function snow(R,k)

p=[0;R/2+1i*R*sin(pi/3);R;0];

S=0;

n=3;

A=exp(1i*pi/3);

for s=1:k

j=0;

for i=1:n

q1=p(i,:);

q2=p(i+1,:);

d=(q2-q1)/3;

j=j+1;r(j,:)=q1;

j=j+1;r(j,:)=q1+d;

j=j+1;r(j,:)=q1+d+d*A;

j=j+1;r(j,:)=q1+2*d;

end

n=4*n;

clear p

p=[r;q2];

end

figure

q(:,1)=real(p(:,1));

q(:,2)=imag(p(:,1));

plot(q(:,1),q(:,2))

fill(q(:,1),q(:,2),'b')

for i=0:k

S=S+(3.^(0.5-i))*0.25*(R.^2); end

S

axis equal

按照以上程序,输入参数,有以下结果:>> snow(1,1) S =0.5774 图形如下:

>>snow(1,2) S =0.6255 图形如下:

>>snow(1,3) S =0.6415 图形如下:

>>snow(1,4) S =0.6468 图形如下:

>>snow(1,5) S =0.6486 图形如下:

四.总结分析和心得体会

根据观察迭代的面积规律,即可推得面积递推公式:

,其中

即:面积公式,也就等于

分形维数,根据迭代的规律得到:

相似形个数:m=4

边长放大倍数c=3,

维数d=ln m/ln c=ln 6/ln 3=1.631

(二)练习题2

一.实验目的

1.了解分形几何的基本情况;

2.了解通过迭代方式,产生分形图的方法;

3.了解matlab软件中简单的程序结构。

二. 问题描述

对一条竖线段,在其三分之一分点处,向左上方向画一条线段,在其三分之二点处,向右上方向画一条线段,线段长度都是原来的三分之一,夹角都为30度,迭代一次后变成图3-22.继续迭代得到分形图,可模拟树木花草,编制程序绘制出它的图形。

三.实验过程

代码如下:

function tree(z1,z2,N,n)

if n>N

return

end

if n==1

d=(z2-z1)/3;

q1=z1+d+d*exp(1i*pi/6);

q2=z1+2*d+d*exp(-1i*pi/6);

plot([z1+d,q1])

hold on

axis equal

plot([z1+2*d,q2])

plot([z1,z2])

tree(z1,z2,N,n+1)

else

d=(z2-z1)/3;

q1=z1+d+d*exp(1i*pi/6);

q2=z1+2*d+d*exp(-1i*pi/6);

plot([z1+d,q1])

plot([z1+2*d,q2])

tree(z1+d,q1,N,n+1);

tree(z1+d,z1+2*d,N,n+1);

tree(z1+2*d,q2,N,n+1);

tree(z1+2*d,z2,N,n+1);

end

其中N为迭代次数,n的初始值为1,输入以下代码:tree (0,10i,2,1) 图形如下:

tree (0,10i,3,1) 图形如下:

tree (0,10i,4,1) 图形如下:

tree (0,10i,5,1) 图形如下:

tree (0,10i,6,1) 图形如下:

四.总结分析和心得体会

通过本次的实验,我更了解了几合分形图以及用matlab软件产生几合分形图的方法、程序结构。总的来说,通过本次实验,学习到了matlab软件的一种

新的用法,对自己的数学实验能力又提升了不少。体验了通

过图形迭代方式产生分形图的过程,迭代的规则非常简单,产生的结果却异常奇妙,并且这些图形很好地反映出了分形所具有的自相似的层次结构。

《数学实验》试题答案

北京交通大学海滨学院考试试题 课程名称:数学实验2010-2011第一学期出题教师:数学组适用专业: 09机械, 物流, 土木, 自动化 班级:学号:姓名: 选做题目序号: 1.一对刚出生的幼兔经过一个月可以长成成兔, 成兔再经过一个月后可以 繁殖出一对幼兔. 如果不计算兔子的死亡数, 请用Matlab程序给出在未来24个月中每个月的兔子对数。 解: 由题意每月的成兔与幼兔的数量如下表所示: 1 2 3 4 5 6 ··· 成兔0 1 1 2 3 5··· 幼兔 1 0 1 1 2 3··· 运用Matlab程序: x=zeros(1,24); x(1)=1;x(2)=1; for i=2:24 x(i+1)=x(i)+x(i-1); end x 结果为x = 1 1 2 3 5 8 13 21 3 4 5 5 89 144 233 377 610 987 1597 2584 4181 6765 1094 6 7711 2865 7 46368 2.定积分的过程可以分为分割、求和、取极限三部分, 以1 x e dx 为例, 利用

已学过的Matlab 命令, 通过作图演示计算积分的过程, 并与使用命令int() 直接积分的结果进行比较. 解:根据求积分的过程,我们先对区间[0,1]进行n 等分, 然后针对函数x e 取和,取和的形式为10 1 i n x i e e dx n ξ=≈ ∑ ? ,其中1[ ,]i i i n n ξ-?。这里取i ξ为区间的右端点,则当10n =时,1 x e dx ?可用10 101 1.805610 i i e ==∑ 来近似计算, 当10n =0时,100 100 1 01 =1.7269100 i x i e e dx =≈ ∑?,当10n =000时,10000 10000 1 1 =1.718410000 i x i e e dx =≈ ∑ ?. 示意图如下图,Matlab 命令如下: x=linspace (0,1,21); y=exp(x); y1=y(1:20); s1=sum(y1)/20 y2=y(2:21); s2=sum(y2)/20 plot(x,y); hold on for i=1:20 fill([x(i),x(i+1),x(i+1),x(i),x(i)],[0,0,y(i),y(i),0],'b') end syms k;symsum(exp(k/10)/10,k,1,10);%n=10 symsum(exp(k/100)/100,k,1,100);%n=100 symsum(exp(k/10000)/10000,k,1,10000);%n=10000

基于分形几何的分形图绘制与分析

基于分形几何的分形图绘制与分析 摘要:基于分形几何的分形图绘制方法源于l系统、迭代函数系统ifs、复动力系统等。在运用分形原理及算法编程绘制多种分形图的基础上,重点对ifs参数进行实验分析,ifs吸引集实现了对原图形的几何变换。分形图的演变具有渐变性。 关键词:分形几何迭代函数系统分形图绘制渐变 1 分形几何学 现代数学的一个新的分支——,它是由美籍法国数学家曼德勃罗(b.b.mandelbrot)1973年在法兰西学院讲课时,首次提出了分形几何的设想。分形(fractal)一词,是曼德勃罗创造出来的,其原意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。分形几何的诞生无论是在理论上还是在实践上都具有重要价值。 2 分形的定义 目前分形还没有最终的科学定义,曼德勃罗曾经为分形下过两个定义: (1)分形是hausdorff-besicovitch维数严格大于拓扑维数的集合。因为它把许多hausdorff维数是整数的分形集合排除在外,例如,经典分形集合peano曲线分形维数 (2)局部与整体以某种方式自相似的形,称为分形。 然而,经过理论和应用的检验,人们发现这两个定义很难包括分形

如此丰富的内容。实际上,对于什么是分形,到目前为止还不能给出一个确切的定义,正如生物学中对“生命”也没有严格明确的定义一样,人们通常是列出生命体的一系列特征来加以说明。对分形的定义也可同样的处理。 (ⅰ) 分形集合在任意小尺度下,它总有复杂的细节,或者说它具有精细的结构。 (ⅱ) 分形集合是非常不规则的,用传统的几何语言无法来描述它的局部和整体,它既不是满足某些条件的点的轨迹,也不是某些简单方程的解集。 (ⅲ) 分形集具有某种自相似形式,可能是近似的自相似或者统计的自相似。 (ⅳ) 以某种方式定义的分形集合的“分形维数”,严格大于它相应的拓扑维数。 (ⅴ) 在大多数令人感兴趣的情形下,分形集合是以非常简单的递归的方法产生的。 3 分形研究的对象 几何学的研究对象是物体的形状,在自然界中,许多物体的形状是极不规则的,例如:弯弯曲曲的海岸线,起伏不平的山脉,变化无偿的浮云,以及令人眼花缭乱的满天繁星,等等。这些物体的形状有着共同的特点,就是极不规则,极不光滑。但是,所有的经典几何学都是以规则而光滑的形状为其研究对象的,例如:初等平面几何的主要研究对象是直线与圆;平面解析几何的主要研究对象是一

大学数学实验

大学数学实验 项目一 矩阵运算与方程组求解 实验1 行列式与矩阵 实验目的 掌握矩阵的输入方法. 掌握利用Mathematica (4.0以上版本) 对矩阵进行转置、加、减、数乘、相乘、乘方等运算, 并能求矩阵的逆矩阵和计算方阵的行列式. 基本命令 在Mathematica 中, 向量和矩阵是以表的形式给出的. 1. 表在形式上是用花括号括起来的若干表达式, 表达式之间用逗号隔开. 如输入 {2,4,8,16} {x,x+1,y,Sqrt[2]} 则输入了两个向量. 2. 表的生成函数 (1) 最简单的数值表生成函数Range, 其命令格式如下: Range[正整数n]—生成表{1,2,3,4,…,n }; Range[m, n]—生成表{m ,…,n }; Range[m, n, dx]—生成表{m ,…,n }, 步长为d x . (2) 通用表的生成函数Table. 例如,输入命令 Table[n^3,{n,1,20,2}] 则输出 {1,27,125,343,729,1331,2197,3375,4913,6859} 输入 Table[x*y,{x,3},{y,3}] 则输出 {{1,2,3},{2,4,6},{3,6,9}} 3. 表作为向量和矩阵 一层表在线性代数中表示向量, 二层表表示矩阵. 例如,矩阵 ??? ? ??5432 可以用数表{{2,3},{4,5}}表示. 输入 A={{2,3},{4,5}} 则输出 {{2,3},{4,5}} 命令MatrixForm[A]把矩阵A 显示成通常的矩阵形式. 例如, 输入命令: MatrixForm[A] 则输出 ??? ? ??5432 但要注意, 一般地, MatrixForm[A]代表的矩阵A 不能参与运算. 输入 B={1,3,5,7} 输出为 {1,3,5,7} 输入 MatrixForm[B] 输出为

几个分形的matlab实现

几个分形得matlab实现 摘要:给出几个分形得实例,并用matlab编程实现方便更好得理解分形,欣赏其带来得数学美感 关键字:Koch曲线实验图像 一、问题描述: 从一条直线段开始,将线段中间得三分之一部分用一个等边三角形得两边代替,形成山丘形图形如下 ?图1 在新得图形中,又将图中每一直线段中间得三分之一部分都用一个等边三角形得两条边代替,再次形成新得图形如此迭代,形成Koch分形曲线。 二、算法分析: 考虑由直线段(2个点)产生第一个图形(5个点)得过程。图1中,设与分别为原始直线段得两个端点,现需要在直线段得中间依次插入三个点,,。显然位于线段三分之一处,位于线段三分 之二处,点得位置可瞧成就是由点以点为轴心,逆时针旋转600而得。旋转由正交矩阵 实现。 算法根据初始数据(与点得坐标),产生图1中5个结点得坐标、结点得坐标数组形成一个矩阵,矩阵得第一行为得坐标,第二行为得坐标……,第五行为得坐标。矩阵得第一列元素分别为5个结点得坐标,第二列元素分别为5个结点得坐标。 进一步考虑Koch曲线形成过程中结点数目得变化规律。设第次迭代产生得结点数为,第次迭代产生得结点数为,则与中间得递推关系为。 三、实验程序及注释: p=[0 0;10 0]; %P为初始两个点得坐标,第一列为x坐标,第二列为y坐标 n=2; %n为结点数 A=[cos(pi/3) —sin(pi/3);sin(pi/3) cos(pi/3)]; %旋转矩阵 for k=1:4 d=diff(p)/3; %diff计算相邻两个点得坐标之差,得到相邻两点确定得向量 %则d就计算出每个向量长度得三分之一,与题中将线段三等分对应 m=4*n-3; %迭代公式 q=p(1:n—1,:); %以原点为起点,前n—1个点得坐标为终点形成向量 p(5:4:m,:)=p(2:n,:); %迭代后处于4k+1位置上得点得坐标为迭代前得相应坐标 p(2:4:m,:)=q+d; %用向量方法计算迭代后处于4k+2位置上得点得坐标 p(3:4:m,:)=q+d+d*A'; %用向量方法计算迭代后处于4k+3位置上得点得坐标 p(4:4:m,:)=q+2*d; %用向量方法计算迭代后处于4k位置上得点得坐标 n=m; %迭代后新得结点数目 end plot(p(:,1),p(:,2)) %绘出每相邻两个点得连线 axis([0 10 0 10]) 四、实验数据记录: 由第三部分得程序,可得到如下得Koch分形曲线:

大学数学数学实验(第二版)第7,8章部分习题答案

一、实验内容 P206第六题 function f=wuyan2(c) y=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.41 38.6 50.2 62.9 76.0 92.0 106.5 123.2 131.7 150.7 179.3 204.0 226.5 251.4 281.4] t=[0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210] f=y-c(1)/(1+c(1)/3.9-1)*exp^(-c(2)*t) c0=[1 1] c=lsqnonlin('wuyan2',c0) P206第七题 function f=wuyan1(c) q=[0.4518 0.4862 0.5295 0.5934 0.7171 0.8964 1.0202 1.1963 1.4928 1.6909 1.8548 2.1618 2.6638 3.4634 4.6759 5.8478 6.7885 7.4463 7.8345 8.2068 8.9468 9.7315 10.5172 11.7390 13.6876 ]; k=[0.0911 0.0961 0.1230 0.1430 0.1860 0.2543 0.3121 0.3792 0.4754 0.4410 0.4517 0.5595 0.8080 1.3072 1.7042 2.0019 2.2914 2.4941 2.8406 2.9855 3.2918 3.7214 4.3500 5.5567 7.0477]; l=[4.2361 4.3725 4.5295 4.6436 4.8179 4.9873 5.1282 5.2783 5.4334 5.5329 6.4749 6.5491 6.6152 6.6808 6.7455 6.8065 6.8950 6.9820 7.0637 7.1394 7.2085 7.3025 7.3470 7.4432 7.5200]; f=q-c(1)*k.^c(2).*l.^c(3) c0=[1 1 1] c=lsqnonlin('wuyan1',c0) c = 0.4091 0.6401 1.1446 a=0.4091 α=0.6401 β=1.1446 P239第五题 c=[-20 -30]; A=[1 2;5 4]; b=[20 70]; v1=[0 0]; [x,f,ef,out,lag]=linprog(c,A,b,[],[],v1) z=-f x = 10.0000 5.0000

经典的分形算法 (1)

经典的分形算法 小宇宙2012-08-11 17:46:33 小宇宙 被誉为大自然的几何学的分形(Fractal)理论,是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。它与动力系统的混沌理论交叉结合,相辅相成。它承认世界的局部可能在一定条件下,在某一方面(形态,结构,信息,功能,时间,能量等)表现出与整体的相似性,它承认空间维数的变化既可以是离散的也可以是连续的,因而拓展了视野。 分形几何的概念是美籍法国数学家曼德布罗(B.B.Mandelbrot)1975年首先提出的,但最早的工作可追朔到1875年,德国数学家维尔斯特拉斯(K.Weierestrass)构造了处处连续但处处不可微的函数,集合论创始人康托(G.Cantor,德国数学家)构造了有许多奇异性质的三分康托集。1890年,意大利数学家皮亚诺(G.Peano)构造了填充空间的曲线。1904年,瑞典数学家科赫(H.von Koch)设计出类似雪花和岛屿边缘的一类曲线。1915年,波兰数学家谢尔宾斯基(W.Sierpinski)设计了象地毯和海绵一样的几何图形。这些都是为解决分析与拓朴学中的问题而提出的反例,但它们正是分形几何思想的源泉。1910年,德国数学家豪斯道夫(F.Hausdorff)开始了奇异集合性质与量的研究,提出分数维概念。1928年布利干(G.Bouligand)将闵可夫斯基容度应用于非整数维,由此能将螺线作很好的分类。1932年庞特里亚金(L.S.Pontryagin)等引入盒维数。1934年,贝塞考维奇(A.S.Besicovitch)更深刻地提示了豪斯道夫测度的性质和奇异集的分数维,他在豪斯道夫测度及其几何的研究领域中作出了主要贡献,从而产生了豪斯道夫-贝塞考维奇维数概念。以后,这一领域的研究工作没有引起更多人的注意,先驱们的工作只是作为分析与拓扑学教科书中的反例而流传开来。 真正令大众了解分形是从计算机的普及肇始,而一开始,分形图的计算机绘制也只是停留在二维平面,但这也足以使人们心驰神往。近来,一个分形体爱好者丹尼尔?怀特(英国一钢琴教师)提出一个大胆的方法,创造出令人称奇的3D分形影像,并将它们命名为芒德球(mandelbulb)。

清华大学数学实验报告4

清华大学数学实验报告4

————————————————————————————————作者: ————————————————————————————————日期: ?

电13 苗键强2011010645

一、实验目的 1.掌握用 MATLAB 软件求解非线性方程和方程组的基本用法, 并对结果作初步分析; 2.练习用非线性方程和方程组建立实际问题的模型并进行求解。 二、实验内容 题目1 【问题描述】 (Q1)小张夫妇以按揭方式贷款买了1套价值20万元的房子,首付了5万元,每月还款1000元,15年还清。问贷款利率是多少? (Q2)某人欲贷款50 万元购房,他咨询了两家银行,第一家银行 开出的条件是每月还4500元,15 年还清;第二家银行开出的条件是每年还45000 元,20年还清。从利率方面看,哪家银行较优惠(简单假设:年利率=月利率×12)? 【分析与解】 假设初始贷款金额为x0,贷款利率为p,每月还款金额为x,第i 个月还完当月贷款后所欠银行的金额为x i,(i=1,2,3,......,n)。由题意可知: x1=x0(1+p)?x x2=x0(1+p)2?x(1+p)?x x3=x0(1+p)3?x(1+p)2?x(1+p)?x ……

x n=x0(1+p)n?x(1+p)n?1???x(1+p)?x =x0(1+p)n?x (1+p)n?1 p =0 因而有: x0(1+p)n=x (1+p)n?1 p (1) 则可以根据上述方程描述的函数关系求解相应的变量。 (Q1) 根据公式(1),可以得到以下方程: 150p(1+p)180?(1+p)180+1=0 设 f(p)=150p(1+p)180?(1+p)180+1,通过计算机程序绘制f(p)的图像以判断解p的大致区间,在Matlab中编程如下: fori = 1:25 t = 0.0001*i; p(i) = t; f(i) =150*t*(1+t).^180-(1+t).^180+1; end; plot(p,f),hold on,grid on; 运行以上代码得到如下图像:

数学实验报告——科赫分形雪花

实验报告:科赫分形雪花一、算法描述科赫分形雪花 clear n=1;p=[0 0;5,sqrt(75)]; A=[cos(pi/3), - sin(pi/3);sin(pi/3) ,co s(pi/3)]; for k=1:3 j=1; for i=1:n q1=p(i,:); q2=p(i+1,:); d=(q2-q1)/3; r(j,:)=q1; r(j+1,:)=q1+d; r(j+2,:)=q1+d+d*A'; r(j+3,:)=q1+2*d; j=j+4; end n=4*n;p=[]; p=[r;q2]; end x=p(:,1);y=p(:,2); plot(x,y) hold on clear m=1;p=[5,sqrt(75); 10 ,0]; A=[cos(pi/3), - sin(pi/3);sin(pi/3 ) ,cos(pi/3)]; for k=1:3 e=1; for i=1:m q1=p(i,:); q2=p(i+1,:); d=(q2-q1)/3; r(e,:)=q1; r(e+1,:)=q1+d; r(e+2,:)=q1+d+d*A'; r(e+3,:)=q1+2*d; e=e+4; end m=4*m;p=[]; p=[r;q2]; end x=p(:,1);y=p(:,2); plot(x,y) hold on clear n=1;p=[0,0;10, 0]; A=[cos(pi/3), - sin(pi/3);sin(pi/3) , cos(pi/3)]; for k=1:3 j=1; for i=1:n q1=p(i,:); q2=p(i+1,:); d=(q2-q1)/3; r(j,:)=q1; r(j+1,:)=q1+d; r(j+2,:)=q1+d+d*A; r(j+3,:)=q1+2*d; j=j+4; end n=4*n;p=[]; p=[r;q2]; end x=p(:,1);y=p(:,2); plot(x,y)

重庆大学数学实验 方程模型及其求解算法 参考答案

实验2 方程模型及其求解算法 一、实验目的及意义 [1] 复习求解方程及方程组的基本原理和方法; [2] 掌握迭代算法; [3] 熟悉MATLAB软件编程环境;掌握MATLAB编程语句(特别是循环、条件、控制等语句); [4] 通过范例展现求解实际问题的初步建模过程; 通过该实验的学习,复习和归纳方程求解或方程组求解的各种数值解法(简单迭代法、二分法、牛顿法、割线法等),初步了解数学建模过程。这对于学生深入理解数学概念,掌握数学的思维方法,熟悉处理大量的工程计算问题的方法具有十分重要的意义。 二、实验内容 1.方程求解和方程组的各种数值解法练习 2.直接使用MATLAB命令对方程和方程组进行求解练习 3.针对实际问题,试建立数学模型,并求解。 三、实验步骤 1.开启软件平台——MATLAB,开启MATLAB编辑窗口; 2.根据各种数值解法步骤编写M文件 3.保存文件并运行; 4.观察运行结果(数值或图形); 5.根据观察到的结果写出实验报告,并浅谈学习心得体会。 四、实验要求与任务 基础实验 1.用图形放大法求解方程x sin(x) = 1. 并观察该方程有多少个根。 画出图形程序: x=-10:0.01:10; y=x.*sin(x)-1; y1=zeros(size(x)); plot(x,y,x,y1) MATLAB运行结果:

-10-8-6-4-20246810 -8-6 -4 -2 2 4 6 8 扩大区间画图程序: x=-50:0.01:50; y=x.*sin(x)-1; y1=zeros(size(x)); plot(x,y,x,y1) MATLAB 运行结果: -50-40-30-20-1001020304050 由上图可知,该方程有偶数个无数的根。

数学实验 matlab Koch雪花

作业二 实验内容: 对一个等边三角形,每条边按照Koch曲线的方式进行迭代,产生的分形图称为Koch雪花。编制程序绘制出它的图形,并计算Koch雪花的面积,以及它的分形维数。 实验过程: 1、代码如下: function xuehua(k) for j=0:2 if j==0; p=[0,0;10,0]; elseif j==1; p=[5,-5*sqrt(3);0,0]; else j==2; p=[10,0;5,-5*sqrt(3)]; end n=1; A=[cos(pi/3),-sin(pi/3);sin(pi/3),cos(pi/3)]; for s=1:k j=0; for i=1:n q1=p(i,:); q2=p(i+1,:); d=(q2-q1)/3; j=j+1;r(j,:)=q1; j=j+1;r(j,:)=q1+d; j=j+1;r(j,:)=q1+d+d*A'; j=j+1;r(j,:)=q1+2*d; end n=4*n; clear p p=[r;q2]; clear r end plot(p(:,1),p(:,2)) hold on; axis equal end 不同n对应不同的图像如下:

k=1 k=3

总结分析: Koch雪花的面积: k=0时S= 2 3 4 r k=1时S= 2 3 4 r + 2 3 12 r k=2时S= 2 3 4 r + 2 3 12 r + 2 3 27 r k=3时S= 2 3 4 r + 2 3 12 r + 2 3 27 r + 2 43 243 r k=n时S= 2 3 4 r + 2 3 12 r + …+ 2(1)12 1 33 *4*() 43 n n r r-- - + 2(1)2 33 *4*() 43 n n r r- 每一次迭加,所产生的新三角形的边长变为上一次的1 3,数量为上一次的4倍. S= 2 3 4 r + 2 3 4 r *(3* 2 1 () 3+12* 2 2 1 () 3+……+3*(1) 4n-* 2 1 () 3n) = 2 3 4 r + 2 3 4 r * (1)2 1 1 [3*4*()] 3 n i i i - = ∑ 曲线总面积无穷大。 分形维数: 根据迭代的规律得到:相似形个数:m=6 边长放大倍数:c=3,ln ln ln6ln3 d m c =÷=÷=1.631

东华大学MATLAB数学实验第二版答案(胡良剑)

东华大学M A T L A B数学实验第二版答案(胡良 剑) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

数学实验答案 Chapter 1 Page20,ex1 (5) 等于[exp(1),exp(2);exp(3),exp(4)] (7) 3=1*3, 8=2*4 (8) a为各列最小值,b为最小值所在的行号 (10) 1>=4,false, 2>=3,false, 3>=2, ture, 4>=1,ture (11) 答案表明:编址第2元素满足不等式(30>=20)和编址第4元素满足不等式(40>=10) (12) 答案表明:编址第2行第1列元素满足不等式(30>=20)和编址第2行第2列元素满足不等式(40>=10) Page20, ex2 (1)a, b, c的值尽管都是1,但数据类型分别为数值,字符,逻辑,注意a与c 相等,但他们不等于b (2)double(fun)输出的分别是字符a,b,s,(,x,)的ASCII码 Page20,ex3 >> r=2;p=0.5;n=12; >> T=log(r)/n/log(1+0.01*p) Page20,ex4 >> x=-2:0.05:2;f=x.^4-2.^x; >> [fmin,min_index]=min(f) 最小值最小值点编址 >> x(min_index) ans = 0.6500 最小值点 >> [f1,x1_index]=min(abs(f)) 求近似根--绝对值最小的点 f1 = 0.0328 x1_index = 24 >> x(x1_index) ans = -0.8500 >> x(x1_index)=[];f=x.^4-2.^x; 删去绝对值最小的点以求函数绝对值次小的点>> [f2,x2_index]=min(abs(f)) 求另一近似根--函数绝对值次小的点 f2 = 0.0630 x2_index = 65 >> x(x2_index) ans =

《高频电子线路》课程设计指导书.doc

《高频电子线路》课程设计指导书 一、课程设计基本信息 核心课程名称(中文)高频电子线路核心课程名称(英文)High-frequency Electronic Circuits 课程设计名称高频电子线路课程设计 课程设计编号课程设计类型实物制作 相关辅助课程电路分析、电子线路(线性部分) 教材及实验指导书教材《电子线路(非线性部分)》,谢嘉奎,高等教育出版 课程设计时间:第五学期18 周 面向专业电子信息科学与技术 二、课程设计的目的 《高频电子线路》课程是电子信息专业继《电路理论》、《电子线路(线性部分)》之后必修的主要技术基础课,同时也是一门工程性和实践性都很强的课程。课程设计是在课程内容学习结束,学生基本掌握了该课程的基本理论和方法后,通过完成特定电子电路的设计、安装和调试,培养学生灵活运用所学理论知识分析、解决实际问题的能力,具有一定的独立进行资料查阅、电路方案设计及组织实验的能力。通过设计,加深对调幅的理解,学会电路的调整;进一步培养学生的动手能力 三、主要仪器设备 序号实验项目名称仪器设备名称仪器设备编号 1调幅收音机设计高频信号发生器、数字示波器、稳压电源 四、课程设计的内容与要求 1、内容:根据所学知识,设计一超外差调幅收音机电路,选择合适的元器件,进行安装和调试电路;应能接收正常广播,且接收的广播节目不少于3套° 序 号 名称目的方式场所要求

1调幅收音机设计加深对调幅的理解,学会 电路的调整;进一步培养 学生的动手能力 实物制作 通信学 院 2、要求 1设计电路图; 2供电电压:直流3V 3 接收频段:535kHz ~ 1605kHz; 4输出功率:P o> 1W。 5为满足偷出功率要求,采用两级放大电路; 6采用互补推挽功率放大器作为输出级。 五、考核与报告 考核内容:1实际操作:包括电路设计、安装、焊接及调试 2设计报告:包括原理、电路图、元器件的选择 成绩评定:实际操作和设计报告各占50%o 六、主要参考文献 1、《电子线路(非线性部分)》,谢嘉奎,高等教育出版社 2、《实用电子电路手册》,孙肖子,高等教育出版社 3、《电子技术技能训练》,张大彪,电子工业出版社七、课程设计报告 1、报告内容 目的、原理、电路图、安装注意事项、调试过程及结果。 2、版面格式 (1)A4纸打印,上、下、左、右边距为2. 5cm,段落间距0,行间距1. 5倍; (2)标题使用四号黑体、居中,正文使用小四号宋体; 一级标题:小四号黑体(如:1、2、3……);

大学数学实验心得体会

大学数学实验心得体会 [模版仅供参考,切勿通篇使用] 大学数学实验心得体会(一) 数学,在整个人类生命进程中至关重要,从小学到中学,再到大学,乃至更高层次的科学研究都离不开数学,随着时代的发展,人们越来越重视数学知识的应用,对数学课程提出了更高层次的要求,于是便诞生了数学实验。 学期最初,大学数学实验对于我们来说既熟悉又陌生,在我们的记忆中,我们做过物理实验、化学实验、生物实验,故然我们以为数学实验与它们一样,当我们在网上搜索有关数学实验的信息时,我们才知道,大学数学实验作为一门新兴的数学课程在近十年来取得了迅速的发展。数学实验以计算机技术和数学软件为载体,将数学建模的思想和方法融入其中,现在已经成为一种潮流。 当我们怀着好奇的心情走进屈静国老师的数学实验课堂时,我们才渐渐懂得,数学实验是一门有关计算机软件的课程,就像c语言一样,需要编辑运行程序,从而进行数学运算,它不需要自己来运算,就像计算器一样,只要我们自己记下重要程序语句,输入运行程序,便可得到运行结果,大大降低了我们的运算量,

给我们生活带来许多便捷,在大一时,我学过c语言,由于这样的基础,让我能够更快的学会并应用此软件。 时间飞逝,转眼间,我们就要结课了,这学期我们学习了mathematics的基础,微积分实验,线性代数实验,概率论与数理统计实验,数值计算方法及实验。通过这学期的学习,我也积累了些自己的学习方法和心得。首先,我们要在平时上课牢记那些mathematics语言和公式,那些东西就想单词和公式一样,只需要背诵;然后,我们要看几遍书,并多看一下例题;最后,我们要多应用mathematics软件去练习。正所谓熟能生巧,我坚信,只要我们能够做到这三步,我们就能很好的掌握这门课程。 通过学习使用数学软件,数学实验建模,使我们能够从实际问题出发,认真分析研究,建立简单数学模型,然后借助先进的计算机技术,最终找出解决实际问题的一种或多种方案,从而提高了我们的数学思维能力,为我们参加数学竞赛和数学建模打下了坚实的基础,同时也为我们进一步深造和参加工作打下一定的实践基础! 大学数学实验心得体会(二) 在此期间我充分利用研修活动时间学习,感到既有辛苦,又有收获。既有付出,又有新所得。这次远程研修让我有幸与专家和各地的数学精英们交流,面对每次探讨的主题,大家畅所欲言,

分形之Julia集及其算法实现

成绩:课程名称:智能信息处理概论 分形之Julia集及其算法实现 摘要:本文从自然界的几何现象引出分形的概念,再从其定义、几何特征和分形维的计算这三个方面来加以介绍。以Julia集和Mandelbort集为例来具体描述分形。本文主要从Julia集的特点和算法实现来描述分形以及其实现的方法。 关键词:分形、分数维、Julia集、Mandelbort集、算法实现 引言 大自然是个很伟大的造物者,它留给我们一大笔美丽景观:蜿蜒曲折的海岸线、起伏不定的山脉,变幻无常的浮云,粗糙不堪的断面,袅袅上升的烟柱,九曲回肠的河流,纵横交错的血管,令人眼花缭乱的满天繁星……那么,我们又能从这些美妙的自然现象中得到什么有趣的结论呢? 正文 分形概述 分形的英文单词为fractal,是由美籍法国数学家曼德勃罗(Benoit Mandelbrot)创造出来的。其取自拉丁文词frangere(破碎、产生无规则碎片)之头,撷英文之尾所合成,本意是不规则的、破碎的、分数的。他曾说:分形就是通过将光滑的形状弄成多个小块,反复的碎弄。1975年,曼德勃罗出版了他的法文专著《分形对象:形、机遇与维数》,标志着分形理论正式诞生。【1】 两种定义 其一:具有自相似性结构的叫做分形; 其二:数学定义:豪斯道夫维Df>=拓扑维Dt。 若一有界集合,包含N个不相重叠的子集,当其放大或缩小r倍后,仍与原集合叠合,则称为自相似集合。自相似集合是分形集。具有相似性的系统叫做分形。 当放大或缩小的倍数r不是一个常数,而必须是r(r1,r2,….)的各种不同放大倍数去放大或缩小各子集,才能与原集合重合时,称为自仿射集合。具有自仿射性的系统叫做分形。【2】 特征 1.自相似性:局部与整体的相似,是局部到整体在各个方向上的等比例变换的结果; 2.自仿射性:是自相似性的一种拓展,是局部到整体在不同方向上的不等比例变换的结果; 3.精细结构:即使对该分形图放大无穷多倍,还是能看到与整体相似的结构,表现出无休止的重复; 4.分形集无法用传统几何语言来描述,它不是某些简单方程的解集,也不是满足某些条件的点的轨 迹; 5.分形集一般可以用简单的方法定义和产生,如递归、迭代;分形其实是由一些简单的图形,经过 递归或者迭代产生的复杂、精细的结构; 6.无确定的标度且具有分数维数。【3】

分形实例

2、对一条横向线段,先将其等分成4段,然后再将第二段向上移,将第三段向下移,再将第四段的相邻端点连接起来,迭代一次后变成图3-21.继续迭代得到的分形图,称为Minkouski (1)编辑实现上述迭代的函数 在Matlab中,编制一个函数来绘制Minkouski香肠的图形。具体代码如下:function frat1(k) p=[0,0;10,0]; A=[0,1;-1,0]; n=1; for s=1:k j=0; for i=1:n; q1=p(i,:); q2=p(i+1,:); d=(q2-q1)/4; j=j+1;r(j,:)=q1; j=j+1;r(j,:)=q1+d; j=j+1;r(j,:)=q1+d+d*A; j=j+1;r(j,:)=q1+2*d+d*A; j=j+1;r(j,:)=q1+2*d+d*A'; j=j+1;r(j,:)=q1+3*d+d*A'; j=j+1;r(j,:)=q1+3*d; end n=n*7; clear p p=[r;q2]; end

plot(p(:,1),p(:,2)) axis equal 将这个文件保存,文件名记为frat1.m. (2)绘制Minkouski香肠的图形 代码:frat(3) 运行结果: 代码:frat(5) 运行结果:

根据迭代规律得到:形似形个数m=7,边长放大倍数c=4,故维数d=1.4037.因此,Minkouski香肠的维数介于1与2之间。具体计算如下: d=ln m/ln c=ln 7/ln 4=1.4037 5、自己构造生成元(要有创意),按照图形迭代的方式产生分形图,用计算机编制程序绘出它的图形,并计算维数。 function frat2(k) p=[-5,5;5,5;5,-5;-5,-5;-5,5]; A=[1.5,-0.5;0.5,1.5]; n=4; for s=1:k j=0; for i=1:n; q1=p(i,:); q2=p(i+1,:); d=(q2-q1)/3; j=j+1;r(j,:)=q1; j=j+1;r(j,:)=q1+d; j=j+1;r(j,:)=q1+d+d*A; j=j+1;r(j,:)=q1+2*d; end n=n*4;

《大学物理实验》模拟试卷与答案

二、判断题(“对”在题号前()中打√×)(10分) (√)1、误差是指测量值与真值之差,即误差=测量值-真值,如此定义的误差反映的是测量值偏离真值的大小和方向,既有大小又有正负符号。 (×)2、残差(偏差)是指测量值与其算术平均值之差,它与误差定义一样。(√)3、精密度是指重复测量所得结果相互接近程度,反映的是随机误差大小的程度。 (√)4、测量不确定度是评价测量质量的一个重要指标,是指测量误差可能出现的范围。 (×)7、分光计设计了两个角游标是为了消除视差。 (×)9、调节气垫导轨水平时发现在滑块运动方向上不水平,应该先调节单脚螺钉再调节双脚螺钉。 (×)10、用一级千分尺测量某一长度(Δ仪=0.004mm),单次测量结果为N=8.000mm,用不确定度评定测量结果为N=(8.000±0.004)mm。 三、简答题(共15分) 1.示波器实验中,(1)CH1(x)输入信号频率为50Hz,CH2(y)输入信号频率为100Hz;(2)CH1(x)输入信号频率为150Hz,CH2(y)输入信号频率为50Hz;画出这两种情况下,示波器上显示的李萨如图形。(8分)

差法处理数据的优点是什么?(7分) 答:自变量应满足等间距变化的要求,且满足分组要求。(4分) 优点:充分利用数据;消除部分定值系统误差 四、计算题(20分,每题10分) 1、用1/50游标卡尺,测得某金属板的长和宽数据如下表所示,求金属板的面 解:(1)金属块长度平均值:)(02.10mm L = 长度不确定度: )(01.03/02.0mm u L == 金属块长度为:mm L 01.002.10±= %10.0=B (2分) (2)金属块宽度平均值:)(05.4mm d = 宽度不确定度: )(01.03/02.0mm u d == 金属块宽度是:mm d 01.005.4±= %20.0=B (2分) (3)面积最佳估计值:258.40mm d L S =?= 不确定度:2222222 221.0mm L d d s L s d L d L S =+=??? ????+??? ????=σσσσσ 相对百分误差:B =%100?S s σ=0.25% (4分) (4)结果表达:21.06.40mm S ±= B =0.25% (2分) 注:注意有效数字位数,有误者酌情扣 5、测量中的千分尺的零点误差属于已定系统误差;米尺刻度不均匀的误差属于未

分形图形与分形的产生

分形图形 分形理论是非线性科学的主要分支之一,它在计算机科学、化学、生物学、天文学、地理学等众多自然科学和经济学等社会科学中都有广泛的应用。分形的基本特征是具有标度不变性。其研究的图形是非常不规则和不光滑的已失去了通常的几何对称性;但是,在不同的尺度下进行观测时,分形几何学却具有尺度上的对称性,或称标度不变性。研究图形在标度变换群作用下不变性质和不变量对计算机图形技术的发展有重大的意义。 说到分形(fractal),先来看看分形的定义。分形这个词最早是分形的创始人曼德尔布诺特提来的,他给分形下的定义就是:一个集合形状,可以细分为若干部分,而每一部分都是整体的精确或不精确的相似形。分形这个词也是他创造的,含有“不规则”和“支离破碎”的意思。分形的概念出现很早,从十九世纪末维尔斯特拉斯构造的处处连续但处处不可微的函数,到上个世纪初的康托三分集,科赫曲线和谢尔宾斯基海绵。但是分形作为一个独立的学科被人开始研究,是一直到七十年代曼德尔布诺特提出分形的概念开始。而一直到八十年代,对于分形的研究才真正被大家所关注。 分形通常跟分数维,自相似,自组织,非线性系统,混沌等联系起来出现。它是数学的一个分支。我之前说过很多次,数学就是美。而分形的美,更能够被大众所接受,因为它可以通过图形化的方式表达出来。而更由于它美的直观性,被很多艺术家索青睐。分形在自然界里面也经常可以看到,最多被举出来当作分形的例子,就是海岸线,源自于曼德尔布诺特的著名论文《英国的海岸线有多长》。而在生物界,分形的例子也比比皆是。 近20年来,分形的研究受到非常广泛的重视,其原因在于分形既有深刻的理论意义,又有巨大的实用价值。分形向人们展示了一类具有标度不变对称性的新世界,吸引着人们寻求其中可能存在着的新规律和新特征;分形提供了描述自然形态的几何学方法,使得在计算机上可以从少量数据出发,对复杂的自然景物进行逼真的模拟,并启发人们利用分形技术对信息作大幅度的数据压缩。它以其独特的手段来解决整体与部分的关系问题,利用空间结构的对称性和自相似性,采用各种模拟真实图形的模型,使整个生成的景物呈现出细节的无穷回归的性质,丰富多彩,具有奇妙的艺术魅力。分形对像没有放大极限,无论如何放大,总会看到更详细的结构。借助于分形的计算机生成,从少量的数据生成复杂的自然景物图形,使我们在仿真模拟方面前进了一大步。在分形的诸多研究课题中,分形的计算机生成问题具有明显的挑战性,它使传统数学中无法表达的形态(如山脉、花草等)得以表达,还能生成一个根本“不存在”的图形世界。分形在制造以假乱真的景物方面的进展和潜在的前途,使得无论怎样估计它的影响也不过分。可以肯定,分形图案在自然界真实物体模拟、仿真形体生成、计算机动画、艺术装饰纹理、图案设计和创意制作等具有广泛的应用价值。 分形图形简介一、关于分形与混沌 关于分形的起源,要非常准确的找出来是非常困难的。研究动态系统、非线形数学、函数分析的科学家,已数不胜数。尽管分形的早期线索已非常古老,但这一学科却还很年轻。比如关于动态系统和细胞自动机的大部分工作可以追溯到冯-诺依曼;但是,直到Mandelbrot 才如此清楚地将自然现象和人工现象中的混沌及分形同自相似性联系在一起。大家如果对此感兴趣,可进一步查阅有关资料。下面我们看一看分形的概念。 什么是分形呢?考虑到此文的意图,我们无意给出它严格的定义,就我们的目的而言,一个分形就是一个图象,但这个图象有一个特性,就是无穷自相似性。什么又是自相似呢?在自然和人工现象中,自相似性指的是整体的结构被反映在其中的每一部分中。比如海岸线,常举的例子,你看它10公里的图象(曲线),和一寸的景象(曲线)是相似的,这就是自相似性。 与分形有着千差万屡的关系的,就是混沌。混沌一词来源与希腊词汇,原意即“张开咀”,但是在社会意义上,它又老爱和无序联系在一起。解释分形和混沌的联系,要注意到分形是

东南大学高等数学数学实验报告上

高等数学数学实验报告实验人员:院(系) ___________学号_________姓名____________ 实验地点:计算机中心机房 实验一 一、实验题目: 根据上面的题目,通过作图,观察重要极限:lim(1+1/n)n=e 二、实验目的和意义 方法的理论意义和实用价值。 利用数形结合的方法观察数列的极限,可以从点图上看出数列的收敛性,以及近似地观察出数列的收敛值;通过编程可以输出数列的任意多项值,以此来得到数列的收敛性。通过此实验对数列极限概念的理解形象化、具体化。 三、计算公式(1+1/n)n 四、程序设计 五、程序运行结果 六、结果的讨论和分析 当n足够大时,所画出的点逐渐接近于直线,即点数越大,精确度越高。对于不同解题方法最后均能获得相同结果,因此需要择优,从众多方法中尽可能选择简单的一种。程序编写需要有扎实的理论基础,因此在上机调试前要仔细审查细节,对程序进行尽可能的简化、改进与完善。 实验二 一、实验题目 制作函数y=sin cx的图形动画,并观察参数c对函数图形的影响。 二、实验目的和意义 本实验的目的是让同学熟悉数学软件Mathematica所具有的良好的作图功能,并通过函数图形来认识函数,运用函数的图形来观察和分析函数的有关性态,建立数形结合的思想。 三、计算公式:y=sin cx 四、程序设计 五、程序运行结果

六、结果的讨论和分析 c 的不同导致函数的区间大小不同。 实验三 一、实验题目 观察函数f(x)=cos x 的各阶泰勒展开式的图形。 二、实验目的和意义 利用Mathematica 计算函数)(x f 的各阶泰勒多项式,并通过绘制曲线图形,来进一步掌握泰勒展开与函数逼近的思想。 三、计算公式 四、程序设计 五、程序运行结果 六、结果的讨论和分析 函数的泰勒多项式对于函数的近似程度随着阶数的提高而提高,但是对于任一确定次数的多项式,它只在展开点附近的一个局部范围内才有较好的近似精确度。 实验四 一、实验题目 计算定积分的黎曼和 二、实验目的和意义 在现实生活中许多实际问题遇到的定积分,被积函数往往不能用算是给出,而通过图像或表格给出;或虽然给出,但是要计算他的原函数却很困难,甚至原函数非初等函数。本实验目的,就是为了解决这些问题,进行定积分近似计算。 三、计算公式 四、程序设计 五、程序运行结果 六、结果的讨论和分析 本实验求的近似值由给出的n 的值的不同而不同。给出的n 值越大,得到的结果越接近准确的

相关主题
文本预览
相关文档 最新文档