当前位置:文档之家› 驱动桥有限元分析(1)

驱动桥有限元分析(1)

驱动桥有限元分析(1)
驱动桥有限元分析(1)

基于ANSYS的汽车驱动桥壳的有限元分

武汉理工…-icad

有限元法是一种在工程分析中常用的解决复杂问题的近似数值分析方法,以其在机械结构强度和刚度分析方面具有较高的计算精度而得到普遍应用,特别是在材料应力、应变的线性范围更是如此。在汽车设计领域,无论是车身、车架的计算仿真,还是发动机的曲轴以及传动系统的计算均

使用到该方法。

有限元分析最基本的研究方法就是“结构离散→单元分析→整体求解”的过程。经过近50年的发展,有限元法的理论日趋完善,已经开发出了一批通用和专用的有限元软件。ANSYS是当前国际上流行的有限元分析软件,广泛地应用于各行各业,是一种通用程序,可以用它进行所有行业的几乎任何类型的有限元分析,如汽车、宇航、铁路、机械和电子等行业。ANSYS软件将实体建模、系统组装、有限元前后处理、有限元求解和系统动态分析等集成一体,最大限度地满足工程设计分析的需要。通过结合ANSYS软件,能高效准确地建立分析构件的三维实体模型,自动生成有限元网格,建立相应的约束及载荷工况,并自动进行有限元求解,对模态分析计算结果进行图形显示和结果输出,对结构的动态特性作出评价。它包括结构分析、模态分析、磁场分析、热分析和多物理场分析等众多功能模块。

汽车驱动桥壳是汽车上的主要承载构件之一,其作用主要有:支撑并保护主减速器、差速器和半轴等,使左右驱动车轮的轴向相对位置固定;同从动桥一起支撑车架及其上的各总成质量;汽车行驶时,承受由车轮传来的路面反作用力和力矩并经悬架传给车架等。驱动桥壳应有足够的强度和刚度且质量小,并便于主减速器的拆装和调整。由于桥壳的尺寸和质量比较大,制造较困难,故其结构型式应在满足使用要求的前提下应尽可能便于制造。驱动桥壳分为整体式桥壳,分段式桥壳和组合式桥壳三类。整体式桥壳具有较大的强度和刚度,且便于主减速器的装配、调整和维修,因此普遍应用于各类汽车上。但是由于其形状复杂,因此应力计算比较困难。根据汽车设计理论,驱动桥壳的常规设计方法是将桥壳看成一个简支梁并校核几种典型计算工况下某些特定断面的最大应力值,然后考虑一个安全系数来确定工作应力,这种设计方法有很多局限性。因此近年来,许多研究人员利用有限元方法对驱动桥壳进行了计算和分析。本文中所研究的对象是在某型号货车上使用的整体式桥壳。

一、驱动桥壳强度分析计算

可将桥壳视为一空心横梁,两端经轮毂轴承支撑于车轮上,在钢板弹簧座处桥壳承受汽车的簧上载荷,而沿左右轮胎中心线,地面给轮胎以反力(双胎时则沿双胎中心),桥壳承受此力与车轮重

力之差,受力如图1所示。

图1 驱动桥壳的受力简图

桥壳强度计算可简化成三种典型的工况,只要在这三种载荷计算工况下桥壳的强度得到保证,就认为该桥壳在汽车行驶条件下是可靠的。

1)牵引力或制动力最大时,桥壳钢板弹簧座处危险断面的弯曲应力σ和扭转切应力τ分别为:

式中:

——地面对车轮垂直反力在桥壳板簧座处断面引起的垂直平面的弯矩,

;(b为轮胎中心平面到板簧座之间的横向距离)

——牵引力或制动力(一侧车轮上的)在水平面内引起的弯矩,;

——牵引或制动时,上述危险断面所受转矩,;

——分别为危险断面垂直平面和水平面弯曲的抗弯截面系数及抗扭截

面系数,之间的关系如表1所示。

2)当侧向力最大时,外轮和内轮上的垂直反力和,以及桥壳内、外板簧座处断

面的弯曲应力、之间的关系,分别为:

3)当汽车通过不平路面时,危险断面的弯曲应力为:

式中k为动载荷系数。对于轿车,k取1.75;对于货车,k取2.0;对于越野车,k取2.5。

桥壳的许用弯曲应力为300MPa~500MPa,许用扭转切应力为150MPa~400MPa。可锻铸铁桥壳

取较小值,钢板冲压焊接桥壳取较大值。

上述桥壳强度的传统计算方法,只能算出某一断面的应力平均值,而不能完全反映桥壳上应力及其分布的真实情况。因此,它仅用于对桥壳强度的验算,或用作与其他车型的桥壳强度进行比较,而不能用于计算桥壳上某点(例如应力集中点)的真实应力值。使用有限元法对驱动桥壳进行强度分析,只要计算模型简化得当,受力约束处理合理,就可以得到比较详细的应力与变形的分布情况,这

些都是上述传统计算方法所难以办到的。

二、实现方法

一般来说,在整个有限元求解过程中最重要的环节是有限元前处理模型的建立。这一般包括几何建模、定义材料属性和实常数(要根据单元的几何特性来设置,有些单元没有实常数)、定义单元类型,网格划分、添加约束与载荷等。由于汽车零部件结构形状较为复杂,包含许多复杂曲面,而一般有限元软件所提供的几何建模工具功能相当有限,难以快速方便地对其建模。因此,针对较复杂的结构,可以先在三维CAD软件(如在UG中)建立几何模型,然后在有限元分析软件ANSYS中通过输入接口读入实体模型,最后在ANSYS中完成其分析过程。

三、有限元计算模型的建立

被分析汽车的参数为:汽车的名义装载量m1=4.0t,满载轴荷时后桥负荷m2=6.0t,车轮中心线至钢板弹簧座中心距离b=370mm,两钢板弹簧座中心间的距离s=1004mm,桥壳本身的重力G0=931.6N,桥壳设计的安全系数为7,弹簧上表面面积5000mm2,由此可得到面载荷为5.88MPa。根据国家标准,当承受满载轴荷时,桥壳最大变形量不能超过1.5mm/m;承受2.5倍满载轴荷时,桥壳不能出现断裂和塑性变形。所以垂直方向的载荷取满载轴荷的2.5倍,即5.88×2.5=14.78MPa。

首先在UG中建立起驱动桥壳的三维模型。在建立桥壳的有限元模型时,先对驱动桥壳实体做必要的简化。对主要承载件,均保留其原结构形状,以反映其力学特性,对非承载件进行了一定程度

的简化。简化结果如图2所示。

图2 桥壳的三维模型

然后将模型导入到ANSYS中,对其进行网格划分,划分网格时选用具有较高的刚度及计算精度的四面体10节点92号单元,这样将该零件划分为60183个节点,29805个单元,如图3所示。

图3 桥壳的有限元模型

该驱动桥壳的本体材料为8mm厚的09SiVL钢板,从材料手册中查出其弹性模量E=5MPa,泊松比μ=0.3,材料密度为7850。计算桥壳的垂直静弯曲刚度和静强度的方法是:将后桥两端固定,在弹簧座处施加载荷,将桥壳两端车轮中心线处全部约束,然后在弹簧座处施加规定载荷。

四、计算结果

在有限元模型中,驱动桥壳在2.5倍满载轴荷工况下,应力及位移云图分别如图4、图5所示,最大位移为0.469E-03m,最大应力为2185MPa,出现在半轴套管约束处。在不考虑由于约束影响造成的局部过大应力的情况下,应力较大值分布在钢板弹簧座的两侧,约为240MPa,远小于材料的许用应力=510MPa~610MPa。所以,该桥壳是符合结构强度要求的。

图4 2.5倍满载荷条件下的Mises应力云图

图5 2.5倍满载荷条件下的Mises位移云图

五、结束语

通过建立汽车零部件、结构或系统的有限元计算模型,或利用UG等CAD软件建立3D参数化模型进行转化,在CAE软件中进行仿真分析和计算,可以降低设计开发成本,减少试验次数,缩短设计开发周期,提高产品质量,使得汽车在轻量化、舒适性和操纵稳定性方面得到改进和提高,具有非常

重大的实际意义。

出师表

两汉:诸葛亮

先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。然侍卫之臣不懈于内,忠志之士忘身于外者,盖追先帝之殊遇,欲报之于陛下也。诚宜开张圣听,以光先帝遗德,恢弘志士之气,不宜妄自菲薄,引喻失义,以塞忠谏之路也。

宫中府中,俱为一体;陟罚臧否,不宜异同。若有作奸犯科及为忠善者,宜付有司论其刑赏,以昭陛下平明之理;不宜偏私,使内外异法也。

侍中、侍郎郭攸之、费祎、董允等,此皆良实,志虑忠纯,是以先帝简拔以遗陛下:愚以为宫中之事,事无大小,悉以咨之,然后施行,必能裨补阙漏,有所广益。

将军向宠,性行淑均,晓畅军事,试用于昔日,先帝称之曰“能”,是以众议举宠为督:愚以为营中之事,悉以咨之,必能使行阵和睦,优劣得所。

亲贤臣,远小人,此先汉所以兴隆也;亲小人,远贤臣,此后汉所以倾颓也。先帝在时,每与臣论此事,未尝不叹息痛恨于桓、灵也。侍中、尚书、长史、参军,此悉贞良死节之臣,愿陛下亲之、信之,则汉室之隆,可计日而待也。

臣本布衣,躬耕于南阳,苟全性命于乱世,不求闻达于诸侯。先帝不以臣卑鄙,猥自枉屈,三顾臣于草庐之中,咨臣以当世之事,由是感激,遂许先帝以驱驰。后值倾覆,受任于败军之际,奉命于危难之间,尔来二十有一年矣。

先帝知臣谨慎,故临崩寄臣以大事也。受命以来,夙夜忧叹,恐托付不效,以伤先帝之明;故五月渡泸,深入不毛。今南方已定,兵甲已足,当奖率三军,北定中原,庶竭驽钝,攘除奸凶,兴复汉室,还于旧都。此臣所以报先帝而忠陛下之职分也。至于斟酌损益,进尽忠言,则攸之、祎、允之任也。

愿陛下托臣以讨贼兴复之效,不效,则治臣之罪,以告先帝之灵。若无兴德之言,则责攸之、祎、允等之慢,以彰其咎;陛下亦宜自谋,以咨诹善道,察纳雅言,深追先帝遗诏。臣不胜受恩感激。

今当远离,临表涕零,不知所言。

驱动桥壳有限元分析

驱动桥壳有限元分析 汽车驱动桥壳的功用是支承并保护主减速器,差速器和半轴等,使左右驱动车轮的轴向相对位置固定,并且支承车架及其上的各总成质量。 1 驱动桥壳设计要求 在设计选用驱动桥壳时,要满足以下设计要求: (1)应该具有足够的强度和刚度,以保证主减速器齿轮啮合正常,并不使半轴产生附加弯曲应力。 (2)在保证强度和刚度的情况下,尽量减小质量以提高汽车行驶的平顺性。 (3)保证足够的离地间隙。 (4)结构工艺性好,成本低。 (5)保护装于其中的传动系统部件和防止泥水浸入。 (6)拆装,调整,维修方便。 2 驱动桥壳类型确定和材料选择 驱动桥壳通常分为整体式桥壳、分段式桥壳,前者强度和钢度较大,便于主减速的装配、调整和维修。普遍用于各类汽车上;多段式桥壳较整体式易于铸造,加工简便,但维修保养不便,汽车较少采用。 本设计选用整体式桥壳。后桥壳体为整体铸造,半轴套管从两端压入桥壳中。后桥壳前部和主减速器连接,后部为可拆式后盖,后桥壳上装有通气塞。 图1 驱动桥壳结构尺寸 1 1

2 本设计中的驱动桥壳总长为1800mm ,簧板距为970mm ,桥壳厚度为8mm ,选用材料为可锻铸铁,牌号为KT350-10,弹性模量为Mpa 61055.1 ,泊松比为0.23,密度为3/7200m kg ,抗拉强度为350Mpa ,屈服强度为200Mpa 。 这种材料有着较高的强度、塑性和冲击韧度,可用于承受较高的冲击,振动及扭转载荷下工作的零件。 3 对驱动桥壳进行有限元分析 ABAQUS 是一套功能强大的有限元分析软件,特别是在非线性分析领域,其技术和特点更是突出,它融结构、流体、传热学、声学、电学及热固耦合、流固耦合等于一体,由于其功能强大,再加上其操作界面人性化,越来越受到人们的欢迎。 在对桥壳进行有限元分析,首先将CATIA 软件设计的驱动桥壳模型导入ABAQUS 软件中,并将上述材料属性添加到模型。 图2 将模型导入ABAQUS 并赋予属性 由于本设计的桥壳为整体式桥壳,整体式桥壳与轮辋在凸缘盘外侧位置通过轴承相连接,因此可以将此处位置的约束看成全自由度约束。桥壳通过板簧座位置与车体相连接,此处位置承受车体载荷。 本设计中车体满轴载荷(后)为6910kg ,考虑到车满载状况下行驶通过不平路面,将受冲击载荷,所以取2.5倍满轴载荷加于板簧座上,即总质量为17275kg ,每个板簧座承受86375kg 。

驱动桥的工作原理

驱动桥的工作原理 驱动桥处于动力传动系的末端,其基本功能有如下三个方面: 1、增大由传动轴或变速器传来的转矩,并将动力传到驱动轮,产生牵引力。 2、通过差速器将动力合理的分配给左、右驱动轮,使左右驱动轮有合理的转速 差,使汽车在不同路况下行驶。 3、承受作用于路面和车架或车身之间的垂直力、纵向力和横向力。 驱动桥的组成: 驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。 1-后桥壳;2-差速器壳;3-差速器行星齿轮;4-差速器半轴齿轮;5-半轴;6-主减速器从动齿轮;7-主减速器主动锥齿轮 对一些载重较大的载重汽车,要求较大的减速比,用单级主减速器传动,则从动齿轮的直径就必须增大,会影响驱动桥的离地间隙,所以采用两次减速。通常称为双级减速器。双级减速器有两组减速齿轮,实现两次减速增扭。 A、在主减速器内完成双级减速 为提高锥形齿轮副的啮合平稳性和强度,第一级减速齿轮副是螺旋锥齿轮。二级齿轮副是斜齿圆柱齿轮。 主动圆锥齿轮旋转,带动从动圆银齿轮旋转,从而完成一级减速。第二级减速的主动圆柱齿轮与从动圆锥齿轮同轴而一起旋转,并带动从动圆柱齿轮旋转,进行第二级减速。因从动圆柱齿轮安装于差速器外壳上,所以,当从动圆柱齿轮转动时,通过差速器和半轴即驱动车轮转动 B、轮边减速: 将二级减速器设计在轮毂中,其结构是半轴的末端是小直径的外齿轮,周围有一组行星齿轮(一般5个),轮毂内有齿包围这组行星齿轮,以达到减速驱动的目的。 优点: a、由于半轴在轮边减速器之前,所承受扭矩减小,减速性能更好(驱动力加大); b、半轴、差速器等尺寸减小,车辆通过性能大大提高。 缺点: a、结构复杂,成本增加。 b、载质量大、平顺性小(故只用于重型车)。

汽车前驱动桥的结构设计

本科学生毕业设计 汽车前驱动桥的结构设计 系部名称:汽车与交通工程学院 专业班级:车辆工程 XX班 学生姓名:XXX 指导教师:XXX 职称:实验师 黑龙江工程学院 二○一三年六月

The Graduation Design for Bachelor's Degree The Structural Design of The Car Front Drive Axle Candidate:XXX Specialty:Vehicle Engineering Class:XX Supervisor:Experimentalist XX Heilongjiang Institute of Technology 2013-06·Harbin

摘要 随着现代车型的发展,普通汽车已经逐渐走进每个人的生活中。车桥设计是汽车设计中重要的环节之一,国产驱动桥在国内市场占据了绝大部分份额,但仍有一定数量的车桥依赖进口,国产车桥与国际先进水平仍有一定差距。 本次设计首先通过查阅近几年来有关国内外前驱动桥设计的文献资料,综合所学专业知识,了解并掌握了汽车前驱动桥结构及工作原理,根据所给的汽车参数制定了相应的设计方案。 然后通过查阅相关标准、手册资料,确定了驱动桥的主要零部件的主要设计参数,完成转向器、万向节、主减速器、差速器、半轴及桥壳的结构和尺寸设计计算,并进行相应校核,再根据所计算选取的参数画出了转向驱动桥的整体装配图、差速器装配图以及部分零件图。 关键词:前驱动;转向驱动桥;主减速器;差速器;半轴;桥壳

ABSTRACT As the development of the auto industry, car has gradually become part of everyone's life. Axle design is one of the important parts of automotive design, domestic drive axle in the domestic market accounted for the lion's share, but there is still a certain number of axles dependent on imports, there is still a certain gap between domestic axle and the international advanced level. Firstly, this design is lookup of the domestic and international front drive axle design documents in recent years, integrated the knowledge of our expertise we had knew and mastered the car’s front drive axle structure and working principle, formulated according to the vehicle parameters to the corresponding design programs. Then refered to the relevant standard, manual data to determine the main design parameters of the main components of the drive axle, completed the structure and size of the steering, universal joints, main gear box, differential, axle and axle housing, and check, according to the calculated parameters selected to draw the overall steering drive axle assembly drawings, the differential assembly drawings as well as some parts diagram. Key words: Front drive;Steering drive axle;Main reducer;Differential;Axle;Axle housing

基于ANSYS的汽车驱动桥壳的有限元分析

基于ANSYS的汽车驱动桥壳的有限元分析 有限元法是一种在工程分析中常用的解决复杂问题的近似数值分析方法,以其在机械结构强度和刚度分析方面具有较高的计算精度而得到普遍应用,特别是在材料应力、应变的线性范围更是如此。在汽车设计领域,无论是车身、车架的计算仿真,还是发动机的曲轴以及传动系统的计算均使用到该方法。 有限元分析最基本的研究方法就是“结构离散→单元分析→整体求解”的过程。经过近50年的发展,有限元法的理论日趋完善,已经开发出了一批通用和专用的有限元软件。ANSYS是当前国际上流行的有限元分析软件,广泛地应用于各行各业,是一种通用程序,可以用它进行所有行业的几乎任何类型的有限元分析,如汽车、宇航、铁路、机械和电子等行业。ANSYS软件将实体建模、系统组装、有限元前后处理、有限元求解和系统动态分析等集成一体,最大限度地满足工程设计分析的需要。通过结合ANSYS软件,能高效准确地建立分析构件的三维实体模型,自动生成有限元网格,建立相应的约束及载荷工况,并自动进行有限元求解,对模态分析计算结果进行图形显示和结果输出,对结构的动态特性作出评价。它包括结构分析、模态分析、磁场分析、热分析和多物理场分析等众多功能模块。 汽车驱动桥壳是汽车上的主要承载构件之一,其作用主要有:支撑并保护主减速器、差速器和半轴等,使左右驱动车轮的轴向相对位置固定;同从动桥一起支撑车架及其上的各总成质量;汽车行驶时,承受由车轮传来的路面反作用力和力矩并经悬架传给车架等。驱动桥壳应有足够的强度和刚度且质量小,并便于主减速器的拆装和调整。由于桥壳的尺寸和质量比较大,制造较困难,故其结构型式应在满足使用要求的前提下应尽可能便于制造。驱动桥壳分为整体式桥壳,分段式桥壳和组合式桥壳三类。整体式桥壳具有较大的强度和刚度,且便于主减速器的装配、调整和维修,因此普遍应用于各类汽车上。但是由于其形状复杂,因此应力计算比较困难。根据汽车设计理论,驱动桥壳的常规设计方法是将桥壳看成一个简支梁并校核几种典型计算工况下某些特定断面的最大应力值,然后考虑一个安全系数来确定工作应力,这种设计方法有很多局限性。因此近年来,许多研究人员利用有限元方法对驱动桥壳进行了计算和分析。本文中所研究的对象是在某型号货车上使用的整体式桥壳。 一、驱动桥壳强度分析计算 可将桥壳视为一空心横梁,两端经轮毂轴承支撑于车轮上,在钢板弹簧座处桥壳承受汽车的簧上载荷,而沿左右轮胎中心线,地面给轮胎以反力(双胎时则沿双胎中心),桥壳承受此力与车轮重力之差,受力如图1所示。

NS SM72295光伏全桥驱动解决方案

NS SM72295光伏全桥驱动解决方案 NS公司的SM72295是能驱动全桥连接的4个分立N沟MOSFET的驱动器,可提供峰值电流3A,并集成了电压高达115VDC高速自举二极管,电流检测可编程的2个跨导放大器来完成,并能去掉波纹电流为控制电路提供平均电流信息.主要用在微型逆变器,功率优化器,充电器和屏安全系统.本文介绍了SM72295主要特性, 功能方框图和典型应用电路图.The SM72295 is designed to drive 4 discrete N type MOSFET’s in a full bridge configuration. The drivers provide 3A of peak current for fast efficient switching and integrated high speed bootstrap diodes. Current sensing is provided by 2 transconductance amplifiers with externally programmable gain and filtering to remove ripple current to provide average current information to the control circuit. The current sense amplifiers have buffered outputs available to provide a low impedance interface to an A/D converter if needed. An externally programmable input over voltage comparator is also included to shutdown all outputs. Under voltage lockout with a PGOOD indicator prevents the drivers from operating if VCC is too low.SM72295主要特性:■ Renewable Energy Grade■ Dual Half Bridge MOSFET Drivers■ Integrated 100V bootstrap diodes■ Independent High and Low driver logic inputs■ Bootstrap supply voltage range up to 115V DC■ Two current sense amplifiers with externally programmable gain and buffered outputs■ Programmable over voltage protection■ Supply rail under-voltage lockouts with power good Indicator图1.SM72295功能方框图图2.SM72295典型应用电路图详情请见:/ds/SM/SM72295.pdf

驱动桥壳毕业设计

驱动桥壳毕业设计 【篇一:驱动桥毕业设计111】 某型重卡驱动桥设计 摘要 驱动桥是构成汽车的四大总成之一,一般由主减速器、差速器、车 轮传动装置和驱动桥壳等组成,它位于传动系末端,其基本作用是 增矩、降速,承受作用于路面和车架或车身之间的力。它的性能好 坏直接影响整车性能,而对于载重汽车显得尤为重要,采用传动效 率高的单级减速驱动桥已经成为未来载重汽车的发展方向。 本文参照传统驱动桥的设计方法进行了载重汽车驱动桥的设计本次 设计首先对驱动桥的特点进行了说明,根据给定的数据确定汽车总 体参数,再确定主减速器、差速器、半轴和桥壳的结构类型及参数,并对其强度进行校核。数据确定后,利用autocad建立二维图,再 用catia软件建立三维模型,最后用caita中的分析模块对驱动桥壳 进行有限元分析。 关键词:驱动桥;cad;catia;有限元分析 abstract drivie axle is one of the four parts of a car, it is generally constituted by the main gear box, the differential device, the wheel transmission device and the driving axle shell and so on it is at the end of the powertrain.its basic function is increasing the torque and reducing speed and bearing the force between the road and the frame or body.its performance will have a direct impact on automobile performance,and it is particularly important for the truck. using single stage and high transmission efficiency of the drive axle has become the development direction of the future trucks. this article referred to the traditional driving axles design method to carry on the truck driving axles design.in this design,first part is the introduction of the characteristics of the drive axle,according to the given date to calculate the parameters of the automobile,then confirm the structure types and parameters of the main reducer, differential mechanism,half shaft and axle housing,then check the strength and life of them.after confirming the

1章4节驱动桥

第四节驱动桥 汽车驱动桥的功用是把由万向传动装置或直接由变速器传来的转矩传递给左、右驱动车轮,实现降速增扭、改变转矩的传递方向,实现两侧车轮的差速,承受作用于路面和车架或车厢之间的各向力。 驱动桥应能保证具有合适的主减速比,使汽车具有良好的动力性和经济性;具有较大的离地间隙以保证良好的通过性;尽可能减轻重量以提高行驶的平顺性。 一、驱动桥的组成 一般汽车驱动桥包括主减速器、差速器、半轴和驱动桥壳等组成,如图1-4-1所示。 发动机的动力经离合器、变速器(或分动器)、万向传动装置输入驱动桥,首先传到主减速器 图1-4-1 非断开式驱动桥图1-4-2 断开式驱动桥 1-驱动桥壳2-主减速器3-差速器4-半轴5-轮毂 1-主减速器 2-半袖 3-弹性元件 4-减振器 5-车轮 6-摆臂 7-摆臂轴 2,增大转矩降低转速后,再由差速器3分配给左右半轴4,最后通过半轴外端的凸缘盘传至驱动车轮的轮毂5。驱动桥壳1由主减速器壳和半轴套管组成。轮毂借助轴承支承在半轴套管上。 二、驱动桥的类型 驱动桥按其半轴套管与主减速器壳体的连接方式可分为非断开式(或称整体式)驱动桥和断开式驱动桥两种。 在非断开式驱动桥(图1-4-1)中,半轴套管与主减速器壳刚性连成一体,整个驱动桥通过非独立弹性悬架与车架连接,故左、右半轴和驱动轮相对主减速器没有相对运动,亦称为整体式驱动桥。其结构简单,但平顺性差,一般多用于普通车辆。 在图1-4-2中,左、右半轴2的内端通过万向节与主减速器1相连,外端通过万向节与驱动轮相连,主减速器固连于车架上,而左、右驱动轮则分别通过悬架与车架相连。这样,两侧驱动轮就可以彼此独立地相对与主减速器上下跳动。因此,驱动桥壳分成左右两段并通过铰链与半轴连接,故称这种驱动桥为断开式驱动桥。这种驱动桥为适应车轮绕摆臂轴7上下跳动的需要,差速器与轮毂之间的半轴两端用万向节连接。 断开式驱动桥的优点是可以提高汽车行驶平顺性和通过性,相应采用的悬架为独立悬架。其缺点是结构复杂,制造成本高,故许多轿车和越野汽车的驱动桥采用独立悬架。 若驱动桥同时兼作转向桥时,则此类驱动桥称为转向驱动桥,它与车架之间可以是非独立

汽车驱动桥桥壳的有限元分析(牟建宏)

汽车驱动桥桥壳的有限元分析 牟建宏 (西南大学工程技术学院,北碚 400715) 摘要:用任意三维软件建立了驱动桥壳的三维实体模型。通过对驱动桥壳进行有限元分析(在此仅进行静力学分析)。通过有限元进行应力计算,判断驱动桥壳每m轮距最大变形量和垂直弯曲后背系数是否符合要求。为驱动桥壳的结构改进及优化设计提供了理论依据。关键词:驱动桥壳;有限元分析;ANSYS 0引言 驱动桥壳是汽车上重要的承载件和传力件。非断开式驱动桥壳支承汽车重量,并将载荷传给车轮。作用在驱动车轮上的牵引力、制动力、侧向力、垂向力也是经过桥壳传到悬挂及车架或车厢上[1]。因此,驱动桥壳的使用寿命直接影响汽车的有效使用寿命。合理地设计驱动桥壳,使其具有足够的强度、刚度和良好的动态特性,减少桥壳的质量,有利于降低动载荷,提高汽车行驶的平顺性和舒适性。而驱动桥壳形状复杂,应力计算比较困难,所以有限元法是理想的计算工具。1有限元法的简介 1.1有限元法的定义 有限元法(finite element method)是一种高效能、常用的数值计算方法。科学计算领域,常常需要求解各类微分方程,而许多微分方程的解析解一般很难得到,使用有限元法将微分方程离散化后,可以编制程序,使用计算机辅助求解。有限元法在早期是以变分原理

为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法(Galerkin)或最小二乘法等同样获得了有限元方程,因而有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系[2]。 1.2有限元法的基本原理 将连续的求解域离散为一组单元的组合体,用在每个单元假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表达。从而使一个连续的无限自由度问题变成离散的有限自由度问题[3]。 1.3有限元分析的基本步骤 第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。 第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。显然单元越小(网格越细)则离散域的近似程度越好,计算结果也越精确,但计算量将增大,因此求解域的离散化是有限元法的核心技术之一。 第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。

驱动桥有限元分析(1)

基于ANSYS的汽车驱动桥壳的有限元分 析 武汉理工…-icad 有限元法是一种在工程分析中常用的解决复杂问题的近似数值分析方法,以其在机械结构强度和刚度分析方面具有较高的计算精度而得到普遍应用,特别是在材料应力、应变的线性范围更是如此。在汽车设计领域,无论是车身、车架的计算仿真,还是发动机的曲轴以及传动系统的计算均 使用到该方法。 有限元分析最基本的研究方法就是“结构离散→单元分析→整体求解”的过程。经过近50年的发展,有限元法的理论日趋完善,已经开发出了一批通用和专用的有限元软件。ANSYS是当前国际上流行的有限元分析软件,广泛地应用于各行各业,是一种通用程序,可以用它进行所有行业的几乎任何类型的有限元分析,如汽车、宇航、铁路、机械和电子等行业。ANSYS软件将实体建模、系统组装、有限元前后处理、有限元求解和系统动态分析等集成一体,最大限度地满足工程设计分析的需要。通过结合ANSYS软件,能高效准确地建立分析构件的三维实体模型,自动生成有限元网格,建立相应的约束及载荷工况,并自动进行有限元求解,对模态分析计算结果进行图形显示和结果输出,对结构的动态特性作出评价。它包括结构分析、模态分析、磁场分析、热分析和多物理场分析等众多功能模块。 汽车驱动桥壳是汽车上的主要承载构件之一,其作用主要有:支撑并保护主减速器、差速器和半轴等,使左右驱动车轮的轴向相对位置固定;同从动桥一起支撑车架及其上的各总成质量;汽车行驶时,承受由车轮传来的路面反作用力和力矩并经悬架传给车架等。驱动桥壳应有足够的强度和刚度且质量小,并便于主减速器的拆装和调整。由于桥壳的尺寸和质量比较大,制造较困难,故其结构型式应在满足使用要求的前提下应尽可能便于制造。驱动桥壳分为整体式桥壳,分段式桥壳和组合式桥壳三类。整体式桥壳具有较大的强度和刚度,且便于主减速器的装配、调整和维修,因此普遍应用于各类汽车上。但是由于其形状复杂,因此应力计算比较困难。根据汽车设计理论,驱动桥壳的常规设计方法是将桥壳看成一个简支梁并校核几种典型计算工况下某些特定断面的最大应力值,然后考虑一个安全系数来确定工作应力,这种设计方法有很多局限性。因此近年来,许多研究人员利用有限元方法对驱动桥壳进行了计算和分析。本文中所研究的对象是在某型号货车上使用的整体式桥壳。 一、驱动桥壳强度分析计算 可将桥壳视为一空心横梁,两端经轮毂轴承支撑于车轮上,在钢板弹簧座处桥壳承受汽车的簧上载荷,而沿左右轮胎中心线,地面给轮胎以反力(双胎时则沿双胎中心),桥壳承受此力与车轮重 力之差,受力如图1所示。

前转向驱动桥总成

SooPAT 前转向驱动桥总成 申请号:201210259961.5 申请日:2012-07-25 申请(专利权)人南京创捷和信汽车零部件有限公司 地址211200 江苏省南京市溧水经济开发区中兴东路5号 发明(设计)人桂治国黄勇边永杰 主分类号B60B35/12(2006.01)I 分类号B60B35/12(2006.01)I B60B35/16(2006.01)I 公开(公告)号102774239A 公开(公告)日2012-11-14 专利代理机构南京天翼专利代理有限责任公司 32112 代理人朱戈胜蒋家华

(10)申请公布号 CN 102774239 A (43)申请公布日 2012.11.14C N 102774239 A *CN102774239A* (21)申请号 201210259961.5 (22)申请日 2012.07.25 B60B 35/12(2006.01) B60B 35/16(2006.01) (71)申请人南京创捷和信汽车零部件有限公司 地址211200 江苏省南京市溧水经济开发区 中兴东路5号 (72)发明人桂治国 黄勇 边永杰 (74)专利代理机构南京天翼专利代理有限责任 公司 32112 代理人朱戈胜 蒋家华 (54)发明名称 前转向驱动桥总成 (57)摘要 本发明公开了一种前转向驱动桥总成,包括 桥壳(1)、轮毂(7)、主减速器带差速器总成和轮 边减速器;桥壳上设有与车辆底盘连接的摆销孔 (21),两个轮毂通过轮毂转向结构(3)连接在桥 壳的左右两端,桥壳中部设有空腔,其内安装主减 速器带差速器总成,主减速器带差速器总成两侧 各转动连接一根驱动轴(6),驱动轴转动连接桥 壳两端的轮边减速器;桥壳上设有车轮转向驱动 装置(4),该车轮转向驱动装置分别与两个轮毂 的轮毂转向结构连接;桥壳断面呈“口”字型空腔 结构,行星轮轴(15)边沿开有小孔(30),轮边减 速器壳(11)对应的开有沉槽(31),孔与槽之间安 装防窜动球(19);轮边减速器壳的最外侧设有端 盖(20)。 (51)Int.Cl. 权利要求书1页 说明书3页 附图4页 (19)中华人民共和国国家知识产权局(12)发明专利申请 权利要求书 1 页 说明书 3 页 附图 4 页

全桥驱动全桥整流变换器的高频变压器设计2

全桥驱动全桥整流变换器的高频变压器设计 1、根据电路形式、输出电压电流、变压器效率计算变压器的传送功率。 2、确定工作磁感应强度、电流密度系数、窗口占空系数(利用率)、工作频率、波形因数。 3、计算功率面积乘积并据此选择磁芯,根据所选磁芯参数计算电流密度。 4、根据伏秒积计算原边绕组匝数;根据电压比计算副边绕组匝数。 5、根据功率和波形因数计算各绕组电流幅值。 1、变压器传送功率计算 o o o P I U =? o I P P η = 11t o I o P P P P η?? ? ??? =+=+ 2、功率面积乘积计算 对于全桥驱动,变压器的2m B B ?=。其中,0.15~0.25m B =,电流密度系数400J K =,窗口占空系数0.2~0.4Ko =,工作频率 20Z f KH = ,波形因数f K =。

1.16 411104o p J c m P A K A B f η???? ? ? ? ? ?? ? ? ? ? ?? ? +?=???? 3、选择磁芯,计算电流密度 0.14()J p J K A -=? 4、原边和副边绕组匝数: 124p on p m c m c U t U D N B A B A f ??==??? 21s p U N N U = 5、原边和副边绕组电流幅值: 副边绕组电流幅值:2o I I D = o s s s s o o o s o s o s P U I U I D U I U U I I D I I D ==??=?=∴=?∴= 原边绕组电流幅值:o p p P I U D η=??

全桥变换器输出电压与输入电压关系推导 伏秒积产生磁通链: t t p p p c p p s s s c s s U N B A L I U N B A L I ??=?Φ=???=????=?Φ=???=?? 原边能量:()2 2 211222p on p on p p p p p U t U t L i L L L ?? ? ???????=??= 副边能量:()22 2 11222s on s on s s s s s U t U t L i L L L ?? ? ??? ????=??= 两边相等:()( )22 22p on s on s s p p p s U t U t U N U N L L ??= ?== 结论:正激变换器输出与输入的电压比等于副边与原边的匝数比 全桥驱动全桥整流变换器的高频变压器A P 公式推导 伏秒积产生磁通链: 222p on p p p m c T D U t U D U N B A f ?=??=?=?? 得原边匝数和副边匝数: 4p p m c U D N B A f ?= ?? 由于 p s p s U U N N =,故: 4s s m c U D N B A f ?= ?? 窗口中包含的总电流为:

驱动桥壳设计

驱动桥壳设计 驱动桥壳的主要功用是支撑汽车质量,并承受由车轮传来的路面的反力和反力矩,并经悬架传给车架(或车身);它又是主减速器、差速器、半轴的装配基体驱动桥壳应满足如下设计要求: 1)应具有足够的强度和刚度,以保证主减速器齿轮啮合正常并不使半轴产生附加弯曲应力. 2)在保证强度和刚度的前提下,尽量减小质量以提高汽车行驶平顺性. 3)保证足够的离地间隙. 4)结构工艺性好,成本低. 5)保护装于其上的传动部件和防止泥水浸入. 6)拆装,调整,维修方便. 一.驱动桥壳结构方案分析 驱动桥壳大致可分为可分式、整体式 和组合式三种形式。 1.可分式桥壳 可分式桥壳(图5—29)由一个垂直接 合面分为左右两部分,两部分通过螺栓联 接成一体。每一部分均由一铸造壳体和一 个压入其外端的半轴套管组成,轴管与壳 体用铆钉连接。 这种桥壳结构简单,制造工艺性好,主减速器支承刚度好。但拆装、调整、维修很不方便,桥壳的强度和刚度受结构的限制,曾用于轻型汽车上,现已较少使用。 2.整体式桥壳

整体式桥壳(图5—30) 的特点是整个桥壳是一根空 心梁,桥壳和主减速器壳为两 体。它具有强度和刚度较大, 主减速器拆装、调整方便等优 点。 按制造工艺不同,整体式 桥壳可分为铸造式(图5— 30a)、钢板冲压焊接式(图5 —30b)和扩张成形式三种。铸 造式桥壳的强度和刚度较大, 但质量大,加:上面多,制造 工艺复杂,主要用于中、·重型货车上。钢板冲压焊接式和扩张成形式桥壳质量小,材料利用率高,制造成本低,适于大量生产,广泛应用于轿车和中、小型货车及部分重型货车上。 3)组合式桥壳 组合式桥壳(图5—31)是将主 减速器壳与部分桥壳铸为一体,而 后用无缝钢管分别压入壳体两端, 两者间用塞焊或销钉固定。它的优 点是从动齿轮轴承的支承刚度较 好,主减速器的装配、调整比可分 式桥壳方便,然而要求有较高的加 工精度,常用于轿车、轻型货车中。 二.驱动桥壳强度计算

KC80和KC100前驱动桥使用保养说明书

前驱动桥使用保养说明书
中国一拖集团有限公司开创科技有限公司 二零零七年九月

前驱动桥使用保养说明书
第一章 第二章 第三章 第四章 第五章 第六章 第七章 注意事项 前驱动桥的主要技术参数 前驱动桥的磨合 前驱动桥的使用 前驱动桥的维护保养操作 常见故障及排除方法 附录
感谢您使用我公司的产品! 本说明书适用于我公司型号为 KC80、KC100、KC160 前驱动桥
第一章
1.
注意事项
用户在选用及使用前应仔细阅读使用保养说明书。

严格按照推荐牌号的润滑油使用,换油时严禁新油、旧油、不同牌号的润 滑油混合使用。 3. 整机出厂前应检查前桥摆角是否达到规定值,以免因摆角不正确引起事 故。 4. 经常检查各连接部位的螺栓、螺母及其他易松动零部件,例如桥壳与锥支 座连接螺栓、轮毂螺母等,发现松动时应及时拧紧。 5. 严格按照图纸要求调整前束量, 以免因前束调整不正确引起轮胎的非正常 磨损。 6. 当拖拉机在良好路面行驶时,应切断前驱动的动力。 7. 严格执行技术保养规程,避免齿轮、轴承等的非正常磨损。 8.润滑油灌注容量 (单位:L) 每侧 1.5;中央 5.4 2.
第二章
前驱动桥的主要技术参数
KC80 性能参数
最大扭矩/转速(N.m/r/min) 传动比 前桥传动轴 输入轴键参数 轮毂与辐板连接螺栓 轮辐距 (mm) 前轮外倾角 前 轮 定 位 主销内倾角 主销后倾角 前轮前束 转向形式 前轴(桥)摆角 前轮最大转角 转向油缸直径(mm) 转向油缸数量 转向油缸行程(mm) ≤320/176-412 21.125 中置式传动轴 m=2.75 z=10 α=30o 8-M16X1.5-6H (?290X?330mm) 1773 1o 7o30′ 10o 0--5 液压转向 11o(每边) 50o ?55 1 200

步进电机驱动之全桥驱动与斩波恒流

步进电机驱动之全桥驱动与斩波恒流 先看两相绕组的全桥驱动电路,四路基本相同的驱动电路,抓取一组电路来分析: 全桥驱动电路,其中Q7和Q8基极和发射极短接,相当于一个反向的二极管。 为了便于分析,将原理图简化后如下所示:

查看IM2000S芯片手册,对全桥驱动芯片输入脚的定义如下: 以上四个输入端:B相高低端全桥控制信号,用来控制离散的PN,NN的全桥或者半桥IC. 从上述可以知道,输出的是一个离散量,那么,是怎样控制电机,使电机获得一个sin和cos 的电流信号而驱动电机的呢? 这里要深入理解一个概念:斩波恒流! 斩波恒流的原理是:当环形分配器导通的时候,IC2使得TL和TH导通,电源通过TH和TL 和电机向下有电流输出,此时R左端的电压上升,当电流上升到给定电平时,比较器反转,输出为低,使得IC1截止,此时电感使电流缓慢下降,此时通过TL采样的电压变低,当电压低于给定电平时候,比较器反转,使得IC1再次导通,这样可以快速的波动,而使电感上的电流保持一个恒定的值。当环形分配器给出低电平时,IC1和IC2截止,电流通过D2流入电源,从而实现节能。 此时,再看上图,会发现: 1、BHO和ALO为一个通路,AHO和BLO为一个通路,实现电流的正向和反向。 2、BHO和AHO的开关频率会比BL0,ALO大很多,BL0和ALO只有在正向和负方向反转的时 候出现跳变,而BHO和AHO的频率会很快以实现恒流。

这里值得注意的一点是,上述过程仅仅是在一个细分时候,一个数模转换量上保持的恒流。如果整步为256细分,则在256细分的每一个细分阶段实际上过程就是上文红色字体运行一遍的一个过程,而要使整个电机转动一圈,则需要完成一个SIN和COS的整个过程,如果上面的过程仍然无法理解,请参看步进电机细分方面的内容。 从整个驱动电路的系统上看, 整个闭环是按照如下进行工作的:

前驱动桥使用保养说明书

前驱动桥使用保养说明书 中国一拖集团有限公司开创科技有限公司 二零零七年九月

前驱动桥使用保养说明书 第一章注意事项 第二章前驱动桥的主要技术参数 第三章前驱动桥的磨合 第四章前驱动桥的使用 第五章前驱动桥的维护保养操作 第六章常见故障及排除方法 第七章附录 感谢您使用我公司的产品! 本说明书适用于我公司型号为KC80、KC100、KC160前驱动桥 第一章注意事项 1.用户在选用及使用前应仔细阅读使用保养说明书。

2.严格按照推荐牌号的润滑油使用,换油时严禁新油、旧油、不同牌号的润 滑油混合使用。 3.整机出厂前应检查前桥摆角是否达到规定值,以免因摆角不正确引起事 故。 4.经常检查各连接部位的螺栓、螺母及其他易松动零部件,例如桥壳与锥支 座连接螺栓、轮毂螺母等,发现松动时应及时拧紧。 5.严格按照图纸要求调整前束量,以免因前束调整不正确引起轮胎的非正常 磨损。 6.当拖拉机在良好路面行驶时,应切断前驱动的动力。 7.严格执行技术保养规程,避免齿轮、轴承等的非正常磨损。 8.润滑油灌注容量(单位:L) 每侧1.5;中央5.4 第二章前驱动桥的主要技术参数 KC80性能参数

KC100性能参数 第三章前驱动桥的磨合 (一)使用前的准备工作 1.检查前驱动桥各联接部位螺栓、螺母及转向限位螺钉是否拧紧,若有松动 应及时拧紧;

2.在轮毂、驱动桥主销油杯处加注润滑脂; 3.检查驱动桥中央传动及最终传动油面,不足时按规定加注。 (二)磨合 按照整机磨合要求进行磨合后,才能进行负荷运行。 1.整车空负荷运转,在运转过程中应仔细检查桥的工作状态,观察有无异常 现象及声响,有无油水泄漏。如发现有不正常现象,应立即停车,排除故 障后再使用。 2.空驶磨合后,前驱动桥技术状态完全正常后方可进行负荷磨合。 3.在拖拉机静止情况下,启动发动机运转,操纵方向盘平稳地向左及向右转 动,观察前轮左右转向的随动情况。 注意:拖拉机进行中II档及中III档负荷磨合时,应使前驱动桥结合;其他档位磨合时,应使前驱动桥分离。 (三)磨合后的工作 a)停机后趁热放出前驱动桥内的润滑油,同时加入适量煤油或轻柴油进行 清洗(随整机传动系一起进行),将清洗液放出后,加注N100D新润滑 油。 b)检查前轮前束,必要时进行调整。 c)检查拧紧所有外部螺栓、螺母、螺钉。 d) 在各润滑点加注润滑脂。 第四章前驱动桥的使用 整个前桥通过前后两个摆座与托架相连接,并通过托架联接螺栓与发动机相连。当左、右前轮在一边高、一边低的路面行驶时,前桥可产生摆动,摆角最大可达11°。由于前桥频繁的摆动摩擦磨损,使得前后摆座处的调整垫片磨损减薄,其磨损至一定程度应予以更换。 拖拉机在田间重负荷作业或在潮湿松软土壤上工作时,为了改善拖拉机附着性能,可接合前驱动桥实现四轮驱动。当拖拉机在良好路面行驶时,应切断前驱动的动力,使前轮不产生驱动力,以减少轮胎的磨损和避免传动系统寄生功率的产生。 第五章前驱动桥的维护保养操作 在前桥的使用过程中,由于各种恶劣环境因素的影响,各零部件之间的联接会出现松动,轴承会磨损。另外,润滑油、润滑脂等工作物质也逐渐消耗,使前桥的正常工作条件遭到破坏。因此必须适时、定期采取紧固、调整、更换、添加等维护性技术措施,以保持零部件的正常工作能力,延长零部件的使用寿命。因此必须做到:

汽车驱动桥壳结构的有限元分析

万方数据

?汽车驱动桥壳的结构有限元分析? 建立桥壳的有限元模型时,先对驱动桥壳实体做必要的简化(如图1所示),在此基础上对桥壳性能进行分析。 图1桥壳三维几何模型 2驱动桥壳有限元模型的建立 2.1’导入驱动桥壳几何模型到MSC.PATRAN中导人MSC.PATRAN的桥壳几何模型如图2所示。经过MSC.PATRAN统计,共导入196个曲面,从图中可以看出,有一些大的区域被分割成很多小的曲面。 图2导入的几何模型 2.2驱动桥壳有限元网格的划分 在一项工程分析中,经常要花费很多时间生成有限元网格。为减少有限元网格的生成时间,MSC.PATRAN提供了多种网格生成器用来自动生成有限元网格。 经过网格划分,最后的有限元网格如图3所示,共有27027个四边形单元、27052个节点。 图3网格生成图 该驱动桥壳的本体材料为8mm厚的09SiVL钢板,从材料手册中查出其弹性模量E=5MPa,泊松比斗=0.3,材料密度为7850。计算桥壳的垂直静弯曲刚度和静强度的方法是:将后桥两端固定,在弹簧座处施加载荷,将桥壳两端车轮中心线处全部约束,然后在弹簧座处施加规 ?6.定载荷。 2.3桥壳载荷的施加 根据车桥实际承载情况,车桥所受载荷包括下列两类: (1)簧载质量。该微型车在满载时的后悬簧载质量为940kg,车桥每一侧为470kg。根据悬架与车桥的连接方式,本文取车桥每一侧的静载荷沿弹簧支座均匀分布,并施加在相应的节点上,作用形式为均匀分布的载荷密度。 (2)纵向推力杆的反作用力。汽车驱动力通过车轮、车桥、纵向推力杆传到车身,推动车身前行,因此驱动桥壳体还受到纵向推力杆的反作用力的作用。反作用力在桥壳上的作用形式也是均匀分布的。 3桥壳结构有限元分析 在有限元模型中,驱动桥壳在2.5倍满载轴荷工况下,应力及应变云图分别如图4、图5所示,最大位移为0.469E-03m,最大应力为2185MPa,出现在半轴套管约束处。在不考虑由于约束影响造成的局部过大应力的情况下,应力较大值分布在钢板弹簧座的两侧,约为240MPa,远小于材料的许用应力=510MPa~610MPa。所以,该桥壳是符合结构强度要求的。 图4桥壳应力分布云图 《jE宝汽奎滏2QQ!:盟Q:i万方数据

驱动桥壳设计

驱动桥壳的主要功用是支撑汽车质量,并承受由车轮传来的路面的反力和反力矩,并经悬架传给车架(或车身);它又是主减速器、差速器、半轴的装配基体 驱动桥壳应满足如下设计要求: 1)应具有足够的强度和刚度,以保证主减速器齿轮啮合正常并不使半轴产生附加弯曲应力. 2)在保证强度和刚度的前提下,尽量减小质量以提高汽车行驶平顺性. 3)保证足够的离地间隙. 4)结构工艺性好,成本低. 5)保护装于其上的传动部件和防止泥水浸入. 6)拆装,调整,维修方便. 一.驱动桥壳结构方案分析 驱动桥壳大致可分为可分式、整体式和组合式三种形式。 1.可分式桥壳 可分式桥壳(图1)由一个垂直接合面分为左右两部分,两部分通过螺栓联接成一体。每一部分均由一铸造壳体和一个压入其外端的半轴套管组成,轴管与壳体用铆钉连接。 可分式桥壳 这种桥壳结构简单,制造工艺性好,主减速器支承刚度好。但拆装、调整、维修很不方便,桥壳的强度和刚度受结构的限制,曾用于轻型汽车上,现已较少使用。 2.整体式桥壳 整体式桥壳(图2)的特点是整个桥壳是一根空心梁,桥壳和主减速器壳为两体。它具有强度和刚度较大,主减速器拆装、调整方便等优点。

整体式桥壳 按制造工艺不同,整体式桥壳可分为铸造式(图a)、钢板冲压焊接式(图b)和扩张成形式三种。铸造式桥壳的强度和刚度较大,但质量大,加:上面多,制造工艺复杂,主要用于中、重型货车上。钢板冲压焊接式和扩张成形式桥壳质量小,材料利用率高,制造成本低,适于大量生产,广泛应用于轿车和中、小型货车及部分重型货车上。 3)组合式桥壳 组合式桥壳(图3)是将主减速器壳与部分桥壳铸为一体,而后用无缝钢管分别压入壳体两端,两者间用塞焊或销钉固定。它的优点是从动齿轮轴承的支承刚度较好,主减速器的装配、调整比可分式桥壳方便,然而要求有较高的加工精度,常用于轿车、轻型货车中。 组合式桥壳 二.驱动桥壳强度计算 对于具有全浮式半轴的驱动桥,强度计算的载荷工况与半轴强度计算的:三种载荷工况相同。图4为驱动桥壳受力图,桥壳危险断面通常在钢板弹簧座内侧附近,桥儿端郎的轮毂轴承座根部也应列为危险断面进行强度验算。 1)牵引力或制动力最大时,桥壳钢板弹簧座处危险断面的弯曲应力δ和扭转切应力τ分别为 式中,Mv为地面对车轮垂直反力在危险断面引起的垂直平面内的弯矩,Mv=m’2G2b/2b为轮胎中心平面到板簧座之间的横向距离,如图4所示;为一侧车轮上的牵引力或制动力芦Fx2在水平面内引起的弯矩, =Fx2b;TT为牵引或制动时,上述危险断面所受转矩,TT=Fx2rr;Wv、Wh、、分别为危险断面垂直平面和水平面弯曲的抗弯截面系数及抗扭截面系数。

相关主题
文本预览
相关文档 最新文档