当前位置:文档之家› 材料制备科学与技术

材料制备科学与技术

材料制备科学与技术
材料制备科学与技术

第七章单晶材料的制备

名词解释:

1.熔盐生长法(助熔剂法、高温溶液法、熔盐法)是在高温下从熔融盐溶剂中生长晶体的方法。

填空题:

1.气相生长法可以分为三类:升华法、蒸汽输运法、气相反应法

2.气体输运过程因其内部压力不同而主要有三种可能的方式(输运取决于什么东西?压力的三个级别):①当压力<102Pa时,输运速度主要决定于原子速度②在102--3*105Pa之间的压力范围内,分子运动主要由扩散确定③当压力>3*105Pa 时,热对流对确定气体运动及其重要。

3.溶液中生长晶体的具体方法主要有:降温法、流动法(温差法)、蒸发法、凝胶法

4.水热法生长单晶体的设备装置是:高压釜

5.晶体与残余物的溶液分离开的方法有:倒装法和坩埚倾斜法。

6.从熔体中生长单晶体的典型方法大致有以下几种:(大类别和小类别都要写)

①正常凝固法a、晶体提拉法b、坩埚下降法(垂直式、水平式)c、晶体泡生法d、弧熔法②逐区溶化法a、水平区熔法b、浮区法c、基座法d、焰熔法③掺钕钇铝石

)晶体的B-S法生长

榴石(Nd:YAG)晶体的提拉生长④硒镓银(AgGaSe

2

7.提拉法生长单晶体的加热方式有:

8.坩埚下降法即(B—S方法)的分类:垂直式、水平式

简答题:(具体点)

1.气相生长法的分类

①升华法:是将固体在高温区升华,蒸汽在温度梯度的作用下向低温区输运结晶的一种生长晶体的方法。

②蒸汽输运法:是在一定的环境(如真空)下,利用运载气体生长晶体的方法,通常用卤族元素来帮助源的挥发和原料的输运,可以促进晶体的生长。

③气相反应法:即利用气体之间的直接混合反应生成晶体的方法。

2.在气相系统中,通过可逆反应生长时,输运可以分为哪三个阶段?

①在原料固体上的复相反应。

②气体中挥发物的输运。

③在晶体形成处的复相逆向反应。

3.气体输运过程因其内部压力不同而主要有哪三种可能的方式?

①当压力<102Pa时,输运速度主要决定于原子速度。

②在102--3*105Pa之间的压力范围内,分子运动主要由扩散确定。

③当压力>3*105Pa时,热对流对确定气体运动及其重要。

4.溶液中生长晶体的具体方法主要有哪几种?每种方法的基本原理是什么?

①降温法基本原理是利用物质较大的正溶解度温度系数,在晶体生长的过程中逐渐降低温度,使析出溶质不断在晶体上生长。

②流动法(温差法)

③蒸发法基本原理是将溶剂不断蒸发减少,从而是溶液保持在过饱和状态,晶体便不断生长。

④凝胶法基本原理利用复分解反应、氧化还原反应来生长金属单晶。

5.对高压釜的要求应满足哪些条件?生长结束后去除熔剂的方法有哪些?

①制作材料,要求在高温高压下有很高的强度,在温度为200--1100℃范围内,能耐压(2--100)*107Pa,耐腐蚀,化学稳定性好。

②釜壁的厚度按理论公式计算:

[]

[]p

D

D

K

n

w

d

2

-

=

=

σ

σ

③密封结构良好。

④高压釜的直径与高度比。

⑤耐腐蚀,特别是耐酸碱腐蚀。

6.理想的助熔剂应具备哪些物理化学特性?(5条以上就行)

①对晶体材料必须具有足够大的溶解度。

②在尽可能大的温度压力等条件范围内与溶质的作用应是可逆的,不会形成稳定的其他化合物,而所要的晶体是唯一稳定的物相,这就要求助溶剂与参与晶体的成分最好不要形成多种稳定的化合物。

③助溶剂在晶体中的固溶度应尽可能小。

④具有尽可能小的粘滞性,以利于溶质和能量的输运,从而有利于溶质的扩散和结晶潜热的释放,这对于生长高完整性的单晶极为重要。

⑤有尽可能低的熔点,尽可能高的沸点。

⑥具有很小的挥发性和毒性。

⑦对铂或其他坩埚材料的腐蚀性要小。

⑧易溶于对晶体无腐蚀作用的某种液体溶剂中,如水、酸或碱性溶液等,以便于生长结束时晶体与母液的分离。

⑨在熔融态时,助溶剂的比重应于结晶材料相近,否则上下浓度不易均一。

生长结束后去除熔剂的方法:有可以缓慢降温挥发除去,也可以用适当溶液溶解掉习题:

1.单晶生长的方法如何分类?它们各自的特点及适用范围如何?

①气相生长法:包含有大量变量使生长过程较难控制。通常仅适用于那些难以从液相或熔体生长的材料。

②水溶液生长法:基本原理是将原料(溶质)溶解在溶剂中,采取适当的措施造成溶液的过饱和状态,是晶体在其中生长。生长范畴包括水溶液、有机溶剂和其他无机溶剂的溶液、熔盐(高温溶液)以及水热溶液等。

③水热生长法:是一种在高温高压下的过饱和水溶液中进行结晶的方法。可以合成水晶、刚玉、方解石、氧化锌以及一系列的硅酸盐、钨酸盐和石榴石等上百种晶体。

④熔盐生长法:优点在于可以借助高温溶剂,是溶质相在远低于其熔点的温度下进行生长。适用范围很广泛,因为对于任何材料原则上说都等找到一种溶剂,但在实际生长中要找到适合的溶剂却是熔盐法生长的一个既困难又很关键的问题。

⑤熔体生长法:具有生长快、晶体的纯度高、完整性好等优点。生长的高质量单晶

不仅限于高技术应用方面,而且还是基础理论研究的极好样品。

2.阐述气相法生长晶体的基本原理及其方法、输运方式。

气相法生长晶体基本原理:对于某个假设的晶体模型,气相原子或分子运动到晶体表面,在一定的条件(压力、温度等)下被晶体吸收,形成稳定的二维晶核。在晶面上采生台阶,再俘获表面上进行扩散的吸附原子,台阶运动、蔓延横贯整个表面,晶体便生长一层原子高度,如此循环往复即能长出块状或薄膜状晶体。

方法:升华法、蒸汽输运法、气相反应法。

输运方式主要靠扩散和对流来实现,实现对流和扩散的方式虽然较多,但主要还是取决于系统中的温度梯度和蒸汽压力或蒸汽密度。

3.何为晶体水热生长法?试阐述α-水晶生长的基本工艺和生长参数。

晶体水热生长法是一种在高温高压下的过饱和水溶液中进行结晶的方法。

水热法生长水晶灯过程是水晶在高压釜内进行水热溶解反应,形成络合物,通过温度对流从溶解区传递至生长区,把生长所需的溶质供给籽料。

生长参数:培养料温度、籽晶温度、充满度、压力、矿化剂、添加剂

4.熔体法生长晶体的特点是什么?方法有哪些?可以从哪些角度对熔体生长方法进行分类?

晶体有两种类型:一种是晶体与熔体有相同的成分,纯元素和同成分熔化的化合物属于此类;第二种是晶体与熔体成分不同,掺杂的元素或化合物以及不同成分熔化的化合物属于这一类。

方法:①正常凝固法a、晶体提拉法b、坩埚下降法(垂直式、水平式)c、晶体泡生法d、弧熔法②逐区溶化法a、水平区熔法b、浮区法c、基座法d、焰熔法③掺钕钇铝石榴石(Nd:YAG)晶体的提拉生长④硒镓银(AgGaSe

)晶体的B-S法生长

2

材料科学与工程学科的发展历程和趋势

材料科学与工程学科发展历程和趋势 摘要:本文结合国内几所高校材料学科的具体实例,综述了材料科学与工程学科的国内外发展的历史进程,讨论了材料科学与工程学科的发展趋势,同时展望了材料科学与工程学科在未来的发展前景。 关键词:材料科学与工程,发展历程,趋势 Abstract In this paper,on the basis of practice of materials science and engineering discipline in several domestic universities, the development process of materials science and engineering at home and abroad were reviewed, and the development trend of this discipline were discussed. Meanwhile, the prospect of this subject in the future were prospected. Keywords:materials science and engineering,development process,trend 1 引言 上个世纪70年代以来,人们把信息、材料和能源作为社会文明的支柱。80年代又把新材料、信息技术和生物技术并列为新技术革命的重要标志。随着科学技术的高速发展,新技术、新产品及新工艺对新材料的要求越来越强烈,也促进了当代材料科学技术的飞速发展。现在,材料学科及教育的重要性已被人们认识,国内外许多工科院校及综合性大学都相继成立了材料科学与工程学院(系)。 2 材料科学与工程学科发展历程 “材料科学”这个名词在20世纪60年代由美国学者首先提出。1957年,苏联人造地球卫星发射成功之后,美国政府及科技界为之震惊,并认识到先进材料对于高技术发展的重要性,于是一些大学相继成立了十余个材料科学研究中心,从此,“材料科学”这一名词开始被人们广泛使用。 材料学科的发展过程遵循了现代科学发展的普遍规律,也是从细分走向综合。各门材料学科通过相互交叉、渗透、移植,由细分最终走向具有共同理论和技术基础的全材料科学[1]。20世纪40年代以前,基础科学和工程之间的联系并不十分紧密。在20世纪20年代固体物理和材料工程两学科是分离的,到40年代两学科才有交叉。从60年代初开始出现了材料科学,到了70年代,材料科学和材料工程的学科内涵大部分重叠,材料科学兼备自然科学和应用科学的属性,故“材料科学与工程”(MSE)作为一个大学科逐步为科技界和教育界所接受[2]。 2.1 国外材料科学与工程学科发展历程 美国西北大学M.E.Fine教授等人首先于20世纪60年代初提出了材料科学与 工程(MSE)这一概念。在上20世纪60年代以前,国内外高校均没有明确完整的MSE教育。此时,材料科学与技术人才的培养分属冶金、化工或机械等专业。从60年代初起,欧美等国家高校中冶金、机械或化工等与材料有关的系或相关的专业及学科开始改设“材料科学与工程系”、“材料科学系”、“材料工学系”。至80年代中后期,欧美等国大部分高校已完成此项工作。这种教育符合材料科学技术发展趋势。近年来,美国与欧洲在材料教育方面的最显著特点就是把材料科学与工程看作是一门学科。在大学不再需要专门的材料主题。这些材料不再是冶金、陶瓷或电子材料学,而统称为材料,材料教育涉及的范围包括金属、陶瓷、高分子、

薄膜材料制备原理技术及应用

平均自由程:气体分子在两次碰撞的时间里走过的平均距离。(λ=1 nπd )。 气体分子通量:气体分子对单位面积表面的碰撞频率,也即 单位面积上气体分子的通量。(Φ=nv a 4=N a p 2πMRT 此结果又称为 克努森方程) 流导:真空管路中气体的通过能力。 真空泵的抽速:定义,S p=Q p p为真空泵入口处的气体压力,Q为单位时间内通过真空泵入口的气体流量。 Pvd:利用某物理过程,实现物质原子从源物质到薄膜的可控转移过程。 Cvd:利用气态的先驱反应物,通过原子、分子间化学反应的途径生成固态薄膜的技术。 在完整的单晶衬底上延续生长单晶薄膜的方法被称为外延生长。 旋片式机械真空泵、罗茨泵以及涡轮分子泵是机械式气体输运泵的典型例子,而油扩散泵则属于气流式气体输运泵。捕获式真空泵包括低温吸附泵、溅射离子泵等。 电偶规、电阻规(皮拉尼规)原理:以气体的热导率随气体的压力变化为基础而设计。缺点:在测量区间内指示值呈非线性,测量结果与气体种类有关,零点漂移严重。优点:结构简单,使用方便。 真空体系的构成:真空室、测量室、阀门……

阴影效应:蒸发出来的物质将被障碍物阻挡而不能沉积到衬底上。害处:破坏薄膜沉积的均匀性、受到蒸发源方向性限制,造成某些位置没有物质沉积。利用:目的性使用一定形状的掩膜,实现薄膜选择性的沉积。 单质、化合物蒸发存在的问题及解决:成分偏差,易于蒸发的组元优先蒸发将造成该组元的不断贫化,进而蒸发率不断下降。解决;1,使用较多的物质作为蒸发源,即尽量减少组元成分的相对变化率。2,向蒸发源不断少量添加被蒸发物质(使物质组元得到瞬间同步蒸发)3,利用加热至不同温度的双蒸发源或多蒸发源的方法,分别控制和调节每个组元的蒸发速率。 蒸发沉积纯度取决于:1蒸发源物质的纯度2加热装置,坩埚等可能造成的污染3真空系统中的残留气体。 电子束蒸发装置:电阻加热装置有来自坩埚,加热元件以及各种支撑部件可能的污染,其热功率及温度也有一定的限制,不适合高纯度或难熔物质的蒸发。电子束蒸发发可以克服。缺点:电子束的绝大部分能量被坩埚的水冷系统带走,其热效率较低。过高的加热功率也会对整个薄膜沉积系统形成较强的热辐射 等离子体:一种电离气体,是离子、电子和高能粒子的集合,整体显中性。它是一种由带电粒子组成的电离状态,亦称为物质的第四态。

09192230材料现代制备技术

09192230材料现代制备技术 Modern Technology for Material Preparation 预修课程:物理化学 面向对象:材料科学与工程专业学生 课程简介: 本课程讲述各种材料合成与制备的原理、方法和技术。针对现代信息社会对材料发展的需求,着重介绍各种新型制备技术的基本概念、制备原理、特征,以及其在各类材料制备中的应用。涉及材料包括超微粒子等零维材料,纤维、纳米线棒等一维材料,薄膜和块体材料(晶态和非晶态材料)。 教学大纲: 一、教学目的与基本要求: 教学目的:材料制备技术是材料科学不可或缺的组成部分。现代科学技术的发展对材料提出了各种各样的新要求,进而推动了材料制备技术的发展。本课程旨在介绍各种材料的合成与制备的原理、方法和技术,使学生掌握各类新型材料的制备方法。 基本要求:通过《材料现代制备技术》的学习,使学生了解各种无机材料的制备原理,初步掌握零维、一维纳米材料,纤维,薄膜,以及三维材料的各种制备方法和技术。 二、主要内容及学时分配: 1. 绪论 材料现代制备方法特点1学时 溶胶凝胶技术3学时 等离子体技术2学时 激光技术概论2学时 2. 零维材料的制备 超微粒子的形成机理和制备4学时 3. 一维材料的制备 纳米棒、线、管的形成机理和制备方法2学时 纤维材料的制备2学时 4. 二维材料的制备

薄膜的物理气相沉积法制备原理和应用4学时 化学气相沉积法制备原理和应用3学时 三束技术与薄膜制备2学时 液相法薄膜制备(浸渍提拉法成膜,旋转涂膜,LB膜,自组装膜)3学时 5. 三维材料的制备 非晶态材料的形成机理及制备方法2学时 晶体生长机理及制备2学时 推荐教材或主要参考书: 《材料现代制备技术》,自编讲义 参考书:郑昌琼,冉均国主编《新型无机材料》,科学出版社,2003 C.N.R. Rao, F.L. Deepak, Gautam Gundiah, A. Govindaraj,Inorganicnanowires,Progress in Solid State Chemistry 31 (2003)

材料科学与工程专业简介

材料科学与工程专业简介 材料科学与工程专业简称材料专业。 大千世界中的材料无所不包、无处不在。吃、穿、住、行,每个人每天会碰到诸如金属、橡胶、磁性、光电等众多材料,小到一根针、一张纸、一个塑料袋、一件衣服,大到交通工具、医疗器械、工程建筑、信息通讯、航天航空,处处都有材料科学的身影。 材料科学与工程是一个涉及材料学、工程学和化学等方面的较宽口径专业。该专业以材料学、化学、物理学为基础,主要研究的是材料成分、结构、加工工艺与其性能和应用。事实上,人类文明发展史,就是一部如何更好地利用材料和创造材料的历史,材料的不断创新和发展,也极大地推动了社会经济的发展。 材料科学与工程专业依据各地区的发展历史,专业教学的侧重点略有不同。比如,材料专业中材料可以分为金属、无机非金属、高分子材料等。辽宁省各个高校由于历史沿乘的原因,多以金属材料为主。金属材料包括钢铁、有色金属及新型金属材料。 各高校材料专业学生,在大学二年级下学期会接触到本专业课程。主要的专业课程有:材料科学基础、金属学、金属学与热处理、材料力学性能等。 在专业课学习之前,需要学习一些涉及化学、机械的相关课程。 比如:工程制图、机械设计、电工电子技术、普通化学、物理化学等。

材料专业的学生除了需要掌握材料的相关知识和技能,还需掌握机械、电子等知识及技能。 材料专业学生除了要掌握课程内容外,还需掌握建模软件、有限元分析软件、科学分析软件等工具。 就业去向 材料科学与工程专业的毕业生多从事工艺、技术、质检、检验、研发等工作。除此之外,还有从事采购、高精尖大型设备的技术售后等工作。职业发展较好,由于材料专业的特点,使得材料专业的用处存在于产品的研发、性能的保障、产品的质量检验等重要的核心环节中,从业人员可快速展现自己的专业优势。

为什么技术不能看成是科学的应用

为什么技术不能看成是科学的应用 摘要:科学的根本目的是认识自然、解释自然,并以此基础预见自然现象,从而提高人类洞察自然的能力。技术的根本目的是创造人化自然,提高人类创造财富的能力。分别从科学与技术的本质、区别及联系等方面来看,两者很难作非此即彼的划分。技术具有自然属性和社会属性,特别是作为一种知识并不等于应用科学或不仅仅等于对科学的应用。 关键词:科学技术应用 在科技哲学以及技术创新理论的研究中,人们对科学与技术的关系进行了诸多研究,认为技术不等于应用科学或不仅仅等于对科学的应用。若要解释这个问题,我们必须从科学与技术的本质与特征、区别及联系中寻找答案。 一、科学与技术的本质与特征 科学技术已成为当今社会中使用频率极高的科学用语,但人们对其的理解很不一致,即使在学术界,对科学技术的定义也是多种多样的。 关于科学的概念,有许多不同的看法,至今仍没有一个统一的定义,归纳起来,大致有以下几种观点[1]: 第一、科学就是知识,是对事物的正确判断。 第二、科学是关于自然、社会和思维及其规律的系统化的知识体系。这说明科学是一种系统化的知识,但仍将科学作为一种静态的知识成果。 第三、科学是对现实世界的不断深入认识的过程,是一种持续不断的认识活动。这一定义强调了科学作为一种认识活动和认识行为。 第四、科学是一种方法,是人类认识和改造世界的手段。这一概括强调了科学在认识和改造客观世界中的作用。 第五、科学也是一种社会建制,随着社会的发展,科学的社会功能不断增强,社会地位日益提高。科学也由个人的业余爱好,发展成为众多的人组织起来共同从事的社会活动事业。 第六、科学是通过特殊的社会创造活动而形成的关于自然、社会和思维及其规律的知识体系,是知识体系和知识的社会创造过程的统一。它主要是把科学作为一种认识成果和认识活动来理解的。 科学的基本特征有:第一,具有理性和实证性(包括证实和证伪) 。自然科学理论一大特色就是要求有严密、完备的逻辑性,而实证性则是科学与非科学的一个根本判别依据,能由实践检验其真伪的认识才有资格第二,具有探索性和创造性。自然科学的生命就在于创新,不断探索未知和创造新的知识理论是科学的。第三,具有通用性和共享性。自然科学作为知识(或文化)体系,是属于马克思主义历史唯物主义所讲的社会意识范畴的,是一定社会的高级社会意识形式,但它却是非意识形态的。第四,它还是一般生产力或知识形态潜在的生产力。科学一旦应用于社会经济生产中,便物化为直接的生产力,当然在这个过程中需要技术这个中介环节。 与科学的概念一样,技术也是一个历史性的范畴,技术的概念也存在许多

晶体材料制备原理与技术

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述: 晶体材料制备原理与技术是综合应用物理、化学、物理化学、晶体化学、材料测试与表征等先修课程所学知识的应用型专业课程,主要讲授晶体材料制备过程的基本原理和典型的晶体材料制备技术,为学生从事晶体材料制备工作提供理论基础和技术基础。 2.设计思路: 晶体材料是高新技术不可或缺的重要材料,晶体材料制备是材料科学与工程专业相关的重要生产领域。作为一门以拓展学生知识面为目的的选修课程,本课程分为三大部分:首先介绍典型的晶体材料制备方法和技术,通过课下查阅资料和课堂讨论加深学生对常见方法和技术的理解。此部分教师讲解和学生课堂讨论并重。然后介绍晶体材料制备过程中的一般原理,此部分主要由教师进行课堂讲授。最后,由学生自主查阅晶体材料制备最新文献,了解晶体材料制备技术最新进展,通过课下研读、课上汇报、讨论、教师点评等教学活动,加深学生对本课程中所学知识的理解及相关知识的综合运用。 - 3 -

3. 课程与其他课程的关系: 晶体材料制备原理与技术是综合应用物理、化学、物理化学、晶体化学、材料测试与表征等先修课程所学知识的应用型专业课程,是材料制备与合成工艺课程相关内容的细化和深入。 二、课程目标 本课程的目标是拓宽材料科学与工程专业学生的知识面,掌握晶体材料制备一般原理,了解晶体材料制备常见技术,加深对物理、化学、晶体化学以及材料表征等先修课程知识的理解,加强文献检索能力,学会分析晶体材料制备中遇到的问题,提高解决生产问题的能力,为毕业后从事晶体材料制备等生产和研究工作打下基础。 三、学习要求 晶体材料制备原理与技术是一门综合了物理、化学、物理化学、晶体化学、材料测试与表征等多学科知识的综合性课程。为达到良好的学习效果,要求学生:及时复习先修课程相关内容,按时上课,上课认真听讲,积极查阅资料,积极参与课堂讨论。本课程将包含较多的资料查阅、汇报、讨论等课堂活动。 四、教学进度 - 3 -

材料先进加工技术

1. 快速凝固 快速凝固技术的发展,把液态成型加工推进到远离平衡的状态,极大地推动了非晶、细晶、微晶等非平衡新材料的发展。传统的快速凝固追求高的冷却速度而限于低维材料的制备,非晶丝材、箔材的制备。近年来快速凝固技术主要在两个方面得到发展:①利用喷射成型、超高压、深过冷,结合适当的成分设计,发展体材料直接成型的快速凝固技术;②在近快速凝固条件下,制备具有特殊取向和组织结构的新材料。目前快速凝固技术被广泛地用于非晶或超细组织的线材、带材和体材料的制备与成型。 2. 半固态成型 半固态成型是利用凝固组织控制的技术.20世纪70年代初期,美国麻省理工学院的Flemings 教授等首先提出了半固态加工技术,打破了传统的枝晶凝固式,开辟了强制均匀凝固的先河。半固态成型包括半固态流变成型和半固态触变成形两类:前者是将制备的半固态浆料直接成型,如压铸成型(称为半固态流变压铸);后者是对制备好的半固态坯料进行重新加热,使其达到半熔融状态,然后进行成型,如挤压成型(称为半固态触变挤压) 3. 无模成型 为了解决复杂形状或深壳件产品冲压、拉深成型设备规模大、模具成本高、生产工艺复杂、灵活度低等缺点,满足社会发展对产品多样性(多品种、小规模)的需求,20世纪80年代以来,柔性加工技术的开发受到工业发达国家的重视。典型的无模成型技术有增量成型、无摸拉拔、无模多点成型、激光冲击成型等。 4.超塑性成型技术 超塑性成型加工技术具有成型压力低、产品尺寸与形状精度高等特点,近年来发展方向主要包括两个方面:一是大型结构件、复杂结构件、精密薄壁件的超塑性成型,如铝合金汽车覆盖件、大型球罐结构、飞机舱门,与盥洗盆等;二是难加工材料的精确成形加工,如钛合金、镁合金、高温合金结构件的成形加工等。 5. 金属粉末材料成型加工 粉末材料的成型加工是一种典型的近终形、短流程制备加工技术,可以实现材料设计、制备预成型一体化;可自由组装材料结构从而精确调控材料性能;既可用于制备陶瓷、金属材料,也可制备各种复合材料。它是近20年来材料先进制备与成型加工技术的热点与主要发展方向之一。自1990年以来,世界粉末冶金年销售量增加了近2倍。2003年北美铁基粉末。相关的模具、工艺设备和最终零件产品的销售额已达到91亿美元,其中粉末冶金零件的销售为64亿美元。美国企业生产的粉末冶金产品占全球市场的一半以上。可以预见,在较长一段时间内,粉末冶金工业仍将保持较高的增长速率。粉末材料成型加工技术的研究重点包括粉末注射成型胶态成型、温压成型及微波、等离子辅助低温强化烧结等。 6. 陶瓷胶态成型 20世纪80年代中期,为了避免在注射成型工艺中使用大量的有机体所造成的脱脂排胶困难以及引发环境问题,传统的注浆成型因其几乎不需要添加有机物、工艺成本低、易于操作制等特点而再度受到重视,但由于其胚体密度低、强度差等原因,他并不适合制备高性能的陶瓷材料。进入90年代之后,围绕着提高陶瓷胚体均匀性和解决陶瓷材料可靠性的问题,开发了多种原位凝固成型工艺,凝胶注模成型工艺、温度诱导絮凝成形、胶态振动注模成形、直接凝固注模成形等相继出现,受到严重重视。原位凝固成形工艺被认为是提高胚体的均匀性,进而提高陶瓷材料可靠性的唯一途径,得到了迅速的发展,已逐步获得实际应用。 7. 激光快速成型 激光快速成形技术,是20实际90年代中期由现代材料技术、激光技术和快速原型制造术相结合的近终形快速制备新技术。采用该技术的成形件完全致密且具有细小均匀的内部组

完整版材料科学与工程专业建设规划

材料科学与工程专业建设规划材料科学与工程学院材料工程系 2005.9 1 材料科学与工程专业建设的目标 1.1 专业建设基本思路 加快教改步伐,通过课程体系建设、加强实践教学环节的调控、科研素质的培养来大力推进专业学科建设,拓宽专业覆盖面,全面推进素质教育,显著提高教学质量和科研水平,建成基础厚实、特色突出、实力较强的专业。 1.2 专业建设整体目标 通过5 年乃至更长时间的建设与发展,打造出特色、优势专业,建设成高水平学科,培养出高素质创新型人才。 (1)科学合理地定好自己的位置,确定好人才培养类型和层次。在专业性质上加强材料科 学与工程基础、侧重材料制备和表征训练,以现代科学与工程体系为主干构建专业和组织教学,培养“厚基础、宽专业、高素质、强能力、具创新精神、面向生产第一线的优秀工程型人才”。 (2)专业方向紧密结合产业科技进步需要、地方经济及区域经济的发展需要(尤其是高新技术产业的发展需要)。 (3)突出优势,保持和发展自己的办学特色和专业方向特色,提高办学水平。 ( 4)以教学内容和课程体系改革为中心,以培养目标和培养模式改革为重点,辅以实践教学改革、教学方法和教学手段改革,全面推进、整体优化。形成特色鲜明的人才培养模式、教学计划、课程体系与教学内容。 (5)强化学生大工程意识的培养与训练,培养适应2l 世纪时代特征要求的创新性人才,为 我国材料产业的产品更新换代、产业科技进步作出贡献。 (6) 把专业建设和学科建设结合起来,通过若干年的努力,打造出特色品牌专业,建设成高水平学科,培养出高素质、创新型人才。 2 材料科学与工程专业建设措施 2.1 建立具有特色的人才培养模式 (1)以新的人才培养观确立了本专业的人才培养目标 在专业建设和教学改革的探索和实践中,我们进一步认识到转变教育思想和教育观念以及树立新的人才培养观的重要性。高等工程教育应从“授技型”向“育才型”转变,从单纯传播知识向全面培养学生的能力转变,从狭窄的专业技术教育向提高学生的综合素质转变,应将工程专业技术人员应具有的爱国主义、集体主义、社会责任感、奉献精神、大工程观念、市场经济观念、开拓创新精神、独立深入学习获取知识的能力、分析解决工程技术问题的能力的培养贯穿于整个教育过程之中。 (2)建立起了新的人才培养模式——两段式、三平台、多专业方向 两段式人才培养模式——三年的基础教育阶段和一年的专业技术教育阶段的人才培养过程;基础教育阶段的三级教学平台——通式教育基础教学平台,大学科基础教学平台,按一级学 科设置专业基础教学平台;多专业方向。 2.2 以“大学科、大材料、大工程”的人才培养观,以创新的思路构建起了新型课程体系 21 世纪人才需求对高等教育提出了新要求,我们必须树立素质是前题、能力是关键、知识是载体的新型人才观,以“大学科、大材料、大工程”的意识,以创新的思路构建起新型课程体系。注重课程体系的整体优化,充分发挥知识平台和课程群(教学模快)的整体功能作用。如何做到厚基础,在工作中我们体会到,

计算机科学与技术的应用领域简述论文

《计算机科学引论》课程专题报告题目:计算机科学与技术的应用领域简述

目录 第一部分:计算思维的作用及其背景 1.为什么要讲述计算思维? 2.计算思维的设立背景是什么? 3.计算思维的概念? 第二部分:计算机科学与技术专业介绍 1.计算机科学与技术的课程 2.计算机科学与技术的培养目标 第三部分:计算机的应用领域 1.根据前两部分的介绍可以看出该专业同学的实际技能 2.具体的计算机应用领域 3.根据科幻电影的情节设想的未来的应用领域

计算机导论的作用及其背景 (1)为什么要讲述计算思维? 计算思维与计算机导论课程有紧密关系,计算思维的倡 导者卡耐基*梅隆大学计算机科学系主任周以真教授就 在该校开设了“计算思维导论”课程,作为计算机传业 学生的第一门课程。计算机导论是讲述计算思维。2007 年秋,周以真教授在CMU率先开设了“计算思维导论”。 2008年6月,对CS2001(CC2001)进行中期审查的报 告(CS2001 Interim Review)(草案)中将“计算思维” 与“计算机导论”课程绑定在一起,明确要求“计算机 导论”课程讲授计算思维的本质。巧合的是,本课程与 周以真倡导的“计算思维导论”课程异曲同工,讲授的 都是计算机学科的本质。若用“思想与方法”代替“基 础概念”,计算思维又可以解释为采用计算机科学的思 想与方法进行问题求解、系统设计,以及人类行为理解 等涵盖计算机科学之广度的一系列思维活动。经过十几 年的教学实践,美国这一教学理念已被国内相当多的人 接受,而从计算思维,或者说从更为具体的学科思想方 法这一层面讲授计算机科学,更是的道理越来越多的人 的支持。计算推动着人类科技的进步,影响这各门学科 的发展,并产生了一系列的新兴学科,如计算生物学、计算物理学、计算化学、计算经济学、计算社会学、计

材料制备方法

陶瓷基复合材料的制备 摘要:现代陶瓷材料具有耐高温、耐磨损、耐腐蚀及重量轻等许多优良的性能。但是,陶瓷材料同时也具有致命的缺点,即脆性,这一弱点正是目前陶瓷材料的使用受到很大限制的主要原因。 因此,陶瓷材料的韧性化问题便成了近年来陶瓷工作者们研究的一个重点问题。现在这方面的研究已取得了初步进展,探索出了若干种韧化陶瓷的途径。其中,往陶瓷材料中加入起增韧作用的第二相而制成陶瓷基复合材料即是一种重要方法。 一.基体与增强体 1.1基体 陶瓷基复合材料的基体为陶瓷,这是一种包括范围很广的材料,属于无机化合物而不是单质,所以它的结构远比金属合金复杂得多。现代陶瓷材料的研究,最早是从对硅酸盐材料的研究开始的,随后又逐步扩大到了其他的无机非金属材料。 目前被人们研究最多的是碳化硅、氮化硅、氧化铝等,它们普遍具有耐高温、耐腐蚀、高强度、重量轻和价格低等优点。 1.2增强体 陶瓷基复合材料中的增强体,通常也称为增韧体。从几何尺寸上增强体可分为纤维(长、短纤维)、晶须和颗粒三类。 纤维:在陶瓷基复合材料中使用得较为普遍的是碳纤维、玻璃纤维、硼纤维等; 晶须为具有一定长径比(直径0.3~1μm,长0~100 μm) 的小单晶体。晶须的特点是没有微裂纹、位错、孔洞和表面损伤等一类缺陷,因此其强度接近理论强度。 颗粒:从几何尺寸上看,颗粒在各个方向上的长度是大致相同的,一般为几个微米。颗粒的增韧效果虽不如纤维和晶须。但是,如果颗粒种类、粒径、含量及基体材料选择适当仍会有一定的韧化效果,同时还会带来高温强度,高温蠕变

性能的改善。所以,颗粒增韧复合材料同样受到重视并对其进行了一定的研究. 二.纤维增强陶瓷基复合材料 在陶瓷材料中,加入第二相纤维制成复合材料是改善陶瓷材料韧性的重要手段,按纤维排布方式的不同,又可将其分为单向排布长纤维复合材料和多向排布纤维复合材料。 2.1单向排布长纤维复合材料 单向排布纤维增韧陶瓷基复合材料的显著特点是它具有各向异性,即沿纤维长度方向上的纵向性能要大大优于其横向性能。 在实际构件中,主要是使用其纵向性能。在单向排布纤维增韧陶瓷基复合材料中,当裂纹扩展遇到纤维时会受阻,这时,如果要使裂纹进一步扩展就必须提高外加应力。 2.2多向排布纤维复合材料 单向排布纤维增韧陶瓷只是在纤维排列方向上的纵向性能较为优越,而其横向性能显著低于纵向性能,所以只适用于单轴应力的场合。而许多陶瓷构件则要求在二维及三维方向上均具有优良的性能,这就要进一步研究多向排布纤维增韧陶瓷基复合材料。 二维多向排布纤维增韧复合材料的纤维的排布方式有两种:一种是将纤维编织成纤维布,浸渍浆料后,根据需要的厚度将单层或若干层进行热压烧结成型。这种材料在纤维排布平面的二维方向上性能优越,而在垂直于纤维排布面方向上的性能较差。一般应用在对二维方向上有较高性能要求的构件上。 另一种是纤维分层单向排布,层间纤维成一定角度。这种三维多向编织结构还可以通过调节纤维束的根数和股数,相邻束间的间距,织物的体积密度以及纤维的总体积分数等参数进行设计以满足性能要求。 2.3制备方法 目前采用的纤维增强陶瓷基复合材料的成型主法主要有以下几种: 1.泥浆烧铸法 这种方法是在陶瓷泥浆中分散纤维。然后浇铸在石膏模型中。这种方法比较古老,不受制品形状的限制。但对提高产品性能的效果显著,成本低,工艺

怎样选专业之材料科学与工程专业

怎样选专业之材料科学与工程专业 对于考生和家长来说,报考一个合适的专业,就要全面的了解不同专业学什么、适合什么人学、就业前景如何。新浪教育为大家分享一些大学生对常见专业的介绍,通俗易懂。以下是材料科学与工程专业的介绍。 804材料类80401材料科学与工程 我毕业于清华大学(分数线,专业设置),本科和研究生学的都是材料科学与工程专业,今天应高考填志愿看看通邀请说下这个专业。 专业概述 材料科学与工程专业属于工科专业,这个专业算是材料类的一个总括专业吧,你在学校发的那个志愿填报指南上肯定还能看到有材料物理、材料化学、金属材料、无机非金属材料等等专业名称。材料科学与工程这个专业基本就是以上那些材料类专业的总括。那些方向的知识我们都会学习一些,但是学习内容也不是很深入。 因为专业囊括知识太多,所以很多学校是有具体倾向方向的,就比如说我们清华就含材料物理与化学、材料加工工程、无机非金属材料、金属材料及复合材料等方向。一般大学都会在“材料”这个大背景下,再细分专业方向。比如大二学完基础知识之后,绝大多数学校就会让学生们进行专业方向的选择:你到时候可以选的专业方向有金属材料、无机非金属材料、高分子材料、耐磨材料、表面强化、材料加工工程等等,到时候选了哪个就专攻哪个方向。 专业详解

说了这么多那究竟什么是材料科学与工程?可能一看到材料科学与工程这个专业,大部分人的第一反应是“一头雾水”。的确,与其他诸如“电子信息”、“计算机”、“物流工程”等一眼就可以看出“研究什么”的专业相比,“材料”这一概念显得相当的宽泛。 但其实这个专业理解起来也很简单的,观察一下我们生活的周围,你会发现处处都可以看到材料专业知识的影子。举些例子你就明白了: 你坐在家里看电视——电视机显示图像的元器件还有遥控器里的发信号装置是什么做的?是电子信息材料和光电材料。 电视看腻了出门逛街要坐车,汽车是什么做的?车外壳是金属材料;挡风玻璃是非金属材料,可能是有机的,也可能是无机的;车内饰是橡胶材料。 逛街累了要回家做饭,买好晚饭的食材,到了超市购物要付钱,纸币是有机木纤维加油机印刷油墨印制的,硬币是金属材料冲压制成的。OK,你不用现金而选择刷卡,信用卡是什么做的?有机聚合物材料,还有磁性材料。 买好东西拎着袋子回家,用的是现在大力提倡的环保可降解塑料袋——这是有机生物材料…… 你想吧,生活中这么多材料的影子,总得有人去详细的研究了解各种材料的性质以后才能更好更合理的开发利用吧?比如汽车外壳、挡风玻璃的材料怎么才能更坚固?塑料袋用哪种材料设计才能更环保?我们材料科学与工程的学生就是研究这个的。

科学技术的应用

科学技术 ——是利还是弊 玉环县实验学校初二(五)班金鑫 摘要:科学技术如今在生活中的点点滴滴中都可以体现出来,说明了科学技术已经融入了人们的生活。而且科学技术极大地解放了生产力,甚至使新的产业部门和国民经济突飞猛进。在经过4次科技革命后,科技不断地进步。有人说它是利的,因为它使人类的生活便捷。但也有人说他是弊的,因为它破坏了人类依赖的自然环境。这篇论文主要从科学技术对人类的利处以及弊处做了描述,客观地评价科学技术人类的作用。 关键词:科学技术,科技革命,影响,对自然的破坏。 写作目的:在网上搜索资料,对科学技术做详细的了解后,对科学技术对人类、自然带了影响给予一个客观的评价,并提出更好应用科学技术的方法。 科学技术:什么是科学?科学就是有关研究客观事物存在及其相关规律的学说。什么是科学技术?科学技术就是利用“有关研究客观事物存在及其相关规律的学说”能为自己所用,为大家所用的知识。需要指出的是,因为人们研究客观事物的不同,科学与科学技术是两个可以互相转化概念,也就是科学可以说成是科学技术,科学技术也可以是科学。比如汽车发动机理论相对汽车这个事物而言,这个理论就可称之为汽车发动机科学,而汽车理论就是诸如发动机科学,机械传动科学,电子科学等科学综合

应用的汽车科学技术;而发动机理论也是一门科学技术,是包含材料科学,燃料科学,力学等科学综合应用的科学技术。所以,讲科学和科学技术要有针对性,否则科学和科学技术的概念就容易混淆。 科学革命的成就:.第一次科技革命棉纺织:一系列纺织机器的发明动力:珍妮机出现,瓦特改良蒸汽机(1785年)交通运输:富尔顿-轮船(美、1807年);史蒂芬逊-火车(英、1814年) 1、首先发生在英国,并以英国为主体;2、以轻工业为主导; 3、以蒸汽动力为主要标志; 4、技术发明主要源于工人和技师的实践经验 第二次科技革命 1、电力的广泛应用(西门子-发电机、格拉姆-电动机)2、内燃机和新交通工具的创制(卡尔〃本茨-内燃机驱动的汽车、莱特兄弟-飞机)3、新通讯手段的发明(贝尔-电话、马可尼-无线电报) 1、科学同技术开始密切结合2、新技术发明几乎同时发生在几个国家3、一些国家两次工业革命交叉进行 第三次科技革命以原子能技术、航天技术、电子计算机的应用为代表,包括人工合成材料、分子生物学和遗传工程等高新技术。 1.科学技术推动生产力的发展,转化为直接生产力的速度加快。2.科学技术密切结合,相互促进。3.科学技术各个领域相互渗透 第四次科技革命系统生物学与合成生物学偶合与互动,带动

“硅时代”的那些未来材料

有人提出硅时代的核心法则“摩尔定律”其实讲的不是数据科学,而是材料学每隔18个月就能将芯片的组成成分翻倍。 材料科学一直是物质进步的基础,无论是石器时代、青铜时代还是铁器时代,都是以人类制造和使用的材料来命名的。但是进入“硅时代”后,难道科技进步就只存在于如何控制二进制的1和0吗? 答案是否定的。今天,材料问题比以往任何时候都更重要。北京理工大学材料学院曹传宝教授告诉记者,现在虽然不再以材料发展来划分时代,但是材料依然是各个学科的基础,没有材料学其他学科都发展不起来。 “比如我们生活中必不可少的计算机,它的芯片就是以硅材料为基础的,有了先进的硅才能发展数字技术。而能源方面的太阳能电池也是取决于材料的转换效率。因此材料发展是其他学科的助力。”曹传宝说,“医学上的人造器官也是用材料做成的,像透析用的人工肾其实与生物的关系已经不大了,主要就是看吸附材料的发展。目前这方面材料还不理想,制约了人工器官的发展,由此看出如果材料学进步缓慢也会成为其他学科的‘瓶颈’。” 一直以来,单独材料本身只能粗放使用,只有与其他科技结合才能产生更高的价值。在硅时代,材料学与其他学科交叉将越来越普遍。“就像现在已经有与生物交叉的生物材料学,与计算机交叉的计算材料学等,”曹传宝说。 鉴于材料的重要作用,有人提出硅时代的核心法则“摩尔定律”其实讲的不是数据科学,而是材料学每隔18个月就能将芯片的组成成分翻倍。像芯片一样,目前实验室中更智能、更安全、更结实的材料未来都有可能改变我们的生活。 电子皮肤 皮肤的作用不仅在于保护身体,还能帮我们传导感觉。通过把电子材料变得柔软和肉感,工程师已经发现了一种方法使得人工移植皮肤和假肢也能有感觉。美国伊利诺斯州大学的研究者创造了一种足够轻薄柔韧的电路,把它覆盖在手指尖,可以将压力转换成电子信号。 目前,斯坦福大学开发的一款凝胶可以储存电能,用作可塑性电池。卡内基梅隆大学carmel majidi教授也正在研制把橡胶变为压力和摩擦力的传感器,他把液体金属槽放进橡胶里,一旦液体流动,电流就会发生变化。此外,电子皮肤还可以用于人类之外的更宽广领域,比如用这种工程学方法使机器人更逼真、更具有人类特性。 蜘蛛丝移植 看过《蜘蛛侠》的人都知道蜘蛛丝比钢铁还强韧,而人体自身的组织却很脆弱、容易撕裂。美国犹他州,研究人员正在用蜘蛛丝修复受损的肩膀和膝盖。他们培育转基因羊以生产大量蜘蛛丝蛋白,纺成股,做出仿蜘蛛丝纤维。这些纤维保留了蜘蛛丝特有的延展性,同时比人类韧带和筋腱分别强劲100倍和20倍。让移植的骨骼更加强韧,麻省理工学院研究员已经成功地将蜘蛛丝蛋白和胶原蛋白组合在一起。研究人员估计,2030年以前蜘蛛丝移植技术将批准对人类使用。 能发电的运动鞋 早在100年前,工程师就尝试通过发电器将机械能转化为电能,但是直到现在通过反复走动产生的能量依然不足以给一个ipod充电。主要原因在于目前制作发电器的压电材料不仅难以生产,还含有有毒金属,比如镍和铅。 如今,美国能源部劳伦斯伯克利国家实验室的研究人员一次性解决了这两个难题,他们使用的方法是采用经过特殊处理的无害病毒,这种病毒可以自发形成一层膜覆盖在发电器上。把它装进鞋里,走路时发电器感受到压力,病毒的螺旋蛋白就会旋转、扭曲,产生电荷。邮票大小的病毒压电材料样本可以产生400毫伏电力,足够点亮一个小lcd显示屏。未来5-10年,这项技术可帮助振动产生的能量来发电,如建筑物的振动和心跳,包括给ipod充电。

材料科学与工程专业英语第三版 翻译以及答案

UNIT 1 一、材料根深蒂固于我们生活的程度可能远远的超过了我们的想象,交通、装修、制衣、通信、娱乐(recreation)和食品生产,事实上(virtually),我们生活中的方方面面或多或少受到了材料的影响。历史上,社会的发展和进步和生产材料的能力以及操纵材料来实现他们的需求密切(intimately)相关,事实上,早期的文明就是通过材料发展的能力来命名的(石器时代、青铜时代、铁器时代)。 二、早期的人类仅仅使用(access)了非常有限数量的材料,比如自然的石头、木头、粘土(clay)、兽皮等等。随着时间的发展,通过使用技术来生产获得的材料比自然的材料具有更加优秀的性能。这些性材料包括了陶瓷(pottery)以及各种各样的金属,而且他们还发现通过添加其他物质和改变加热温度可以改变材料的性能。此时,材料的应用(utilization)完全就是一个选择的过程,也就是说,在一系列有限的材料中,根据材料的优点来选择最合适的材料,直到最近的时间内,科学家才理解了材料的基本结构以及它们的性能的关系。在过去的100年间对这些知识的获得,使对材料性质的研究变得非常时髦起来。因此,为了满足我们现代而且复杂的社会,成千上万具有不同性质的材料被研发出来,包括了金属、塑料、玻璃和纤维。 三、由于很多新的技术的发展,使我们获得了合适的材料并且使得我们的存在变得更为舒适。对一种材料性质的理解的进步往往是技术的发展的先兆,例如:如果没有合适并且没有不昂贵的钢材,或者没有其他可以替代(substitute)的东西,汽车就不可能被生产,在现代、复杂的(sophisticated)电子设备依赖于半导体(semiconducting)材料 四、有时,将材料科学与工程划分为材料科学和材料工程这两个副学科

谈计算机科学与技术的应用现状与未来趋势 马兰

谈计算机科学与技术的应用现状与未来趋势马兰 发表时间:2019-07-09T15:34:00.993Z 来源:《电力设备》2019年第6期作者:马兰[导读] 摘要:随着计算机科学与技术的发展,计算机的应用已经突破单纯的计算机信息通讯领域,渗透到我们生活的方方面面,极大影响和改变了我们的学习、工作以及生活方式。 (安徽中粮油脂有限公司安徽蚌埠 233705)摘要:随着计算机科学与技术的发展,计算机的应用已经突破单纯的计算机信息通讯领域,渗透到我们生活的方方面面,极大影响和改变了我们的学习、工作以及生活方式。本文针对计算机科学与技术的应用现状与未来趋势进行了分析,以供参考。 关键词:计算机科学与技术;应用;现状;未来趋势在科学技术进步发展的推动下,计算机的发展十分迅速,在其科学与技术方面有了很大的提升,对于人们的生活来说,计算机科学与技术的跨越式发展起到了极大的助力式作用,乃至改变了人们的生活方式。现代社会离不开计算机科学与技术,其起到的作用,在各个企业中体现尤为明显,在各个行业中发挥着积极的作用。 1 计算机科学与技术的主要内容 计算机科学与技术主要是应用于各个行业的管理系统中,计算机科学与技术的特点主要是为实现管理系统的信息化、管理的即时性、人员之间的互动性等。例如,在管理系统中可以采用计算机对人与人之间的双向沟通起到及时准确的作用,其中优势主要是对信息的传播速度起到助力的作用,实现了员工之间的沟通效率,进而提升了工作效率,同时还实现了让企业对不同员工采取不同的管理措施,促进员工对于工作的积极性,促进企业的管理升级和快速发展。而目前的计算机科学与技术在不断发展的过程中也逐渐实现了价格低廉、储存空间大、传播速度迅速等优化措施,在管理系统的运用方面也逐渐得到了升级与完善。 2 我国计算机科学技术发展的现状 2.1 计算机科学技术逐渐完善 随着我国社会的快速发展,计算机科学与计算机技术也越来越日益完善。现今社会以科技作为第一生产力来说,计算机科学给科技生产带来了信心和动力。计算机技术是在实践中不断发展和改善,先进的计算机水平能给人们带来更方便、更快捷、更优质的服务。根据企业的生产力来看,计算机科学与技术也会随着社会经济发展越来越走向人民,更加贴近生活,给现代化社会发展带来了史无前例的影响。 2.2 普及化与大众化的深入发展 随着电子产品价格不断地下降,计算机已经成为人们生活中必不可少的一部分,在促进人们生活方式改变的同时,也给人们的生活带来了极大的便利,无论是在生活上还是在学习上,计算机技术与网络技术给人们提供了诸多帮助,特别是在人们对计算机科技标准要求越来越高的情况下,计算机技术的普及化与大众化也开始给人们生活带来纵深的影响,因此,计算机技术也会给社会的发展带来更深远的影响。 2.3 生活化和专业化的综合深入 随着计算机在人们生活中的普及,一些专业性的公司在工作流程上都采用了计算机自动化办公,在给工作带来便利的同时,也提高了工作效率,各种办公系统、自动化处理系统都得到了具体的应用,计算机应用变得更加专业化、个性化与系统化,计算机网络作为中介与桥梁,连接商务、工业、服务业等,带动了计算机科学与技术这一行业的快速发展。 3计算机科学与技术快速发展的原因第一,世界上第一台计算机设备诞生于美国,由于技术因素等方面的影响,其具有运行速度慢、体积大等特点,故在当时,计算机设备并没有被人们广泛的推广与使用。等到 70 年代中后期,信息技术的发展与进步推动了计算机设备的发展,且因其具有价格适中、系统完善等特点逐渐被人们所熟知并普及;第二,二战时期人们对信息技术更高的需求,加深了相关技术人员对计算机设备的研究速度。资源与资金的大力投入使得计算机设备得到迅猛的发展,使其体积逐渐缩小、运行速度不断加快、信息存储空间也在不断扩大;第三,经济全球化进程的加深使各个国家之间的交流与互动频率逐渐增加,行业和国家之间的竞争间接地推动科学信息技术的发展与进步。在当今世界的发展格局下,国民逐渐将机制的选择与计算机设备的发展有机的结合再一起。在各种因素的综合作用下计算机设备得到了大力的发展;第四,计算机技术及相关设备的蓬勃发展,不断提升相关人员和科学家深入研究的兴趣与积极性。相关科研人员在计算机设备的研究与实验中获取了大量的设计灵感与设计理念,进一步推动来计算机设备的发展;第五,现有的计算机设备研究技术已经不能满足国民日益增长的计算机设备需求,对信息数据处理的需求有效地推动计算机相关科学理论知识的进步与发展;第六,计算机相关设备与科学理论不断革新的基础是实现信息的共享与交流。也就是国民出于对信息共享与交流的目的,不断对计算机设备进行创新与开发;充足的资金与技术支持,提高来计算机开发速度与质量。 4计算机科学与技术的未来趋势 4.1 生物计算机的发展 随着科学信息技术的发展与进步,我国计算机设备的相关研究人员提出了发展生物计算机的设计与研究理念。但是由于相关研究人员对生物计算机的研究还处于初步阶段,其研究成果较为缓慢。生物计算机的相关技术研究主要是利用生物工程技术所产生的蛋白质分子来制成生物电子芯片,并将生物电子芯片应用到计算机设备中。基于生物电子芯片的生物计算机设备通常是以波形的方式来进行信息和数据的传递与共享,它具有运行速度较快、能源消耗低、信息存储空间大等特点,这些特点也是未来计算机技术需要实现的目标与发展方向;与此同时,由于蛋白质分子具有较强的自我修复与还原能力,生物计算机可以对内部出现的故障问题进行自动还原,有效的提高了计算机设备的使用年限与使用效率。 4.2 量子计算机的发展 量子计算机是在信息技术飞速发展的基础上提出的新式计算机发展理念。量子计算机是通过改变激光脉冲来重组由链状分子合成的聚合物,并通过开关的相互作用实现聚合物的移动与调控,使计算机可以对各种复杂的数据进行共享与传递。量子计算机的研制是在物理量子学的基础上,利用量子学的可逆性和叠加性原理对信息数据进行叠加共享与传递,逐渐扩大计算机信息数据的存储空间,且量子计算机具有信息数据高速传播和高安全性等特点。 4.3 光子计算机的发展

现代材料制备技术-考试复习资料

注浆成形:将陶瓷原料制备出具有一定流动性的称之为泥浆的浆料。经陈腐、调节添加剂等方法使浆料性能稳定在利于注浆成型的范围。将泥浆注人石膏质多孔模型中,由于石膏的毛细孔吸水作用,将泥浆中部分水分吸人模型壁中,致使泥浆从靠近石膏模型面的部分开始逐渐固化而形成具有一定保型性能的陶瓷坯层。最后将余浆排出,经离型脱模后干燥便得到陶瓷坯体。作为一种主要的成型方法,传统的注浆成型仍在日用瓷和卫生瓷等生产中发挥着重要作用。 反应烧结:反应烧结法是通过多孔坯件同气相或液相发生化学反应,使坯件质量增加、孔隙减小,并烧结成具有一定强度和尺寸精度的成品的一种烧结工艺。 溶胶一凝胶法:溶胶一凝胶法是指将一种或多种固相以微小的胶体颗粒形式均匀地分散在液相介质中,形成稳定的胶体溶液,使不同的颗粒在溶胶中达到分子水平的混合,然后通过适当的加热或调整PH等方法改变胶体溶液的稳定性,使之发生胶凝作用转变成凝胶,凝胶经适当的温度煅烧,在煅烧过程中各物相相互反应生成所需制备的粉体。 反应烧结:反应烧结法是通过多孔坯件同气相或液相发生化学反应,使坯件质量增加、孔隙减小,并烧结成具有一定强度和尺寸精度的成品的一种烧结工艺。 凝胶注浆:陶瓷浆料原位凝固成型是20世纪90年代迅速发展起来的新的胶态成型技术。其成型原理不同于依赖多孔模吸浆的传统注浆成型,而是通过浆料内部的化学反应形成大分子网络结构或陶瓷颗粒网络结构,从而使注模后的陶瓷浆料快速凝固为陶瓷坯体。 简述粉体液相合成过程中防止团聚的办法。 一是在体系中加人有机大分子,使其吸附在颗粒表面,形成空间阻挡层,阻止颗粒之间互相碰撞团聚。常用的有机大分子是聚丙烯酰胺、聚乙二醇等。二是用表面张力小的液体如乙醇、丙酮等有机液体做溶剂,可减轻团聚。另外,可采用冷冻干燥办法,使液相凝固成固体,通过减压,使溶剂升华排除,也可防止团聚。 机械化学法的基本原理及其特点。 机械化学法的基本原理是通过对反应体系施加机械能诱导其发生扩散及化学反应等一系列化学和物理化学过程,从而达到合成新品种粉体的目的。一般的机械粉碎中物料并不发生化学反应,只是物料的几何形态、粒度、比表面积发生变化,物质本身性质并不变化。 机械化学与常规化学比较,具有以下基本特征:机械力作用可以产生一些热能难于或无法进行的化学反应;有些物质的机械化学反应与热化学反应有不同的反应机理;与热化学相比机械化学受周围环境的影响要小得多;机械化学反应可沿常规条件下热力学不可能发生的方向进行。 陶瓷制备工艺中,部分陶瓷原料预先煅烧的主要目的是什么? a)去除原料中易挥发的杂质、化学结合和物理吸附的水分。气体、有机物等,从而提高原料的纯度; b)使原料颗粒致密化及结晶长大,这样可以减小在以后烧结中的收缩,提高产品的合格率: C)完成同质异晶的晶型转变,形成稳定的结晶相,如γAl2O3锻烧成a-AI2O3。 预烧工艺的关键是预烧温度、预烧气氛及外加剂的选择。常用原料的预烧目的与预烧条件列于表45。

相关主题
文本预览
相关文档 最新文档