当前位置:文档之家› 向量法求空间角(高二数学-立体几何)

向量法求空间角(高二数学-立体几何)

A B C D P

Q 向量法求空间角

1.(本小题满分10分)在如图所示的多面体中,四边形ABCD

为正方形,四边形ADPQ 是直角梯形,

DP AD ⊥,⊥CD 平面ADPQ ,DP AQ AB 2

1==.

(1)求证:⊥PQ 平面DCQ ; (2)求平面BCQ 与平面ADPQ 所成的锐二面角的大小.

2.(满分13分)如图所示,正四棱锥P -中,O 为底面正方形的中心,侧棱与底面所成的角的正切值为26

(1)求侧面与底面所成的二面角的大小;

D B A

(2)若E是的中点,求异面直线与所成角的正切值;

(3)问在棱上是否存在一点F,使⊥侧面,若存在,试确定点F的位置;若不存在,说明理由.

3.(本小题只理科做,满分14分)如图,已知AB⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.

(1)求证:AF//平面BCE;

(2)求证:平面BCE⊥平面CDE;

(3)求平面BCE与平面ACD所成锐二面

角的大小.

4.(本小题满分12分)如图,在四棱锥ABCD

P-中,PD⊥底面ABCD,且底面ABCD为正方形,G

,

=

=分别为

,2

AD,

F

E

PD

,的中点.

PC,

PD

CB

(1)求证://

AP平面EFG;

(2)求平面GEF和平面DEF的夹角.

5.如图,在直三棱柱111ABC A B C -中,平面1A BC ⊥ 侧面11A ABB 且12AA AB ==.

(Ⅰ)求证:AB BC ⊥;

(Ⅱ)若直线与平面1A BC 所成的角为6

π,求锐二面角1A A C B --的大小.

H

P

G

F

E D

C

B

6.如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA P PD ,2AD PD EA ==,F ,G , H 分别为PB ,EB ,PC 的中点.

(1)求证:FG P 平面PED ;

(2)求平面FGH 与平面PBC 所成锐二面角的大小.

参考答案

1.(1)详见解析;(2)4

π 【解析】

试题分析:(1)根据题中所给图形的特征,不难想到建立空间直角坐标,由已知,DA ,DP ,DC 两两垂直,可以D 为原点,DA 、

DP 、DC 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.

表示出图中各点的坐标:设a AB =,则)0,0,0(D ,),0,0(a C ,)0,,(a a Q ,

)0,2,0(a P ,则可表示出),0,0(a DC =,)0,,(a a DQ =,)0,,(a a PQ -=,根据数量积为零与垂直的充要条件进行证明,由0=?,0=?,故⊥,⊥,即可证明;(2)首先求出两个平面的法向量,其中由于⊥平面ADPQ ,所以可取平面ADPQ 的一个法向量为)1,0,0(1=n ρ;设平面

BCQ 的一个法向量为),,(2z y x n =ρ,则02=?n ρ,02=?n ρ,故?

??=+--=+-,0,0az ay ax az ay 即???=+--=+-,

0,0z y x z y 取1==z y ,则0=x ,故)1,1,0(2=n ρ,转化为两个法向量的夹角,设1n ρ与2n ρ的夹角为θ,则22

21||||cos 2121==?=n n n n ρρρρθ.即可

求出平面BCQ 与平面ADPQ 所成的锐二面角的大小.

试题解析:(1)由已知,DA ,DP ,DC 两两垂直,可以D 为原点,DA 、DP 、DC 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.

设a AB =,则)0,0,0(D ,),0,0(a C ,)0,,(a a Q ,)0,2,0(a P , 故),0,0(a =,)0,,(a a =,)0,,(a a -=,

因为0=?PQ DC ,0=?PQ DQ ,故PQ DC ⊥,PQ DQ ⊥,

即PQ DC ⊥,PQ DQ ⊥, 又DC DQ D =I

所以,⊥PQ 平面DCQ .

(2)因为⊥DC 平面ADPQ ,所以可取平面ADPQ 的一个法向量 为)1,0,0(1=n ρ,

点B 的坐标为),0,(a a ,则),,0(a a QB -=,),,(a a a QC --=,

设平面BCQ 的一个法向量为),,(2z y x n =ρ,则02=?QB n ρ,02=?QC n ρ, 故???=+--=+-,0,0az ay ax az ay 即???=+--=+-,

0,0z y x z y 取1==z y ,则0=x , 故)1,1,0(2=n ρ.

设1n ρ与2n ρ的夹角为θ,则22

21||||cos 2121==?=n n n n ρρρρθ.

所以,平面BCQ 与平面ADPQ 所成的锐二面角的大小为4π

考点:1.空间向量的应用;2.二面角的计算;3.直线与平面的位置关系

2.(1)60?; (2)5102

; (3)F 是的4等分点,靠近A 点的位置.

【解析】

试题分析:(1)取中点M ,连接,,由正四棱锥的性质知∠为所求二面角P --O 的平面角,∠为侧棱与底面所成的角∴∠=26,设=a ,则=22

a ,=23

a ,12a , ∠=3,∠=60°; (2)依题

意连结,,则∥ ,故∠为异面直线与所成的角,由正四棱锥的性

质易证⊥平面,故AOE ?为直角三角形,=21=2122DO PO +=45a ∴∠=EO AO =5102;(3)延长交于N ,取中点G ,连,,,易得⊥平

面,故平面⊥平面,而△为正三角形,易证⊥平面,取的中点F,连,则四边形为平行四边形,从而⊥平面, F 是的4等分点,靠近A 点的位置.

试题解析:(1)取中点M ,连接,,依条件可知⊥,⊥,则∠为所求二面角P --O 的平面角 (2分)

∵⊥面,

∴∠为侧棱与底面所成的角. ∴∠=26

设=a ,=22

a ,

∴ =·∠=

23

a , ∠=MO PO =3.

∴∠=60°. (4分)

M D

B A C

O E

P

(2)连接,, ∵∥,

∴∠为异面直线与所成的角. (6分)

∵⊥,⊥,∴⊥平面.

又?平面, ∴ ⊥. ∵=21=2122DO PO +=45a , ∴∠=EO AO =5102

. (8分)

(3)延长交于N ,取中点G ,连,,.

∵⊥,⊥,∴⊥平面

∴平面⊥平面. (10分)

又=,∠=60°,∴△为正三角形.

∴⊥.又平面 ∩平面=,∴⊥平面. (12分)

∴F 是的4等分点,靠近A 点的位置 (13分)

M D B A C

O E

P

M D B A C

O E P

N G

F

考点:立体几何的综合问题

3.(1)见解析;(2)见解析;(3)45?.

【解析】

试题分析:(1)取中点P ,连接、,根据中位线定理可知,且且.21DE ,而,且.2

1DE 则为平行四边形,则,?平面,?平面,满足线面平行的判定定理,从而证得结论;

(2)根据⊥平面,,则⊥平面,又?平面,根据线面垂直的性质可知DE AF AF CD CD DE D ⊥⊥=I .又,,满足线面垂直的判定定理,证得⊥平面,又,则⊥平面,?平面,根据面面垂直的判定定理可证得结论;

(3)由(2),以F 为坐标原点,,,所在的直线分别为x ,y ,z 轴建立空间直角坐标系F ﹣.设2,根据线面垂直求出平面的法向量n ,而(0,0,1)为平面的法向量,设平面与平面所成锐二面角为α,根据||cos ||||

m n m n α?=?可求出所求.

试题解析:(1)解:取中点P,连结、,

∵F 为的中点,∴,且.2

1DE 又,且.2

1DE ∴,且, ∴为平行四边形,∴

又∵AF ?平面?平面,

∴平面

(2)∵△为正三角形,∴AF CD ⊥.

∵⊥平面,

∴⊥平面,又?平面,

∴⊥.又⊥∩,

∴⊥平面

又,∴⊥平面.又∵?平面,

∴平面⊥平面

(3)法一、由(2),以F 为坐标原点,

所在的直线分别为轴(如图),

建立空间直角坐标系F —.设2,

则C (0,—1,0),).2,1,0(,),1,0,3(E B -

设(,,)n x y z =v 为平面的法向量,

300,0,220x y z n CB n CE y z ?++=?∴?=?=∴?+=??v u u u v v u u u v ,令1,则(0,1,1)n =-v

显然,)1,0,0(=m 为平面的法向量.

设面与面所成锐二面角为,α

则||cos

||||m n m n α?===?∴ο45=α. 即平面与平面所成锐二面角为45?

法二、延长、,设、交于一点O,连结.

则面EBC I 面DAC CO =.

由是EDO ?的中位线,则AD DO 2=.

在OCD ?中22OD AD AC ==Q , 060=∠ODC .

CD OC ⊥,又DE OC ⊥.

OC ∴⊥ 面,ECD 而?面,

为所求二面角的平面角ECD CE OC ∠∴⊥∴,

在Rt EDC ?中,ED CD =Q ,045=∠∴ECD

即平面与平面所成锐二面角为45?.

考点:与二面角有关的立体几何综合题;直线与平面平行的判定;平面与平面垂直的判定.

4.证明见解析

【解析】

试题分析::(1)利用已知的线面垂直关系建立空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)证明线面平行,需证线线平行,只需要证明直线的方向向量与平面的法向量垂直;(3)把向量夹角的余弦值转化为两平面法向量夹角的余弦值;(4)空间向量将空间位置关系转化为向量运算,应用的核心是要充分认识形体特征,建立恰当的坐标系,实施几何问题代数化.同时注意两点:

一是正确写出点、向量的坐标,准确运算;二是空间位置关系中判定定理与性质定理条件要完备.

试题解析:(1)如图,以D 为原点,以,,DA DC DP u u u r u u u r u u u r 为方向向量

建立空间直角坐标系,xyz D -

则)0,0,2(),1,0,0(),1,1,0(),0,2,1(),0,2,0(),2,0,0(A F E G C P .

)11,1(),0,1,0(),2,0,2(-=-=-=∴.

设平面EFG 的法向量为(,,)n x y z =r

0,0,

n EF n EG ??=?∴??=??r u u u r r u u u r 即???=-+=-.0,0z y x y ???==∴.0,y z x 令1=x 则(1,0,1)n =r .

1(2)00120,.n AP n AP ?=?-+?+?=∴⊥r u u u r r u u u r Q 又?AP 平面//,AP EFG ∴平面.EFG

(2)Θ底面ABCD 是正方形,,DC AD ⊥∴又⊥PD Θ平面ABCD .AD PD ⊥∴又D CD PD =I ,AD ∴⊥平面PCD

∴向量是平面PCD 的一个法向量,)0,0,2(=又由(1)知平面

EFG 的法向量(1,0,1)n =r

.

cos ,2||||DA n DA n DA n ?∴<>===?u u u r r u u u r r u u u r r ∴二面角D EF G --的平面角为045.

考点:(1)证明直线与平面平行;(2)利用空间向量解决二面角问题.

5.(Ⅰ)详见解析;(Ⅱ)3

π.

【解析】

试题分析:(Ⅰ)取1A B 的中点D ,连接,由已知条件推导出⊥平面1A BC ,从而AD BC ⊥,由线面垂直得1AA BC ⊥.由此能证明

AB BC ⊥.

(Ⅱ)方法一:连接,由已知条件得ACD ∠即为直线AC 与平面1A BC 所成的角,AED ∠即为二面角1A A C B --的一个平面角,由此能求出二面角1A A C B --的大小.解法二(向量法):由(1)知AB BC ⊥且1BB ABC ⊥底面,所以以点B 为原点,以1BC BA BB 、、所在直线分别为,,x y z 轴建立空间直角坐标系B xyz -,设BC a =,则

(0,2,0)A ,(0,0,0)B ,(,0,0)C a ,1(0,2,2)A ,(,0,0)BC a =u u u r ,1(0,2,2)BA =u u u r ,

(,2,0)AC a =-u u u r , 1(0,0,2)AA =u u u r ,求出平面1A BC 的一个法向量1(,,)n x y z =u r ,设直线AC 与平面1A BC 所成的角为θ,则6πθ=

得12121sin 62

42AC n AC n a π-===+u u u r u r g u u u r u r ,解得2a =,即(2,2,0)AC =-u u u r ,求出平面1A AC 的一个法向量为2(1,1,0)n =u u r ,设锐二面角1A A C B --的大小为α,

则1212121cos cos ,2

n n n n n n α=<>==u r u u r u r u u r g u r u u r ,且(0,)2πα∈, 即可求出锐二面角1A A C B --的大小.

试题解析:解(1)证明:如图,

取1A B 的中点D ,连接AD ,因1AA AB =,则1AD A B ⊥

由平面1A BC ⊥侧面11A ABB ,且平面1A BC I 侧面11A ABB 1A B =, 得1AD A BC ⊥平面,又BC ?平面1A BC , 所以AD BC ⊥. 因为三棱柱

111ABC A B C —是直三棱柱,则1AA ABC ⊥底面,所以

1AA BC ⊥. 又1=AA AD A I ,从而BC ⊥侧面11A ABB ,又AB ?侧面11A ABB ,故AB BC ⊥. 6分

解法一:连接CD ,由(1)可知1AD A BC ⊥平面,则CD 是AC 在1A BC 平面内的射影

∴ ACD ∠即为直线AC 与1A BC 平面所成的角,则=6

ACD π∠ 在等腰直角1A AB ?中,12AA AB ==,且点D 是1A B 中点,∴

112AD A B ==且=2ADC π∠,=6

ACD π∠ ∴

AC =过点A 作1AE A C ⊥于点E ,连DE ,由(1)知1AD A BC ⊥平面,则1AD A C ⊥,且AE AD A =I

∴ AED ∠即为二面角1A A C B --的一个平面角且直角1A AC ?

中:11

3A A AC AE AC ?===,

又AD ,=2ADE π∠ ∴

sin =AD AED AE ∠== 且二面角1A A C B --为锐二面角 ∴ =3AED π∠,即二面角1A A C B

--的大小为3

π 12分

解法二(向量法):由(1)知AB BC ⊥且1BB ABC ⊥底面,所以以点B 为原点,以1BC BA BB 、、所在直线分别为,,x y z 轴建立空间直角

坐标系B xyz -,如图所示,且设BC a =,则(0,2,0)A ,(0,0,0)B ,(,0,0)C a ,

1(0,2,2)A ,(,0,0)BC a =u u u r ,1(0,2,2)BA =u u u r ,(,2,0)AC a =-u u u r ,

1(0,0,2)AA =u u u r 设平面1A BC 的一个法向量1(,,)n x y z =u r ,由1BC n ⊥u u u r u r , 11BA n ⊥u u u r u r 得:

0220

xa y z =??+=? 令1y = ,得 0,1x z ==-,则1(0,1,1)n =-u r 设直线AC 与1A BC 平面所成的角为θ,则6πθ=

得111sin 62

AC n AC n π?===u u u r u r u u u r u r ,解得2a =,即(2,2,0)AC =-u u u r 又设平面1A AC 的一个法向量为2n u u r ,同理可得2(1,1,0)n =u u r ,设锐二面

角1A A C B --的大小为α,则

1212121cos cos ,2

n n n n n n α?=<>==u r u u r u r u u r u r u u r ,且(0,)2πα∈,得 3πα= ∴ 锐二面角1A A C B --的大小为3

π.

考点:1.用空间向量求平面间的夹角;2.空间中直线与直线之间的位置关系.

6.(1)证明见解析;(2)045

【解析】

试题分析:(1)利用已知的线面垂直关系建立空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)证明证线线垂直,只需要证明直线的方向向量垂直;(3)把向量夹角的余弦值转化为两平面法向量夹角的余弦值;(4)空间向量将空间位置关系转化为向量运算,应用的核心是要充分认识形体特征,建立恰当的坐标系,实施几

何问题代数化.同时注意两点:一是正确写出点、向量的坐标,准确运算;二是空间位置关系中判定定理与性质定理条件要完备.

试题解析:(1)证明:F Q ,G 分别为PB ,BE 的中点, FG ∴P PE .

又FG Q ?平面PED ,PE ?平面PED ,

FG ∴P 平面PED .

(2)解:EA ⊥Q 平面ABCD ,EA P PD ,PD ∴⊥平面.ABCD ,AD CD ?Q 平面,ABCD PD AD ∴⊥,PD CD ⊥.

Q 四边形ABCD 是正方形,AD CD ∴⊥.

以D 为原点,分别以直线,,DA DC DP 为x 轴, y 轴,z 轴

建立如图所示的空间直角坐标系,设 1.EA =

2AD PD EA ==Q ,

D ∴()0,0,0,P ()0,0,2,A ()2,0,0,C ()0,2,0,B ()2,2,0,(2,0,1)

E , (2,2,2)PB =-u u u r ,(0,2,2)PC =-u u u r .

F Q ,

G ,

H 分别为PB ,EB ,PC 的中点,

F ∴()1,1,1,

G 1(2,1,)2,

H (0,1,1),1(1,0,)2GF =-u u u r ,1(2,0,).2

GH =-u u u r

(解法一)设1111(,,)x y z =n 为平面FGH 的一个法向量,则1100

GF GH ??=???=??u u u r u u u r n n , 即11111021202

x z x z ?-+=????-+=??,令11y =,得1(0,1,0)=n . 设2222(,,)x y z =n 为平面PBC 的一个法向量,则2200

PB PC ??=???=??u u u r u u u r n n , 即22222

2220220x y z y z +-=??-=?,令21z =,得2(0,1,1)=n . 所以12cos ,n n 1212??n n n

n 2.

所以平面FGH 与平面PBC 所成锐二面角的大小为π4(或45?)

(解法二)(0,1,1)(2,0,0)0DH BC ?=?-=u u u u r u u u r Q ,(0,1,1)(0,2,2)0DH PC ?=?-=u u u u r u u u r ,

DH ∴u u u u r 是平面PBC 一个法向量. (0,2,0)(1,0,0)0DC FH ?=?-=u u u r u u u r Q ,1(0,2,0)(1,0,)02DC FG ?=?-=u u u r u u u r , DC ∴u u u r 是平面平面FGH 一个法向量

.

cos ,,2DH DC DH DC DH DC ?===?u u u u r u u u r u u u u r u u u r Q u u u u r u u u r ∴平面FGH 与平面PBC 所成锐二面角的大小为π4(或45?). (解法三)延长AE 到,Q 使得,AE EQ =连,.PQ BQ

Q

P

H G F

E

D C B A

2PD EA AQ ==Q ,EA P PD ,

∴四边形ADPQ 是平行四边形,.PQ AD P Q 四边形ABCD 是正方形,,.BC AD PQ BC ∴P P F Q ,H 分别为PB ,PC 的中点,,.FH BC FH PQ ∴P P FH Q ?平面PED ,PQ ?平面PED , FH ∴P 平面PED . ,,FH FG F FH FG =?Q I 平面,ADPQ ∴平面FGH P 平面.ADPQ 故平面FGH 与平面PBC 所成锐二面角与二面角D PQ C --相等. ,PQ CD PQ PD ⊥⊥Q ,,,PD CD D PD DC =?I 平面,PDC PQ ∴⊥平面.PDC PC ?Q 平面,,PDC PQ PC ∴⊥DPC ∠是二面角D PQ C --的平面角. ,,45.AD PD AD PD DPC =⊥∴∠=?Q ∴平面FGH 与平面PBC 所成锐二面角的大小为π4

(或45?). 考点:1、直线与平面平行的判定;2、平面与平面所成的角.

立体几何空间角

D C 1 A 1 B 1 C 1 D B C A D 立体几何专题----空间角 知识点归纳 1、异面直线所成的角 异面直线所成角的定义: 如图,已知两条异面直线 a , b , 经过空间任一点O作直线 a′∥a , b ′∥b 则把 a ′ 与 b ′所成的锐角(或直角)叫做异面直线所成的角(或夹角). a b 注1:异面直线所成的角的范围( 0O , 90O ] 注2:如果两条异面直线 a , b 所成的角为直角,我们就称这两条直线互相垂直 , 记为a ⊥ b 注3:在求作异面直线所成的角时,O点常选在其中的一条直线上(如线段的端点,线段的中点等) 2 、直线与平面所成的角 平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角 (1)一条直线垂直于平面,它们所成的角是直角 (2)一条直线和平面平行,或在平面内,它们所成的角是0 ?的角 (3)直线和平面所成角的范围是[0?,90?] 3、二面角: 如右图在二面角的棱l取一点O,以点O为垂足,在半平面α和β内分别作垂直于棱l的射线OA和OB,则 叫做二面角的平面角. 注:①二面角的平面角的大小与O点位置_____ _。 ②二面角的平面角的范围是_______ 。 ③平面角为______的二面角叫做直二面角。 试题探究: 1、如图:表示正方体 1 1 1 1 D C B A ABCD-, 求异面直线 1 1 CC BA和所成的角。 2、空间四边形ABCD中,2 AD BC ==,,E F分别是, AB CD的中点,3 EF=, 求异面直线, AD BC所成的角。 3、在单位正方体 1111 ABCD A B C D -中,试求直线 1 BD与平面ABCD所成的角. 4、在单位正方体 1111 ABCD A B C D -中,求直线 11 A C与截面 11 ABC D所成的角. 5、将一副三角板如图拼接,∠BAC=∠BCD=90°,AB=AC,∠BDC=60°,且平面ABC⊥平面BCD, (1)求证:平面ABD⊥平面ACD;(2)求二面角A-BD-C的正切值;(3)求异面直线AD与BC所成角的余弦值. a′O b′ a P α O A O A B D C A 1 B 1 C 1 D A F E D B A B D B 1 A 1 C 1 D 1

空间向量与立体几何(整章教案)

空间向量与立体几何 一、知识网络: 二.考纲要求: (1)空间向量及其运算 ① 经历向量及其运算由平面向空间推广的过程; ② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示; ③ 掌握空间向量的线性运算及其坐标表示; ④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。 (2)空间向量的应用 ① 理解直线的方向向量与平面的法向量; ② 能用向量语言表述线线、线面、面面的垂直、平行关系; ③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理); ④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。 三、命题走向 本章内容主要涉及空间向量的坐标及运算、空间向量的应用。本章是立体几何的核心内容,高考对本章的考查形式为:以客观题形式考查空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。 预测10年高考对本章内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教

材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处理角和距离将是主要方法,在复习时应加大这方面的训练力度。 第一课时 空间向量及其运算 一、复习目标:1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 二、重难点:理解空间向量的概念;掌握空间向量的运算方法 三、教学方法:探析类比归纳,讲练结合 四、教学过程 (一)、谈最新考纲要求及新课标高考命题考查情况,促使积极参与。 学生阅读复资P128页,教师点评,增强目标和参与意识。 (二)、知识梳理,方法定位。(学生完成复资P128页填空题,教师准对问题讲评)。 1.空间向量的概念 向量:在空间,我们把具有大小和方向的量叫做向量。如位移、速度、力等。 相等向量:长度相等且方向相同的向量叫做相等向量。 表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。 说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。 ②向量加法的平行四边形法则在空间仍成立。 3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合, 则这些向量叫做共线向量或平行向量。a 平行于b 记作a ∥b 。 注意:当我们说a 、b 共线时,对应的有向线段所在直线可能是同一直线,也可能是平 行直线;当我们说a 、b 平行时,也具有同样的意义。 共线向量定理:对空间任意两个向量a (a ≠)、b ,a ∥b 的充要条件是存在实数λ使b =λa (1)对于确定的λ和a ,b =λa 表示空间与a 平行或共线,长度为 |λa |,当λ>0时与

(完整版)用空间向量解立体几何问题方法归纳

用空间向量解立体几何题型与方法 平行垂直问题基础知识 (1) 线面平行: l ∥α? a ⊥u? a ·u =0? a 1a 3+ b 1b 3+c 1c 3= 0 (2) 线面垂直: l ⊥α? a ∥u? a =ku? a 1=ka 3,b 1= kb 3,c 1=kc 3 (3) 面面平行: α∥β? u ∥v? u =kv? a 3=ka 4,b 3=kb 4,c 3=kc 4 (4) 面面垂直: α⊥β? u ⊥v? u ·v = 0? a 3a 4+b 3b 4+c 3c 4=0 例 1、如图所示,在底面是矩形的四棱锥 P-ABCD 中, PA ⊥底面 ABCD , 的中点, PA =AB =1, BC =2. (1) 求证: EF ∥平面 PAB ; (2) 求证:平面 PAD ⊥平面 PDC. [证明] 以 A 为原点, AB ,AD ,AP 所在直线分别为 x 轴,y 轴,z 轴,建立 空 A(0,0,0),B(1,0,0),C(1,2,0), D(0,2,0),P(0,0,1),所以 E 12,1,12 , uuur uuur uuur 1),PD =(0,2,-1),AP =(0,0,1),AD =(0,2,0), uuur ∥AB ,即 EF ∥AB. 又 AB? 平面 PAB , EF? 平面 PAB ,所以 EF ∥平面 PAB. uuur uuur uuur uuur (2)因为 AP ·DC =(0,0,1) (1,0·,0)= 0, AD ·DC =(0,2,0) (1,0·,0)=0, uuur uuur uuur uuur 所以 AP ⊥ DC , AD ⊥ DC ,即 AP ⊥DC ,AD ⊥DC. 又 AP ∩ AD = A ,AP? 平面 PAD ,AD? 平面 PAD ,所以 DC ⊥平面 PAD.因为 DC? 平面 PDC , 直线 l 的方向向量为 a =(a 1,b 1,c 1).平面 α, β的法向量 u = (a 3,b 3,c 3), v =(a 4,b 4,c 4) 1 uuur 1 uuur F 0 , 1, 2 ,EF = -2, 0, 0 ,PB = (1,0, uuur uuur E , F 分别是 PC , PD 间直角坐标系如图所示,则 DC =(1,0,0), AB =(1,0,0). uuur 1uuur uuur (1)因为 EF =- 2AB ,所以 EF

立体几何中用传统法求空间角

-立体几何中的传统法求空间角 知识点: 一.异面直线所成角:平移法 二.线面角 1.定义法:此法中最难的是找到平面的垂线.1.)求证面垂线,2).图形中是否有 面面垂直的结构,找到交线,作交线的垂线即可。 2.用等体积法求出点到面的距离sinA=d/PA 三.求二面角的方法 1、直接用定义找,暂不做任何辅助线; 2、三垂线法找二面角的平面角. 例一:如图,在正方体错误!未找到引用源。中,错误!未找到 引用源。、错误!未找到引用源。分别是错误!未找到引用 源。、错误!未找到引用源。的中点,则异面直线错误!未 找到引用源。与错误!未找到引用源。所成的角的大小是 ______90______. 考向二线面角 例二、如图,在四棱锥P-ABCD中,底面ABCD是矩 形,AD⊥PD,BC=1, ,PD=CD=2. (I)求异面直线PA与BC所成角的正切值;(II)证明平面PDC⊥平面ABCD; (III)求直线PB与平面ABCD所成角的正弦值。 N A 1

练 习 : 如图 , 在 三棱锥 P ABC -中, PA ⊥底面 ,, 60,A B C P A A B A B C B C A ?? =∠=∠=, 点D ,E 分别在棱,PB PC 上,且//DE BC (Ⅰ)求证:BC ⊥平面PAC ; (Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成的角的正弦值; (Ⅰ)∵PA ⊥底面ABC ,∴PA ⊥BC . 又90BCA ? ∠=,∴AC ⊥BC . ∴BC ⊥平面PAC . (Ⅱ)∵D 为PB 的中点,DE//BC ,

∴1 2 DE BC = , 又由(Ⅰ)知,BC ⊥平面PAC , ∴DE ⊥平面PAC ,垂足为点E . ∴∠DAE 是AD 与平面PAC 所成的角, ∵PA ⊥底面ABC ,∴PA ⊥AB ,又PA=A B , ∴△ABP 为等腰直角三角形,∴ AD AB = , ∴在Rt △ABC 中,60ABC ? ∠=,∴1 2 BC AB = . ∴在Rt △ADE 中,sin 24 DE BC DAE AD AD ∠= ==, 考向三: 二面角问题 在图中做出下面例题中二面角 例三:.定义法(2011广东理18) 如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60?,PA PD == E,F 分别是BC,PC 的中点. (1) 证明:AD ⊥平面DEF; (2) 求二面角P-AD-B 的余弦值. 法一:(1)证明:取AD 中点G ,连接PG ,BG ,BD 。 因PA=PD ,有PG AD ⊥,在ABD ?中,1,60AB AD DAB ==∠=?,有ABD ?为 等边三角形,因此,BG AD BG PG G ⊥?=,所以AD ⊥平面 PBG ,.AD PB AD GB ?⊥⊥ 又PB//EF ,得AD EF ⊥,而DE//GB 得AD ⊥DE ,又FE DE E ?=,所以AD ⊥ 平面DEF 。

利用空间向量解立体几何 完整版

向量法解立体几何 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。 一、基本工具 1.数量积: cos a b a b θ?= 2.射影公式:向量a 在b 上的射影为 a b b ? 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行?两线的方向向量平行 线面平行?线的方向向量与面的法向量垂直 面面平行?两面的法向量平行 2.垂直关系 线线垂直(共面与异面)?两线的方向向量垂直 线面垂直?线与面的法向量平行 面面垂直?两面的法向量垂直 三、用向量法解空间距离 1.点点距离

点()111,,P x y z 与()222,,Q x y z 的 距离为PQ =u u u r 2.点线距离 求点()00,P x y 到直线:l 0Ax By C ++=的距离: 方法:在直线上取一点(),Q x y , 则向量PQ u u u r 在法向量(),n A B =上的射影 PQ n n ?u u u r = 即为点P 到l 的距离. 3.点面距离 求点()00,P x y 到平面α的距离: 方法:在平面α上去一点(),Q x y ,得向量PQ u u u r , 计算平面α的法向量n , 计算PQ u u u r 在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角?两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤: ① 先求线的方向向量与面的法向量的夹角,若为锐角角即可,若为钝角,则取其补角; ②再求其余角,即是线面的夹角. 3.面面夹角(二面角) 若两面的法向量一进一出,则二面角等于两法向量的夹角;法

立体几何之空间角(经典)

中小学1对1课外辅导专家 武汉龙文教育学科辅导讲义 授课对象 冯芷茜 授课教师 徐江鸣 授课时间 2013-9-19 授课题目 立体几何中的空间角 课 型 复习课 使用教具 讲义、纸、笔 教学目标 熟悉高考中立体几何题型的一般解法 教学重点和难点 重点:运用空间直角坐标系的方法解决立体几何问题 难点:二面角,线面角的空间想象能力 参考教材 人教版高中教材 高考考纲 历年高考真题 教学流程及授课详案 【知识讲解】 空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形) (1)异面直线所成的角:通过直线的平移,把异面直线所成的角转化为平面内相交直线所成的角。异面直线所成角的范围:o o 900≤<α; 注意:若异面直线中一条直线是三角形的一边,则平移时可找三角形的中位线。有的还可以 通过补形,如:将三棱柱补成四棱柱;将正方体再加上三个同样的正方体,补成一个底面是正方形的长方体。 (2)线面所成的角:①线面平行或直线在平面内:线面所成的角为o 0; ②线面垂直:线面所成的角为o 90; ③斜线与平面所成的角:范围o o 900<<α;即也就是斜线与它在平面内的射影所成的角。 (3)二面角:关键是找出二面角的平面角。方法有:①定义法;②三垂线定理法;③垂面法; 注意:还可以用射影法:S S ' cos =θ;其中θ为二面角βα--l 的大小,S 为α内的一个封 闭几何图形的面积;'S 为α内的一个封闭几何图形在β内射影图形的面积。一般用于解选择、填空题。 时 间 分 配 及 备 注

【题海拾贝】 例1在四棱锥P-ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点. EF平面P AD; (1)求证:// (2)当平面PCD与平面ABCD成多大二面角时, EF平面PCD? 直线 例2已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC = AD = CD = DE = 2a,AB = a, F为CD的中点. (Ⅰ)求证:AF⊥平面CDE; (Ⅱ)求异面直线AC,BE所成角余弦值; (Ⅲ)求面ACD和面BCE所成二面角的大小.

空间向量在立体几何中的应用教案

空间向量在立体几何中的应用 教学目标: (1)掌握空间向量的线性运算及其坐标表示。 (2)能运用向量的数量积判断向量的共线与垂直 (3)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题 重点与难点: 用向量方法解决线面角、二面角问题 教学过程: 1.利用空间向量求两异面直线所成的角的方法及公式为: 异面直线所成角 设分别为异面直线的方向向量,则 2.利用空间向量求直线与平面所成的角的方法及公式为: 线面角 设是直线l 的方向向量,n 是平面的法向量,则 3.利用空间向量求二面角的方法及公式为: 二面角)1800(00≤≤θθ 设 分别为平面 的法向量,则θ与 互补或相等, 注意:运用空间向量坐标运算求空间角的一般步骤为: (1)建立恰当的空间直角坐标。(2)求出相关点的坐标。(3)写出向量坐标。(4)结合公式进行论证、计算。(5)转化为几何结论。 例1:已知三棱锥P -ABC 中,PA ⊥ABC ,AB ⊥AC ,PA=AC=1 2AB ,N 为AB 上一点, AB=4AN,M,S 分别为PB,BC 的中点. (1)证明:CM ⊥SN ; (2)求SN 与平面CMN 所成角的大小. 分析:本题考查了空间几何体的线面与面面垂直、线面角的求解以及几何体的计算问题,考查了考生的空间想象能力、推理论证能力和运算求解能力。 解:设PA =1,以A 为原点,射线AB 、AC 、AP 分别为x,y,z 轴正方向建立空间直角坐标

系,如图。 则P(0,0,1),C(0,1,0),B(2,0,0),M(1,0, 12),N(12,0,0),S(1,1 2,0) (1) 111(1,1,),(,,0), 222 11 00 22 1 (II)(,1,0), 2 (,,)CMN 022,(2,1,2) 1021 -1-22|cos |= 22 32 SN CMN CM SN CM SN CM SN NC a x y z z x y x a x y a SN =-=--=-++=⊥=-=?-+=??==-??-+=??<>=? 因为所以设为平面的一个法向量,则令得因为所与平面所成的o 45角为 例2:如图,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,EF FB ⊥, 2AB EF =,90BFC ∠=?,BF FC =,H 为BC 的中点。 (1)求证:FH ∥平面EDB ; (2)求证:AC ⊥平面EDB ; (3)求二面角B DE C --的大小。 分析:本题主要考查了空间几何体的线面平行、线面垂直的证明、二面角的求解的问题,考查了考生的空间想象能力、推理论证能力和运算求解能力。 解: ,,//,,,,,,,. ABCD AB BC EF FB EF AB AB FB BC FB B AB FBC AB FH BF FC H BC FH BC AB BC B FH ABC ∴⊥⊥∴⊥=∴⊥∴⊥=∴⊥=∴⊥ 四边形为正方形,又且,平面又为中点,且平面 A E F B C D H G X Y Z

(完整版)空间向量与立体几何题型归纳

空间向量与立体几何 1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD (1)证明AB⊥平面VAD; (2)求面VAD与面VDB所成的二面角的大小 2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=, BC=1,PA=2,E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N,使NE⊥平面PAC,并求出N点到AB和AP的距离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)

3. 如图,在长方体ABCD ―A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动. (1)证明:D 1E ⊥A 1D ; (2)当E 为AB 的中点时,求点A 到面ECD 1的距离; (3)AE 等于何值时,二面角 D 1―EC ―D 的大小为(易错点:在找平面DEC 的法向量的时候,本来法向量就己经存在了,就不必要再去找,但是我认为去找应该没有错吧,但法向量找出来了 ,和那个己经存在的法向量有很大的差别,而且,计算结果很得杂,到底问题出在哪里 ?) 4.如图,直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,AB ∥CD ,AB =2DC =2,E 为BD 1的中点,F 为AB 的中点,∠DAB =60°. (1)求证:EF ∥平面ADD 1A 1; (2)若2 21BB ,求A 1F 与平面DEF 所成角的正弦值.

N:5题到11题都是运用基底思想解题 5.空间四边形ABCD中,AB=BC=CD,AB⊥BC,BC⊥CD,AB与CD成60度角,求AD与BC所成角的大小。 6.三棱柱ABC-A1B1C1中,底面是边长为2的正三角形,∠A1AB=45°, ∠A1AC=60°,求二面角B-AA1-C的平面角的余弦值。 7.如图,60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内, 且都垂直于AB,已知AB=4,AC=6,BD=8,求CD的长 8.如图,已知空间四边形OABC中,OB=0C, ∠AOB=∠AOC=Θ,求证OA⊥BC。 9.如图,空间四边形OABC各边以及AC,BO的长都是1,点D,E分别是边OA,BC的中点,连接DE。 (1)计算DE的长; (2)求点O到平面ABC的距离。 10.如图,线段AB在平面⊥α,线段AC⊥α,线段BD⊥AB,且AB=7,AC=BD=24,CD=25,求线段BD与平面α所成的角。

立体几何空间直角坐标系解法典型例题

立体几何坐标解法典型例题 1、如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 2、如图,在Rt AOB △中, π6 OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (1)求证:平面COD ⊥平面AOB ; (2)求异面直线AO 与CD 所成角的大小. A B C D

3.(2010·上海松江区模拟)设在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,∠BAC =90°,E ,F 依次为C 1C ,BC 的中点. (1)求异面直线A 1B 、EF 所成角θ的正弦值; (2)求点B 1到平面AEF 的距离. 4.四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =o ∠, 2AB = ,BC = SA SB == (Ⅰ)证明SA BC ⊥; (Ⅱ)求直线SD 与平面SAB 所成角的大小. D B C A S

5.如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB → 的值为( ) A .0 B .1 C .0或1 D .任意实数 5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值等于( ) A.32 B.1010 C.35 D.25 <二>选择题辨析 [注]: ①两条异面直线在同一平面内射影一定是相交的两条直线.(×) ②直线在平面外,指的位置关系:平行或相交 ③若直线a 、b 异面,a 平行于平面,b 与的关系是相交、平行、在平面内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×) ⑥在同一平面内的射影长相等,则斜线长相等.(×) ⑦是夹在两平行平面间的线段,若,则的位置关系为相交或平行或异面. [注]: ①直线与平面内一条直线平行,则∥. (×) ②直线与平面内一条直线相交,则与平面相交. (×) ③若直线与平面平行,则内必存在无数条直线与平行. (√) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×) ⑤平行于同一直线的两个平面平行.(×) ⑥平行于同一个平面的两直线平行.(×) ⑦直线与平面、所成角相等,则∥.(×) [注]: ①垂直于同一平面....的两个平面平行.(×) ②垂直于同一直线的两个平面平行.(√) ③垂直于同一平面的两条直线平行.(√) αααb a ,b a =b a ,a αa αa αa αa ααa l αβαβ

空间向量及立体几何练习试题和答案解析

. 1.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD, 点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4. 的中点;PB(1)求证:M为 的大小;A2)求二面角B﹣PD﹣( 所成角的正弦值.BDP(3)求直线MC与平面 【分析】(1)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点; (2)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小; (3)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值. 【解答】(1)证明:如图,设AC∩BD=O,

∵ABCD为正方形,∴O为BD的中点,连接OM, ∵PD∥平面MAC,PD?平面PBD,平面PBD∩平面AMC=OM, ∴PD∥OM,则,即M为PB的中点; (2)解:取AD中点G, . . ∵PA=PD,∴PG⊥AD, ∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, ∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG, 由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD. 以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系, 由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C (2,4,0),B(﹣2,4,0),M(﹣1,2,), ,.

立体几何空间角习题

立体几何空间角习题 【基础】空间角是线线成角、线面成角、面面成角的总称。其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。 一、选择填空题 1.(1)已知正三棱柱ABC —A 1B 1C 1中,A 1B ⊥CB 1,则 A 1 B 与A C 1所成的角为( ) (A )450 (B )600 (C )900 (D )1200 (2)已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( ) A . 1 3 B C D . 23 (3)Rt ABC ?的斜边在平面α内,顶点A 在α外,BAC ∠在平面α内的射影是BA C '∠,则 BA C '∠的范围是________________。 (4)从平面α外一点P 向平面α引垂线和斜线,A 为垂足,B 为斜足,射线BC α?,这时 PBC ∠为钝角,设,PBC x ABC y ∠=∠=,则( ) A.x y > B.x y = C.x y < D.,x y 的大小关系不确定 (5)相交成60°的两条直线与一个平面α所成的角都是45°,那么这两条直线在平面α内的 射影所成的角是( ) A .30° B .45° C .60° D .90° (6)一条与平面相交的线段,其长度为10cm ,两端点到平面的距离分别是2cm ,3cm ,这条线 段与平面α所成的角是 ;若一条线段与平面不相交,两端点到平面的距离分别是2cm ,3cm ,则线段所在直线与平面α所成的角是 。 (7)PA 、PB 、PC 是从P 点引出的三条射线,每两条夹角都是60°,那么直线PC 与平面PAB 所成角的余弦值是( ) A B A 1 1

高中数学空间向量与立体几何的教学反思

空间向量与立体几何的教学反思 本部分是高三理科数学复习的一个重要部分,是数学必修4“平面向量”在空间的推广,又是数学必修2“立体几何初步”的延续,努力使学生将运用空间向量解决有关直线、平面位置关系的问题,体会向量方法在研究几何图形中的作用,进一步发展空间想象能力和几何直观能力。空间向量为处理立体几何问题提供了新的视角(“立体几何初步”侧重于定性研究,本章则侧重于定量研究)。空间向量的引入,为解决三维空间中图形的位置关系与度量问题提供了一个十分有效的工具。 进一步体会向量方法在研究几何问题中的作用。向量是一个重要的代数研究对象,引入向量运算,使数学的运算对象发生了一个重大跳跃:从数、字母与代数式到向量,运算也从一元到多元。向量又是一个几何对象,本身既有方向,又有长度;是沟通代数与几何的一个桥梁,是一个重要的数学与物理模型,这些也为进一步学习向量和研究向量奠定了一定的基础。 利用向量来解决立体几何问题是学习这部分内容的重点,要让学生体会向量的思想方法,以及如何用向量来表示点、线、面及其位置关系 一、现将原大纲目标与新课程目标进行简单的比较:

《标准》中要求让学生经历向量及其运算由平面向空间推广的

过程,目的是让学生体会数学的思想方法(类比与归纳),体验数学在结构上的和谐性与在推广过程中的问题,并尝试如何解决这些问题。同时在这一过程中,也让学生见识一个数学概念的推广可能带来很多更好的性质。掌握空间向量的基本概念及其性质是基本要求,是后续学习的前提。 新老课程相比,该部分减少了大量的综合证明的内容,重在对于图形的把握,发展空间概念,运用向量方法解决计算问题,这样的调整,将使得学生把精力更多地放在理解数学的细想方法和本质方面,更加注意数学与现实世界的联系和应用,重在发展学生的数学思维能力,发展学生的数学应用意识,提高学生自觉运用数学分析问题、解决问题的能力,为学生日后的进一步学习,或工作、生活中应用数学,打下更好的基础。 二、教学要求 本章从数量表示和几何意义两方面,把对向量及其运算的认识从二维情形提升到三维情形。这是“由此及彼,由浅入深”的认识发展过程。 本章以立体几何问题为载体,体现向量的工具作用和向量方法的基本步骤和原理,再次渗透符号化、模型化、运算化和程序化的数学思想。主要要思想方法是: (1)类比、猜想、归纳、推广(让学生经历由平面向空间推广的过程); (2)能灵活选择向量法、坐标法与综合法解决立体几何问题。

高中数学讲义微专题64 空间向量解立体几何(含综合题习题)

微专题64 利用空间向量解立体几何问题 一、基础知识 (一)刻画直线与平面方向的向量 1、直线:用直线的方向向量刻画直线的方向问题,而方向向量可由直线上的两个点来确定 例如:()()2,4,6,3,0,2A B ,则直线AB 的方向向量为()1,4,4AB =-- 2、平面:用平面的法向量来刻画平面的倾斜程度,何为法向量?与平面α垂直的直线称为平面α的法线,法线的方向向量就是平面α的法向量,如何求出指定平面的法向量呢? (1)所需条件:平面上的两条不平行的直线 (2)求法:(先设再求)设平面α的法向量为(),,n x y z =,若平面上所选两条直线的方向向量分别为()()111222,,,,,a x y z b x y z ==,则可列出方程组: 1112220 x y z x y x y z x y z z ++=?? ++=? 解出,,x y z 的比值即可 例如:()()1,2,0,2,1,3a b ==,求,a b 所在平面的法向量 解:设(),,n x y z =,则有20230x y x y z +=??++=? ,解得:2x y z y =-??=? ::2:1:1x y z ∴=- ()2,1,1n ∴=- (二)空间向量可解决的立体几何问题(用,a b 表示直线,a b 的方向向量,用,m n 表示平面 ,αβ的法向量) 1、判定类 (1)线面平行:a b a b ?∥∥ (2)线面垂直:a b a b ⊥?⊥ (3)面面平行:m n αβ?∥∥ (4)面面垂直:m n αβ⊥?⊥ 2、计算类: (1)两直线所成角:cos cos ,a b a b a b θ?==

高中数学空间向量与立体几何测试题及答案

高中 数学选修(2-1)空间向量与立体几何测试题 一、选择题 1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( ) A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A 2.在长方体1111ABCD A B C D -中,下列关于1AC u u u u r 的表达中错误的一个是( ) A.11111AA A B A D ++u u u r u u u u r u u u u r B.111AB DD D C ++u u u r u u u u r u u u u u r C.111AD CC D C ++u u u r u u u u r u u u u u r D.11111()2 AB CD AC ++u u u u r u u u u r u u u u r 答案:B 3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D 4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=u u u r u u u r u u u r ,则αβ-的值为( ) A.1 B.1- C. 1 2 D.2- 答案:B 5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 答案:B 6.已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-u u u r u u u r u u u r , ,AB AC AD ,则四点,,,A B C D ( ) A.一定共圆 B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面 答案:C

高中数学选修2-1教案 第三章 空间向量与立体几何 3.2立体几何中的向量方法

3.2立体几何中的向量方法 第一课时 立体几何中的向量方法(1) 教学要求:向量运算在几何证明与计算中的应用.掌握利用向量运算解几何题的方法,并能解简单的立体几何问题. 教学重点:向量运算在几何证明与计算中的应用. 教学难点:向量运算在几何证明与计算中的应用. 教学过程: 一、复习引入 1. 用向量解决立体几何中的一些典型问题的基本思考方法是:⑴如何把已知的几何条件(如线段、角度等)转化为向量表示; ⑵考虑一些未知的向量能否用基向量或其他已知向量表式; ⑶如何对已经表示出来的向量进行运算,才能获得需要的结论? 2. 通法分析:利用两个向量的数量积的定义及其性质可以解决哪些问题呢? ⑴利用定义a ·b =|a ||b |cos <a ,b >或cos <a ,b >=a b a b ??,可求两个向量的数量积或夹角 问题; ⑵利用性质a ⊥b ?a ·b =0可以解决线段或直线的垂直问题; ⑶利用性质a ·a =|a |2,可以解决线段的长或两点间的距离问题. 二、例题讲解 1. 出示例1:已知空间四边形OABC 中,OA BC ⊥,OB AC ⊥.求证:OC AB ⊥. 证明:·OC AB =·()OC OB OA - =·OC OB -·OC OA . ∵OA BC ⊥,OB AC ⊥, ∴·0OA BC =,·0OB AC =, ·()0OA OC OB -=,·()0OB OC OA -=. ∴··OA OC OA OB =,··OB OC OB OA =. ∴·OC OB =·OC OA ,·OC AB =0. ∴OC AB ⊥ 2. 出示例2:如图,已知线段AB 在平面α内,线段AC α⊥,线段BD ⊥AB ,线段'DD α⊥,'30DBD ∠=,如果AB =a ,AC =BD =b ,求C 、D 间的距离. 解:由AC α⊥,可知AC AB ⊥. 由'30DBD ∠=可知,<,CA BD >=120, ∴2||CD =2()CA AB BD ++=2||CA +2||AB +2||BD +2(·CA AB +·CA BD +·AB BD ) =22222cos120b a b b +++=22a b +. ∴CD 3. 出示例3:如图,M 、N 分别是棱长为1的正方体''''ABCD A B C D -的 棱'BB 、''B C 的中点.求异面直线MN 与'CD 所成的角. 解:∵MN =1(')2CC BC +,'CD ='CC CD +, ∴·'MN CD =1(')2CC BC +·(')CC CD +=12 (2|'|CC +'CC CD +·'BC CC +·BC CD ). ∵'CC CD ⊥,'CC BC ⊥,BC CD ⊥,∴'0CC CD =,·'0BC CC =,·0BC CD =, ∴·'MN CD =122|'|CC =12. …求得 cos <,'MN CD >12 =,∴<,'MN CD >=60. 4. 小结:利用向量解几何题的一般方法:把线段或角度转化为向量表示式,并用已知向量表示未知向量,然后通过向量的运算去计算或证明.

高考数学专题复习立体几何专题空间角

立体几何专题:空间角 第一节:异面直线所成的角 一、基础知识 1.定义: 直线a 、b 是异面直线,经过空间一交o ,分别a ?//a ,b ?//b ,相交直线a ?b ?所成的锐角(或直 角)叫做 。 2.范围: ?? ? ??∈2,0πθ 3.方法: 平移法、问量法、三线角公式 (1)平移法:在图中选一个恰当的点(通常是线段端点或中点)作a 、b 的平行线,构造一个三角形,并解三角形求角。 (2)向量法: 可适当选取异面直线上的方向向量,利用公式b a = ><=,cos cos θ 求出来 方法1:利用向量计算。选取一组基向量,分别算出 b a ? 代入上式 方法2:利用向量坐标计算,建系,确定直线上某两点坐标进而求出方向向量 ),,(111z y x a = ),,(222z y x b =2 2 22222 1 2 12 12 12121cos z y x z y x z z y y x x ++++++= ∴θ (3)三线角公式 用于求线面角和线线角 斜线和平面内的直线与斜线的射影所成角的余弦之积等于斜线和平面内的直线所成角的余弦 即:θθθcos cos cos 2 1= 二、例题讲练 例1、(2007年全国高考)如图,正四棱柱 1111ABCD A B C D -中, 12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为 例2、在长方体ABCD-A 1B 1C 1D 1中,已知AB=a ,BC=)(b a b >,AA 1= c ,求异面直线D 1B 和AC 所成 的角的余弦值。 方法一:过B 点作 AC 的平行线(补形平移法) A B 1 B 1 A 1D 1 C C D

立体几何之空间夹角

第26练“空间角”攻略 [题型分析·高考展望]空间角包括异面直线所成得角,线面角以及二面角,在高考中频繁出现,也就是高考立体几何题目中得难点所在.掌握好本节内容,首先要理解这些角得概念,其次要弄清这些角得范围,最后再求解这些角.在未来得高考中,空间角将就是高考考查得重点,借助向量求空间角,将就是解决这类题目得主要方法. 体验高考 1.(2015·浙江)如图,已知△ABC,D就是AB得中点,沿直线CD将△ACD翻折成△A′CD,所成二面角A′—CD—B得平面角为α,则() A.∠A′DB≤α B.∠A′DB≥α C.∠A′CB≤α D.∠A′CB≥α 2.(2016·课标全国乙)平面α过正方体ABCD—A1B1C1D1得顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角得正弦值为() A、B、\f(2) 2 C、 3 3D、 3.(2016·课标全国丙)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC得中点. (1)证明MN∥平面PAB; (2)求直线AN与平面PMN所成角得正弦值. 高考必会题型 题型一异面直线所成得角 例1在棱长为a得正方体ABCD-A1B1C1D1中,求异面直线BA1与AC所成得角. 变式训练1(2015·浙江)如图,三棱锥A—BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N 分别就是AD,BC得中点,则异面直线AN,CM所成得角得余弦值就是________. 题型二直线与平面所成得角 例2 如图,已知四棱锥P-ABCD得底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH就是四棱锥得高,E为AD得中点.(1)证明:PE⊥BC; (2)若∠APB=∠ADB=60°,求直线P A与平面PEH所成角得正弦值. 变式训练2 如图,平面ABDE⊥平面ABC,△ABC就是等腰直角三角形,AB=BC=4,四边形ABDE就是直角梯形,BD∥AE,BD⊥BA,BD=错误!AE=2,点O、M分别为CE、AB得中点. (1)求证:OD∥平面ABC;(2)求直线CD与平面ODM所成角得正弦值;

利用空间向量解立体几何完整

利用空间向量解立体几何(完整版)

————————————————————————————————作者:————————————————————————————————日期:

向量法解立体几何 引言 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。教材上讲的比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,给老师对这部分内容的教学及学生解有关这部分内容的题目造成一定的困难,下面主要就这几方面问题谈一下自己的想法,起到一个抛砖引玉的作用。 基本思路与方法 一、基本工具 1.数量积: cos a b a b θ?= 2.射影公式:向量a 在b 上的射影为 a b b ? 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行?两线的方向向量平行 线面平行?线的方向向量与面的法向量垂直 面面平行?两面的法向量平行 2.垂直关系

线线垂直(共面与异面)?两线的方向向量垂直 线面垂直?线与面的法向量平行 面面垂直?两面的法向量垂直 三、用向量法解空间距离 1.点点距离 点()111,,P x y z 与()222,,Q x y z 的 距离为222212121()()()PQ x x y y z z =-+-+-u u u r 2.点线距离 求点()00,P x y 到直线:l 0Ax By C ++=的距离: 方法:在直线上取一点(),Q x y , 则向量PQ u u u r 在法向量(),n A B =上的射影 PQ n n ?u u u r = 002 2 Ax By C A B +++ 即为点P 到l 的距离. 3.点面距离 求点()00,P x y 到平面α的距离: 方法:在平面α上去一点(),Q x y ,得向量PQ u u u r , 计算平面α的法向量n , 计算PQ u u u r 在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角?两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤:

相关主题
文本预览
相关文档 最新文档