当前位置:文档之家› Pacific Symposium on Biocomputing 7211-222 (2002) The Accuracy of Fast Phylogenetic Methods

Pacific Symposium on Biocomputing 7211-222 (2002) The Accuracy of Fast Phylogenetic Methods

Pacific Symposium on Biocomputing 7211-222 (2002) The Accuracy of Fast Phylogenetic Methods
Pacific Symposium on Biocomputing 7211-222 (2002) The Accuracy of Fast Phylogenetic Methods

The Accuracy of Fast Phylogenetic Methods for Large Datasets

Luay Nakhleh Bernard M.E.Moret Usman Roshan Dept.of Computer Sciences Dept.of Computer Science Dept.of Computer Sciences University of Texas University of New Mexico University of Texas

Austin,TX78712Albuquerque,NM87131Austin,TX78712

Katherine St.John Jerry Sun Tandy Warnow

Lehman College and Dept.of Computer Sciences Dept.of Computer Sciences The Graduate Center University of Texas University of Texas

City University of New York Austin,TX78712Austin,TX78712 New York,NY10468

Whole-genome phylogenetic studies require various sources of phylogenetic signals to produce an accurate picture of the evolutionary history of a group of genomes.In particular,sequence-based reconstruction will play an important role,especially in resolving more recent events.But using sequences at the level of whole genomes means working with very large amounts of data—large numbers of sequences—as well as large phylogenetic distances,so that reconstruction methods must be both fast and robust as well as accurate.We study the accuracy,convergence rate,and speed of several fast reconstruction methods:neighbor-joining,Weighbor(a weighted version of neighbor-joining),greedy parsimony,and a new phylogenetic reconstruction method based on disk-covering and parsimony search(DCM-NJ+MP).Our study uses extensive simulations based on random birth-death trees,with controlled deviations from ultrametricity.We?nd that Weighbor, thanks to its sophisticated handling of probabilities,outperforms other methods for short sequences, while our new method is the best choice for sequence lengths above100.For very large sequence lengths,all four methods have similar accuracy,so that the speed of neighbor-joining and greedy parsimony makes them the two methods of choice.

1Introduction

Most phylogenetic reconstruction methods are designed to be used on biomolecular (i.e.,DNA,RNA,or amino-acid)sequences.With the advent of gene maps for many organisms and complete sequences for smaller genomes,whole-genome approaches to phylogeny reconstruction are now being investigated.In order to produce accurate reconstructions for large collections of taxa,we will most likely need to combine both approaches—each has drawbacks not shared by the other.Because whole genomes will yield large numbers of sequences,the sequence-based algorithms will need to be very fast if they are to run within reasonable time bounds.They will also have to accommodate datasets that include very distant pairs of taxa.Many of the sequence-based reconstruction methods used by biologists(maximum likelihood,parsimony search,or quartet puzzling)are very slow and unlikely to scale up to the size of data generated in whole-genome studies.Faster methods exist(such as the popu-lar neighbor-joining method),but most suffer from accuracy problems,especially for datasets that include distant pairs.

In this paper,we examine in detail the performance of four fast reconstruction methods,one of which we recently proposed(DCM-NJ+MP),and three others that have been used for at least a few years by biologists(neighbor-joining,Weighbor,and greedy parsimony).We ran extensive simulation studies using random birth-death trees(with deviations from ultrametricity),using about three months of computation on nearly300processors to conduct a thorough exploration of a rich parameter space. We used four principal parameters:model of evolution(Jukes-Cantor and Kimura 2-Parameter+Gamma),tree diameter(which indirectly captures rate of evolution), sequence length,and number of taxa.We?nd that Weighbor(for small sequence lengths)and our DCM-NJ+MP method(for longer sequences)are the methods of choice,although each is considerably slower than the other two methods in our study. Our data also enables us to report on the sequence-length requirements of the various methods—an important consideration,since biological sequences are of?xed length. 2Background

Methods for inferring phylogenies are studied(both theoretically and empirically) with respect to the topological accuracy of the inferred trees.Such studies evaluate the effects of various model conditions(such as the sequence length,the rates of evolution on the tree,and the tree“shape”)on the performance of the methods.

The sequence-length requirement of a method is the sequence length needed by the method in order to reconstruct the true tree topology with high probability.Ear-lier studies established analytical upper bounds on the sequence length requirements of various methods(including the popular neighbor-joining1method).These studies showed that standard methods,such as neighbor-joining,recover the true tree(with high probability)from sequences of lengths that are exponential in the evolutionary diameter of the true tree.Based upon these studies,we de?ned a parameterization of model trees in which the longest and shortest edge lengths are?xed2,3,so that the se-quence length requirement of a method can be expressed as a function of the number of taxa,n.This parameterization led us to de?ne fast-converging methods,methods that recover the true tree(with high probability)from sequences of lengths bounded by a polynomial in n once f and g,the minimum and maximum edge lengths,are bounded.Several fast-converging methods were developed4,5,6,7.We and others analyzed the sequence length requirement of standard methods,such as neighbor-joining(NJ),under the assumptions that f and g are?xed.These studies8,3showed that neighbor-joining and many other methods can recover the true tree with high probability when given sequences of lengths bounded by a function that grows expo-nentially in n.

We recently initiated studies on a different parameterization of the model tree space,where we?x the evolutionary diameter of the tree and let the number of taxa vary9.This parameterization,suggested to us by J.Huelsenbeck,allows us to examine

the differential performance of methods with respect to“taxon sampling”strategies 10.In this case,the shortest edges can be arbitrarily short,forcing the method to re-quire unboundedly long sequences in order to recover these shortest edges.Hence,the sequence-length requirements of methods cannot be bounded.However,for a natural class of model trees,which includes random birth-death trees,we can assume f=Θ(1/n).In this case even simple polynomial-time methods converge to the true tree from sequences whose lengths are bounded by a polynomial in n.Furthermore,the degrees of the polynomials bounding the convergence rates of neighbor-joining and the fast-converging methods are identical—they differ only with respect to the lead-ing constants.Therefore,with respect to this parameterization,there is no signi?cant theoretical advantage between standard methods and the fast-converging methods.

In a previous study9we evaluated NJ and DCM-NJ+MP with respect to their performance on simulated data,obtained on random birth-death trees with bounded deviation from ultrametricity.We found that DCM-NJ+MP dominated NJ throughout the parameter space we examined and that the difference increased as the deviation from ultrametricity or the number of taxa increased.

In an unpublished study,Bruno et al.11compared Weighbor with NJ and BioNJ 12as a function of the length of the longest edge in the true tree,using random birth-death trees of50taxa,deviated from the molecular clock by multiplying each edge length by a random number drawn from an exponential distribution,and using the Jukes-Cantor(JC)model of evolution.They found that Weighbor outperformed the other methods for medium to large values of the longest edge,but was inferior to them for small values—a?nding we can con?rm only for larger numbers of taxa.At last year’s PSB,Bininda-Edmonds et al.13presented a study of Greedy Parsimony (which uses a single random sequence of addition and no branch swapping)in which they used very large random birth-death trees(up to10,000taxa),deviated from the molecular clock,and with sequences evolved under the Kimura2-parameter(K2P) model.Unsurprisingly,they found that scaling and accuracy are at odds:the lower the accuracy level,the better the sequence length scaling.

3Basics

3.1Model Trees

The?rst step of every simulation study for phylogenetic reconstruction methods is to generate model trees.Sequences are then evolved down these trees,the leaf sequences are fed to the reconstruction methods under study,and the reconstructed trees com-pared to the original model tree.

In this paper,we use random birth-death trees with n leaves as our underlying distribution.These trees have a natural length assigned to each edge—namely,the time t between the speciation event that began that edge and the event(which could be either speciation or extinction)that ended that edge—and thus are inherently ul-

trametric.In all of our experiments we modi?ed each edge length to deviate from this restriction,by multiplying each edge by a random number within a range[1/c,c], where we set c,the deviation factor,to be4.

3.2Models of Evolution

We use two models of sequence evolution:the Jukes-Cantor(JC)model14and the the Kimura2-Parameter+Gamma(K2P+Gamma)model15.In both models,a site evolves down the tree under the Markov assumption;in the JC model,all nucleotide substitutions(that are not the identity)are equally likely,so only one parameter is needed,whereas in the K2P model substitutions are partitioned into two classes(again other than identity):transitions,which substitute a purine(adenine or guanine)for a purine or a pyrimidine(cytosine or thymidine)for a pyrimidine;and transversions, which substitute a purine for a pyrimidine or vice versa.The K2P model has a pa-rameter which indicates the transition/transversion ratio.We set this ratio to2in our experiments.Under either model,each edge of the tree is assigned a valueλ(e),the expected number of times a random site on this edge will change its nucleotide.

It is often assumed that the sites evolve identically and independently(i.i.d.) down the tree.However,we can also assume that the sites have different rates of evolution,drawn from a known distribution.One popular assumption is that the rates are drawn from a gamma distribution with shape parameterα,which is the inverse of the coef?cient of variation of the substitution rate.We useα=1for our experiments under K2P+Gamma.

3.3Phylogenetic Reconstruction Methods

Neighbor Joining.Neighbor-Joining(NJ)1is one of the most popular distance-based methods.NJ takes a distance matrix as input and outputs a tree.For every two taxa,it determines a score,based on the distance matrix.At each step,the algo-rithm joins the pair with the minimum score,making a subtree whose root replaces the two chosen taxa in the matrix.The distances are recalculated to this new node, and the“joining”is repeated until only three nodes remain.These are joined to form an unrooted binary tree.

Weighted Neighbor Joining.Weighbor16,like NJ,joins two taxa in each iteration; the pairs of taxa are chosen based on a criterion that embodies a likelihood function on the distances,which are modeled as correlated Gaussian random variables with different means and variances,computed under a probabilistic model of sequence evolution.Then,the“joining”is repeated until only three nodes remain.These are joined to form an unrooted binary tree.

DCM-NJ+MP.The DCM-NJ+MP method is a variant of a provably fast-converging method that has performed very well in previous studies17.In these simulation stud-ies,DCM-NJ+MP outperformed,in terms of topological accuracy,both the provably fast converging DCM?-NJ(of which it is a variant)and NJ.We brie?y describe this

method now.Let d ij be the distance between taxa i and j .

?Phase 1:For each q ∈{d ij },compute a binary tree T q ,by using the Disk-Covering Method 3,followed by a heuristic for re ?ning the resultant tree into a binary tree.Let T ={T q :q ∈{d ij }}.

?Phase 2:Select the tree from T which optimizes the parsimony criterion.If we consider all n 2 thresholds in Phase 1,DCM-NJ+MP takes O (n 6)time,but,if we consider only a ?xed number p of thresholds,it takes O (pn 4)time.In our experiments,we considered only 10thresholds,so that the running time of DCM-NJ+MP is O (n 4).

Greedy Maximum Parsimony.The maximum parsimony method that we use in our study (and that was used by Bininda-Edmonds et al.13)is not,strictly speaking,a parsimony search:for the sake of speed,it uses no branch swapping at all and simply adds taxa to the tree one at a time following one random ordering of the taxa.

3.4Measures of Accuracy

Since all the inferred trees are binary we use the Robinson-Foulds (RF)distance 18which is de ?ned as follows.Every edge e in a leaf-labeled tree T de ?nes a biparti-tion πe on the leaves (induced by the deletion of e ),and hence the tree T is uniquely encoded by the set C (T )={πe :e ∈E (T )},where E (T )is the set of all internal edges of T .If T is a model tree and T is the tree obtained by a phylogenetic recon-struction method,then the set of False Positives is C (T )?C (T )and the set of False Negatives is C (T )?C (T ).The RF distance is then the average of the number of false positives and the false negatives.We plot the RF rates in our ?gures,which are obtained by normalizing the RF distance by the number of internal edges in a fully resolved tree for the instance.Thus,the RF rate varies between 0and 1(or 0%and 100%).Rates below 5%are quite good,but rates above 20%are unacceptably large.4Our Experiments

In order to obtain statistically robust results,we followed the advice of 19,20and used a number of runs ,each composed of a number of trials (a trial is a single comparison),computed a mean outcome for each run,and studied the mean and standard deviation of these runs.We used 20runs in our experiments.The standard deviation of the mean outcomes in our studies varied,depending on the number of taxa:the standard deviation of the mean on 10-taxon trees is 0.2(which is 20%,since the possible values of the outcomes range from 0to 1),on 25-taxon trees is 0.1(which is 10%),whereas on 200and 400-taxon trees the standard deviation ranged from 0.01to 0.04(which is between 1%and 4%).We graph the average of the mean outcomes for the runs,but omit the standard deviation from the ?gures.

We ran our studies on random birth-death trees generated using the r8s 21soft-ware package.These trees have diameter 2(height 1);in order to obtain trees with

other diameters,we multiplied the edge lengths by factors of0.05,0.1,0.25and0.5, producing trees with diameters of0.1,0.2,0.5and1.0,respectively.To deviate these trees from ultrametricity,we set c,the deviation factor,to4(see Section3).The re-sulting trees have diameters at most4times the original diameters,and have expected diameters of0.2,0.4,1.0and2.0.We generated such random model trees with10, 25,50,100,200,and400leaves,20trees for each combination of diameter and num-ber of taxa.We then evolved sequences on these trees using two models of evolution, JC and K2P+Gamma(we choseα=1for the shape parameter and set the transi-tion/transversion ratio to2).We used a?x factor22of1for distance correction.The sequence lengths that we studied are50,100,250,500,1000and2000.

We used the program Seq-Gen23to generate a DNA sequence for the root and evolve it through the tree under the JC and the K2P+Gamma models of evolution. The software for DCM-NJ was written by Daniel Huson.We used PAUP*4.024for the greedy MP method,and the Weighbor1.2software package16.

The experiments were run over a period of three months on about300different processors,all Pentiums running Linux,including the128-processor SCOUT cluster at UT-Austin.

To generate the graphs that depict the scaling of accuracy,we linearly interpolated the sequence lengths required to achieve certain accuracy levels for?xed numbers of taxa,and then,using the interpolation,computed the sequence length,as a function of the number of taxa,that are required to achieve?xed speci?c accuracy levels(ones that are of interest).

5Results and Discussion

5.1Speed

Because we are studying methods that will scale to large datasets(large numbers of taxa and long sequences),speed is of prime importance.Table1shows the running time of our various methods on different instances.Note the very high speed and nearly perfect linear scaling of Greedy Parsimony.NJ is known to scale with the cube of the number of taxa;in our experiments,it scales slightly better than that.DCM-Table1:The running times of NJ,DCM-NJ+MP,Weighbor,and Greedy MP(in seconds)for?xed sequence

length(500)and diameter(0.4)

Taxa NJ DCM-NJ+MP Weighbor Greedy MP

100.01 1.820.030.01

250.029.120.370.02

500.0621.3 3.560.05

1000.3764.2544.930.10

200 2.6470.31352.480.25

40020.135432.464077.810.73

NJ+MP scales exactly as NJ,but runs approximately200times more slowly.Finally, Weighbor scales somewhat more poorly—the?gures in the table indicate scaling that is supercubic.These?gures make it clear that most reasonable datasets(up to a few thousand taxa)can be processed by any of these methods—especially with the help of cluster computing,but also that very large datasets(10,000taxa or more)will prove too costly for Weighbor and perhaps also DCM-NJ+MP(at least in their current implementations).

5.2Sequence-Length Requirements

We can sort our experimental data in terms of accuracy and,for all datasets on which an accuracy threshold is met,count,for each?xed number of taxa,the number of datasets with a given sequence length,thereby enabling us to plot the average se-quence length needed to guarantee a given maximal error rate.We show such plots for two accuracy values in Figure1:70%and85%.Larger values of accuracy cannot

(a)70%accuracy(b)85%accuracy

Figure1:Sequence length requirements under the K2P+Gamma model as a function of the number of taxa be plotted reliably,since they are rarely reached under our challenging experimental conditions.The striking feature in these plots is the difference between the two NJ-based methods(NJ and Weighbor)and the methods using parsimony(DCM-NJ+MP and Greedy Parsimony):as the number of taxa increases,the former require longer and longer sequences,growing linearly or worse,while the latter exhibit only modest growth.The divide-and-conquer strategy of DCM-NJ+MP pays off by letting its NJ component work only on signi?cantly smaller subsets of taxa—effectively shifting the graph to the left—and completing the work with a method(parsimony)that is evidently much less demanding in terms of sequence lengths.Note that the curves are steeper for the higher accuracy requirement:as the accuracy keeps increasing,we expect to see supralinear,indeed possibly exponential,scaling.

5.3Accuracy

We studied accuracy (in terms of the RF rate)as a function of the number of taxa,the sequence length,and the diameter of the model tree,varying one of these parameters at a time.Because accuracy varies drastically as a function of the sequence length and the number of taxa,the plots given in this section have different vertical scales.

For ?xed sequence lengths and ?xed diameters,we ?nd,unsurprisingly,that the error rate of all methods increases as the number of taxa increases,although the in-crease is very slow (see Figures 2and 3,but note the logarithmic scaling on the x -axis).Weighbor indeed outperforms NJ,but DCM-NJ+MP outperforms the other 25.050.0100.0200.0400.0Taxa 0.20.30.40.60.7

0.8A v g R F

10.0NJ

DCM ?NJ+MP

Weighbor

MP 25.050.0100.0200.0400.0

Taxa 0.2

0.3

0.4

0.6

0.70.8

A v g R F

10.0NJ DCM ?NJ+MP Weighbor MP

(a)sequence length 50(b)sequence length 100

Figure 2:Accuracy as a function of the number of taxa under the K2P+Gamma model for expected diameter

(0.4)and two sequence lengths

three methods,especially for larger trees—unless the sequences are very short,in which case Weighbor dominates.

If we vary sequence length for a ?xed number of taxa and ?xed tree diameter,we ?nd that the error rate decreases exponentially with the sequence length (Figure 4).From this perspective as well,DCM-NJ+MP dominates the other methods,more ob-viously so for larger trees.Interestingly,NJ is the worst method across almost the entire parameter space.

Finally,if we vary the diameter (which varies the rate of evolution)for a ?xed number of taxa and a ?xed sequence length,we ?nd an initial increase in accu-racy (due to the disappearance of zero-length edges),followed by a de ?nite decrease (Figure 5).The decrease in accuracy is steeper with increasing diameter than what we observed with increasing number of taxa—and continually steepens.(At larger diameters—not shown,as we approach saturation,the error rate approaches unity.)

25.050.0100.0200.0400.0Taxa 0.10.20.30.30.4

0.5A v g R F

10.0NJ

DCM ?NJ+MP

Weighbor

MP 25.050.0100.0200.0400.0

Taxa 0.1

0.2

0.3

0.3

0.40.5

A v g R F

10.0NJ DCM ?NJ+MP Weighbor MP

(a)sequence length 500(b)sequence length 1000

Figure 3:Accuracy as a function of the number of taxa under the K2P+Gamma model for expected diameter

(2.0)and two sequence

lengths

(a)200taxa (a)400taxa

Figure 4:Accuracy as a function of the sequence length under the K2P+Gamma model for expected

diameter (2.0)and two numbers of taxa

The dominance of DCM-NJ+MP is once again https://www.doczj.com/doc/194267853.html,paring NJ and Weighbor,we can see that NJ is actually marginally better than Weighbor at low diameters,but Weighbor clearly dominates it at higher diameters—the two slopes are quite distinct.

(a)100taxa(a)400taxa

Figure5:Accuracy as a function of the diameter under the K2P+Gamma model for?xed sequence length

(500)and two numbers of taxa

5.4The In?uence of the Model of Sequence Evolution

We reported all results so far under the K2P+Gamma model only,due to space lim-itations.However,we explored performance under the JC(Jukes-Cantor)model as well.The relative performance of the methods we studied was the same under the JC model as under the K2P+Gamma model.However,throughout the experi-ments,the error rate of the methods was lower under the JC model(using the JC distance-correction formulas)than under the K2P+Gamma model of evolution(us-ing the K2P+Gamma distance-correction formulas).This might be expected for the Weighbor method,which is optimized for the JC model,but is not as easily explained for the other methods.Figure6shows the error rate of NJ on trees of diameter0.4 under the two models of evolution.NJ clearly does better under the JC model than under the K2P+Gamma model;other methods result in similar curves.Correlating the decrease in performance with speci?c features in the model is a challenge,but the results clearly indicate that experimentation with various models of evolution(beyond the simple JC model)is an important requirement in any study.

6Conclusion

In earlier studies we presented the DCM-NJ+MP method and showed that it outper-formed the NJ method for random trees drawn from the uniform distribution on tree topologies and branch lengths as well as for trees drawn from a more biologically re-alistic distribution,in which the trees are birth-death trees with a moderate deviation from ultrametricity.Here we have extended our result to include the Weighbor and

102550100200400

Figure6:Accuracy of NJ as a function of the number of taxa under JC and K2P+Gamma Greedy Parsimony methods.Our results con?rm that the accuracy of the NJ method may suffer signi?cantly on large datasets.They also indicate that Greedy Parsimony, while very fast,has mediocre to poor accuracy,while Weighbor and DCM-NJ+MP consistently return good trees,with Weighbor doing better on shorter sequences and DCM-NJ+MP doing better on longer sequences.Among interesting questions that arise are:(i)is there a way to conduct a partial parsimony search that scales no worse than quadratically(and might outperform DCM-NJ+MP)?(ii)would a DCM-Weighbor+MP prove a worthwhile tradeoff?(iii)can we make quantitative statements about the accuracy achievable by any method(not just one of those under study)as a function of some of the model parameters?

7Acknowledgments

This work was supported in part by the National Science Foundation with grants EIA 99-85991to T.Warnow and ACI00-81404to B.M.E.Moret and a POWRE award to K.St.John;by the Texas Institute for Computational and Applied Mathematics and the Center for Computational Biology at UT-Austin(K.St.John);and by the David and Lucile Packard Foundation(T.Warnow).

References

1.N.Saitou and M.Nei.The neighbor-joining method:A new method for reconstructing phylo-

genetic trees.Mol.Biol.Evol.,4:406–425,1987.

2.P.L.Erdos,M.Steel,L.Sz′e k′e ly,and T.Warnow.A few logs suf?ce to build almost all trees–

I.Random Structures and Algorithms,14:153–184,1997.

3.P.L.Erdos,M.Steel,L.Sz′e k′e ly,and T.Warnow.A few logs suf?ce to build almost all trees–

https://www.doczj.com/doc/194267853.html,p.Sci.,221:77–118,1999.

4.M.Cs?u r¨o s.Fast recovery of evolutionary trees with thousands of nodes.RECOMB01,2001.

5.M.Cs?u r¨o s and M.Y.Kao.Recovering evolutionary trees through harmonic greedy triplets.

Proc.10th ACM-SIAM Symp.on Discrete Algorithms(SODA99),pages261–270,1999.

6. D.Huson,https://www.doczj.com/doc/194267853.html,tles,and T.Warnow.Disk-covering,a fast-converging method for phyloge-

netic tree https://www.doczj.com/doc/194267853.html,put.Biol.,6:369–386,1999.

7.T.Warnow,B.Moret,and K.St.John.Absolute convergence:true trees from short sequences.

Proc.12th ACM-SIAM Symp.on Discrete Algorithms(SODA01),pages186–195,2001.

8.K.Atteson.The performance of the neighbor-joining methods of phylogenetic reconstruction.

Algorithmica,25:251–278,1999.

9.L.Nakhleh,U.Roshan,K.St.John,J.Sun,and T.Warnow.The performance of phylogenetic

methods on trees of bounded diameter.In Proc.1st Workshop on Algorithms in Bioinformatics (WABI01),pages214–226,Aarhus(2001).in LNCS2149.

10.J.Huelsenbeck and D.Hillis.Success of phylogenetic methods in the four-taxon case.Syst.

Biol.,42:247–264,1993.

11.https://www.doczj.com/doc/194267853.html,/billb/weighbor/performance.html.

12.O.Gascuel.BIONJ:an improved version of the NJ algorithm based on a simple model of

sequence data.Mol.Biol.Evol.,14:685–695,1997.

13.O.Bininda-Emonds,S.Brady,J.Kim,and M.Sanderson.Scaling of accuracy in extremely

large phylogenetic trees.In Proc.6th Paci?c Symp.on Biocomputing(PSB01),pages547–557.

World Scienti?c,2001.

14.T.Jukes and C.Cantor.Evolution of protein molecules.In H.N.Munro,editor,Mammalian

Protein Metabolism,pages21–132.Academic Press,NY,1969.

15.M.Kimura.A simple method for estimating evolutionary rates of base substitutions through

comparative studies of nucleotide sequences.J.Mol.Evol.,16:111–120,1980.

16.W.J.Bruno,N.Socci,and A.L.Halpern.Weighted neighbor joining:A likelihood-based

approach to distance-based phylogeny reconstruction.Mol.Biol.Evol.,17(1):189–197,2000.

17.L.Nakhleh,U.Roshan,K.St.John,J.Sun,and T.Warnow.Designing fast converging

phylogenetic methods.In Proc.9th Int’l Conf.on Intelligent Systems for Mol.Biol.(ISMB

01),2001.In Bioinformatics17:S190–S198.

18. D.F.Robinson and https://www.doczj.com/doc/194267853.html,parison of phylogenetic trees.Mathematical Bio-

sciences,53:131–147,1981.

19. B.M.E.Moret and H.D.Shapiro.Algorithms and experiments:the new(and the old)

https://www.doczj.com/doc/194267853.html,put.Sci.,7(5):434–446,2001.

20. C.McGeoch.Analyzing algorithms by simulation:variance reduction techniques and simula-

tion speedups.ACM Comp.Surveys,24:195–212,1992.

21.M.Sanderson.r8s software package.Available from https://www.doczj.com/doc/194267853.html,/r8s/r8s.html.

22. D.Huson,K.A.Smith,and T.Warnow.Correcting large distances for phylogenetic recon-

struction.In Proc.3rd Workshop on Algorithms Engineering(WAE99),1999.London, England.

23. A.Rambaut and N.C.Grassly.Seq-gen:An application for the Monte Carlo simulation of dna

sequence evolution along phylogenetic https://www.doczj.com/doc/194267853.html,p.Appl.Biosci.,13:235–238,1997.

24. D.L.Swofford.PAUP*:Phylogenetic analysis using parsimony(and other methods),1996.

Sinauer Associates,Underland,Massachusetts,Version4.0.

太平洋保险公司团体人寿保险合同-完整版

太平洋保险公司团体人寿保险合同 团体人寿保险投保单 序号:__________ 投保单位名称:____________联系人____________发工资日____________ 单位地址:____________电话____________ 厂休日____________ 投保人数 在册人员总计人参加保险 投保单位 盖单 保险金额 每人投保份,满期时保险金额元。 保险费 每人每月交费元。 保险期限 自年月日起至年月日止 参加保险人员名单详见后附“被保险人名单” 保险单号码:单位代号 主管:复核:签单: 投保日期年月日

经办人: 团体人寿保险单 贰拾年期 -----★----- 投保单位名称 单位代号 地址 投保人数 在册人员总计人。参加保险人员名单 详见后附清单 保险金额 每人投保份,满期时每人保险金元。 保险费 每人每月交费元。 保险期限 自年月日起至年月日止。 根据《团体人寿保险办法》规定,投保单位所开列的全部在册人员名单(即被保险人),经审核,本公司同意承保,并签发本保险单,其承保责任范围,均按本办法规定办理,今后人员名单如有变动,本公司仅按变动清单调正后的人员承担保险责任。

主管:__________ 复核:__________ 签单员:__________ ________________保险公司 ______年______月______日 太平洋团体人寿保险条款 (中国保险监督管理委员会1999年9月核准) 第一条保险合同的构成 本保险合同(以下简称“本合同”)由保险单及所附条款、投保单、合法有效的声明、批注、附贴批单等投保文件及其他书面文件构成。 第二条投保范围 一、投保人:凡机关、企业、事业单位和社会团体可作为投保人,为其成员向保险人投保本保险,被保险人人数应占其单位在职人员人数的75%以上且不少于8人。投保时必须经被保险人同意。 二、被保险人:凡投保时年满16周岁(含16周岁,下同)至65周岁,身体健康、能正常劳动或工作的投保单位在职、在编人员,均可作为本保险的被保险人。 第三条保险责任 在合同有效期内,被保险人因疾病身故或全残,或者自意外伤害发生之日起180日内以该次意外伤害为直接原因身故或全残,保险人给付保险金额全数,保险人对该被保险人的保险责任终止。 第四条责任免除 因下列情形之一,导致被保险人身故或全残的,保险人不负给付保险金责任:

太平洋保险金融职员人身意外伤害保险条款(doc 9页)

太平洋保险金融职员人身意外伤害保险条款(doc 9页)

中国太平洋财产保险股份有限公司 金融职员人身意外伤害保险条款 总则 第一条本保险合同由保险条款、投保单、保险单、保险凭证以及批单等组成。凡涉及本保险合同的约定,均应采用书面形式。 第二条本保险合同被保险人应为18周岁(含18周岁,下同)至60周岁身体健康,能正常从事经济类工作的在职员工,均可作为本保险的被保险人。 第三条凡金融行业单位及非金融行业单位中从事有关经济工作的部门,经被保险人同意,均可作为投保人为其从事经济工作的在职员工向保险人投保本保险。 第四条本保险合同受益人包括: (一)身故保险金受益人 订立本保险合同时,被保险人或投保人可指定一人或数人为身故保险金受益人。身故保险金受益人为数人时,应确定其受益顺序和受益份额;未确定受益份额的,各身故保险金受益人按照相等份额享有受益权。投保人指定受益人时须经被保险人同意。 被保险人死亡后,有下列情形之一的,保险金作为被保险人的遗产,由保险人依照《中华人

一、身故保险责任 被保险人自意外伤害发生之日起一百八十日内以该次意外伤害事故为直接原因身故的,保险人按保险单所载该被保险人意外伤害保险金额给付身故保险金。对该被保险人的保险责任终止。 被保险人因遭受意外伤害事故且自该事故发生日起下落不明,后经中华人民共和国(不含港、澳、台地区,下同)法院宣告死亡的,保险人按保险金额给付身故保险金。但若被保险人被宣告死亡后生还的,保险金受领人应于知道或应当知道被保险人生还后30日内退还保险人给付的身故保险金。 被保险人身故前保险人已给付第五条约定的残疾保险金的,身故保险金应扣除已给付的保险金。 二、残疾保险责任 被保险人自意外伤害发生之日起一百八十日内以该次意外伤害事故为直接原因致本保险合同所附《人身保险残疾程度与保险金给付比例表》(简称《给付表一》)所列残疾之一的,保险人按保险单所载的该被保险人意外伤害保险金额及该项残疾所对应的给付比例给付残疾保险金。如第180日治疗仍未结束的,按当日的身

中国太平洋财产保险股份有限公司职业分类表(2008版)

中国太平洋财产保险股份有限公司职业分类表(2008版) 大分类中分类职业分类代码小 分 类职业类别//0000001 16岁以下儿童(不含学龄前儿童)1 0000002 无业人员2 0000003 离退休人员(无兼职)2 0000004 自由职业者内勤(不可归于本表其他类别者)1 0000005 自由职业者外勤(不可归于本表其他类别者)3 0000006 家庭主妇2 00一般职业0001机关团体公司0001001 内勤人员(不从事危险工作)1 0001002 外勤人员(不属于本表下列职业分类所列者)2 0002工厂0002001 负责人(不亲自作业)2 0002002 厂长(不亲自作业)2 01农畜牧业0101农业0101001 农场经营者(不亲自作业)1 0101002 农民2 0101003 长短工3 0101004 果农3 0101005 苗圃栽培人员2 0101006 花圃栽培人员2 0101007 饲养家禽家畜人员2 0101008 农业技师、指导员2 0101009 农业机械之操作及修理人员3 0101010 农具商2 0101011 糖场技工4 0101012 昆虫(蜜蜂)饲养人员3 0102畜牧业0102001 畜牧场经营者(不亲自作业)1 0102002 畜牧工作人员3 0102003 兽医3 0102004 动物养殖人员3 0102005 驯犬人员4 0202010201001 渔场经营者(不亲自作业)1渔业内陆渔业0201002 渔场经营者(亲自作业)3 0201003 养殖工人(内陆)3 0201004 养殖工人(沿海)5 0201005 热带鱼养殖人、水族馆经营者2 0201006 捕鱼人(内陆)3 0201007 捕鱼人(沿海)6 0201008 水产实验人员(室内)1 0201009 水产加工工人3 020******** 远洋渔船船员特定海上渔业0202002 近海渔船船员特定0303010301001 领班4 木材森林业森林砍伐业0301002 监工4 0301003 伐木工人6 0301004 锯木工人6 0301005 运材车辆之司机及押运人员6 0301006 起重机之操作人员6 0301007 装运工人、挂钩人6 03020302001 木材工厂现场之职员2木材加工业0302002 领班3 0302003 分级员3 0302004 检查员3 0302005 标记员3 0302006 磅秤员3 0302007 锯木工人5 0302008 防腐剂工人4 0302009 木材储藏槽工人4

太平洋保险考试模拟试题附答案

2015太平洋保险考试模拟试题 · 1、某保额为100万元的足额财产保险合同的被保险人在发生推定损失100万元后,向保险人提出委付。保险人接受委付并支付保险赔款100万元后,取得保险标的的全部所有权。保险人在处理保险标的物时获得收益110万元。根据保险代位求偿原则,对超过的10万元的正确处理方式是()。 A.归保险人 B.归被保险人 C.归保险行业组织 D.由保险双方比例分享 答案:A · 2、保险代理从业人员的行业准则是() A.一诺千金 B.真诚永远 C.诚实信用 D.勤勉尽责 答案:C · 3、工厂生产的蜂蜜在市场上销量很好,工厂B为了增加自己生产蜂蜜的销量,采用与非常类似的产品包装,但厂址与商标不同。对此事件的正确表述为() A.两种产品的包装类似,足以使消费者产生混淆,故工厂B行为属于不正当行为 B.尽管包装类似,但是消费者应该可以区分两种产品的不同,故工厂B的行为不构成不正当竞争行为 C.工厂B的产品表明了自己的商标和厂址,故不构成侵权 D.工厂A没有申请专利权,故工厂B行为是正当竞争行为 答案:A · 4、在寿险核保中,由于标准风险类别的人有正常的预期寿命,保险人对他们所采取的承保方式是()。 A.拒保

B.按照标准费率承保 C.按照高于标准的费率予以承保 D.按照低于标准的费率予以承保 答案:B · 5、复效条款只适用于因投保人欠交保费而引起()的保单。 A.终止 B.中止 C.解除 D.解约 答案:B · 6、顾客在购买商品时遭到售货员的呵斥,该行为侵犯了消费者的()。 A.名誉权 B.人身安全 C.选择权 D.人格权 答案:D · 7、职业道德常常表现为某一职业特有的道德传统和道德习惯,表现为从事()的人们的道德心理和道德品质 A.某种工作 B.某种行为 C.某一职业 D.某一职位 答案:C · 8、欺诈和纵火属于()风险因素。

2014太平洋保险考试试题(4)

2014太平洋保险考试试题(4) ·1、关于收益人的说法下列不正确的一项是()。 A.在保险实务中,受益人在保险合同中有已确定和未确定两种情况 B.已确定受益人是指被保险人或投保人已经指定受益人,这时受益人领取保险金的权利受到法律保护,保险金视为死者(被保险人)的遗产,受益人和遗产继承人共同分享,也可以用于清偿死者生前的债务 C.未确定受益人有两种情况:一是被保险人或投保人未指定受益人;二是受益人先于被保险人死亡、受益人依法丧失受益权、受益人放弃受益权,而且没有其他受益人 D.在受益人未确定的情况下,被保险人的法定继承人就视同受益人,保险金应视为死者的遗产,由保险人向被保险人的法定继承人履行给付保险金的义务 答案:B ·2、关于保险竞争的主要内容,下列不正确的是()。 A.服务质量的竞争 B.业务的竞争 C.价格的竞争 D.营销人员的竞争 答案:D ·3、依据风险标的分类,厂房、机器设备、原材料、成品、家具等会遭受火灾、地震、爆炸等风险;船舶在航行中,可能遭受沉没、碰撞、搁浅等风险属于()。 A.财产风险 B.人身风险 C.自然风险 D.经济风险 答案:A ·4、普通的人身保险主要解决人们在日常生活中遭受()经济上的困难。 A.财产损失时 B.意外伤害、疾病或死亡等不幸事故时或年老退休时 C.失业时 D.家人因意外去世时 答案:B ·5、()是保险销售环节中最重要的一个步骤,是保险销售人员最主要的工作。 A.准保户开拓 B.调查并确认准保户的保险需求 C.设计并介绍保险方案 D.疑问解答并促成签约 答案:A ·6、()是指以因保险合同约定的疾病或者意外伤害导致工作能力丧失为给付保险金条件,为被保险人在一定时期内收入减少或者中断提供保障的保险。 A.人身意外伤害保险 B.失能收入损失保险 C.疾病保险 D.医疗保险 答案:B ·7、财产保险中关于保险金额确定的特殊性,下列说法不正确的一项是()。 A.财产保险的保险金额确定一般参照保险标的的实际价值 B.财产保险也可以根据投保人的实际需要参照最大可能损失、最大可预期损失确定其所购买的财产保险的保险金额 C.确定保险金额的依据即为保险价值,保险人和投保人在保险价值限度以内,按照投保人对该保险标的存在的保险利益程度来确定保险金额,作为保险人承担赔偿责任的最低限额 D.由于各种财产都可依据客观存在的质量和数量来计算或估计其实际价值的大小,因此,在理论上,财产保险的保险金额的确定具有客观依据 答案:C ·8、终身寿险按照(),可分为普通终身寿险、限期交费终身寿险和趸交终身寿险。 A.保险标的 B.保险期限 C.保险金额 D.交费方式

中国太平洋人寿保险股份有限公司 个人人身意外伤害保险(2003)...

中国太平洋人寿保险股份有限公司 个人人身意外伤害保险(2003)条款 (2009年9月呈报中国保险监督管理委员会备案) 第一条 合同构成 本保险合同(以下简称“本合同”)由保险单及所附条款、投保单、合法有效的声明、批注、附贴批单及其他有关书面文件构成。 “个人人身意外伤害保险(2003)”简称“个意(2003)”。 第二条 投保范围 一、投保人:凡年满18周岁,具有完全民事行为能力且对被保险人具有保险利益的人,可作为本合同的投保人。 二、被保险人:本合同被保险人投保时的年龄应不超过60周岁,但被保险人续保时的年龄超过60周岁的,最高投保年龄可延至65周岁。 第三条 保险责任 在本合同约定的保险责任有效期间内,被保险人发生下列保险事故,本公司负保险金给付责任: 一、若被保险人自意外伤害发生之日起180日内以该次意外伤害为直接原因身故,本公司按意外伤害事故发生时保险单所载保险金额给付身故保险金,本合同终止。 二、若被保险人自意外伤害发生之日起180日内以该次意外伤害为直接原因致《人身保险残疾程度与保险金给付比例表》中所列残疾之一的,本公司按意外伤害事故发生时保险单所载保险金额及该项身体残疾所对应的给付比例给付残疾保险金。 被保险人因同一意外伤害造成两项及以上身体残疾时,本公司给付对应项残疾保险金之和。但不同残疾项目属于同一上肢或同一下肢时,本公司仅给付其中一项残疾保险金;如残疾项目所对应的给付比例不同时,仅给付其中比例较高一项的残疾保险金。 三、本公司对被保险人所负给付保险金的责任以保险单所载保险金额为限,一次或累计给付的保险金达到保险金额时,本合同终止。 第四条 责任免除 因下列情形之一,导致被保险人身故或残疾的,本公司不负保险金给付责任: 一、投保人对被保险人的故意杀害、故意伤害; 二、被保险人故意犯罪或抗拒依法采取的刑事强制措施; 三、被保险人殴斗,醉酒,故意自伤,主动吸食或注射毒品; 四、被保险人自杀,但被保险人自杀时为无民事行为能力人的除外; 五、被保险人受酒精、毒品、管制药物的影响而导致的意外; 六、被保险人因药物过敏、食物中毒、中暑导致的伤害; 七、被保险人因精神类疾病发作而导致的意外; 八、被保险人无证驾驶、酒后驾驶及驾驶无行驶证的机动交通工具或助动交通工具; 九、被保险人妊娠、流产、堕胎、分娩(含剖腹产)、避孕、节育绝育手术、治疗不孕不育症、人工受孕及由以上情形导致的并发症; 十、被保险人因手术(包括整容手术)导致的伤害; 十一、在诊疗过程中因医疗事故原因造成的伤害; 十二、被保险人未遵医嘱,私自使用药物(按使用说明的规定使用非处方药除外); 十三、被保险人从事潜水、滑水、滑雪、风浪板、蹦极、跳伞、水上摩托艇、滑翔翼、拳击、柔道、跆拳道、空手道、武术比赛、摔跤比赛、攀岩运动、探险活动、特技表演、马术、赛马、各种车辆表演、车辆竞赛或训练等高风险运动;

内部控制 中国太平洋保险内控报告 精品

中国太平洋保险(集团)股份有限公司全体股东: 我们接受委托,审核了中国太平洋保险(集团)股份有限公司(以下简称“贵公司”)董事会于后附的《中国太平洋保险(集团)股份有限公司20XX 年度内部控制自我评估报告》(以下简称“评估报告”)中所述的贵公司20XX 年12 月31 日与财务报表相关的内部控制。贵公司董事会按照财政部颁布的《企业内部控制基本规范》的有关规定,对20XX 年12 月31日与财务报表相关的内部控制的设计和执行的有效性进行了自我评估。建立健全合理的内部控制系统并保持其有效性、确保上述评估报告真实、完整地反映贵公司20XX 年12月31 日与财务报表相关的内部控制是贵公司管理层的责任。我们的责任是对评估报告中所述的与财务报表相关的内部控制的有效性发表意见。 我们的审核是依据中国注册会计师协会颁布的《内部控制审核指导意见》进行的。在审核过程中,我们实施了包括了解、测试和评价评估报告中所述的贵公司于20XX 年12 月31 日与财务报表相关的内部控制设计和执行情况,以及我们认为必要的其他程序。我们相信,我们的审核为发表意见提供了合理的基础。 内部控制具有固有限制,存在由于错误或舞弊而导致错报发生和未被发现的可能性。此外,由于情况的变化可能导致内部控制变得不恰当,或降低对控制政策、程序遵循的程度,根据内部控制评价结果推测未来内部控制有效性具有一定的风险。 我们认为,于20XX 年12 月31 日贵公司在上述评估报告中所述的与财务报表相关的内部控制在所有重大方面有效地保持了按照财政部颁发的《企业内部控制基本规范》的有关规范标准建立的与财务报表相关的内部控制。 本报告仅供贵公司20XX 年年度报告之目的使用,未经我所书面同意,不得作其他用途使用。 中国太平洋保险(集团)股份有限公司 20XX年度内部控制自我评估报告 根据财政部、证监会、审计署、银监会、保监会《企业内部控制基本规范》(财会[20XX]7号文)及《关于印发企业内部控制配套指引的通知》(财会[20XX]11号文)、保监会《保险公司内部控制基本准则》(保监发[20XX]69号文)的有关

太平洋保险考试模拟试题附答案(5)

2015太平洋保险考试模拟试题(5) ·1、在风险管理理论中,社会组织或者个人用以降低风险的消极结果的决策过程被称为()。 ·1、诚实信用作为保险代理从业人员的职业道德原则应贯穿于() A.执业活动的各个方面和各个环节 B.准客户的开拓环节 C.对投保人风险的分析与评估环节 D.为被保险人投保方案的设计环节 答案:A ·2、由于下雪而导致人员的冻伤和死亡,则在该事件中下雪属于() A.技术风险 B.风险事故 C.风险因素 D.动态风险 答案:B ·3、如果保险人已知被保险船舶改变航道时没有发表异议,但事后因改变航道致使船舶发生保险事故并造成重大损失,保险人对该起事故的正确做法是() A.解除合同 B.修改合同 C.退还保险费,不负赔偿责任 D.负责赔偿损失 答案:D ·4、在寿险理赔中,保险人理赔计算时应补款的项目是() A.客户有借款时的本金及利息 B.客户有预付赔款时的预付赔款金额 C.客户在宽限期内出险的欠交保险费 D.客户未领取的满期保险金、红利和利差 答案:D ·5、在长期护理保险中,其免责期与保险费之间的关系是() A.免责期越短,保险费越低 B.免责期越短,保险费越高 C.免责期越长,保险费越高 D.免责期长短与保险费高低无关 答案:B ·6、对于效力中止的人寿保险合同,投保人可以申请复效。投保人申请复效时应该履行的义务之一是() A.补缴合同效力停止期间的保险费及其罚金 B.补缴合同效力停止期间的保险费及其利息 C.补缴合同效力停止期间的保险费及其利润 D.补缴合同效力停止期间的保险费及其费用 答案:B ·7、在保险事故中,同时发生的多种原因导致损失,且各原因的发生无先后顺序之分,

2019太平洋保险考试试题共44页文档

2014太平洋保险考试试题 · 1、按照保险条款()不同,保险条款可分为基本条款和附加条款两大类。 A.范围 B.标的 C.性质 D.对当事人的约束程度 答案:C · 2、()是指保险合同成立后,保险人即按期给付年金的年金保险。 A.趸交年金 B.期交年金 C.即期年金 D.延期年金 答案:C · 3、从保险市场的供给主体来看,截至2008年底,全国共有保险机

构()家。 A.80 B.90 C.100 D.120 答案:D · 4、从万能保险经营的流程上看,保单持有人首先交纳一笔首期保费。首期保费有一个最低限额,首期的各种费用支出首先要从()中扣除。 A.保险金额 B.赔偿金额 C.投资收益 D.保费 答案:D · 5、关于“保险代理从业人员资格证书”,下列说法不正确的是()。 A.申请换发“资格证书”,持有人应当交还原“资格证书”,还应当

提交“保险代理从业人员资格证书换发申请表”;前5年内每年接受后续教育情况的有关证明;最近3个月正面免冠小两寸彩色照片2张 B.“资格证书”登记事项发生变更的,持有人应当持变更事项的证明材料和“资格证书”原件,向中国保监会办理相关变更手续、 C.“资格证书”毁损影响使用的,持有人可以向中国保监会申请更换。持有人向中国保监会申请更换的,应当提交被毁损的“资格证书”原件 D.“资格证书”遗失的,持有人应当在中国保监会指定的媒体和网站上公告。持有人向中国保监会申请补发的,应当提交亲笔签名的遗失声明和刊登遗失公告的证明材料 答案:A · 6、()是指以特定时间、特定地点或特定原因发生的意外伤害为保险风险的意外伤害保险。 A.生存保险 B.普通意外伤害保险 C.特定意外伤害保险 D.健康保险 答案:C

太平洋保险考试模拟试题附答案

2015太平洋保险考试模拟试题 ·1、某保额为100万元的足额财产保险合同的被保险人在发生推定损失100万元后,向保险人提出委付。保险人接受委付并支付保险赔款100万元后,取得保险标的的全部所有权。保险人在处理保险标的物时获得收益110万元。根据保险代位求偿原则,对超过的10万元的正确处理方式是()。 A.归保险人 B.归被保险人 C.归保险行业组织 D.由保险双方比例分享 答案:A ·2、保险代理从业人员的行业准则是() A.一诺千金 B.真诚永远 C.诚实信用 D.勤勉尽责 答案:C ·3、工厂生产的蜂蜜在市场上销量很好,工厂B为了增加自己生产蜂蜜的销量,采用与非常类似的产品包装,但厂址与商标不同。对此事件的正确表述为() A.两种产品的包装类似,足以使消费者产生混淆,故工厂B行为属于不正当行为 B.尽管包装类似,但是消费者应该可以区分两种产品的不同,故工厂B的行为不构成不正当竞争行为 C.工厂B的产品表明了自己的商标和厂址,故不构成侵权 D.工厂A没有申请专利权,故工厂B行为是正当竞争行为 答案:A ·4、在寿险核保中,由于标准风险类别的人有正常的预期寿命,保险人对他们所采取的承保方式是()。 A.拒保 B.按照标准费率承保 C.按照高于标准的费率予以承保 D.按照低于标准的费率予以承保 答案:B ·5、复效条款只适用于因投保人欠交保费而引起()的保单。 A.终止 B.中止 C.解除 D.解约 答案:B ·6、顾客在购买商品时遭到售货员的呵斥,该行为侵犯了消费者的()。 A.名誉权 B.人身安全 C.选择权 D.人格权

答案:D ·7、职业道德常常表现为某一职业特有的道德传统和道德习惯,表现为从事()的人们的道德心理和道德品质 A.某种工作 B.某种行为 C.某一职业 D.某一职位 答案:C ·8、欺诈和纵火属于()风险因素。 A.道德 B.社会 C.心理 D.物质 答案:A ·9、根据我国有关法律、法规和司法解释,如果签订的保险合同违反国家利益和社会公共利益,将导致的结果是()。 A.保险合同被变更 B.保险合同无效 C.保险合同被解除 D.保险合同终止 答案:B ·10、某企业投保企业财产保险综合险,保险金额为800万元,在保险期内遭到火灾,发生损失,出险时的保险价值为1000万元。经过抢救,获救财产共计200万元,其中获救的保险财产为100万元,施救费用为10万元。保险人对该施救费用的赔款是()。 A.4万元 B.5万元 C.8万元 D.10万元 答案:C ·11、在其他条件都相同的情况下,被保险人的职业、工种、所从事活动的危险程度与应缴保险费之间的关系是()。 A.被保险人的职业、工种、所从事活动的危险程度越高,应缴保险费越少 B.被保险人的职业、工种、所从事活动的危险程度越高,应缴保险费越多 C.被保险人的职业、工种、所从事活动的危险程度越低,应缴保险费越多 D.被保险人的职业、工种、所从事活动的危险程度高低,与应缴保费无关 答案:B ·12、车辆损失险和第三者责任险,在符合赔偿规定的金额内,实行绝对免赔率,在交通事故中负同等责任的,免赔率为()。 A.5% B.10% C.15% D.20% 答案:B ·13、与商业保险相比较,民间救济的主体是()。

太平洋意外伤害保险条款(2020版)

太平洋意外伤害保险条款 太平洋意外伤害保险 第一条合同构成 本保险合同(以下简称“本合同”)由保险单及所附条款、投保单、合法有效的声明、批注、附贴批单及其他有关书面文件构成。“个人人身意外伤害保险(2003)”简称“个意(2003)”。 第二条投保范围 一、投保人:凡年满18周岁,具有完全民事行为能力且对被保险人具有保险利益的人,可作为本合同的投保人。 二、被保险人:本合同被保险人投保时的年龄应不超过60周岁,但被保险人续保时的年龄超过60周岁的,最高投保年龄可延至65周岁。 第三条保险责任 在本合同约定的保险责任有效期间内,被保险人发生下列保险事故,本公司负保险金给付责任: 一、若被保险人自意外伤害发生之日起180日内以该次意外伤害为直接原因身故,本公司按意外伤害事故发生时保险单所载保险金额给付身故保险金,本合同终止。 二、若被保险人自意外伤害发生之日起180日内以该次意外伤害为直接原因致《人身保险残疾程度与保险金给付比例表》中所列残疾之一的,本公司按意外伤害事故发生时保险单所载保险金额及该项身体残疾所对应的给付比例给付残疾保险金。 被保险人因同一意外伤害造成两项及以上身体残疾时,本公司给付对应项残疾保险金之和。但不同残疾项目属于同一上肢或同一下肢时,本公司仅给付其中一项残疾保险金;如残疾项目所对应的给付比例不同时,仅给付其中比例较高一项的残疾保险金。 三、本公司对被保险人所负给付保险金的责任以保险单所载保险金额为限,一次或累计给付的保险金达到保险金额时,本合同终止。 第四条责任免除 因下列情形之一,导致被保险人身故或残疾的,本公司不负保险金给付责任:

一、投保人对被保险人的故意杀害、故意伤害; 二、被保险人故意犯罪或抗拒依法采取的刑事强制措施; 三、被保险人殴斗,醉酒,故意自伤,主动吸食或注射毒品; 四、被保险人自杀,但被保险人自杀时为无民事行为能力人的除外; 五、被保险人受酒精、毒品、管制药物的影响而导致的意外; 六、被保险人因药物过敏、食物中毒、中暑导致的伤害; 七、被保险人因精神类疾病发作而导致的意外; 八、被保险人无证驾驶、酒后驾驶及驾驶无行驶证的机动交通工具或助动交通工具; 九、被保险人妊娠、流产、堕胎、分娩(含剖腹产)、避孕、节育绝育手术、治疗不孕不育症、人工受孕及由以上情形导致的并发症; 十、被保险人因手术(包括整容手术)导致的伤害; 十一、在诊疗过程中因医疗事故原因造成的伤害; 十二、被保险人未遵医嘱,私自使用药物(按使用说明的规定使用非处方药除外); 十三、被保险人从事潜水、滑水、滑雪、风浪板、蹦极、跳伞、水上摩托艇、滑翔翼、拳击、柔道、跆拳道、空手道、武术比赛、摔跤比赛、攀岩运动、探险活动、特技表演、马术、赛马、各种车辆表演、车辆竞赛或训练等高风险运动; 十四、因意外伤害、自然灾害事故以外的原因失踪而被法院宣告死亡的; 十五、战争、军事行动、暴乱、恐怖活动或武装叛乱; 十六、核爆炸、核辐射或核污染。 发生以上情形,导致被保险人身故的,本合同终止,本公司退还保险单的现金价值。第五条保险期间 本合同保险期间为1年,自本公司同意承保并收到保险费的次日零时开始,至约定的终止日24时止。本合同保险期间以保险单上所载为准。 第六条续保 本合同保险期间届满时,若本公司同意续保并收到续保保险费,本合同将自1年期满(或续保期满)之时起延续有效1年。 若本公司停止本保险的销售,应及时通知投保人,本公司有权自停止销售时起不再接受

太平洋 团体补充工伤保险条款

太平洋团体补充工伤保险条款(山东地区) 第一条保险合同的构成 中国太平洋财产保险股份有限公司团体补充工伤保险合同(以下简称本合同)由投保单、保险单及所附条款、声明、批注、批单以及相关的批改申请书和其它书面协议共同构成。 第二条投保范围 一、年龄在16周岁(含16周岁,下同)以上,法定退休年龄以下,身体健康,能正常工作并已参加当地工伤保险的企业职工,可作为本合同的被保险人。 二、被保险人所在单位可作为投保人向中国太平洋财产保险股份有限公司(以下简称保险人)投保本保险。投保时,被保险人人数应占投保单位在职人员人数的75%以上且不少于5人。第三条保险责任 在本合同保险期间内,保险人承担下列保险责任: 一、保单中列明的被保险人在保险期限内发生工伤,并于工伤发生之日起180日内以该次工伤为直接原因致残,根据国家《职工工伤与职业病致残程度鉴定》(GB/Tl6180-1996)的规定,经劳动行政保障部门认可的劳动能力鉴定机构鉴定伤残程度为五至十级的,保险人参照《工伤保险条例》、《山东省贯彻<工伤保险条例>试行办法》的相关规定,按保单约定的工资金额和给付标准给付一次性工伤医疗补助金和一次性伤残就业补助金,本合同对该被保险人的保险责任终止。 二、一次性工伤医疗补助金和一次性伤残就业补助金给付标准在保险单上载明。 三、工伤职工距法定退休年龄5年以上的,一次性工伤医疗补助金和一次性伤残就业补助金全额支付;距法定退休年龄不足5年的,每减少1年一次性伤残就业补助金递减20%。距法定退休年龄不足1年的按一次性伤残就业补助金全额的10%支付;达到法定退休年龄的,不支付一次性工伤医疗补助金和一次性伤残就业补助金。 第四条责任免除 因下列情形或原因之一,造成被保险人伤残的,保险人不负给付保险金的责任: 一、投保人对被保险人的故意杀害、伤害; 二、被保险人故意犯罪或者违反治安管理条例; 三、被保险人殴斗、醉酒、自杀、故意自伤或服用、吸食、注射毒品; 四、被保险人受酒精、毒品、管制药物的影响; 五、被保险人酒后驾驶、无有效驾驶执照驾驶或者驾驶无有效行驶证的机动交通工具; 六、被保险人精神错乱或精神失常; 七、被保险人未遵医嘱,私自服用、涂用、注射药物; 八、被保险人从事潜水、滑水、滑翔、跳伞、攀岩、狩猎、探险、武术、摔跤、特技、赛马、赛车、蹦极等高风险运动和活动; 九、被保险人患有艾滋病或者感染艾滋病毒(HIV呈阳性)期间; 十、被保险人患职业病; 十一、核爆炸、核辐射或者核污染; 十二、战争、军事行动、暴乱、恐怖活动或武装叛乱; 十三、被保险人在投保前已患有的疾病; 十四、国务院令第375号《工伤保险条例》(2003年4月16日通过)中第十五条中所列视同工伤的情形。 第五条保险期间 本合同的保险期间按双方约定,但最长不超过一年,自保险人同意承保、收取保险费并签发保险单的次日零时起至保险期间届满日二十四时止。

影像管理平台保险行业成功案例

IBM影像管理平台保险行业成功案例 IBM企业内容管理解决方案在全球拥有19000+客户,内容管理市场份额占居全球第一。全球前25大保险公司中25家都是采用IBM内容管理解决方案,80%的全球100大公司采用IBM内容管理解决方案,全球前25大银行有23家采用IBM内容管理解决方案。 国内外保险行业案例 国内保险行业成功案例: ?中国人寿?平安保险?太平洋财险?太平洋寿险?泰康人寿?生命人寿?信诚人寿?中意人寿?中英人寿?光大永明?大都会保险 …… 国外保险行业成功案例:

IBM企业内容管理在保险行业的应用

泰康人寿集约化经营从影像管理平台起步,IBM ECM平台助力泰康人寿集约化经营 泰康人寿是中国第四大保险公司。在中国经济快速发展的今天,泰康同样保持了稳健的成长,2006年其业绩增长达到了50%。总部位于北京的泰康目前在全国拥有32家分公司和超过1300万客户,公司约有1亿份客户档案并且仍在以每年20%的速度增长。 几年前,泰康人寿的数据大集中项目数据大集中为泰康人寿准确、高效地利用信息提供了保障,并在此基础上帮泰康人寿有效地控制了理赔风险、提高了客户服务效率和质量,特别是为今天所倡导的集约化经营模式奠定了基础。 基于数据大集中的集约化经营为泰康人寿开展新的保险业务打开了局面,但这仅仅是一个开端。事实上,泰康的重心已经从商业运作转移到商业灵活性,从信息资产转移到信息服务上。这为泰康增加了成为业内领导者所需的企业灵活性。 对于保险业务而言,以非结构化形式出现的各类保单是业务信息的主体,缺乏对这部分信息的有效管理和利用,业务依然只能延续分区域进行、以线下手工操作为主的传统模式,集约化经营也只能是一种理想中的模式。而这给信息时代的保险业务带来诸多挑战,包括: 公司不能对保单进行统一管理,导致核保环节与销售部门冲突不断,而理赔风险也难以控制。 基于实物保单的作业,效率低下、人力成本耗费大,难以针对客户提供高质量的一站式服务。 从IT的角度来看,占企业信息资源主体的保单信息没有实现自动化的集中式管理,所以企业的数据大集中并不彻底,IT运营成本居高不下。 受这些因素的限制,公司意识到首要解决的问题是构建一套适合集约化经营模式的企业影像管理平台。 适合集约化经营模式的ECM需要将公司以各类保单为主的表单影像化,实现对这些非结构化影像信息的集中管理和控制,进而按保险业务流程的推进方式来加强对这些非结构内容的应用。

太平洋保险公司实习报告

关于在太平洋保险公司从事业务员岗位的 实习报告 一、实习单位及岗位简介 (一)实习单位的简介 中国太平洋保险(集团)股份有限公司是在1991年5月13日成立的中国太平洋保险公司的基础上组建而成的保险集团公司,总部设在上海,注册资本77亿元。 中国太平洋人寿保险股份有限公司,2007年度,公司保费收入742.36亿元,较上年增长32.5%,其中人寿保险业务保费收入为506.86亿元,较上年增长34%,根据保监会公布的数据,在中国人寿保险行业排名第三,市场占有率达到10.2%。2007年度,财产保险业务保费收入为234.74亿元(不含太保香港子公司),较上年增长29.4%,根据保监会公布的数据,在中国财产保险行业排名第二,市场占有率达到11.2%。2007年度,公司归属于母公司的净利润为68.93亿元,较上年增长583.8%。 目前,公司拥有约185000名寿险营销员,约18400名从事人寿及财产保险产品销售和市场营销活动的员工,各级分支机构及营销服务部5000余个,拥有比较完善的销售和服务网络,为各地的个人和公司客户提供包括人身险和财产险在内的全方位风险保障解决方案、投资理财和资产管理服务。公司在积极追求自身发展的同时,还致力于各类公益活动,履行企业公民的职责。经过十几年的发展,太平洋保险已成为中国最著名的综合性保险服务商之一。 (二)实习岗位的简介 我在太平洋保险公司哈尔滨分公司营销服务部的实习。在实习期间,我的工作岗位是营销部的寿险顾问,工作内容主要是保单的销售。将课本上所学的专业保险知识与公司的保险产品相结合,通过分析分析和评估客户的财务状况,身体健康情况及其个人需求,在以服务客户为中心的基础上,站在专业的角度,帮助客户选择适合的产品,制定切实可行的寿险计划书,并且积极促成保单。在实习期间虽然我并没有成功的促成一份保单,但是我对保险销售这一行业有了深刻的理解,这为我以后的工作有了很大的帮助。 二、实习内容及过程

保险代理人资格考试精华试题

1、从某种意义上说,忠诚保证保险承保的是(雇员的人品) 2、在寿险客户服务中,协助投保人填写投保单。保险条款的准确解释等属于(售中服务) 3、根据保险销售从业人员监管办法的有关规定,保险销售从业人员从事保险销售,应当出示(保险销售从业人员执业证书) 保险代理从业人员执业证书是保险中介机构从业人员展业时使用,代表的是保险中介机构,由该中介机构发。 资格证是每个从业人员都需考的,是表示从业人员得到保监会许可。 展业证是指从业人员展业是代表的保险公司,由保险公司发。 4、我国《保险专业代理机构将监管规定》规定,保险专业代理机构未经批准合并、分立、解散,由中国保监会责令改正,给予警告,没有违法所得的,处1万元以下罚款,有违法所得的,处违法所得三倍以下的罚款,但最高不得超过(3)万元;对该机构直接负责的主管人员和其他责任人员,给予警告,处1万元以下罚款。 5、终身重大疾病保险的终身保障形式之一是指定一个极限年龄,当被保险人健康生存至这个年龄时保险合同终止,当合同终止时保险人承担的义务是(给付与重大疾病保险金额相等的保险金) 6、在我国自合同效力中止之日起两年内双方未达成协议的,保险人有权解除合同,且保险人应当(按照合同约定退还保单的实际责任准备金) 7、根据《民法通则》规定,我国公民与外国人离婚适用哪国法律(离婚受理地) 8、保险代理人从业人员最基本的职业道德是(守法遵规) 9、在万能保险中,净风险保额与现金价值之和就是(全部的死亡给付额) 10、根据《保险营销员管理规定》,保险代理从业人员《资格证书》持有人,申请换发时应当具备的条件之一是(无故意不履行数额较大个人债务的行为)11、保险销售从业人员向客户推荐的保险产品应符合客户的需求,不强迫和诱导客户购买保险产品。这所诠释的是职业道德原则中(诚实信用原则) 12、在人寿保险定价假设中,影响失效率假设的因素包括(被保险人投保时的年龄)等。 13、根据《保险营销员管理规定》,保险营销员首次从事保险营销活动前,应当接

安徽省保险高管考试试题

安徽省保险高管考试试题 本卷共分为1大题50小题,作答时间为180分钟,总分100分,60分及格。 一、单项选择题(共50题,每题2分。每题的备选项中,只有一个最符合题意) 1.青岛市的城市职能有:外贸、海港、纺织机械工业、国防、疗养、海洋科学研究中心,可见青岛的城市性质是__城市。 A.港 B.轻工业 C.疗养 D.海洋科学研究 2.下列各保险公司未在海外上市的是__。 A.中国人寿公司 B.太平洋保险公司 C.中意保险公司 D.平安保险公司 3.在意外伤害保险合同中,如果各部位残疾程度百分率之和超过______,则按保险金额给付残疾保险金。 A.70% B.80% C.100% D.90% 4.短期出口信用保险是指承保信用期不超过__天、出口货物一般是大批的初级产品和消费性工业产品出口收汇风险的一种保险。 A.30 B.90 C.180 D.360 5. 是指以被保险人的身体为标的,使被保险人在疾病或意外事故所致伤害时发生的费用或损失获得补偿的人身保险。

A:健康保险 B:人寿保险 C:损失保险 D:责任保险 6. 营业税的税目按照行业、类别的不同分别设置,现行营业税共设置了9个税目。按照行业、类别的不同分别采用不同的比例税率。其中税率最高的是__。 A.服务业 B.娱乐业 C.交通运输业 D.建筑业 7. 风险管理的过程依顺序为() A.风险识别、风险处理、风险衡量、风险管理效果评价 B.风险识别、风险衡量、风险处理、风险管理效果评价 C.风险衡量、风险识别、风险处理、风险管理效果评价 D.风险管理效果评价、风险识别、风险衡量、风险处理 8. 下列属于我国保险法所界定的保险的是__。 A.财产保险 B.社会保险 C.原保险 D.再保险 9. 保险中介体系的“三大支柱”是指______。 A.保险公估人和保险代理人、保险经济师 B.保险公证人和保险理算人、保险经纪人 C.保险公估人和保险代理人、保险经纪人 D.保险监督官和保险代理人、保险公正行 10. 养老保险作为一种社会制度,除了具有一般保险的共同特征之外,还具有其自身的特殊性,这种特殊性体现在__。①权利与义务对等②风险的分担和互济③参与主体普遍④政府参与 A.②③④

相关主题
文本预览
相关文档 最新文档