当前位置:文档之家› 结构振动控制理论与应用现状分析

结构振动控制理论与应用现状分析

结构振动控制理论与应用现状分析
结构振动控制理论与应用现状分析

文章编号:100926825(2009)1920059202

结构振动控制理论与应用现状分析

收稿日期:2009203206

作者简介:徐 飙(19702),男,工程硕士,高级工程师,中水淮河规划设计研究有限公司,安徽蚌埠 233000

徐 飙

摘 要:主要介绍了结构振动控制的概念、基本原理以及分类,阐述了被动控制、主动控制、半主动控制和混合控制的不同特点,最后对结构振动控制的应用现状和发展前景做了展望。关键词:结构振动控制,概念,基本原理,分类,应用现状中图分类号:TU312文献标识码:A

传统结构抗震设计是通过加大构件尺寸、提高材料强度等来

加强结构自身的抗震能力,这些方法除了对地震烈度的适应性不佳外,保护目标也比较单一,而且使结构造价大大增加,随着社会的发展,工程结构形式日益多样化,高层和高耸结构也层出不穷。对高层建筑和高耸结构来说,水平荷载是主要荷载之一,并且往往起着控制作用,而对大跨度空间结构来说,竖向荷载却是主要控制荷载。水平荷载一般包括风荷载和地震荷载,这两种荷载都是动力荷载。随着高层建筑和高耸结构高度与高宽比的增大以及轻质高强材料的作用,其刚度和阻尼不断降低,在强风或强烈地震荷载作用下,结构物的动力反应强烈,很难满足结构舒适性和安全性的要求[1]。按照传统的抗风抗震设计方法,即通过提高结构本身的强度和刚度来抵御风荷载或地震作用,是一种“硬碰硬”式的抗震方法,它很不经济,也不一定安全,而且失去了轻质高强材料自身的优势,还不能满足日益现代化的机器设备不能因为剧烈振动而中断工作或者破坏的要求。

传统的抗震设计方法已不能满足需要,从而使结构振动控制

理论在工程结构中开始得到应用。结构振动控制可以有效地减轻结构在风和地震等动力作用下的反应和损伤,提高结构的抗震

能力和抗灾性能,是抗震减灾积极有效的对策。

1 振动控制的概念及原理自1972年美籍华裔学者姚治平(J ?T ?P ?Y ao )教授明确提出土木工程结构控制的概念以来,国内外很多学者在结构控制的方法、理论、试验和应用等方面取得了大量研究成果。隔震消能和各种减震控制体系具有传统抗震体系所难以比拟的优越性,即明显有效减震(能使结构地震响应减到10%或更低),其中已有多项技术成功地应用于工程实践。国际上,美国、日本、澳大利亚、新西

兰和法国等国家在这方面走在前列。国内学者自20世纪80年代

初期以来,对夹层橡胶垫隔震结构、粘弹性阻尼器、TMD 和TLD 、耗能支撑、层间隔震、主动控制等方面的研究取得了一系列成果。经过20多年的发展,结构控制现在正朝着研制高效的被动控制

装置、发展以参数控制为主的半主动控制和探索结构智能控制的

方向发展。结构控制的概念几经完善,具体可表述为:在工程结

构的特定部位装设某种装置(例如隔震垫等)或某种机构(例如消

能支撑、消能剪力墙、消能节点、消能器等)或某种子结构(例如调

频质量等)或施加外力(外部能量输入)或调整结构的动力特性,

使工程结构在地震(或风)的作用下,其结构的动力响应(加速度、速度、位移)得到合理的控制,确保结构本身及结构中的人员仪器设备的安全和处于正常的使用环境状况[2]。

控制系统的基本元素为传感器、处理器(也称控制器)和作动器。传感器感受外部激励及结构反应的变化信息,处理器接受这

些信息并依据一定的控制算法计算所需控制力,作动器则产生所需的控制力并作用到结构上,从而实现对结构的控制。

2 振动控制的分类

依据是否需要外界能源,结构控制可分为被动控制、主动控

制、半主动控制和混合控制四类[3]

。被动控制也称无源控制,它不需要外部输入能量,仅通过控制系统改变结构系统的动力特性达到减轻动力响应的目的。而主动控制的过程则依赖于外界激励和结构响应信息,并需要外部输入能量,提供“控制力”。半主动控制也利用结构响应或外界激励信息,但仅需要输入少量能量以改变控制系统形态,达到改变结构动力特性从而减轻响应的目的。混合控制(也称杂交控制)指的是上述三类控制的混合应用,在结构上同时施加主动和被动控制,整体分析其响应,既克服纯被动控制的应用局限,也减小控制力,进而减小外部控制设备的功率、体积、能源和维护费用,增加系统的可靠性[4]。

2.1 被动控制

结构被动控制是一种无源控制方法,包括隔震、吸振和耗能三大控制形式,采用直接减少、隔离、转移、消耗能量的方法达到

减小结构振动的目的。在我国,20世纪50年代就提出基础隔震

思想,80年代末结构控制方面的研究正式起步。由于被动控制易

于工程实现,设计得好,效果不错,受到普遍重视。

结构隔震体系是指在结构物底部与基础面(或底部柱顶)之间设置某种隔震装置而形成的结构体系。它包括上部结构、隔震装置和下部结构三部分。为了达到明显的减震效果,隔震装置或隔震体系必须具备下述四项基本特性:1)承载特性;2)隔震特性;3)复位特性;4)阻尼消能特性。

吸振减震是指在主体结构上附加吸振器子系统,用以减小主结构的振动。吸振器是包括质量系和弹簧系的小型振动系统,以质量系产生的惯性力作为控制力,通过弹簧系作用于主结构。常与粘滞阻尼器联合使用,并以阻尼器命名。

耗能减震是指利用各种阻尼元件、吸能部件或摩擦支撑产生的阻尼力、塑性变形或摩擦力来衰减结构在外界干扰(如风荷载和地震荷载等)下的振动响应,具有耗能能力强、低周疲劳性能好的特点。结构消能减震的实质是,在结构内设置消能构件(或消能装置),它们能为结构提供较大的阻尼,在地震时大量消耗输入结构的振动能量,有效衰减结构的地震反应。2.2 主动控制结构主动控制是利用外部能源(计算机控制系统或智能材料),在结构物受激励振动过程中,瞬时施加控制力或瞬时改变结

构的动力特性,以迅速衰减和控制结构振动反应的一种减震技术。主要应用于对抗震抗风要求较高,要求对多振型进行控制的

?

95?

第35卷第19期2009年7月 山西建筑SHANXI ARCHITECTURE Vol.35No.19J ul. 2009

重要建筑和高层建筑、桥梁、特种结构等。结构主动控制技术无

疑是一种比较理想的方法,它对于提高抵抗地面运动不确定性的能力,直接减小输入的干扰力,以及在地震发生时连续自动地调整结构动力特性的功能等方面均优于被动控制方法。虽然主动控制已取得一定的理论研究和试验研究成果,减震效果非常明显有效,并已在少数工程中试点应用,但在技术上还有一些问题尚待解决。目前,尚未步入技术成熟阶段。其主要存在以下问题:1)控制系统的硬件和软件的滞后性及有效控制性等问题尚需进一步解决;2)突发地震时外部能源的正常供应问题;3)设备的常年维护问题;4)造价昂贵问题;5)抗震抗风的同时有效控制问题。

主动控制根据控制力是否依赖结构响应或外界激励可分为:闭环控制、开环控制和开闭环控制。目前研究和工程应用较多的是闭环控制。根据控制器的不同,主动控制又有主动调谐质量阻尼器、主动锚索之分。主动调谐质量阻尼系统是利用传感器时刻监测结构反应(位移、速度或加速度),并根据卡提闭环控制理论,计算机接受传感器信息并瞬时改变状态矢量和反馈矢量得出控制力,接着电液伺服装置将最优控制力施加于结构,以控制其运动和变形。主动锚索控制是利用传感器把结构的反应传给计算机,计算机进行优化分析计算出所需要的控制力,驱动液压伺服系统,该系统通过锚索对结构施加控制力,从而有效地减小结构反应。该装置已被应用到实际结构中,用于控制风振反应。

2.3 半主动控制

半主动控制是通过改变结构的动力特性来减震的。1960年日本K obori 最早提出了结构变刚度的概念,1983年Hrovat 研究了土木工程结构的半主动控制问题。半主动控制与主动控制相

比,它所需外部能量小得多,维护要求不高,更容易实施也更为经

济,而且控制效果又与前者接近,因此半主动控制具有较大的研

究和应用开发价值。常见的半主动控制系统有主动调谐参数质量

阻尼系统、可变刚度系统、可变阻尼系统、变刚度变阻尼系统等。

2.4 混合控制

混合控制顾名思义,是指根据不同建筑物、结构的不同抗震

抗风要求、技术可靠性和造价经济性,选取隔震、消能、质量调谐、主动控制中的两种以上控制技术相结合,使其达到经济安全、现

实可行的目的。其主要问题是如何合理地把两种以上控制技术

组合在一起,使其协同工作。同样是由于造价的原因,决定了混

合控制技术和主动控制技术目前还不能大规模应用于我国的各

项大型基础设施建设,尤其是南水北调渡槽抗震这种工程。

3 结构振动控制的应用现状

结构振动控制的工程应用在过去的多年中有了较大的发展,

特别是美国、日本等经济发达国家。在理论方面,他们成功地借

鉴了其他领域中的控制理论,为结构控制找到了可行的分析和计

算方法。在实际工程应用中也设计出一些有效的控制装置,尤其

是被动控制系统(如基底隔震系统)在一些高层建筑中得到了具

体的应用。隔震装置本身具有足够的初始刚度,在正常荷载作用

下相对稳定,在强烈地震作用下该装置进入消能工作状态如叠层

橡胶支座,这种竖向刚度很大的装置水平刚度很小,可大大增加

基础的水平自振周期,强烈地震作用下结构反复变形,耗散地震

能量。此外,滑、滚动支座则是通过基础与上部结构两部分产生相对运动,防止水平地震动的输入[5]。我国发电厂大型机组动力基础的隔震也采用了橡胶垫支座、螺旋弹簧支座等,运行测试结果显示隔震效果满意。国外一些国家也广泛地将基础隔震应用于核电站、发电厂的设计中。相比之下,我国的结构控制更多地仍处在理论研究上,虽然取得了一系列国内外瞩目的研究成果,但实际工程应用极其有限,已安装在建筑物上的控制装置也主要是隔震装置。结构振动控制理论与减震技术为建筑物的抗震提供了一条有效可行的新途径。结构振动控制理论将结构的弹塑性分析与抗震相结合,抗震与消震相结合,能动控制与设计相结合,通过对建筑结构的控制设计,在结构的特定位置出现一定数量的人工塑性铰,使其发生期望的破坏机构形式,实现强震下最佳的耗能机构;对结构中梁和柱等构件进行延性设计,提高其延性和耗能能力。由于被动控制不需要外界能量输入,抗震性能好,结构简单,造价低廉,施工方便,易于修复和更换,易于被工程师们所接受,所以发展较快,在实际工程中得到了广泛应用[6]。

智能结构研究的一个重要内容是实现结构的主动振动控制,主要通过局部控制和全局控制方法来实现结构的振动抑制。局部控制是利用结构自身配置的作动器—传感器,直接实现同位反馈控制,提高结构主动阻尼,以消耗结构残余振动能量,缩短系统自由响应的衰减时间。全局控制目的在于抑制结构特定点的振动响应,保证系统的全局稳定性和提高鲁棒性。对智能桁架结构的振动控制研究已取得显著的主动阻尼控制效果。Preumout 采

用数字控制器,进行了微分和积分力反馈控制实验,分别使悬臂智能桁架结构的第一阶模态阻尼由0.3%增加到3%和9%。因此局部阻尼控制方法的研究仍然是智能结构振动控制的基础。结构振动控制研究伴随着高维(三维乃至无限维)、非线性、多尺度和多耦合系统动力学理论和仿真技术的发展而进一步深入。在无法建立系统动力学模型的情况下,发展基于在线辨识的自适应控制、模糊控制、神经网络控制等各种主动控制乃至智能控制,使系统运动获得优化。结构振动控制虽然还有许多工作要做,但

已展露其研究价值和应用前景。参考文献:[1] 韩建平,李 慧,杜永峰,等.智能材料与土木工程结构振动控制[J ].甘肃工业大学学报,2002,28(1):36239.[2] 彭 刚,张栋国.土木工程结构振动控制[M ].武汉:武汉理工大学出版社,2002:73276.

[3] 周福霖.工程结构减震控制[M ].北京:地震出版社,1997:

1802182.

[4] 欧进萍.结构振动控制———主动、半主动和智能控制[M ].

北京:科技出版社,2003:1902191.

[5] 周锡元.建筑结构的隔震、减振和振动控制[J ].建筑结构学

报,2002,23(2):52254.

[6] 刘 方,邹向阳,赵万里,等.土木工程结构振动控制的概况

与新进展[J ].长春工程学院学报,2007,8(3):20222.

Analysis on the theory and status of application about structure vibration control

XU Biao

Abstract :This paper introduced the concept ,the basic principle and the classification of structure vibration control ,elaborating different char 2acteristic of the passive control ,the initiative control ,the semi 2active control and the mixture control.At last the paper has made the forecast to the status of application and the prospects for development about structure vibration control.K ey w ords :structure vibration control ,concept ,basic principle ,classification ,the status of application

?

06?第35卷第19期2009年7月

山西建筑

浅谈桥梁工程与结构力学

浅谈桥梁工程与结构力学 梁桢 土木工程与力学学院地质工程专业2班 2011级 摘要:桥梁工程的发展与力学的进步是紧密相联的,而且是互相促进的:随着经济的发 展,建筑材料、设备、建桥技术也有了很快的发展,特别是电子计算技术的广泛应用加 快了人们对桥梁力学问题的研究,极大地推动了桥梁力学的发展;同时,桥梁力学的研 究成果也使桥梁的设计、施工及管理水平得到了进一步的提高。 关键词:桥梁、力学、发展、现状 一、引言 在原始时代就已经出现了桥梁,那时跨越水道和峡谷是利用自然倒下的树木,自然形成的石梁或石拱,虽然还不具备造桥的能力,但已经知道利用桥梁为生活创造方便。在17世纪以前,桥梁一般是用的木、石材料建造的,并按建桥材料分为石桥和木桥。19世纪50年代以后,随着酸性转炉炼钢和平炉炼钢技术的发展,钢材成为重要的造桥材料,钢的抗拉强度大,抗冲击性能好,尤其是19世纪70年代出现钢板和矩形轧制断面钢材,为桥的部件在厂内组装创造了条件,钢材应用日益广泛。因为只是凭经验修桥,曾使19世纪80-90年代得许多铁路桥发生重大事故;从那时起,正在发展中的结构力学理论得到了重视,在它的静力分析理论完全确立并广泛普及之后,桥梁因强度不足而造成的事故大为减少。到了现代,桥梁按建桥材料可分为预应力钢筋混凝土桥、钢筋混凝土桥。混凝土抗拉强度很低,但其价格却远低于钢材,为了增加其抗拉能力,设计了钢筋混凝土这类复合建筑材料,使其既能承受拉力,又能承受压力,但限于混凝土材料本身所具有的力学性能,将其作为梁式桥结构用材,跨度仍远逊色于传统的拱桥结构。而预应力钢筋混凝土桁架拱桥:尽管有受力钢筋在承载,但在受拉区仍然不可避免地会出现一些裂缝,若对钢筋施加一定的张力作用,可以克服此弊端,即通过张拉预应力筋,使得受拉区事先储备一定数值的压应力,当外荷载作用时,混凝土可不出现拉应力或不超过某个临界值的拉应力,从而极大地提高了混凝土结构的抗裂性能,刚度和承载能力,进而导致了预应力混凝土桥梁结构的出现。 二.桥梁建设简述与发展趋向 1、国外桥梁建设简述和发展趋向 纵观国外桥梁建设发展的历史,对于促进和发展现代桥梁有深远影响的,是继意大利文艺复兴后18世纪在英国、法国和其他西欧国家兴起的工业革命。它推动了工业的发展,从而也促进了桥梁建筑技术方面空前的发展。 1855年起,发共建造了第一批应用水泥砂浆砌筑的石拱桥。法国谢儒奈教授在拱桥结构、拱圈

船体结构分析

第一章绪论 §1-1船舶结构力学的内容与任务 船舶是一个复杂的水上工程建筑物。它航行于江河湖海,担负着运输、生产、战斗及其他各种任务。我国有漫长的海岸线,无数的内河湖泊,还有广阔富饶的海疆,为此就需要大量的、各种类型的船舶来从事各方面的工作,为社会主义革命和建设服务。 为了保证船舶能很好地完成上述任务,船舶应具有良好的航行性能、工作性能和具有一定的强度。 船舶具有一定的强度,是指船体结构在正常的使用过程和一定的使用年限中具有不破坏或不发生过大的变形的能力,以保证船舶能正常地工作。由于一般船舶的经常工作状态是航行状态,因此设计人员应首先保证船舶在航行状态有足够的强度。 船在海洋中航行,它所受到的外力是相当复杂的。这个外力除了船的载重和装备等重量以外,主要就是水作用于船体的力。除非船是静置于水中,否则船上受到的力总是动力。动力包括水动压力、冲击力以及船在运动中的惯性力等等。这些力显然取决于海面的情况,波浪的大小(即所谓环境条件),并且还是随机性的,这样就使得船体外力的确定显得相当复杂了。 尽管如此,人们通过长期的生产实践,分析了船体受力和变形的主要特征,认为在考虑船体强度问题时,首先把船整体当作一根梁来研究是合理的。这时将船——或者如一些文献中所说,将“船体梁”’(ship hull girder)静置于静水中或波浪上,计算在船纵向(船长方向)分布的重力与浮力作用下的弯曲变形与应力。这种将船作为一整体来研究的强度问题就叫做船体的“总纵强度”或简称为“总强度”问题,如图1-l,图中(a)称为“中拱状态”(hogging condition);(b)称为“中垂状态”(sagging conation)。长期以来,总强度一直是船体强度校核的主要方面。 除了总纵强度以外,船体的横向构件(如横梁、肋骨、肋板等)及船体的局部构件(如船底板及底纵桁等)也会因局部荷重而发生变形或受到破坏,因此亦需研究这些横向构件或局部构件的强度问题。这类问题通常称为“横向强度”问题或“局部强度”问题,如图1-2及图1-3,以便与前述的总纵强度问题有所区别。 把船舶静置于波浪上或静水中,按简单梁的弯曲理论来研究总纵强度当然是初步的。因此随着时间的推移,人们的认识在总强度的基础上逐步提高,从而使船体强度的计算更接近 于实际。首先提出来的是稳定性问题。十九世纪后期,由于船舶尺度的增加,发现船在总弯曲时船体受压的构件(主要是中垂状态时的上层甲板)常常会因为受压过度而丧失稳定性,这样就大大减低了船体抵抗总弯曲的能力。因此在总强度计算的同时,稳定性问题就被提了出来。亦就是说,我们在研究船体总强度的时候,必须要考虑受压构件是否有失稳现象,并要分析构件失稳后的应力再分配问题,这样才能正确地反映船体总强度的承载能力。

风振对桥梁工程损害及防治

风振对桥梁工程损害及防治 摘要:风对桥梁的作用是一种十分复杂的现象,随着桥梁跨径的不断增加,风振现象也越来越受到工程界的关注。本文针对抖振、涡激共振、风雨振等风致振动对大跨度桥梁的结构安全形成不可忽视的影响,探讨了大跨度桥梁抗风设计原则与风致振动的控制,提出了改善桥梁结构和增加机械阻尼等方法。 关键词:大跨度桥梁;风致振动;抗风设计 1引言 1940年秋,美国华盛顿州建成才四个月的主跨853m的塔科马悬索桥在风速不到20m/s的8级大风袭击下发生了当时还难以理解的强烈振动,奇妙的风竟使桥面扭曲翻腾.而且振幅愈来愈大。直至使桥面倾翻到45度,最终导致桥粱的折断坠入峡谷之中。这次事故后引起了国际桥梁工程界和空气动力界的极大关切,并开展了大量的理论探索和风洞实验研究。我国自70年代起斜拉桥蓬勃发展,跨度日益增大,1999年10月,主跨1385m的江阴长江公路大桥的建成通车,使我国成为世界上能自主设计和建造千米级悬索桥的第六个国家。中国改革开放以来已经建成了百余座缆索承重桥梁,其中包括10座悬索桥和近20座跨度超过400m的斜拉桥。与此同步,斜拉桥和吊桥的风致振动理论与实验研究也结合工程实际迅速发展,并取得了一些有价值的研究成果。 2桥梁结构风致振动理论 风灾是自然灾害中发生最频繁的一种,桥梁的风害事故屡见不鲜。风与结构的相互作用是一个十分复杂的现象,它受风的自然特性、结构的外型、结构的动力特性以及风与结构的相互作用等多方面因素的制约。当风绕过一般为非流线型作用截面的桥梁结构时,会产生旋涡和流动的分离,形成复杂的空气作用力。当桥梁结构的刚度较大时,结构保持静止不动,这种空气力的作用只相当于静力作用。当桥梁结构的刚度较小时,结构振动受到激发,这时空气力的作用不仅具有静力作用,而且具有动力作用。 2.1 风的静力作用 静力作用指风速中由平均风速部分施加在结构上的静压产生的效应,可分

结构振动控制中文

《结构振动控制》教学大纲 课程编号:1322009 英文名称:Control of Structural Vibration 课程类别:选修课学时:36 学分:2 适用专业:土木工程 预修课程:结构动力学、控制理论、随机振动 课程内容: 内容:主要介绍结构振动控制机理,各种减振控制装置,控制律设计中的重要问题以及智能控制。 预期目标:使学生掌握结构控制的原理,能针对不同的要求对结构采用不同的控制策略,提高学生解决实际问题的能力。 重点和难点:被动阻尼器的工作原理及实用设计方法;TMD的工作原理和设计方法;各种主动控制算法的计算步骤、优缺点和使用条件;结构振动的模糊控制和神经网络控制;结构振动控制设计中的模型降阶,溢出,传感器与作动器的定位,鲁棒性,时滞效应;结构半主动控制系统的原理和半主动控制算法;结构振动控制的Benchmark问题。 教材: 欧进萍.结构振动控制-主动、半主动和智能控制.科学出版社 参考书目: 1. 瞿伟廉 .高层建筑和高耸结构的风振控制设计.武汉测绘科技大学出版社 2. 顾仲权.振动主动控制.国防工业出版社 3. 吴波.李惠.建筑结构被动控制的理论与应用.哈尔滨工业大学出版社 4. T.T.Soong.Active Structural Control: Theory and Practice. Longman Scientific & Technical. 5. G.W.Housner.Structural Control: past, present and future.et al. ASCE Journal of Engineering Mechanics, 123(9): 897-971, 1997 考核方式与要求: 课程论文。

船体结构修理工艺

船体结构修理工艺 一,常见的几种施工工艺 1. 结构更换:更换损坏了或蚀耗了的部件,使之恢复成原有的形式; 2. 结构部分更换:考虑到整个结构更换比换困难,涉及面广,其中有的部件的蚀耗还未到非换不可的程度,征得验船师的同意,可以进行结构部分更换; 3. 结构矫正:在更换外板、甲板时采用,主要包括冷加工矫正和就地热矫正; 4. 结构拆下、矫正、装复:有时外板变形严重,无法就地矫正修复,则将外板拆下送到车间,利用机械设备进行矫正,待在外板原来的部位的内部骨架就地矫正结束后,再将外板原位装复,必要时亦可将骨架一起拆下送车间矫正; 5. 结构拆除:有时船体经过改装后,有一些结构已无存在的必要,须予以拆除; 6. 焊接工艺:(1)焊接前,接缝处应批出斜坡口,以消除夹缝空档。常见的坡口按焊接的要求有V形、Y形、X形和K形;(2)焊接表面冷却后有一层灰色的焊渣,必须铲除干净,防止夹渣。焊缝要求均匀平整,如焊坑、咬边或者烧穿钢板,均为不合格,应当刨除重焊;(3)对于旧焊缝的修理,不可直接在原有的焊缝上面加焊,应将待修的旧焊缝及其两端各延长5-8mm长度全部刨掉,批出整齐的斜坡口,然后焊接,要特别注意新、旧焊缝接合处的质量;(4)对于构件本体裂缝的焊接,必须先在裂缝的两端各钻一个止裂孔,以便使其内应力在此处向各个方向分散,然后批槽堆焊。如果焊接大尺寸的铜制构件的裂缝,除必须钻止裂孔及批槽外,还应当预先用慢火将构件烘热,保持在一定温度上焊补;(5)对于地环、羊角等的焊接,如带底座者,应按复板焊接的工艺要求进行焊接;如天底座者,其脚部应批成锥形然后堆焊,不可采用仅在圆钢角部堆焊一圈的方法。 二,船体渗漏及其修理工艺 1. 产生原因: 由于金属遭受腐蚀,其完整性就逐渐遭到破坏,在焊缝处局部强度逐渐下降,加上船舶在海面上经常收到水的压力和波浪冲击,以及船舶主机、辅机工作时引起的船舶振动,还有不正确的货物装载与移动,船舶在波浪上时而中拱,时而中垂等,在这些外力的作用下,船舶产生纵向和横向的弯曲,使船体发生变形,在腐蚀严重处就造成焊缝纹路增大,从而产生渗漏现象,这在船体外板、甲板和水密舱壁的接缝处常可见到。 2. 修理工艺:

船体振动学

1.系统的自由度:确定振动系统运动所需的独立坐标数目即为系统的自由度数。 2.广义坐标:这种确定系统在空间位置的独立参变量称为广义坐标。 3.线性振动:在这些条件下,系统的振动可以用常系数线性微分方程来描述,称为线性振动。 4.自由振动:系统对初始激励的响应通常称为自由振动。 5.强迫振动:对外部作用力的响应称为强迫振动。 6.干摩擦阻尼力:当系统与外界的固体相接触运动时,即产生摩擦阻力,称为干摩擦阻尼力。 7.粘性阻尼力:它是系统与外界粘性流体接触时,在速度不高的情况下所产生的阻尼力。 8.流体动力阻力:当系统与外界的粘性流体接触,且速度较高,并在粘性较小的流体中运动 时,即发生与速度平方成正比的阻力,称为流体动力阻力。 9.材料内阻尼力:是因为实际材料并不是完全弹性而引起的,又称材料的非弹性阻尼。 10.结构内阻尼力:是因为系统本身结构装配或连接而引起的。 11.准周期振动:这种由于振动系统受到阻尼力作用,造成能量损失而使振幅逐渐减小的振动 称为衰减振动,或称为准周期振动。 12.均匀直梁弯曲自由振动的特性:(1)均匀直梁是具有分布质量及抗弯刚度的无限自由度系 统(2)固有频率和固有振形是结构的固有特性,不仅与材料的性质、结构的刚度等因数有关,而且还和边界条件有关(3)当梁作任一主振动时,类似于单自由度系统的振动(4)在所讨论的线性振动范围内,均匀直梁弯曲自由振动是无限多个主振动的线性叠加,梁中任一点的运动则是各主振动所引起运动的总和。(5)固有振形具有正交性,即各固有振形之间是相互独立的。 13.Timoshenko梁理论:一般的梁单元,是基于初等力学中的平截面变形假定,在这个假定中, 实际上认为弯曲变形是主要的变形,剪切变形是次要的变形,因而可以不计,这对于高度远小于跨度的实腹梁来说,不会引起显著的误差,但对于有些空腹梁或都高跨比不是很小的梁来说,就不太精确了,所以有必要计及剪切变形,Timoshenko梁就是能考虑剪切变形的梁。 14.转动惯量和剪切变形对梁固有频率的影响:从物理意义上说,剪切的作用使系统的刚度下 降,转动惯量使系统的有效质量增加,这两方面的影响均使系统的固有频率降低。其中剪切的影响大于转动惯量的影响。 15.船体总振动:整个船体的振动称为总振动,这时将船体视为一根两端自由支持的变截面空 心梁。包括:(1)垂向振动:在船体的纵中剖面内的垂向弯曲振动(2)水平振动:在船体的水线面内的弯曲振动(3)扭转振动:船体横剖面绕纵向轴线的振动(4)纵向振动:船体横剖面沿其纵向轴线作纵向抗压的往复振动。 16.局部振动:船体局部结构,如板架、梁、板等对于整个船体所作的附加振动称为局部振动。 (1)垂向振动:平行于垂向轴的的直线振动(2)横向振动:平行于左右方向的水平振动(3)纵向振动:平行于首尾方向的水平振动。 17.随机振动:这种在任何未来时刻表征振动物理量的瞬时值不能预先精确地加以判断的非周 期性的持续振动;波击振动:当波浪的遭遇频率与船体的首谐垂向固有频率相等时,会出现由波浪对船体的非冲击性水动力作用引起的全船稳态垂向垂向两节点振动;浪击振动:是非周期性的振动,是船体受波浪冲击而出现的弯曲振动现象。 18.节点:船体总振动时振幅为零的横截面(较高谐调的主振动具有较多的节点,较高的频率, 较短的周期;较低谐调的主振动具有较少的节点,较低的频率,较长的周期。) 19.船体总振动阻尼的特点:当激振力的频率与船体振动的某一固有频率相等时,船体将发生 共振,第一谐调共振时,峰值最高而且曲线很陡,随着阶数的增加,共振时峰值越来越小,曲线也越来越平坦,船体总振动的阻尼与振动频率有关,频率越高,阻尼越大。 20.船体总振动减少的原理:改变结构的固有频率或激励频率以避免共振;减小激励的幅值与 减小激励的传递以降低强迫振动的程度;增加结构刚度和阻尼以降低响应等。

船舶与海洋工程结构振动分析中的设备实用建模方法

船舶与海洋工程结构振动分析中的设备实用建模方法 摘要:随着现代化科学技术的迅猛发展,各行业都步入了一个全新且迅速的发展阶段,尤其是对于海洋领域的探索与征服。自改革开放以来,我国在船舶的研究和技术的革新等方面都已经有了全面的发展,并经过多年来的努力已经取得了非常大的进步,这对于推动我国海洋技术的发展来说是具有极大意义。本文将在海洋工程的研究基础上,对设备的合理运行进行了深入性研究,在设备应用建模上进行了相应的探讨。 关键词:船舶和海洋工程;建筑模型;技术创新 前言:科技的进步促进了船舶技术的迅速发展,为了能够更好的满足于现代化的发展现状,人们在海洋行业进行了更深入性的探索,进行了进一步的发展与创新。然而,受外界等各项因素的影响,严重的阻碍了探索的进程。而随着科学技术的不断发展,人们运用计算机网络系统可以实现人们无法完成的工程。在海洋探索方面,运用计算机建立建筑模型是新兴的,也是对于进一步探索的重要的关键的一步。下文中我们将进行进一步的探索。 1目前海洋探索以及船舶技术的模型种类 就目前我国海洋探索以及船舶技术的模型种类进行分析,其中有种模型是以建筑为中心,并进行进一步的具体分析,这种模型的特点是把不同的设备进行不同的分配,使得各个物件都可以得到充分的利用,为了更好的呈现出这种模型,人们大多用具体的图表进行演示。运用这种形式是为了更好地研究相关的货物以及设备的分布情况,从而方便决策者进一步的进行科学的决策。运用电子计算机网络系统对于相关的设备结构进行模拟,而模拟的方法是通过网络系统构造出的无数条框架结构结合成相一致的设备,这样可以方便进行更好的模拟,此外,通用的技术还有根据不同的形状大小进行分类,探究各种设备如何能够保持均匀有效的分布,合理进行分配,对于宝贵的空间资源进行充分的合理利用,更好地增加工作效率。除了相关的抽象的模型之外,有些信息还是需要通过具体的数据表现出来的,这种通过具体的数字表现出来的模型的形式也是有多种分类的。例如根据不同的信息种类也可以把模型分为以质量为主,以形状为主或者是通过具体的数字反应出准确的信息等多种形式。但是根据长期的经验来看,上文中所提到的这些常见的模型方式都存在着这样或者那样的问题,所造成最后模拟出来的信息并不是十分准确,一定程度上影响了正常的工作效率。有时候一个微小的误差都会造成严重的后果,如何解决这些问题成为了现阶段发展研究的重中之重。 2为了解决误差而提出一种新的模型方式以及这种方式的优点 现在新介绍的这种建筑模型的方式,依旧是以计算机电子网络为基础。都知道进行以上的种种研究,采取多种方法的最终目的都是为了增加船舶在航行过程中的安全系数,使得能够更加安全地航行。而为了安全航行首先所要考虑到的就是如何减轻船舶在海洋环境下的震动频率。所谓的这种频率,其摆动的大小是受多种因素共同作用影响,其中,影响最大的就是船舶本身的重量以及船的坚硬程度所决定的。对于研究同一艘船而言,船本身的重量一定是保持不变的,所要研究的就是如何增加杆的硬度,这样才能更加安全地保持行驶。而增加坚硬程度也是有多种因素的影响,这是由一个具体的公式推算出来的。我们要通过这个模型以及公式建立表格,对于表格中所提及的数据进行具体准确的分析,由此来找出

船舶机械振动及控制

船舶机械振动及控制 对船舶的机械有害振动的控制措施主要有防振和减振两个方面,防振是指在船舶设计阶段就考虑到振动的容许标准而采取降低振动的措施,减振则是指使营运船舶的振动下降到容许的标准。 防振措施和减振措施仅仅是对象的差异及处理的角度有些不同,其基本原理是一样的,即: (1)避免共振。改变结构的固有频率或激励频率防止共振的产生。 (2)减小激励力。进行动平衡或结构改型减小激励幅值。 (3)减小振动或激励力的传递。增加阻尼以防止吸收振动能量,装设减振装置以达到减小幅值的目的。 一柴油机振动控制 柴油机时引起船体振动的主要激励源之一,因此在船舶设计初期,选择什么样的机型是至关重要的。在满足功率等指标的情况下,应注意选择具有较小不平衡力和不平衡力矩的柴油机做主机。柴油机的缸数越多,其一般平衡性就越好。 (一)防止共振 选择主机时应配合螺旋桨考虑是否与船体发生低阶共振的可能性,尤其应避免在主机常用转速下的低阶共振问题。在设计阶段,先计算船体总振动的几个主要谐次的固有频率,以避免与柴油机和螺旋桨的各阶激励力共振。主机的选型应与减速齿轮箱、螺旋桨在一起考虑,在改变主机营运转速较困难时,也可改变变齿轮箱减速比或改变螺旋桨页数以达到改变激励频率的目的。 (二)减小激励力 对于存在外部不平衡力或者不平衡力矩柴油机,可以通过安装平衡补偿装置来减小振动激励力。这是一种普遍应用的防止有害振动的措施。

平衡补偿装置是使偏心质量以与主机激励频率相同的转速旋转,产生补偿力或者力矩以抵消柴油机的不平衡力,减少他们对振动的影响。按运转驱动方式可将平衡器分为两大类:一是由电动机驱动,或称电动平衡器;二是由曲轴驱动直接附装在主机上。按被平衡激励的形式又可以分为一次力矩平衡器、二次力矩平衡器和组合平衡器。 电动平衡器一般安装在船体垂向振动振幅相当大的舵机底甲板上。 (三)减小振动传递 1,隔振器 对于不平衡的主机或辅机可以在机座下装设隔振器,以减小主机激励力对船体的传递。 所要求的减震器应该柔软些,这通常只有对高速柴油机才能实现。 目前国内常用的减震器主要有橡胶减震器和金属弹簧减震器。 另外,钢丝网隔减震器在工程上的应用也得以发展。 2防振支撑 近代船用大型柴油机因采用长冲程和超长冲程,其机架横向振动是一个突出问题,成为船体激励源振动之一。当横向振动比较大时,可在主机上部与船舷左右侧间设横向防振支撑于船体连接。它通常能使机架横向振动减小50%以上,固有频率提高5%~50%。 目前常用的防振支撑主要有机械式、摩擦式、液压式三种。 (1)机械式支撑 机械式支撑使主机的刚性得到明显的增加,机架的固有频率上升,下降。但另一方面,机架的部分振动能量讲通过支撑传递至全体,有可能加剧船体的振动。(2)摩擦式支撑 摩擦式支撑的断面形状为U型。

先进船型与船体结构设计技术综述

先进船型与船体结构设计技术 1 概述 1.1船型与船体结构设计技术的概念与内涵 船型,通常指船舶的类型,按不同的分类标准可以划分为许多种不同的船型。例如按载货方式可分为散货船、油船、集装箱船,其中散货船又有灵便型、巴拿马型、超巴拿马型、好望角型等系列;按航行姿态可分为排水量船、滑行艇、水翼船、气垫船、地效翼船等;按推进器型式可分为螺旋桨推进船、喷水推进船、明轮船等;按动力装置种类可分为柴油机推进船、电力推进船、燃气动力装置船、核动力装置船等。 船体结构设计是在满足船舶总体设计的要求下,解决船体结构的形式、构件的尺度与连接等设计问题,保证船体具有恰当的强度和良好的技术经济性能。船体结构设计应考虑以下几方面:1)安全性,结构设计应保证船舶在各种外力作用下,具有一定的强度和防振性能。2)适用性,结构的布置与构件尺度的选用应符合营运的要求。3)整体性,结构设计必须与船舶性能、轮机、没备、电气及通风等设计密切配合,确保船舶在各个方面都具有良好的工作性能。4)工艺性,结构形式与连接形式的选择应便于施工,选用结构材料应适当减少规格,根据船厂的设备情况和生产组织管理等特点,采用先进、高效、经济的工艺措施。5)经济性,考虑上述方面条件下,力求减少结构的重量,材料选用恰当,使船舶具有更好的经济性能。 1.2 重要性 在国防工业领域,采用新的结构形式、新材料、新型推进方式等新技术开发先进船型,是改善海军舰船总体性能、提高作战效率的重要手段。近十几年来,随着科技的进步,海军对舰船的航行性能、隐身性能、负载能力等要求不断提高;在对近海作战能力的不断重视下,舰船在浅水海域作战需要小吃水,为安装模块化装备需要宽大甲板面积,快速航渡需要高航速。常规单体船型虽然推进效率较高、超载能力强、船体结构简单、维修方便、造价低,但已较难在耐波性、快速性方面作大幅度改进。应用新技术研究开发新船型,成为军事大国提高国防工业和海军作战水平的重要途径之一。 新的船型开发离不开先进的船体结构设计技术。船型研发周期长、成本高、舰船使用期长、环境和载荷恶劣,在其使用期内可能遭遇到多种随机事故或战斗伤害,损害一旦发生,将对结构产生不利影响,导致整个船体结构失去工作或战斗能力,也造成很大的经济损失。因此,要求船体结构设计技术不断进步、领先,船体线型最优化、构件尺寸合理,工况和承载能力计算和校核精确,以支撑先进可靠的船型开发。 2 国外研究现状 船型与船体结构设计技术在国防工业领域的研究和发展突出体现在海军舰艇的需求不断升级,促使一些先进船型的开发、试验和发展,对船舶设计技术的要求也不断提高。 多体船型主要有双体船、三体船、四体船和五体船等,同单体船相比,多体船具有更加优越的浮性和稳性、耐波性、机动性和隐身性,能够大量装载,抗打击能力强,在民用和军用领域得到了广泛的应用,其各船型也是各军事大国研究的热点。小水线面双体船(SWATH)、穿浪双体船是高性能船舶中发展较快、趋于成熟的船型。美国多年来一直大力开发小水线面双体船,在小水线面双体船的线型、流体、结构、耐波性、操纵性等基础理论与研究试验方面取得了一系列成果,并拥有相当的技术储备。自1973年到21世纪初,美国开发了“卡玛利诺”号、“海影”号、“胜利”号、“搜索”号、“海刀锋”号和“无瑕”号等6型小水线面双体船型的水声监听船、试验船等。2005年,法国研制出一种SWATH型近海巡逻舰,该舰排水量2000吨,采用全电力推进系统,航速12节时续航力达5000海里,并可在6级海况下正常作业。澳大利亚INCAT公司租借给美海军的Incat 050型“联合探险”号、Incat 060型“矛头”号,以及Incat 061型等穿浪双体高速船舶用于进行系列试验、评估及操作使用。英国海军2000年

结构振动控制的概念及分类

耗能方案 性能来抵御地震作用的,即由结构本身储存和消耗地震能量,以满足结构抗震设防标准,小震不坏,可能无法满足安全性的要求;另一方面,在满足设计要求的情况下,结构构件的尺寸可能需做得很大木工程领域新兴一种新型的抗震方式——结构振动控制,即对结构施加控制机构,由控制机构和结构 半主动控制和混合控制。 是由控制装置随结构一起振动变形而被动产生的。被动控制可分为基础隔震技术、耗能减震技术和吸是由控制装置按某种控制规律,利用外加能源主动施加的。主动控制系统由传感器、运算器和施力作术。主动控制有主动拉索系统(ATS)、主动支撑系统(ABS)、主动可变刚度系统(AVSS)、主动质期开始研究主动控制。目前,主动控制在土木工程中的应用已达30多项,如日本的Takenaka实验控制力虽也由控制装置自身的运动而被动的产生,但在控制过程中控制装置可以利用外加能源主动调置、半主动TMD、半主动力触动器、半主动变刚度装置和半主动变阻尼装置等。 主动控制,或者是同时应用不止一种的被动控制装置,从而充分发挥每一种控制形式和每一种控制装:同时采用AMD和TMD的混合控制系统、主动控制和基础隔震相结合的混合控制系统以及主动控制和

京的清水公司技术研究所。 ,但由于建筑结构体形巨大导致所需的外加能源较大,加之控制装置的控制的算法比较复杂,而且存好,容易实现,目前发展最快,应用最广,尤其是其中的基础隔震技术已相当成熟,并得到了一定程主动控制低廉,而且不需要较大的动力源,因此其具有广阔的应用和发展前景;混合控制综合了某几 和耗能减震技术。 置控制机构来隔离地震能量向上部结构传输,使结构振动减轻,防止地震破坏。目前研究开发的基础和混合隔震等。近年来,越来越多的国家开展了基础隔震技术的研究,因此,隔震技术也得到了飞速:日本94栋,美国21栋,中国46栋,意大利19栋,新西兰16栋,已采用了基础隔震技术。最近有 使结构的振动能量分散,即结构的振动能量在原结构和子结构之间重新分配,从而达到减小主结构振尼器(TLD);(3)质量泵;(4)液压—质量控制系统(HMS);(5)空气阻尼器。其中,应用最多两个重300吨的TMD,质量块在9米长的钢板上滑动,它很好地减小了大楼的风振反应,防止了玻璃幕nade桥的桥塔均安装了TMD,其减震效果均令人十分满意。日本的Yokohama海岸塔是一个高101米析表明,安装了TLD后塔的阻尼比由0.6%增加到4.5%,在强风作用下塔的加速度减小到原来的1/3 TLD以控制其风振反应。

桥梁结构设计的力学稳定性

浅谈桥梁结构设计的稳定性 作者:黑龙江科技学院工业设计10—2班赵云超 摘要:众所周知,抗压强度是评判一座桥梁质量好坏的重要方面,与此同时,稳定性也是一座桥梁不可忽视的重要因素。在历史上以及现今社会中发生的一些桥梁垮塌事故,很大一部分是由于忽视稳定性而造成的。桥梁结构设计的稳定性,是研究桥梁力学的一个重要分支。本文以拱式桥为例,通过力学分析介绍拱式桥拱肋稳定性理论的计算方法。 关键词:桥梁结构稳定性拱式桥拱肋 工程力学知识在现代桥梁的设计与建造中发挥着巨大作用,同时随着一些技术实际问题的产生,也推动着工程力学不断向前发展。桥梁结构的稳定性是涉及其安全与经济的重要因素,它与桥梁的强度问题有着同样重要的意义。随着经济社会的发展,各式各样的桥梁不断涌现出来。在此之中,由于在设计时对稳定性考虑不够,产生了一些事故,这使得对于桥梁稳定的研究,具有更广阔的意义。 桥梁的稳定性取决于它所受到的力系以及它自身结构的设计。挡结构设计合理,桥梁所受载荷分布均匀,整个系统受力保持平衡时,桥梁就具有很强的稳定性。 结构失稳是指在外力的作用下,结构的平衡状态开始丧失稳定性,稍有扰动,则变形迅速增大,最后使结构遭破坏。桥梁结构的失稳现象可分为下列三类: 1,个别构件的失稳; 2,部分结构或整个结构的失稳; 3,构件的局部失稳。 桥梁结构的稳定问题一般分为两类,第一类叫做平衡分支问题,即到达临界荷载时,除结构原来的平衡状态理论上仍然可能外,出现第二个平衡状态;第二类是结构保持一个平衡状态,随着荷载的增加,在应力比较大的区域出现塑性变形,结构的变形很快增大。当荷载达到一定数值时,即使不再增加,结构变形也自行迅速增大而使结构破坏,这个荷载值实质上就结构的极限荷载,也称临界荷载。 下面就拱桥结构谈一下桥梁的稳定性。 拱桥是我国公路、铁路上常用的一种桥梁型式。一般拱桥的拱轴线采用桥梁结构中常见的二次抛物线拱轴形式,拱圈是拱桥的主要承重结构,为曲线形。拱上建筑,又称拱上结构,是指在桥面系与拱圈之间能够传递压力的构件或填充物。本文将对该桥拱肋的稳定问题进行力学分析。 1拱肋稳定理论 拱肋是一种主要承受压力的平面曲杆体系。因此,当拱所承受的荷载达到一定的临界值时,整个拱就会失去平衡的稳定性:或者在拱的平面内发生纯弯屈曲;或者倾出于平面之外发生弯扭侧倾。拱的面内屈曲有两种不同形式:第一种形式是在屈曲临界荷载前后,拱的挠曲线发生急剧变化,可看作这是具有分支点问题的形式,桥梁结构中使用的拱,在体系和构造上多是对称的,当荷载对称地满布于桥上时,如果拱轴线和压力线是吻合的,则在失稳前的平衡状态,只有压缩而没有弯曲变形,当荷载逐渐增加至临界值时,平衡就出现弯曲变形的分支,拱开始发生屈曲;第二种屈曲形式在非对称荷载作用下,拱在发生竖向变位的同时也产生水平变位,随着荷载的增加,两个方向的变位在变形形式没有急剧变化的情况下继续增加,当荷载达到了极大值,即临界荷载之后,变位将迅速增加,这类失稳称为极值点失稳,也称

浅谈建筑结构振动控制技术

龙源期刊网 https://www.doczj.com/doc/1412449653.html, 浅谈建筑结构振动控制技术 作者:翟永兵 来源:《智富时代》2018年第03期 【摘要】近年来,随着我国经济的飞速发展,人民生活水平的日益提高,同时也带动了 我国建筑工程的快速发展,而在建筑工程结构振动控制技术中,传统的抗震结构体系是通过加强结构本身的性能从而达到“抗御”地震的目的。土木工程结构振动控制有利于降低结构在地震、流水、海浪、风、车辆等动力作用下结构所造成的损伤,能够有效地将结构抗震防灾能力相对增强。结构控制引起了世界各国地震工程界的广泛重视,是一种新型的结构抗震技术。但这种方法的作用与安全性相对是较低的,所以在这种不确定性的地震作用下,结构的安全性能并不能得到充分的保障,最后产生倒塌或遭到严重破坏,造成人员伤亡与巨大的经济损失。本文就建筑工程结构振动控制技术进行分析,并对其的发展进行讨论。 【关键词】建筑工程;震动控制;发展 一、结构控制的特点、发展与现状 (一)按控制对能量需求来划分 从控制对外部能量需求的角度,结构控制可分为:被动结构控制、主动结构控制、混合结构控制、半主动结构控制。除被动控制外,其他三种控制方式中的控制力全部或部分地根据反馈信号按照某种事先设计的控制律实时产生。主动结构控制效果较好,对环境有较强的适应力,但完全依赖外部能源,闭环稳定性比其他方式差。在被动控制中,控制力不是由反馈产生的。其主要优点是;成本低、不消耗外部能量、不会影响结构的稳定性;缺点是:对环境变化的适应力与控制效果不如其他方案。混合控制是指用主动控制来补充和改善被动控制性能的方案。由于混合了被动控制,因此减小了全主动控制方案中对能量的要求。半主动控制中通常包含某种对能量需求很低的可控设备,如可变节流孔阻尼器等作用时所需的外部能量通常比主动控制小得多。因此初步研究表明混合控制与半主动控制的性能大大优于被动控制,甚至可达到或超过主动控制的性能,并在稳定性与适用性方面要优于后者,因此成为当前研究的一个热点。 (二)按结构特性划分 从被控结构的特性划分,结构控制可分为柔性结构控制与刚性结构控制。其中柔性结构包括大型柔性空间结构、大跨度桥梁等;刚性结构则包括武器系统中稳定平台、车辆悬挂系统、多刚体机器人等。对于两类结构控制所用的主动控制设备也不相同,如在柔性结构控制中传感器与执行器常用的智能材料是分布智能材料,如压电材料;而刚性结构控制中传感器与执行器常用的智能材料是电智能材料,如磁致伸缩材料。

新型船舶动力装置基本情况和发展趋势

新型船舶动力装置基本情况和发展趋势船舶动力装置是船舶的核心设备,船舶动力装置只有正常运行,才能够为船舶的正常运行以及船员的日常生活提供保障。船舶动力装置由主动力装置、辅助动力装置和辅机及其设备共同组成,三大部分的相互协调共同为船舶提供源源不断的动力。在船舶动力装置中,主动力装置是提供推进动力的装置,其主要有蒸汽轮机、柴油机、燃气轮机、电动机和混合动力机几种主要类型,但新型船舶动力装置包括燃气轮机推进,喷水推进,吊舱推进,表面浆推进,超导磁推进,AIP 系统等。 一、柴油机动力装置 柴油机动力装置是以柴油为燃料的内燃机,其优点在于启动速度快、运行状态可靠和功率大等。柴油机动力装置是目前应用最为普遍的船舶动力装置,因此其技术成熟度也相对更高。柴油机动力装置在上世纪60年代开始全面取代了蒸汽轮机,成为最主流的船舶动力装置。柴油机动力装置分为四冲程柴油机和两冲程柴油机,其中二冲程柴油机的特点是转速相对较低,可以直接驱动螺旋机进行工作,主要应用于大中型远洋运输船舶上。而四冲程柴油机转速较高,一般主要应用于小型运输船、客船、军舰和豪华游艇上。 二、燃气轮机动力装置 燃气轮机动力装置是以油气作为燃料的动力装置,燃气轮机动力装置其突出的特点在于装置体积较少、重量轻、加速性能强,且燃气轮机动力装置运行过程中所产生的污染物远远少于柴油机动力装置。但是,燃气轮机动力装置也存在着较多的缺点和不足,如燃气轮机的燃料一一蒸馏油价格非常昂贵、燃气轮机油耗较高、经济性不高等,因此很难在船舶当中得到普及。目前,只有少部分的高速客船和军用舰艇上配备了燃气轮机动力装置。 三、电力推进装置

顾名思义是以电动机做功来推动船舶运行的动力装置,当前在船舶动力装置中被广泛使用的推进装置主要由电动机、原动机、变频器还有就是推进变压器以及控制调节器等构成。对于操纵性能要求不是特别高的船舰来说,经常使用的轴桨推进装置如可调桨以及定距桨等,对于操作性能要求相对高一点的船舶来说,通常采用的全回转推进器。电力推进装置工艺较柴油机动力装置要更为复杂, 但具有更好的经济性以及操纵空间,较为适合于多工况特种船舶。目前多数的电力推进装置还需要配备柴油机或者燃气轮机产生电力能源,为电动机提供能源。其主要优势在于: (1) 船上大型机械设备布置更灵活、有效空间更多、费用降低 (2) 电动机由电网供电,增加了系统的可靠性,提高了生命力 (3) 减少了维护的工作量; (4) 可以采用中高速不逆转原动机,以减少设备的体积和重量 (5) 可以采用低速电动机直接与推进轴连接,省去机械的减速齿轮 (6) 操纵灵活,机动性能好 (7) 易于获得理想的拖动特性 (8) 减小螺旋桨等机械振动和噪声、环境更好 船舶电力系统和船舶电力推进系统一体化供电的船舶综合电力系统是未来发展的新趋势,该系统将船舶的电力系统和推进系统有机的组合在一起,把动力机械能源转换为电力,提供给推进设备和船上的其他设备使用,使得船舶日用供电和推进供电一体化,实现电力的综合利用和统一管理。并且伴随着船舶事业不断推进发展,这样的技能必定会得到更为广泛的应用。 在电推进动力系统中吊舱式电力推进系统是当今备受关注和重视的推进方式。吊舱式电力推进是一种全方位转动的装置,电动机直接驱动螺旋桨,具有良

列车-桥梁系统共振研究现状及预防措施

列车-桥梁系统共振研究现状及预防措施 一.列车-桥梁系统共振研究现状 列车通过桥梁时将引起桥梁结构的振动,而桥梁的振动又反过来影响车辆的振动,这种相互作用、相互影响的问题就是车辆与桥梁之间振动耦合的问题。人类自1825年建成第一条铁路以来,便开始了对列车与桥梁相互作用研究探索的漫长历史过程。1849年Willis提交了第一份关于桥梁振动研究的报告,探讨了Chester铁路桥梁塌毁的原因。在随后的近100年时间内,由于当时力学水平、计算技术、方法及手段的落后,研究中通常将车辆、桥梁简单地看作两个独立的模型,在这种模型里,机车车辆被简化成单个或多个集中力,或者将其各种动力因素简化为简谐力,而桥梁被处理成均布等截面梁,采用级数展开的方法进行近似的求解,这些方法基本上只能算是解析法或半解析法。 20世纪60、70年代以来,电子计算机的出现以及有限元技术的发展,使得车桥耦合振动研究有了飞速的发展,从车桥系统的力学模型、激励源的模拟到研究方法和计算手段等都有了质的飞跃,人们可以建立比较真实的车辆和桥梁计算模型,然后用数值模拟法计算车辆和桥梁系统的耦合振动响应,美国、日本、欧洲和国内诸多学者为车桥耦合振动理论的发展做出了重要贡献,在车辆模型、桥梁模型以及车桥系统耦合振动方面取得了不少成就。 近年来,随着既有铁路提高行车速度和高速铁路发展的要求,车辆与结构的耦合振动问题变得越来越重要,目前世界各国都在更深入地开展这方面研究。对于车桥耦合振动问题的研究方法可以分为两类:原型实验和理论分析。原型实验是采用测量仪器对于实车或实验车通过桥梁时的动力反应进行记录,并对实测资料进行分析研究,基于实测值找出车桥耦合振动的规律性。有限元出现之前,试验测试是研究的主体,通过对车辆及桥梁状态进行大规模原位试验测试,总结出经验公式或理论,用于指导桥梁设计。理论分析是对车桥系统做一定简化假定,建立系统的相互作用的运动方程式或采用有限元方法求解出结构的动力反应,对该问题进行研究。有限元出现以后,试验与理论分析密切结合,可节省大量的试验工作量。 车一线一桥动力相互作用涉及到车辆(包括车体、转向架和轮轴)、线路和桥梁结构的自身状态等诸多问题,并受到许多随机因素的影响,这就使得该问题变得非常复杂。实测值在一定程度上可以反应车桥耦合系统的实际情况及规律性,但是因测量方法和测量手段的限制,对该问题的研究也在不断地深入。但是只靠试验,就只能随着桥梁结构类型、桥梁跨度、

土木工程结构振动控制技术及其应用研究.

万方数据

万方数据 万方数据 《6? 善s. 曼s. 蓑s. 辎4. 图6模拟结构阻尼比随TLMD频率比变化曲线 模拟结构阻尼比达到极值。频率比在0.96~0.98区间,即频率比在最优值附近改变±1%时,模拟结构阻尼比变化较为平缓且均在6%以上。

实桥通常采用多重TLMD(MTLMD进行减振,为此在室内进行了MTLMD减振性能试验。分别将1~4台频率和阻尼均调为优化值的减振器固定到上述模拟结构上进行试验,得到模拟结构阻尼比随TLMD总质量比变化的曲线如图7所示,按TMD 理论计算的相应曲线亦绘于图7。从图7可知,模拟结构的阻尼比随TLMD总质量比增加而增大,4台TLMD(质量比1.91%时,模拟结构阻尼比达到7.13%,抑振效果非常好。1~4台TLMD 的试验值与同质量比下的TMD理论计算值比较,模拟结构阻尼比分别提高27%、23%、35%和46%,说明新型TLMD双调谐减振器由于同时具有TLD 和TMD的抑振效能,抑振性能在TMD基础上有大幅提升。 图7MTLMD抑振性能的试验值与TMD理论僵对比3.1.3实桥试验 选取九江长江大桥三大拱中2根典型吊杆(C32A32和C10A10,对该新型减振器进行了减振性能实桥试验。在每根吊杆上安装4台活动质量均为10kg的减振器,如图8所示。首先撤下吊杆原有TMD减振器,分别进行激振并得到吊杆自身的自振特性;然后安装试验用新型减振器TLMD对吊杆激振,进行新型TLMD减振性能试验;最后对撤下的既有TMD减振器进行检修,使之恢复最佳状态,重新安装到吊杆上进行综合减振性能试验。试验结果如图9所示。 由图9可知,吊杆C32A32和C10A10在TLMD质量比分别为1.57%与1.56%的情形下, 图8新型TLMD实桥安装 图9实桥试验结果 目标振型阻尼比达到了5.09%和3.58%,阻尼分别提高了50.9倍和35.8倍。对非目标振型,结构阻尼比也有所提高。对比原TMD在质量比为1.9%时,目标振型阻尼比为3%左右,TLMD具有更好的减振效果。TLMD与TMD减振器共同工作时,目标振型的结构阻尼比进一步增加到5.47%和4.98%,非目标振型的结构阻尼比有更明显的提高。

船体结构振动发展现状

大连理工大学研究生院网络学刊 NETWORK JOURNAL OF GRADUATE SCHOOL OF DUT 船体振动发展现状 摘要:本文主要介绍了2000年以后在船体振动方面的新进展,从发表的论文中归纳出近几年研究船 体振动的新发展。 关键词:总振动;局部振动;参考文献;减振; 0 引言 当船舶在海上航行时,船体结构不可避免地会很出现振动现象。早在19世纪后期,船体振动就引起了人们的注意。近年来,随着航运事业的发展,船舶吨位越来越大,主机功率和转速不断提高,引起船体振动的激振力也相应地增大了。同时,为了减小船舶构建的尺寸,减轻船体的重量,让人们广泛采用高强度钢作为造船材料,这样使得船体结构强度也跟着减小,就更易激起较大的船体振动。 1 船体总振动 计算结构的振动模态,必须首先确定力学模型和计算方法。用于船体振动计算的力学模型主要有一维梁模型、二维平面模型、三维立体模型和混合模型。计算方法主要有两类:一类以船梁理论为基础,一类以有限元法为基础。 根据文献“整船结构振动分析中的几个问题”(2006)大概可归纳出整船结构振动计算分析中涉及到的力学模型的建立、模型的结构参数、计算方法等3个问题的研究状况,具体如下:用于计算船舶整体结构振动的力学模型主要有:一维梁模型、双梁及三梁模型、二维平面模型、三维模型和混合模型。 结构参数包括附连水质量和结构的阻尼。其中,计算附连水质量的主要方法有刘威士、陶德等人的计算公式和图谱的方法,利用Green函数的边界元法以及其它一些方法;结构的阻尼系数主要是由经验和试验获得,目前主要的试验方法有对数衰减法、响应曲线法、相位研究法(相频特性曲线法)、共振最大振幅法。 计算方法的类型主要有通用程序法(包括有限元法和边界元法)、自编程序法(包括有限元法、迁移矩阵法和边界元法)、简易公式法、数据库法。 1.1 关于船体的总振动计算 1.1.1“基于等效静力算法的船舶板架结构动力响应优化设计”(2009): 文章本文提出了一种将等效静力优化算法和分级优化算法相结合的船舶板架结构动力响应优化方法。首先利用ANSYS进行结构动力响应分析,以动荷载和等效静荷载产生相同的位移场为基础,将动荷载转化为一系列的等效静荷载;然后利用获得的等效静荷载,在MATLAB中采用分级优化算法,进行一系列的结构静力优化设计;最后再以静力优化得到的结构参数输入到ANSYS,进行下一轮结构动力响应分析,如此迭代直至获得收敛的优化结果计算结果表明,提出的优化方法大大减少了结构动力优化的计算时间,具有较好的收敛效率。 1.1.2“夹层结构振动声辐射特性研究”(2009): 本文在前人工作的基础上,将芯层垂向压缩变形的影响引入到夹层结构的模型中来,并探讨了考虑芯层垂向压缩变形影响在夹层结构自由振动、响应计算中的合理性。推导了一种考虑芯层垂向压缩变形影响的夹层梁的动态刚度矩阵,给动态刚度矩阵法提供了一种新的单元类型。 1.1.3“船体薄壁梁弯扭耦合振动的流固耦合分析”(2009): 文章采用耦合有限元/边界元法计算水中船体的弯扭耦合振动。文中用一维薄壁梁有限元模拟船体梁,在横剖面处用二维边界元方法计算结构表面声压,推导出表征流体对振动特性影响的附加质量阵,编制了用流固耦合方法求解船体振动模态的程序。通过与采用ANSYS软件进行耦合场分析以及刘易

相关主题
文本预览
相关文档 最新文档