2009年第七届小学希望杯全国数学邀请赛五年级第1试试题及详细解答
- 格式:doc
- 大小:2.20 MB
- 文档页数:9
2009年第7届希望杯5年级二试试题1.(2009年第7届希望杯5年级2试第1题,5分)四个数2008200720092008,,,2007200820082009其中最大的数是,最小的数是.2.(2009年第7届希望杯5年级2试第2题,5分)若0.24 2.814A=+,则循环小数A的每个循环节有___位数字,循环节的首位数字和末位数字分别是___和___.3.(2009年第7届希望杯5年级2试第3题,5分)100以内的自然数中.所有是3的倍数的数的平均数是.4.(2009年第7届希望杯5年级2试第4题,5分)一个十位数字是0的三位数,等于它的各位数字之和的67倍,交换这个三位数的个位数字和百位数字,得到的新三位数是它的各位数字之和的倍.5.(2009年第7届希望杯5年级2试第5题,5分)如图1,圆圈内分别填有1,2,……,7这7个数.如果6个三角形的顶点处圆圈内的数字的和是64,那么,中间圆圈内填入的数是.6.(2009年第7届希望杯5年级2试第6题,5分)如图2所示,4盏霓虹灯安装在大正方形的4个小正方形框里,3秒后,上下的灯互换图案,又过了3秒,左右的等互换图案,……,重复这样的变化规律.请画出经过1分钟霓虹灯的排列图案.7.(2009年第7届希望杯5年级2试第7题,5分)五(1)班共有学生40人,其中,既会轮滑又会游泳的学生有8人,这两项运动都不会的学生有12人,只会轮滑与只会游泳的人数之比是3:2.那么,五(1)班会轮滑的而又人,会游泳的有人.8.(2009年第7届希望杯5年级2试第8题,5分)两个篮子中分别装有很多同样的牵牛花和月季花,从中选出6朵串成花环(图3是其中的一种情况),可以得到不同的花环种.(通过旋转和翻转能重合的算同一种花环).9.(2009年第7届希望杯5年级2试第9题,5分)如图4,李明和王亮从同一跑道的起点同时同向出发,结果李明比王亮晚到终点0.5秒.则跑道长米.10.(2009年第7届希望杯5年级2试第10题,5分)用若干个棱长为1的小正方体铁框架焊接成的几何体,从正面、侧面、上面看到的视图均如图5所示.那么这个几何体至少是个小正方体铁框架焊接而成.11.(2009年第7届希望杯5年级2试第11题,5分)用{x}表示数x的小数部分,[x]表示x的整数部分.如{2.3}=0.3,[2.3]=2.若a+[b]=15.3,{a}+b=7.8,则a= ,b= .12.(2009年第7届希望杯5年级2试第12题,5分)通常,汽车经销商对所销售汽车的报价中已经计入了增值税,即报价等于纯车价与增值税之和.消费者在购买汽车后还需要缴纳购置税.增值税和购置税都是按照纯车价来计算的.根据以上信息完成下表.13.(2009年第7届希望杯5年级2试第13题,15分)图6,在一张方格纸上画若干个1×2的阴影方块,可留下一定数量的1×1的空方块□.要求:1×2的阴影方块的阴影部分不重叠,1×1的空方块不相连.请根据图(a)、图(b)的示例,在图(c)、图(d)、图(e)的方格纸上画一个或更多个1×2的阴影方块,使各图留下的1×1的空方块的数量最多.14.(2009年第7届希望杯5年级2试第14题,15分)甲、乙两车间生产同一种零件,若按4:1向甲乙车间分配生产任务,这两个车间能同时完成任务.实际生产时,乙车间每天生产15个零件,由于甲车间抽调一部分工人去完成另外的任务,实际每天生产50个零件.若干天后,乙车间完成了任务,甲车间还剩一部分未完成,这时,甲乙两车间合作,2天后全部完成.问:这批零件有多少个?15.(2009年第7届希望杯5年级2试第15题,15分)如图7,梯形ABCD与正方形DEFC拼在一起,AF与DE交于点G.已知BC=CD=4,三角形AGD的面积是三角形DGF面积的2倍.(1)求梯形ABCD的面积;(2)比较三角形GEF和三角形AGD的面积大小.16.(2009年第7届希望杯5年级2试第16题,15分)如图8,甲、乙两艘快船不断往返于A、B两港之间.若甲、乙同时从A港出发,它们能否同时到达下列地点?若能,请推出它们何时到达该地点;若不能,请说明理由:(1)A港口;(2)B港口;(3)在两港口之间且距离B港30千米的大桥.试题答案1. 【分析】20082007;200720082. 【分析】6;0;93. 【分析】100以内的自然数中是3的倍数的数有0,3,6,9,99 共33个,他们的和是()09934179916832+⨯=⨯=,则他们的平均数为1683÷34=49.5. 4. 【分析】令这个三位数为0a b ,则由题意可知,10067()a b a b +=+,可得2a b =,而调换个位和百位之后变为:0100102b a b a b =+=,而3a b b +=,则得到的新三位数是它的各位数字之和的102334b b ÷=倍.5. 【分析】26. 【分析】7. 【分析】20;168. 【分析】考虑月季花的数量有0、1、2、3、4、5、6共类情况,分类讨论:(1) 有0朵月季花,则有1种;(2) 有1朵月季花,则有1种;(3) 有2朵月季花,2朵月季花中间可包夹有0、1、2朵月季花,共有3种情况.(包夹3、4朵分与包夹1、0朵相同);(4) 有3朵月季花,3多月季花中间可包含有0、1、2朵月季花,共有3种情况.(包含 (5) 3朵月季花与包含0朵相同);(6) 有4朵月季花,同(3),有3种情况;(7) 有5朵月季花,有1种;(8) 有6朵月季花,有1种;所以共有1+1+3+3+3+1+1=13(种)9. 【分析】20810. 【分析】注意,此题是焊接而成,而不是堆砌,则中间可以空,所以用9个小正方体铁框架即可焊接而成.11. 【分析】8.3;7.512. 【分析】84000;420013. 【分析】图(c )、图(d )、图(e )分别最多留下0个、2个、6个11⨯的空房快,如下图所示.(画法不唯一,每个图6分.)14. 【分析】如果甲车间不抽调一部分工人去完成另外的任务,每天能生产零件 151460÷⨯=(个) (5分) 原计划完成任务所用的时间是()()50152605013+⨯÷-=(天) (10分) 这批零件有 ()60153975+⨯1=(个).(15分) 15. 【分析】(1)因为三角形AGD 的面积是三角形DGF 的面积的2倍,两个三角形有相同的底边DG ,所以三角形AGD 的高是三角形DGF 的高的2倍,则()42112AB =⨯+=.梯形ABCD 的面积是()4124232+⨯÷=.(2)正方形DEFC 的面积是4416⨯=,三角形AFB 的面积是()4412248+⨯÷=.又因为ABCD 的面积是32,而三角形DCF 的面积为8,所以三角形ADF 的面积为8,又三角形DEF 的面积为8,所以三角形GEF 的面积与三角形ADG 的面积相等.16. 【分析】(1)甲往返一次的时间是()18018013.5h 3010300+=+-1, 乙往返一次的时间是()180180.5h 5010500+=7+-1, 13.5和7.5的最小公倍数是67.5,所以,在甲、乙出发后的()67.51,2,a a = 小时,它们又同时回到A 港. (5分) (2)设甲、乙能同时到达B 港,此时,甲、乙各完成了,m n 次往返(,m n 是自然数),则有 18018013.57.530105010m n +=+++ 即 915m n +=.当m 的个位数是6或1时,有满足上式的自然数n .,最小的=1,最少需要4.5+13.5=18小时.则在甲、乙出发后18+67.5小时,它们同时到达港口.(10分) (3)设甲、乙能同时到达大桥,且分别完成了,m n 次往返(,m n 是自然数). ①若此时甲、乙向下游行驶,则15015013.57.530105010m n +=+++, 即 13512.575m n +=,没有满足上式的自然数,m n .②若此时甲、乙向上游行驶,则180301803013.57.53010301050105010m n ++=+++-+-, 即 13522.575m n +=,没有满足上式的自然数,m n .③若此时甲向上游行驶,乙向下游行驶,则1803015013.57.5301030105010m n ++=++-+ 即 27715m n +=没有满足上式的自然数,m n .④若此时甲向下游行驶,乙向上游行驶,则1501803013.57.5301050105010m n +=++++- 即 95m n =当m 的个位数是0或5时,有满足上式的自然数n ,所以在甲、乙出发后的 ()15013.55 3.7567.50,1,2,3010c c c +⨯=+=+ 小时,它们同时到达大桥.。
五年级数学希望杯试题第五届“希望杯”全国数学邀请赛(五年级第1试)1.2007÷=______。
2.对不为零的⾃然数a,b,c ,规定新运算“☆”:☆(a,b ,c)= ,则☆(1,2,3)=______。
3.判断:“⼩明同学把⼀张电影票夹在数学书的51页⾄52页之间”这句话是______的。
(填“正确”或“错误”)4.已知a,b,c是三个连续⾃然数,其中a是偶数。
则a+1,b+2,c+3的积是奇数还是偶数5.某个⾃然数除以2余1,除以3余2,除以4余1,除以5也余1,则这个数最⼩是______。
6.当p和p3+5都是质数时,+5=______.7.下列四个图形是由四个简单图形A、B、C、D(线段和正⽅形)组合(记为*)⽽成。
则图中①~④中表⽰A*D的是______。
(填序号)8.下⾯四幅图形中不是轴对称图形的是______。
(填序号)9.⼩华⽤相同的若⼲个⼩正⽅形摆成⼀个⽴体(如图)。
从上⾯看这个⽴体,看到的图形是图①~③中的______。
(填序号)10.图中内部有阴影的正⽅形共有______个。
11.下图中的阴影部分BCGF是正⽅形,线段FH长18厘⽶,线段AC长24厘⽶,则长⽅形ADHE的周长是______厘⽶。
12.图中的熊猫图案的阴影部分的⾯积是______平⽅厘⽶。
(注:阴影部分均由半圆和正⽅形组成,图中⼀个⼩正⽅形的⾯积是1平⽅厘⽶,π取3.14) 13.⼩红看⼀本故事书,第⼀天看了这本书的⼀半⼜10页,第⼆天看了余下的⼀半⼜10页,第三天看了10页正好看完。
这本故事书共有______页。
14.有⼀副扑克牌中(去掉⼤、⼩王),最少取______张牌就可以保证其中3张牌的点数相同。
15.如图,摩托车⾥程表显⽰的数字表⽰摩托车已经⾏驶了24944千⽶,经过两⼩时后,⾥程表上显⽰的数字从左到右与从右到左的读数相同,若摩托车的时速不超过90千⽶,则摩托车在这两⼩时内的平均速度是______千⽶/时。
历届五年级希望杯答案及解析2010年第八届2011年第九届1、解:原式=1.25 ×31.3 ×3 ×8 = 100 ×93.9 = 9392、解:将循环节多写一次即可逐位比较3、解:十位数之前应该有1 + 2 + 3 +……+9 = 45位。
1位数有9位,10—19有20位,20—27有16位,所以十位数的开头应为28,为28293031324、解:从A到B一定会经过三步,第一步要从A走到中间,最后一步应该是从中间走到B,而第二步为从中间走到中间只能有一种走法。
从A到中间一条线上共有5种走法,从B到中间一条线上也有5种走法。
所以共有5 ×1 ×5 = 25种走法。
5、解:在3 ×4的长方形中有20个横平竖直的正方形。
斜着的有1 ×1正方形17个,2 ×2的正方形8个,还有1个3 ×3的大正方形。
共46个。
6、解:47 ÷b = c ……c ,即b ×c + c = 47,即c ×( b + 1 ) = 47,所以c一定是47的约数,c为47肯定不符合条件,所以c = 1,即除数是46,余数是1.7、解:能被90整除说明即能被9整除也能被10整除,被10整除说明最后一位是0,被9整除说明数字和应为9的倍数,即2 + 0 + 1 + 1 + a +0 是9的倍数,所以a = 5,即后两位是50.8、解:约数个数为奇数说明这个自然数为完全平方数,1000以内最大的完全平方数是31²= 9619、解:首先最下面的一个角肯定没有,最上面的中部也会少一部分,所以是丁。
10、解:一圈共400米,甲是乙速度的1.5倍,所以甲共走了240米,乙走了160米。
DE为60米,CE为40米。
SADE = 3000平方米,SBCE = 2000平方米,差为1000平方米。
11、解:弟弟如果不多跑半小时应比哥哥少跑80 ×30 — 900 = 1500米,所以哥哥共跑了1500 ÷(110—80)= 50分钟,共跑了50 ×110 = 5500米。
第七届小学“希望杯”全国数学邀请赛六年级 第1试1.计算:2.009×13+20.09×2.9+200.9×0.28= 。
2.规定:如果A 大于B ,则|A-B|= A-B ;如果A 等于B ,则|A-B|=0;如果A 小于B ,则|A-B|=B-A 。
根据上述规律计算:|4.2-1.3|+|2.3-5.6|+|3.2-3.2|= 。
3.图1中的扇形图分别表示小羽在寒假的前两周阅读《漫话数学》一书的页数占全书总页数的比例。
由图1可知,这本书共有 页。
4.根据图2的信息回答,剩下的糖果是原来糖果重量的 。
图25.本届“希望杯”全国数学邀请赛第1试于3月15日举行。
观察下面一列数:112123123412345121321432154321,,,,,,,,,,,,,,,…… 根据发现的规律,从左往右数,315是第 个分数。
6.将小数0.987654321改为循环小数。
如果小数点后的第20位上的数字是5,那么表示循环节的两个点应分别加在数字 和 的上面。
7.如果现在时刻是8点55分,那么,第一次到10点整时,秒针旋转了 周。
8.将一个分数的分子减少10%,分母增加50%,变化后,得到的新分数比原分数减少 %。
9.春天幼儿园中班小朋友的平均身高是115厘米,其中男孩比女孩多15,女孩的平均身高比男孩高10%,这个班男孩的平均身高是 厘米。
10.甲乙两校参加数学竞赛的人数之比是7:8,获奖人数之比是2:3,两校各有320人未获奖,那么两校参赛的学生共有 人。
11.某项目的成本包括:人力成本、差旅费、活动费、会议费、办公费、招待费以及其他营运费用,它们所占比例如图4所示,其中的活动费是10320元,则该项目的成本是元。
12.联欢会上有一则数字谜语,谜底是一个八位数。
现已猜出:□54□7□39,主持人提示:“这个无重复数字的八位数中,最小的数是2。
”要猜出这个谜语,最多还要猜次。
2009第七届小学“希望杯”全国数学邀请赛五年级第2试一、填空题(每小题5分,共60分)1.四个数其中最大的数是,最小的数是。
2.若,则循环小数A的每个循环节有位数字,循环节的首位数字和末位数字分别是和。
3.100以内的自然数中。
所有是3的倍数的数的平均数是。
4.一个十位数字是0的三位数,等于它的各位数字之和的67倍,交换这个三位数的个位数字和百位数字,得到的新三位数是它的各位数字之和的倍。
5.如图1,圆圈内分别填有1,2,……,7这7个数。
如果6个三角形的顶点处圆圈内的数字的和是64,那么,中间圆圈内填入的数是。
6.如图2所示,4盏霓虹灯安装在大正方形的4个小正方形框里,3秒后,上下的灯互换图案,又过了3秒,左右的等互换图案,……,重复这样的变化规律。
请画出经过1分钟霓虹灯的排列图案。
7. 五(1)班共有学生40人,其中,既会轮滑又会游泳的学生有8人,这两项运动都不会的学生有12人,只会轮滑与只会游泳的人数之比是3:2。
那么,五(1)班会轮滑的而又人,会游泳的有人。
8. 两个篮子中分别装有很多同样的牵牛花和月季花,从中选出6朵串成花环(图3是其中的一种情况),可以得到不同的花环种。
(通过旋转和翻转能重合的算同一种花环)9. 如图4,李明和王亮从同一跑道的起点同时同向出发,结果李明比王亮晚到终点0.5秒。
则跑道长米。
10.用若干个棱长为1的小正方体铁框架焊接成的几何体,从正面、侧面、上面看到的视图均如图5所示。
那么这个几何体至少是个小正方体铁框架焊接而成。
11.用{x}表示数x的小数部分,[x]表示x的整数部分。
如{2.3}=0.3,[2.3]=2。
若a+[b]=15.3,{a}+b=7.8,则a=,b=。
12.通常,汽车经销商对所销售汽车的报价中已经计入了增值税,即报价等于纯车价与增值税之和。
消费者在购买汽车后还需要缴纳购置税。
增值税和购置税都是按照纯车价来计算的。
根据以上信息完成下表。
二、解答题(每小题15分,共60分)每题都要写出推算过程。
第七届小学“希望杯”全国数学邀请赛五年级 第1试以下每题6分,共120分。
1、计算:...0.30.030.003--= 。
(结果写成分数形式) 2、计算:100÷1.2×3÷541615⨯= 。
3、如右图,从起点走到终点,要求取走每个站点上的棋子,并且每个站点只允许通过一次,有_________种不同的走法。
4、三个数:23,51,72,各除以大于1的同一个自然数,得到同一个余数。
则这个除数是___________。
5、有2克、5克、20克的砝码各1个,只用砝码和一架已经调节平衡了的天平能称出___________种不同的质量。
6××商品销售计划进价(元/件)销售方式 售价(元/件)利润率(%)利润(元/件)原价 1800 20 九折7、中心对称图形是:绕某一点旋转180°后能和原来的图形重合的图形。
轴对称图形是:沿着一条直线对折后两部分完全重合的图形。
图2的4个图形中,既是中心对称图形又是轴对称图形的有__________个。
图28、如图3,小明做减法时看错了减数.这个减数应当是___________。
图3 9、已知A =1+11111112345678++++++,则A 的整数部分是___________。
10、小羽和小曼分别住在一座山两侧的山脚下。
一天,小羽在上午9:00从家里出发到小曼家做客。
小羽在小曼家玩了2个半小时后回家,到家时是下午14:00。
若小羽山每小时走2里地,下山每小时走3里地,则小羽家和小曼家之间的山路长__________里。
11、今年,小军和小勇的年龄的比是3:5,两年后,两人的年龄的比是2:3。
那么,小军今年________岁,小勇________岁。
12、一只蚂蚁“侦察兵”在洞外发现了食物,他立刻回到洞穴通知同伴。
假设一只蚂蚁在1分钟内可以把消息传达给4个同伴,那么,不超过_______分钟,蚁穴里的全部2000只蚂蚁都知道了这个消息。
2011年第九届初赛1.计算:1.25×31.3×24=。
2.把0.123,0.2,0.1,0.12按照从小到大的顺序排列:<<<3.先将从1开场的自然数排成一列:1415......然后按一定的规律分组:1,23,456,7891,01112,131415,......在分组后的数中,有一个十位数,这个十位数是。
4.如图1,从A到B,有条不同的路线。
〔不能重复经过同一个点〕5.数数,图2中有个正方形。
6.—个除法算式中.被除数、除数、商与余数都是自然数,并且商与余数相等假设被除数是47.则除数是,余数是。
7.如果六位数2011□□能被90整除.则它的最后两位数是。
8.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数〞。
则,1000以最大的“希望数〞是。
9.将等边三角形纸片按图3所示步骤折叠3次〔图3中的虚线是三边的中点的连线然后沿过两边的中点的直线减去一角〔如图4〕将剩下的纸片展开,平铺.得到的图形是。
10.如图5,甲、乙两人按箭头方向从A点问时出发,沿着正方形ABCD的边行走,正方形ABCD 的边长是100米,甲的速度是乙的速度的1.5倍,两人在E点第一次相遇,则三角形ADE 的面积比EBC三角形的面积大平方米。
11.星期天早晨,哥哥和弟弟去练习跑步。
哥哥每分钟跑110米,弟弟每分钟跑80米。
弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米。
则,哥哥跑了米。
12.小明带了30元钱去买文具,买了3个笔记本和5支笔,剩余的钱,如果再买2支笔还差0.4元,如果再买2个笔记本则还差2元。
则,笔记本每个元,笔每支元。
13.数学家维纳是控制论的创始人。
在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄。
维纳的问答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0〜9这10个数字全都用上了,不重也不漏。
小学“希望杯” 全国数学邀请赛五年级一试 试卷解析1、计算:2015201.520.152.015--=2、9个13相乘,积的个位数字是 。
3、如果自然数a 、b 、c 除以14都余5,则a +b +c 除以14,得到的余数是 。
4、将1到25这25个数随意排成一行,然后将它们依次和1,2,3,…,25相减,并且都是大数减小数,则在这25个差中,偶数最多有 个。
5、如图l ,有3个长方形,长方形①的长为16厘米,宽为8厘米;长方形②的长、宽分别是长方形①长、宽的一半;长方形③的长、宽分别是长方形②长、宽的一半,则这个图形的周长是 厘米。
6.字母a ,b ,c ,d ,e ,f ,g 分别代表1至7中的一个数字,若a +b +c =c +d +e =e +f +g ,则c 可取的值有 个。
7、用64个体积为l 立方米的小正方体拼成一个大正方体,如果将大正方体8个顶点处的小正方体都去掉,则此时的几何体的表面积是____平方米。
8、有一个三位数,百位数字是最小的质数,十位数字是算式(0.3+π×13)的结果中的小数点后第1位数字,个位数字是三位数中能被17整除的最小数的个位数字,则这个三位数是 。
(π取3.14)9、循环小数0.0142857 的小数部分的前2015位数字之和是10、如图2,用若干个相同的小正方体摆成一个几何体,从上面、前面、左面看分别是图形①、②、③,则至少需要 个小正方体。
11、已知a 和b 的最大公约数是4,a 与c 及b 与c 的最小公倍数都是100,而且a 小于等于b,则满足条件的有序自然数对(a,b,c)共有组。
12、从写有1、2、3、4、5的五张卡片中,任取3张组成一个三位数,其中不能被3整除的有个。
因此,不能被3整除的共有:6×6=36(个)。
13、两位数ab和ba都是质数,则ab有个。
14、ab和cde分别表示两位数和三位数,如果ab+cde=1079,则a+b+c+d+e=。
1.计算:2.009×13+20.09×2.9+200.9×0.28= 。
2.规定:如果A 大于B ,则|A-B|= A-B ;如果A 等于B ,则|A-B|=0;如果A 小于B ,则|A-B|=B-A 。
根据上述规律计算:|4.2-1.3|+|2.3-5.6|+|3.2-3.2|= 。
3.图1中的扇形图分别表示小羽在寒假的前两周阅读《漫话数学》一书的页数占全书总页数的比例。
由图1可知,这本书共有 页。
4.根据图2的信息回答,剩下的糖果是原来糖果重量的 。
图25.本届“希望杯”全国数学邀请赛第1试于3月15日举行。
观察下面一列数:112123123412345121321432154321,,,,,,,,,,,,,,,…… 根据发现的规律,从左往右数,315是第 个分数。
6.将小数0.987654321改为循环小数。
如果小数点后的第20位上的数字是5,那么表示循环节的两个点应分别加在数字 和 的上面。
7.如果现在时刻是8点55分,那么,第一次到10点整时,秒针旋转了 周。
8.将一个分数的分子减少10%,分母增加50%,变化后,得到的新分数比原分数减少( )%。
9.春天幼儿园中班小朋友的平均身高是115厘米,其中男孩比女孩多15,女孩的平均身高比男孩高10%,这个班男孩的平均身高是厘米。
10.甲乙两校参加数学竞赛的人数之比是7:8,获奖人数之比是2:3,两校各有320人未获奖,那么两校参赛的学生共有人。
11.某项目的成本包括:人力成本、差旅费、活动费、会议费、办公费、招待费以及其他营运费用,它们所占比例如图4所示,其中的活动费是10320元,则该项目的成本是元。
12.联欢会上有一则数字谜语,谜底是一个八位数。
现已猜出:□54□7□39,主持人提示:“这个无重复数字的八位数中,最小的数是2。
”要猜出这个谜语,最多还要猜次。
13.如图5,正方形ABCD的边长是5厘米,点E、F分别是AB和BC的中点,EC与DF交于点G,则四边形BEGF的面积等于平方厘米。
2009年第七届六年级“希望杯”培训试题1、211⨯+321⨯+431⨯+…+200720061⨯= 20062007 。
2、(1+20021+20041+20061)×(20021+20041+20061+20081)-(1+20021+20041+20061+20081)×(20021+20041+20061)= 12008 。
3、(220071×3.6+353×720072006)÷43÷53= 80 。
4、从21+41+61+81+101+121 中去掉 81 和 101 ,余下的分数之和为1.5、99…9×55…5乘积的各位数字之和是 18063 。
6、20031200412005120061 200711±±±±的整数部分是 400 。
(分母中只有加号)7、已知除法算式:÷,它的计算结果的小数点后的前三位分别是 3、9、5 。
8、一个整数与它的倒数和等于20.05,这个数是 20 ,它的倒数是 0.05 。
9、在如图1的加法算式中,每个汉字分别代表1至9中的一个数字,且相同的汉字代表相同的数字,不同的汉字代表不同的数字,那么这个加法算式的和是 。
我 爱 希 望 杯 数 学 竞 赛 + 8 6 4 1 9 7 5 3 2 赛 竞 学 数 杯 望 希 爱 我 10、有一个分数,它的分子加2,可以约简为74;它的分母减2,可以约简为2514。
这个分数是 4277 。
11、四个非零自然数的和为38,这四个自然数的乘积的最小值是 35 ,最大值是 8100 。
12、已知a 是质数,b 是偶数,且a 2+b=2008,则a+b+1= 2007 。
13、当a =2007时,a-1,a,a+1,a+2中的合数有 4 个。
14、从1到30这30个自然数连乘各的末尾共 7 个连续的数码0.2007个9 2007个515、一个质数p ,使得p+2,p+4同时都是质数,则p1+21±p +41±p = 71105 .16、三个质数的倒数之和是20061155,则这三个质数中最大的是 5917、彼此不等且大于0的偶数a,b,c,d 满足a+b+c+d=20,样的偶数组(a,b,c,d )共有 24 组。
第七届小学“希望杯”全国数学邀请赛
五年级 第1试
以下每题6分,共120分。
1、计算:.
.
.
0.30.030.003--= 。
(结果写成分数形式) 2、计算:100÷1.2×3÷5416
15
⨯= 。
3、如右图,从起点走到终点,要求取走每个站点上的棋子,并且每个站点只允许通过一次,有_________种不同的走法。
4、三个数:23,51,72,各除以大于1的同一个自然数,得到同一个余数。
则这个除数是___________。
5、有2克、5克、20克的砝码各1个,只用砝码和一架已经调节平衡了的天平能称出___________种不同的质量。
6××商品销售计划
进价(元/件)
销售方式 售价(元/件)
利润率(%)
利润(元/件)
原价 1800 20 九折
7、中心对称图形是:绕某一点旋转180°后能和原来的图形重合的图形。
轴对称图形是:沿着一条直线对折后两部分完全重合的图形。
图2的4个图形中,既是中心对称图形又是轴对称图形的有__________个。
图2
8、如图3,小明做减法时看错了减数.这个减数应当是___________。
图3 9、已知A =1+1111111
2345678
++++++,则A 的整数部分是___________。
10、小羽和小曼分别住在一座山两侧的山脚下。
一天,小羽在上午9:00从家里出发到小曼家做客。
小羽
在小曼家玩了2个半小时后回家,到家时是下午14:00。
若小羽山每小时走2里地,下山每小时走3里地,则小羽家和小曼家之间的山路长__________里。
11、今年,小军和小勇的年龄的比是3:5,两年后,两人的年龄的比是2:3。
那么,小军今年________
岁,小勇________岁。
12、一只蚂蚁“侦察兵”在洞外发现了食物,他立刻回到洞穴通知同伴。
假设一只蚂蚁在1分钟内可以把消息传达给4个同伴,那么,不超过_______分钟,蚁穴里的全部2000只蚂蚁都知道了这个消息。
(结果取整数)
13、如图4,李明和王亮以不同的方式赛跑,最终获胜的是_________。
图4
14、用若干个棱长为1的小正方形铁块焊接成的几何体,从正面、侧面、上面看到的视图
均如图5所示。
那么这个几何体至少由________个小正方体铁块焊接而成。
15、若长方体的三个侧面的面积分别是6,8,12,则长方体的体积是_______。
16、如下图,鼹鼠和老鼠分别从长157米的小路两端A、B开始向另一端挖洞。
老鼠对鼹鼠说:“你挖完后,
我在挖。
”这样一来,由于老鼠原来要挖的一些洞恰好也是鼹鼠要挖的洞,所以老鼠可以少挖________个洞。
17、如下图是1班和2班的男生和女生的人数统计图。
已知两个班的人数都不少于30,也不多于40。
则1
班有________名学生,2班有________名学生。
18、工厂生产一批产品,原计划15天完成。
实际生产时改进了生产工艺,每天生产产品的数量比原计划
每天生产产品数量的5
11
多10件,结果提前4天完成了生产任务。
则这批产品有_______件。
19、一辆汽车以不变的速度在行驶,司机看了三次里程表,如下图所示,由此可知汽车每小时行驶_________
千米。
20、如右图,三角形BAC的面积是1,E是AC的中点,点D在BC上,且BD:DC=1:2,
AD于BE交于点F。
则四边形DFEC的面积等于___________。
第七届小学“希望杯”全国数学邀请赛答案
五年级第1试
1、。