当前位置:文档之家› 前纳米微粒用于造纸助留技术研究进展

前纳米微粒用于造纸助留技术研究进展

前纳米微粒用于造纸助留技术研究进展
前纳米微粒用于造纸助留技术研究进展

微纳米粉体表面包覆技术的应用研究

微纳米粉体表面包覆技术的应用研究 当前社会发展背景下,新的科学技术不断出现,新一代纳米技术的进步,使微/纳米颗粒以其特有的宏观量子隧道效应以及小尺寸效应等众多的应用优点引起人们的高度关注。 微/纳米粉体表面有机包覆技术的应用 有机包覆技术应用过程中的自组装技术分析。自组装技术是通过静电作用使溶液中的高分子单体自由吸附于胶体 颗粒以及将带有相反电荷的高分子过饱和溶液中的高分子 自由单体进行洗涤和离心分离。一般而言,可以采用高分子电解质对可分解的球形聚合物模板进行修饰,从而使其表面中带有静电,然后将二氧化硅粒子与吸附纳米级的金粒有效吸附,然后经过离心运动多次循环往复洗涤分离,最终获得致密而且均匀的多层包覆膜。另外,还可采用两步组装技术对聚合物中的电解质进行包覆组装,将经过有效组装包覆的基体置于悬浮溶液中,悬浮液中的粒子在受到表层聚合电解质作用就会不断下沉,从而制备成完整的多层超薄膜。该技术具有操作简便的优点,而且在实际的操作中不需过多特殊的操作设备。因此这种技术可以逐渐朝着实用化以及功能化方向发展。 有机包覆技术应用过程中的聚合物包裹技术分析。聚合物包裹法主要是将单体在纳米颗粒中的聚合物经过纳米颗

粒以及聚合物的作用使其成功得到包裹,这种包裹方式与自组装包裹技术相比,具有很好的分散性,而且相对于上一种包裹技术,操作过程更加简单,有广泛的适用面,不仅可以实现在无机粒子中进行包裹,而且可以实现在有机粒子中进行包裹。通常适用于一些形状不太规则的粒子包裹过程中,但是其也具有一定的包裹局限性,例如这种包裹法会导致核粒径在高分子的聚合物母体中产生严重的团聚现象。 有机包覆技术应用过程中的微胶囊化改性技术分析。微胶囊化改性技术是指在颗粒子的表层中覆盖一层厚膜,从而使颗粒表面受到良好的屏蔽作用和保护作用。主要的应用优点是具有良好的稳定性与吸光率。 微/纳米粉体表面无机包覆技术的应用 无机包覆技术应用过程中的气相包覆技术分析。这种技术是利用气体或者其它的手段使壳层物转化为一种气体,这种气体经过化学反应或者物理反应使纳米颗粒被有效包覆。这种包覆技术所制备的复合粉体尽管纯度高、组分易于控制、团聚少,但是这种包覆技术在实际应用过程中对包覆设备的要求很高,因此不利于其广泛推行应用。 无机包覆技术应用过程中的固相包覆技术分析。与有机包覆技术相比,无机包覆技术主要是采用其它机械设备以及混料设备、研磨设备对固相材料进行机械处理从而得到微/ 纳米包覆粉体,这一包覆技术可以有效缓解包覆电离子在充

中药制剂纳米技术研究进展

中药制剂纳米技术研究进展 中药学:张生杰 104753091411 摘要:纳米中药是指运用纳米技术制造的、粒径小于100nm的中药有效成分、有效部位、原药及其复方制剂,具有增加药物对血脑屏障或生物膜的穿透性等特点。本文详细介绍了纳米中药的定义、特点,同时介绍了纳米中药制剂技术方面的进展。指出了纳米中药制剂存在的问题,并作了展望。 关键词:纳米技术;中药制剂;中药现代化 1.前言 纳米即十亿分之一米,相当于10个氢原子排成直线的长度。纳米技术(nanotechnology)是指在纳米尺度下对物质进行制备、研究和工业化,以及利用纳米尺度物质进行交叉研究和工业化的一门综合性的技术体。纳米技术作为高新技术,可广泛应用于材料学、电子学、生物学、医药学、显微学等多个领域,并起着重要的作用。1998年,徐辉碧教授等[2]率先提出了“纳米中药”的概念,进行了卓有成效的探索。纳米中药是指运用纳米技术制造的、粒径小于lOOnm的中药有效成分、有效部位、原药及其复方制剂。因纳米材料和纳米产品在性质上的奇特性和优越性,将增加药物吸收度,建立新的药物控释系统,改善药物的输送,替代病毒载体,催化药物化学反应和辅助设计药物等研究引入了微型、微观领域,为寻找和开发医药材料、合成理想药物提供了强有力的技术保证。运用纳米技术的药物克服了传统药 物许多缺陷以及无法解决的问题。将纳米技术应用于中药领域是中药现代化发展的重要方向之一。 中药作用的物质基础来自于中药中的活性成分,这些化学成分可能是某单一化合物(即有效成份),也有可能是所提取的某一有效部位或有效部位群,有些中药甚至以全药入药。对于从中药中提取的单一有效成份如紫杉醇、喜树碱等而言,其纳米化制备类似于合成药,因而其研究在技术上相对较易实现。纳米载药系统在这方面的应用已有一些报道,目前这类药物已有多种制剂进入临床研究阶段。从目前的情况来看,可以大量获得单一有效成份的中药并不多,这就意味着纳米载药系统在这一层次上的应用受到一定限制。中药有效部位为主要活性成份的制剂占有相当比例,这一方面体现了中药多成份、多靶点的特点,同时具有原料较有效成份容易获得,成本相对低廉的特点。因此,以有效部位作为纳米载药系统在中药研究中的切入点无疑具有更现实的意义。对于中药有效部位,由于其组成的多样性其纳米化制备是较复杂的,要研究的问题还很多。利用其结构或性质相近的特点选择适当的辅料和工艺,使其多组分同时实现纳米化,可能是解决问题的途径之一。对于中药(植物、动物和矿物)的全药,由于组成复杂且性质差异较大,实现纳米化的方法除超细粉碎以外有待进一步开发。总之纳米技术应用于中药制剂还处于起步阶段,但前景是很好的。 2.纳米中药的制备 2.1超细粉碎 粉碎是中药材加工最常用的方法之一。随着科学技术的进步,新的粉碎机械不断涌现,粉碎所能达到的粒度越来越小,使中药粉末的粒度由细粉的尺度10μm-1000μm进入到超细粉的尺度0.1μm-10μm。经过超细粉碎的中药材,最直接的效应就是由于表面积增大而导致的药物吸收增加,相应地生物利用度得到提高,服用剂量减小,资源的利用率提高。 但是,超细粉碎在中药研究中的应用还存在一些问题,首先,中药材的超细粉碎虽然

二氧化硅包覆的微纳米材料的制备与应用

第45卷第10期 2017年10月 硅 酸 盐 学 报 Vol. 45,No. 10 October ,2017 JOURNAL OF THE CHINESE CERAMIC SOCIETY https://www.doczj.com/doc/1b4784564.html, DOI :10.14062/j.issn.0454-5648.2017.10.05 二氧化硅包覆的微纳米材料的制备与应用 张建峰1,赵春龙1,童 晶1,涂 溶2 (1. 河海大学力学与材料学院,南京 211100;2. 武汉理工大学,材料复合新技术国家重点实验室,武汉 430070) 摘 要:核壳粒子作为一种新型的微纳米材料,在电学、生物学、磁学、光学以及催化学等不同领域表现出优异的性能,已经引起了国内外学者极大的兴趣和关注。经过近30年的发展,由于二氧化硅具备非凡的性能使其成为了此领域研究最为广泛的包覆材料,进而产生了大量二氧化硅包覆不同粒子的有效方法。综述了几乎所有用来制备二氧化硅包覆材料的方法及这种材料在不同领域兴起的应用,总结了不同包覆方法的优缺点,并对其发展前景进行了简要阐述。 关键词:核壳材料;二氧化硅包覆;制备;应用 中图分类号:TB383 文献标志码:A 文章编号:0454–5648(2017)10–1410–11 网络出版时间:2017–07–14 11:38:40 网络出版地址:https://www.doczj.com/doc/1b4784564.html,/kcms/detail/11.2310.TQ.20170714.1138.006.html Silica-Coated Micro- and Nano-materials: Synthesis and Applications ZHANG Jianfeng 1, ZHAO Chunlong 1, TONG Jing 1, TU Rong 2 (1. College of Mechanics and Materials, Hohai University, Nanjing 211100, China; 2. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China) Abstract: Core/shell particles, as a new micro/nano-material, have attracted much attention since these particles exhibit superior properties in different fields like electronics, biology, magnetism, optics, and catalysis. For almost 30-year development, silica becomes one of the most intensively investigated coating materials due to its superior properties, resulting in many preparation methods for silica coating on different particles. This review provided an overview of almost all the strategies to synthesize silica-coated materials and their emerging applications in different fields, and summarized the advantages and disadvantages of different methods. In addition, its prospect of future development was also described. Keywords: core/shell materials; silica coating; synthesis; applications 纳米材料具备一些区别于相同化学元素形成的其它物质材料的特殊物理或化学特性(如小尺寸效应、表面效应、量子效应等),一直是学术界研究的热门领域。随着纳米科学和技术的深入发展,人们对纳米材料的制备、性质、应用提出了更广、更高的要求。单一物质的纳米微粒体系的性质是有限的,集中物质组装的纳米结构复合体系往往具有更优异的性质。将两种及两种以上的材料在纳米尺度上复合或包覆形成纳米尺度的有序组装结构,是更高层次的复合纳米结构。这种结构可以产生单一纳米粒子无法获得的多种新性能,具有比单一纳米粒子更广的应用,因此受到广泛的重视。其中,核壳结构作为一种新型的复合结构研究最为广泛,根据“核”与“壳”这两组分材料的性质划分,可以将核壳材料分为4类:无机/无机、无机/有机、有机/无机和有机/有机核壳材料[1]。正是由于“核”材料的表面活性中心被适当的“壳”所改变,常常表现出不同于模板“核”的性能。通过选用所需的“核”“壳”材料,运用适当的制备方法,能制备出满足不同应用需求的核壳材料。通过图1的统计数据可以发现 收稿日期:2017–05–21 。 修订日期:2017–06–13。 基金项目:国家自然科学基金(51372188);江苏省自然科学基金 (BK20161506);材料复合新技术国家重点实验室开放基金(2016-KF-8)。 第一作者:张建峰(1978—),男,博士,教授。 Received date: 2017–05–21. Revised date: 2017–06–13. First author: ZHANG Jianfeng (1978–), male, PhD., Professor. E-mail: jfzhang@https://www.doczj.com/doc/1b4784564.html,

纳米生物医用材料的进展研究样本

生物医用材料的研究进展 生物医用材料是用来对于生物体进行诊断、治疗、修复或替换其病损组织、器官或增进其功能的新型高技术材料, 它是研究人工器官和医疗器械的基础, 己成为材料学科的重要分支, 特别是随着生物技术的莲勃发展和重大突破, 生物材料己成为各国科学家竞相进行研究和开发的热点。研究动态 迄今为止 ,被详细研究过的生物材料已有一千多种 ,医学临床上广泛使用的也有几十种 ,涉及到材料学的各个领域。当前生物医用材料研究的重点是在保证安全性的前提下寻找组织相容性更好、可降解、耐腐蚀、持久、多用途的生物医用材料, 具体体现在以下几个方面: 1. 提高生物医用材料的组织相容性 途径不外乎有两种, 一是使用天然高分子材料, 例如利用基因工程技术将产生蛛丝的基因导入酵母细菌并使其表示; 二是在材料表面固定有生理功能的物质, 如多肽、酶和细胞生长因子等, 这些物质充当邻近细胞、基质的配基或受体 ,使材料表面形成一个能与生物活体相适应的过渡层。 2. 生物医用材料的可降解化 组织工程领域研究中 ,一般应用生物相容性的可降解聚合物去诱导周围组织的生长或作为植入细胞的粘附、生长、分化的临时支架。其中组织工程材料除了具备一定的机械性能外, 还需具有生物相容性和可降解性。 英国科学家创造了一种可降解淀粉基聚合物支架。以玉米淀粉为基本材料, 分别加入乙烯基乙烯醇和醋酸纤维素 ,再分别对应加入不同比例的发泡剂 (主要为羧酸 ), 注塑成型后就能够获得支撑组织再生的可降解支架。 3. 生物医用材料的生物功能化和生物智能化 利用细胞学和分子生物学方法将蛋白质、细胞生长因子、酶及多肽等固定在现有材料的表面 ,经过表面修饰构建新一代的分子生物材料 ,来引发我们所需的特异生物反应 ,抑制非特异性反应。例如将一种名叫玻璃粘连蛋白 (VN)的物质固定到钛表面, 发现固定VN的骨结合界面上有相对多的蛋白存在。4.开发新型医用合金材料

金属纳米材料研究进展

金属纳米材料研究进展 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

高等物理化学 学生姓名:聂荣健 学号:…………….. 学院:化工学院 专业:应用化学 指导教师:…………. 金属氧化物纳米材料研究进展 应用化学专业聂荣健学号:……指导老师:…… 摘要:综述了近年来金属氧化物纳米材料水热合成方法的研究进展,简要阐述了金属氧化物纳米材料的应用,对其今后的研究发展方向进行了展望。 关键词:纳米材料水热合成金属氧化物 Research progress of metal oxide nanomaterials Name Rongjian Nie Abstract: This article reviews the recent progress in hydrothermal synthesis of metal oxide nanomaterials. The application progress of metal oxide nanomaterials is briefly describrd.The future research directions are prospected. Keywords: nanomaterials; hydrothermal; metal oxides ; 引言 纳米材料是纳米科学中的一个重要的研究发展方向,近年来已在许多科学领域引起了广泛的重视,成为材料科学研究的热点。作为纳米材料的一个方面,金属氧化物纳米材料在现代工业、国防和高技术发展中充当着重要的角色。 1.纳米材料简介 纳米材料概述

纳米粒子制备方法

一、纳米粒子的物理制备方法 1.1 机械粉碎法 机械粉碎就是在粉碎力的作用下,固体料块或粒子发生变形进而破裂,产生更微细的颗粒。物料的基本粉碎方式是压碎、剪碎、冲击粉碎和磨碎。一般的粉碎作用力都是这几种力的组合,如球磨机和振动磨是磨碎与冲击粉碎的组合;气流磨是冲击、磨碎与剪碎的组合,等等。理论上,固体粉碎的最小粒径可达0.01~0.05 μ m。然而,用目前的机械粉碎设备与工艺很难达到这一理想值。粉碎极限取决于物料种类、机械应力施加方式、粉碎方法、粉碎工艺条件、粉碎环境等因素。比较典型的纳米粉碎技术有:球磨、振动磨、搅拌磨、气流磨和胶体磨等。其中,气流磨是利用高速气流(300~500m/s)或热蒸气(300~450℃)的能量使粒子相互产生冲击、碰撞、摩擦而被较快粉碎。气流磨技术发展较快,20世纪80年代德国Alpine公司开发的流化床逆向气流磨可粉碎较高硬度的物料粒子,产品粒度达到了1~5μm。降低入磨物粒度后,可得平均粒度1μm的产品,也就是说,产品的粒径下限可达到0.1μm以下。除了产品粒度微细以外,气流粉碎的产品还具有粒度分布窄、粒子表面光滑、形状规则、纯度高、活性大、分散性好等优点。因此,气流磨引起了人们的普遍重视,其在陶瓷、磁性材料、医药、化工颜料等领域有广阔的应用前景。 1.2 蒸发凝聚法 蒸发凝聚法是将纳米粒子的原料加热、蒸发,使之成为原子或分子;再使许多原子或分子凝聚,生成极微细的纳米粒子。利用这种方法得到的粒子一般在5~100nm之间。蒸发法制备纳米粒子大体上可分为:金属烟粒子结晶法、真空蒸发法、气体蒸发法等几类。而按原料加热技术手段不同,又可分为电极蒸发、高频感应蒸发、电子束蒸发、等离子体蒸发、激光束蒸发等几类。 1.3 离子溅射法 用两块金属板分别作为阴极和阳极,阴极为蒸发用材料,在两电极间充入Ar(40~250Pa),两极间施加的电压范围为0.3~1.5kV。由于两极间的辉光放电使Ar粒子形成,在电场作用下Ar离子冲击阳极靶材表面,使靶材原子从其表面蒸发出来形成超微粒子,并在附着面上沉积下来。离子的大小及尺寸分布主要取决于两极间的电压、电流、气体压力。靶材的表面积愈大,原子的蒸发速度愈高,超微粒的获得量愈大。溅射法制备纳米微粒材料的优点是:(1)可以制备多种纳米金属,包括高熔点和低熔点金属。常规的热蒸发法只能适用于低熔点金属;(2)能制备出多组元的化合物纳米微粒,如AlS2,Tl48,Cu91,Mn9,ZrO2等;通过加大被溅射阴极表面可加大纳米微粒的获得量。采用磁控溅射与液氮冷凝方法可在表面沉积有方案膜的电镜载网上支撑制备纳米铜颗粒。 1.4 冷冻干燥法 先使干燥的溶液喷雾在冷冻剂中冷冻,然后在低温低压下真空干燥,将溶剂升华除去,就可以得到相应物质的纳米粒子。如果从水溶液出发制备纳米粒子,冻结后将冰升华除去,直接可获得纳米粒子。如果从熔融盐出发,冻结后需要进行热分解,最后得到相应纳米粒子。冷冻干燥法用途比较广泛,特别是以大规模成套设备来生产微细粉末时,其相应成本较低,具有实用性。此外,还有火花放电法,是将电极插入金属粒子的堆积层,利用电极放电在金属粒子之间发生电火花,从而制备出相应的微粉。爆炸烧结法,是利用炸药爆炸产生的巨大能量,以极强的载荷作用于金属套,使得套内的粉末得到压实烧结,通过爆炸法可以得到1μm以下的纳米粒子。活化氢熔融金属反应法的主要特征是将氢气混入等离子体中,这种混合等离子体再加热,待加热物料蒸发,制得相应的纳米粒子。 二、制备纳米粒子的化学方法

(完整版)药剂学第四章药物微粒分散体系

第四章药物微粒分散体系 一、概念与名词解释 1.分散体系 2.扩散双电层模型 3.DLVO理论 4.临界聚沉状态 二、判断题(正确的填A,错误的填B) 1.药物微粒分散系是热力学稳定体系,动力学不稳定体系。( ) 2.药物微粒分散系是动力学稳定体系,热力学不稳定体系。( ) 3.药物微粒分散系是热力学不稳定体系,动力学不稳定体系。( ) 4.微粒的大小与体内分布无关。( ) 5.布朗运动可以提高微粒分散体系的物理稳定性,而重力产生的沉降降低微粒分散体系的稳定性。( ) 6.分子热运动产生的布朗运动和重力产生的沉降,两者降低微粒分散体系的稳定性。( ) 7.微粒表面具有扩散双电层。双电层的厚度越大,则相互排斥的作用力就越大,微粒就越稳定。( ) 8.微粒表面具有扩散双电层。双电层的厚度越小,则相互排斥的作用力就越大,微粒就越稳定。( ) 9.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为反絮凝。( ) 10.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为絮凝。( ) 11.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降。( ) 12.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ上升。( ) 13.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ降低,会出现反絮凝现象。( ) 14.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降,出现絮凝状态。加入的电解质叫絮凝剂。( ) 15.絮凝剂是使微粒表面的ζ降低到引力稍大于排斥力,引起微粒分散体系中的微粒形成絮凝状态的电解质。( ) 16.絮凝剂是使微粒表面的ζ升高,使排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。( ) 17.反絮凝剂是使微粒表面的ζ升高,使到排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。( ) 18.微粒的物理稳定性取决于总势能曲线上势垒的大小。倘若势垒为零,微粒会发生 聚结。( ) 19.微粒的物理稳定性取决于总势能曲线上势垒的大小。倘若有势垒存在,微粒不会发生聚结。( ) 20.微粒的物理稳定性取决于总势能曲线上势垒的大小。倘若有势垒存在,微粒会发生慢聚结。( )

药剂学第四章药物微粒分散体系word精品

第四章 药物微粒分散体系 一、概念与名词解释 1.分散体系 2.扩散双电层模型 3. DLVO 理论 4.临界聚沉状态 二、判断题 (正确的填 A ,错误的填 B) 1.药物微粒分散系是热力学稳定体系,动力学不稳定体系。 ( ) 2.药物微粒分散系是动力学稳定体系,热力学不稳定体系。 ( ) 3.药物微粒分散系是热力学不稳定体系,动力学不稳定体系。 ( ) 4.微粒的大小与体内分布无关。 ( ) 5.布朗运动可以提高微粒分散体系的物理稳定性,而重力产生的 沉降降低微粒分散体系的 稳定性。 ( ) 6.分子热运动产生的布朗运动和重力产生的沉降, 两者降低微粒分散体系的稳定性。 ( ) 7.微粒表面具有扩散双电层。双电层的厚度越大,则相互排斥的作用力就越大,微粒就越 稳定。 ( ) 8.微粒表面具有扩散双电层。双电层的厚度越小,则相互排斥的作用力就越大,微粒就越 稳定。 ( ) 9. 微粒体系中加入某种电解质使微粒表面的 毋高,静 电排斥力阻碍了微粒之间的碰撞聚集, 这个过程称为反絮凝。 ( ) 10?微粒体系中加入某种电解质使微粒表面的 毋高,静电排斥力阻碍了微粒之间的碰撞聚 集,这个过程称为絮凝。 ( ) 11. 微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒间的 斥 力下降。 ( ) 12. 微粒体系中加入某种电解质,中和微粒表面的电荷, Ch 升。() 13. 微粒体系中加入某种电解质,中和微粒表面的电荷, Z 降低,会出现反絮凝现象。 ( ) 14. 微粒体系中加入某种电解质,中和微粒表面的电荷, 力下降,出现絮凝状态。加入的电解质叫絮凝剂。 ( 15?絮凝剂是使微粒表面的 Z 降低到引力稍大于排斥力,引起微粒分散体系中的微粒形成絮 凝状态的电解质。 ( ) 16?絮凝剂是使微粒表面的 Z 升高,使排斥力大于吸引力,引起微粒分散体系中的微粒形成 絮凝状态的电解质。 ( ) 17?反絮凝剂是使微粒表面的 毋高,使到排斥力大于吸引力,引起微粒分散体系中的微粒 形成絮凝状态的电解质。 ( ) 18. 微粒的物理稳定性取决于总势能曲线上势垒的大小。倘若势垒为零,微粒会发生 聚结。 ( ) 19. 微粒的物理稳定性取决于总势能曲线上势垒的大小。 倘若有势垒存在, 微粒不会发生聚 结。 ( ) 20. 微粒的物理稳定性取决于总势能曲线上势垒的大小。 倘若有势垒存在, 微粒会发生慢聚 结。 ( ) 降低双电层的厚度,使微粒表面的 降低双电层的厚度,使微粒表面的 降低双电层的厚度,使微粒间的

三维纳米材料制备技术综述

三维纳米材料制备技术综述 摘要:纳米材料的制备方法甚多。目前,制备纳米材料中最基本的原则有二:一是将大块固体分裂成纳米微粒;二是由单个基本微粒聚集,并控制聚集微粒的生长,使其维持在纳米尺寸。本文主要介绍纳米材料分类和性能,同时介绍了一些三维纳米材料的制备方法,如水热法、溶剂热法和微乳液法。 关键词:纳米材料;纳米器件;纳米阵列;水热法;溶剂热法;微乳液法 1.引言 随着信息科学技术的飞速发展,人们对物质世界认识随之也从宏观转移到了微观,也就是说从宏观的块体材料转移到了微观的纳米材料。所谓纳米材料,是材料尺寸在三维空间中,至少有一个维度处于纳米尺度范围的材料。如果按照维度的数量来划分,纳米材料的的种类基本可以分为四类:(1)零维,指在空间中三维都处在纳米尺度,如量子点,尺度在纳米级的颗粒等;(2)—维,指在空间中两个维度处于纳米尺度,还有一个处于宏观尺度的结构,例如纳米棒、纳米线、纳米管等;(3)二维,是指在空间中只有一个维度处于纳米尺度,其它两个维度具有宏观尺度的材料,典型的二维纳米材料具有层状结构,如多层膜结构、一维超晶格结构等;(4)三维,即在空间中三维都属于宏观尺度的纳米材料,如纳米花、纳米球等各种形貌[1]。 当物质进入纳米级别,其在催化、光、电和热力学等方面都出现特异性,这种现象被称为“纳米效应”。纳米材料具有普通材料所不具备的3大效应:(1)小尺寸效应——其光吸收、电磁、化学活性、催化等性质发生很大变化;(2)表面效应——在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应,例如纳米微粒表现出令人难以置信的奇特的宏观物理特性,如高强度和高韧性,高热膨胀系数、高比热容和低熔点,异常的导电率和磁化率,极强的吸波性,高扩散性,以及高的物理、化学和生物活性等[2]。 纳米科学发展前期,人们更多关注于一维纳米材料,并研究其基本性能。随着纳米科学快速发展,当今研究热点开始转向以微纳结构和纳米结构器件为方向的对纳米阵列组装体系的研究。以特定尺寸和形貌的一维纳米材料为基本单元,采用物理和化学的方法在两维或三维空间内构筑纳米体系,可得到包括纳米阵

原位包覆金属纳米粒子的规模化制备及应用

收稿日期:2009-08-04原位包覆金属纳米粒子的规模化制备及应用 郑碧娟1,何俊武1,2,胡军辉1,2 (1.深圳华中科技大学研究院,广东深圳518057) (2.深圳市尊业纳米材料有限公司,广东深圳518118) 摘要:介绍激光感应复合加热制备金属纳米粒子的方法,以及基于该技术原位制备碳包覆金属纳米粒子和有机物包覆金属纳米粒子,概括了原位包覆金属纳米粒子的应用。根据实际应用条件选择合适的包覆方法和包覆材料,可以极大地提高金属纳米粒子的产品性能和适用性,获得更高的应用价值。 关键词:金属纳米粒子;激光-感应复合加热;碳包覆;有机物包覆 Large-scale Preparation and Application of In-situ Coating Metal Nanoparticles ZHENG Bi-juan1,HE Jun-wu1,2,HU Jun-hui1,2 (1Huazhong University of Science and Technology Research Institute in Shenzhen, Shenzhen518057,China) 2Shenzhen Junye Nano Material Co.,Ltd.,Shenzhen518118,China) Abstract:The practical application of metal nanoparticles has been seriously limited by their sensitivity to environment, such as quick oxidation reaction and losing activity in air.In-situ coating metallic nanoparticles was investigated in order to enhance the stability and retain the activity,expand the area of application.In this paper,the laser-induction complex heating method for preparation of metallic nanoparticles was introduced,and the in-situ carbon coating and organic compound coating metallic nanoparticles on the basis of the laser-induction complex heating technology were presented, at last the application directions of metallic nanoparticles complex were generalized.According to the actual application conditions,the proper coating method and materials were selected to greatly improve the performance and applicability of coating metal nanoparticles with higher application value. Keywords:Metal nanoparticles;laser-induction complex heating method;carbon-coating;organic compound coating 中图分类号:TF123文献标识码:A文章编号:1812-1918(2010)03-0010-04 0引言 金属纳米粒子比表面积大、表面能高、表面活性高及独特的量子尺寸效应和表面效应,使其具有化学反应活性高、烧结温度低、微波吸收等特性,因此,金属纳米粉体材料成为化工催化剂、烧结添加剂、导电浆料、润滑油添加剂、吸波材料等功能材料的理想选材,在信息通讯、生物医药、微电子、有机化工、航空航天等领域显示了极其重要的应用价值。 金属纳米粒子所具有的小尺寸和表面效应使 10

【文献综述】纳米材料与纳米包覆物的发展

文献综述 化学工程与工艺 纳米材料与纳米包覆物的发展 [前言]纳米级结构材料简称为纳米材料,是指其结构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。纳米技术制成的材料性能优良,用途非常广泛。它在陶瓷、传感器、能源、催化、医学领域都有广泛的应用。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料音质、图像和信噪比好,而且记录密度特别高。纳米陶瓷材料相比传统的陶瓷材料具有极高的强度和高韧性以及良好的延展性。纳米材料制成的温度传感器、红外线检测仪和汽车尾气检测仪,检测灵敏度比普通的同类陶瓷传感器高得多。纳米倾斜功能材料在航天用的氢氧发动机中,能达到燃烧室内侧耐高温、外侧有良好导热性的要求。利用半导体纳米粒子可以制备出光电转化效率高的、即使在阴雨天也能正常工作的新型太阳能电池。此外,纳米粒子还是一种极好的催化剂,镍或铜锌化合物的纳米粒子对某些有机物的氢化反应是极好的催化剂,可替代昂贵的铂或钯催化剂等等。纳米技术在世界各国尚处于萌芽阶段,虽然已经初具基础,但是尚在研究之中,新理论和技术的出现仍然方兴未艾。我国已努力赶上先进国家水平,研究队伍也在日渐壮大。 表面包覆改性中, 在纳米的粉体表面包膜是一种重要的方法[1]。其表面包覆的一层覆盖层,因其不同的化学组成,可以提高热、机械及化学稳定性,或者使其具有生物兼容性,来提高抗腐蚀性、耐久性和使用寿命,或者改变其光、电、磁、亲水、催化、疏水以及烧结特性。要想得到高附加值的纳米粉体的关键是进行表面改性以及控制纳米粉体的表面化学组成。另一方面,为体现其在纳米级尺寸所特有的性能(如:比表面积大,反应活性高等优点),必须有效地防止颗粒团聚,提高分散性。为改变颗粒的表面状态,可以加入表面添加剂与颗粒发生化学反应或表面吸附反应。如果将原始颗粒看作“核”,表面包覆层看作“壳”,则颗粒经包覆以后形成了一种“核-壳”的结构,作为一种新物质,呈现出某些新的特性和功能。壳层既可以是无机物质也可以是有机物质。此项技术在化工,制药,食品等领域有着广阔的应用

(完整版)纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性[ 1 ] ,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切[ 2 ] [ 3 ] 。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法 纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中通过直流放电使气体电离产生高温等离子体,从而使原料溶化和蒸发,蒸汽达到周围的气体就会被冷凝或发生化学反应形成超微粒。 2 化学制备方法 化学法是指通过适当的化学反应, 从分子、原子、离子出发制备纳米物质,它包括化学气相沉积法[5][6]、化学气相冷凝法、溶胶-凝胶法、水热法、沉淀法、冷冻干燥法等。化学气相沉积(CVD)是迄今为止气相法制备纳米材料应用最为广泛的方法,该方法是在一个加热的衬底上,通过一种或几种气态元素或化合物产生的化学元素反应形成纳米材料的过程,该方法主要可分成热分解反应沉积和化学反应沉积。该法具有均匀性好,可对整个基体进行沉积等优点。其缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积门、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。

无机微_纳米粒子表面包覆改性技术

第30卷 第9期 电子元件与材料 V ol.30 No.92011年9月 ELECTRONIC COMPONENTS AND MATERIALS Sep. 2011 无机微/纳米粒子表面包覆改性技术 肖 勇,吴孟强,袁 颖,庞 翔,陈 黎 (电子科技大学 电子薄膜与集成器件国家重点实验室,四川 成都 610054) 摘要: 综述了无机微/纳米粒子表面包覆的形成机理,从有机和无机包覆两个方面阐述了无机微/纳米粒子表面改性技术的研究进展,对偶联剂改性、表面接枝聚合法、机械混合法、球磨法、溶胶–凝胶法等常用的包覆方法一一进行了介绍和举例,并提出了超细无机粒子的包覆改性中存在的几个亟待解决的问题。 关键词: 微/纳米粒子;表面改性;综述;偶联剂 中图分类号: TB383 文献标识码:A 文章编号:1001-2028(2011)09-0066-05 Research on the surface coating technologies of inorganic micro/nano-particles XIAO Yong, WU Mengqiang, YUAN Ying, PANG Xiang, CHEN Li (State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China) Abstract : The surface coating mechanisms of inorganic micro/nano-particles are summarized. The research progresses on the surface modification technologies of micro/nano-particles by the organic and inorganic coating are also elaborated. Some common surface coating methods, such as coupling agent modification, surface grafting polymerization, mechanical hybrid method, ball milling method, sol-gel technology, and so on are illustrated respectively. Meanwhile, some problems needed to be solved concerning encapsulation of inorganic ultrafine particles are raised and discussed. Key words : micro/nano-particles; surface modification; review; coupling agents 近年来,随着材料科技的不断发展,微/纳米粒 子以其特有的性质(比表面积大,表面活性大等)而受到越来越多的关注,但由于受到小尺寸、量子尺寸及表面效应[1-2]的影响,在空气和液体介质中很难得到稳定而不团聚[3]的微/纳米粒子,从而影响了其实际使用效果。二十世纪九十年代中期,国际材料会议提出了一个新的概念——纳米粒子的表面修饰工程,即用化学或物理方法使纳米粒子的表面结构和形貌发生改变,赋予其新的物化性能,以提高微/纳米粒子与其他物质的相容性。其中,表面包覆技术,即在微/纳米粒子表面包裹一层有机物或无机物,作为最通用的表面改性技术,能很好地解决微/纳米粒子稳定性和分散性差的问题[4]。笔者对包覆机理和无机微/纳米粒子的表面包覆改性技术进行了介绍。 1 包覆机理 无机微/纳米粒子的表面包覆是指在无机粒子的表面吸附或包裹另一种或多种物质,形成核-壳复合结构,这个过程实际上是不同物质的复合过程(见图1),目前对其形成机理[5-7]的研究尚不完善,主要有以下几种观点: 图1 表面包覆过程示意图 Fig.1 Schematic of surface coating process 1.1 化学键合理论 基体和包覆剂之间由于化学反应生成化学键, 收稿日期:2011-04-27 通讯作者:吴孟强 作者简介:吴孟强(1970-),男,四川成都人,教授,主要研究微波介质材料与器件,E-mail: mwu@https://www.doczj.com/doc/1b4784564.html, ; 肖勇(1985-),男,湖南衡阳人,研究生,主要从事微波复合介质板的研究,E-mail: xiaoyong2350685@https://www.doczj.com/doc/1b4784564.html, 。 综 述

纳米生物材料研究进展

纳米生物材料研究进展 学院:建筑工程学院专业:土木工程 姓名:李春波学号111401140 生物材料又称生物工艺学或生物技术。应用生物学和工程学的原理,对生物材料、生物所特有的功能,定向地组建成具有特定性状的生物新品种的综合性的科学技术。生物工程学是70年代初,在分子生物学、细胞生物学等的基础上发展起来的,包括基因工程、细胞工程、酶工程、发酵工程等,他们互相联系,其中以基因工程为基础。只有通过基因工程对生物进行改造,才有可能按人类的愿望生产出更多更好的生物产品。而基因工程的成果也只有通过发酵等工程才有可能转化为产品,而今天,就让我带领你走进微小,但不失奇妙的纳米生物材料。 纳米,其实是长度单位,原称毫微米,就是10亿分之一米,即100万分之一毫米。如同厘米、分米和米一样,是长度的度量单位。相当于4倍原子大小,比单个细菌的长度还要小。举个例子来说,假设一根头发的直径是0.05毫米,把它径向平均剖成5万根,每根的厚度大约就是一纳米。也就是说,一纳米大约就是0.000001毫米.纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。纳米技术的发展带动了与纳米相关的很多新兴学科。有纳米医学、纳米化学、纳米电子学、纳米材料学、纳米生物学等。全世界的科学家都知道纳米技术对科技发展的重要性,所以世界各国都不惜重金发展纳米技术,力图抢占纳米科技领域的战略高地。我国于1991年召开纳米科技发展战略研讨会,制定了发展战略对策。十多年来,我国纳米材料和纳米结构研究取得了引人注目的成就。目前,我国在纳米材料学领域取得的成就高过世界上任何一个国家,充分证明了我国在纳米技术领域占有举足轻重的地位。 在过去几年中,生物纳米材料的理论与实验研究已成为人们关注的焦点,特别是核酸与蛋白质的生化、生物物理、生物力学、热力学与电磁学特征及其智能复合材料已成为生命科学与材料科学的交叉前沿。目前,纳米生物芯片材料、仿生材料、纳米马达、纳米复合材料、界面生物材料、纳米传感器与药物传递系统等方面已取得很大进展。 1.纳米生物芯片材料 纳米生物芯片材料是一个正在发展的技术,它首先利用生物智能全数字癫痫定位仪查出致痫病灶,并进行精确定位,运用生物芯片技术进行植入病灶顶部,运用生物芯片调节神经兴奋及异常发作的微小电流,芯片植入后(就是出现发作人体也感应不到,因为电流被芯片吸收,就不会出现电流刺激神经和脑细胞,各种肢体抽搐等异常症状即刻消失)。而治疗系统中另一项需同时进行的血液磁化技术,它是依据生物物理学、生物磁学、生物光学、生物化学的原理,将磁、光、氧有机结合形成磁共振作用,以血液为媒介调节机体代谢实现对机体的治疗,它能感应和影响人体电流分布、电荷微粒的运动、膜系统的通透性和生物高分子的磁矩取向等,清除大脑异常电流,稳定神经细胞膜,提高神经细胞兴奋阈,抑制大脑神经元高频放电和冲动的传播。在脑部形成稳定的生物磁场,使异常放电的神经元电位趋于平衡,调整神经网路电失衡。对神经细胞功能失调有整合作用,对缺氧破损的神经细胞有修复作用,可以增进神经细胞的重新生长,针对性的修复受损的神经细胞,从而产生镇静、解痉作用,激发神经自身保护功能,促使神经

相关主题
文本预览
相关文档 最新文档