当前位置:文档之家› 硅杂环戊二烯衍生物:聚集诱导发光现象的发现及分子内旋转受限机理的提出

硅杂环戊二烯衍生物:聚集诱导发光现象的发现及分子内旋转受限机理的提出

硅杂环戊二烯衍生物:聚集诱导发光现象的发现及分子内旋转受限机理的提出
硅杂环戊二烯衍生物:聚集诱导发光现象的发现及分子内旋转受限机理的提出

研 究 生 课 程 论 文

(2014-2015学年第一学期)

硅杂环戊二烯衍生物:聚集诱导发光现象的发现及分

子内旋转受限机理的提出

研究生:黄蝶

硅杂环戊二烯衍生物:聚集诱导发光现象的发现及分

子内旋转受限机理的提出

黄蝶

摘要硅杂环戊二烯,又称噻咯,是一种含硅的五元环。其衍生物是最早被发现并报道具有聚集诱导发光性质的第一类化合物。由于其具有独特聚集诱导发光性能和特殊的电子结构,在许多方面有广泛的应用。本文综述了基于硅杂环戊二烯衍生物聚集诱导发光现象的发现及分子内旋转受限机理的提出。

关键词硅杂环戊二烯衍生物聚集诱导发光分子内旋转受限

前言

硅杂环戊二烯(silole)又称硅咯、噻咯,是一种含硅的五元环,是环戊二烯的一种硅类似物。与其他五元环相比,由于硅原子与相邻的丁二烯存在σ*-π*共轭作用,使得五元环的最低空轨道(LUMO)能量低于常见的五元芳香环,如吡咯、呋喃、噻吩等,赋予了该类化合物高的电子接受能力和电子传输性能,使它们在光电材料等领域具有广泛的应用前景。自从Braye 和Hübel 在1959 年合成第一个硅杂环戊二烯化合物,1,1,2,3,4,5-六苯基硅杂环戊二烯开始[1,2],研究者们围绕该类化合物的合成、反应活性、性质等方面展开了广泛的研究。

2001 年唐本忠等[3]发现此类化合物在溶液状态下不发光,而在固体状态或聚集成纳米颗粒时呈现很强的发光状态,与大多数有机发光材料的发光现象正好相反,为此他们将这一现象命名为聚集诱导现象(Aggregation-induced emission, AIE)。AIE 现象的发现极大地推动了此类化合物的发展,不仅包括合成及修饰研究,针对它们的应用研究也得到了拓展。研究表明该类化合物不

仅可以作为光电材料,还可以在生物、化学传感器领域得到广泛的应用。同时,基于此类化合物提出了AIE现象的主要机理分子内旋转受限(restriction of intramolecular rotations, RIR )。

对硅杂环戊二烯衍生物的研究,已有一些综述报道,本文在总结前人的基础上,进一步整理了基于此类化合物AIE现象的发现及RIR机理的提出。

聚集诱导发光现象的发现

传统荧光生色团多为具有大π共轭体系的刚性平面分子,在稀溶液中有很高的荧光量子产率,但在聚集状态下荧光减弱甚至不发光,即聚集导致荧光猝灭(aggregation-caused quenching, ACQ)。荧光素就是一个典型的具有ACQ性质的荧光生色团[4]。该分子溶于水,但是不溶于大部分有机溶剂,它的水溶液发射很明亮的绿光(如图1)[5]。当往其水溶液中逐渐加入不良溶剂(比如丙酮)的时候,此绿光会越来越弱直到不发光。由于荧光素分子与丙酮的相容性较差,当丙酮的含量相对较低时(f a≤ 60%),水/丙酮的混合溶剂必将提高局部荧光分子浓度,此时浓度猝灭(CQ)效应使荧光减弱。随着f a进一步增加,混合溶剂的溶解能力变差,荧光素分子聚集形成纳米颗粒;纳米颗粒的形成是绿色荧光完全猝灭掉。造成这种现象的主要原因是分子间的相互作用导致了非辐射能量转换或形成了不利于荧光发射的激基缔合物。

ACQ效应对实际应用也是非常有害的。例如,在生物检测和化学传感器方面[6],即使将一些极性基团引入到生色团中来增加其亲水性,但还是不能避免生色团在水性介质中聚集,因为其主体部分还是具有疏水作用的芳香基团。再则,ACQ效应是制备高效光电器件的一大巨大障碍[7]。因为在光电器件中,有机发光材料将被制备薄膜。因此,许许多多的科研工作者做了大量的工作去

抑制生色团聚集,克服ACQ效应,其中包括:化学结构设计、物理方法、工程工艺等办法[8-12]。比如,将体积较大的基团接到生色团中,或者将发光材料掺杂到透明的聚合物中。这些方法最终都会得到一个尴尬的结果:旧问题被得到部分解决的同时将伴随着新的问题产生。若使用上述办法,聚集只会临时被部分抑制。因为当许多分子靠近时,聚集是一个自然发生的过程。

图1荧光素在不同丙酮含量的水/丙酮混合溶剂中的发光行为2001年[3],Tang课题组发现了一个异常的现象:当将一滴硅杂环戊二烯衍生物1的溶液滴在薄层色谱(TLC)板上时,若立即用紫外(UV)灯照射,不会观察到光发射;但是如果待这滴溶液的溶剂挥发干之后,再用UV灯照射,就会看到明亮的光发射,如同被点亮一般。为了更加严谨合理地揭示这一奇特现象,该课题组分别利用光致发光(PL)光谱和量子产率(QY)来研究分子1的发光行为。分子1溶于乙醇溶剂,而不溶于水。如果大量水加入分子1的乙醇溶液中时,则分子1肯定会产生聚集。由如图3(A)可以看出,分子1在纯乙醇溶液状态下的PL光谱信号很弱;而当分子聚集(纳米颗粒或薄膜状态)后,其同等测试条件下PL光谱信号明显增强。换句话说,噻咯衍生物1在溶液下不发光,而在聚集状态或固态下发光明显大大增强。为了定量说明,分别测得分子在单分子溶液状态和聚集纳米颗粒状态下的相对光致量子产率,如图3(B)。分子1在单分子纯

溶液下的量子产率为0.63×10-3。当f w≤ 50%时,量子产率几乎没有变化;随着不良溶剂水的继续加入,量子产率突然增加,最后达到0.21(f w= 90%),是溶液下的333倍。因为发光是被聚集态诱导的,故该课题组将此现象定义为“聚集诱导发光(aggregation-induced emission, AIE)”。

AIE效应完全相反于ACQ效应。基于此,在实际应用当中,我们完全可以利用聚集过程,而不是抑制它。在早期,溶液下生色团的光物理过程得到了广泛的研究,但是对于ACQ效应其聚集状态下的发光行为研究甚少。AIE效应提供了非常有利的平台来探究聚集状态下生色团的发光行为、构效关系以及作用机理等等[13-17]。此外,对AIE效应的研究有助于设计合成高效的固态有机发光材料,一定程度上推动光电器件的发展,例如有机电致发光二极管(OLED)。从此以后,具有AIE性质的化合物从根本上克服了聚集导致荧光猝灭的难题,引起了广泛的研究兴趣。至今已开发出从蓝光到红光覆盖整个可见波长范围的体系,并利用这些化合物制备出高效的发光器件和化学生物传感器[2, 17]。自从AIE现象被发现以后,作为最早被发现的第一类AIE化合物,硅杂环戊二烯衍生物再一次引起了广泛的科研兴趣,包括基于此类衍生物AIE 现象的机理研究,以及其新的应用探究。

图2(A)分子1在纯乙醇、水/乙醇(90:10体积比)、薄膜下的PL光谱;浓度:10-5M;激发波长:381 nm。(B)分子1在不同水含量的乙醇/水混合溶剂中的量子产率。

分子内旋转受限机理的提出

独特AIE现象的提出,激起了广泛的科研兴趣。理解AIE现象产生的原理有助于加深对光物理过程的认识,对设计合成新型高效荧光材料具有重要的指导意义。因此AIE机理成为一个备受关注的研究方向,众多研究组通过实验分析和理论计算,已经提出多种可能的机理,包括:分子内旋转受限、分子内共平面、抑制光化学或光物理过程、非紧密堆积、形成聚集体以及形成特殊激基缔合物等。因为硅杂环戊二烯衍生物是最早被发现的第一类AIE化合物,在此类化合物的基础上,诸多课题组做了大量AIE现象机理的研究工作,最后研究表明分子内旋转受限(restriction of intramolecular rotations, RIR )是AIE 效应的主要机理。

2003年,Chen等[18]研究了一系列硅杂环戊二烯衍生物(如图4)的发光行为,发现这些分子同样具有典型的AIE现象,由此表明AIE现象不是分子1

所独有,是一个比较普遍的现象。这些化合物分子结构的共同点是外围芳香族取代基与噻咯中心环以可旋转的单键相连,在溶液中,这些芳香族取代基绕单键的自由旋转消耗了激发态能量,成为一个非辐射衰变渠道,导致荧光微弱;而在聚集状态下,由于空间限制,这种分子内旋转受到了很大阻碍,上述非辐射衰变渠道被抑制,激发态分子只能通过辐射衰变回到基态,从而使荧光显著增强,因此他们认为分子内旋转受限(restriction of intramolecular rotations, RIR )是AIE效应的主要机理。这一机理得到了充分的实验数据支持,现分述如下。

通过改变外部环境,如降低温度、增大黏度和施加压力,可以使分子内旋转不容易进行。如果在这样的条件下分子表现出荧光增强,则可证明分子内旋转受限的确是导致荧光增强的原因。

该工作[18]研究了温度对HPS溶液荧光的影响,发现HPS的THF溶液在温度降低时荧光强度增加(见图5a)。温度降低导致分子热运动能量降低,分子内旋转越来越困难。采用动态NMR证实了这一趋势。在二氯甲烷溶液中,HPS 分子自由的内旋转引起分子构象快速变化,在NMR谱图上表现为尖锐的信号

峰。随着温度的下降,分子内旋转自由度降低,构象变化越来越缓慢,信号峰逐渐变宽(如图5b)。当温度进一步下降,分子热运动的能量不足以克服分子内旋转势垒,分子内旋转被冻结,荧光强度急剧上升。

图3(a) HPS的THF溶液在不同温度下的荧光强度;(b) HPS在不同温度下的1H NMR谱图(CD2Cl2作为溶剂)

他们还研究了黏度对HPS溶液荧光的影响。以甲醇与高黏度的甘油组成混合溶剂,测量了HPS在不同黏度溶剂中的荧光光谱,发现甘油含量为0-50%时,荧光强度随甘油含量在半对数坐标中呈线性上升(见图6a)。在甘油含量小于50%时,甲醇/甘油混合溶剂中的HPS仍处于溶解状态,荧光的增强主要是由于黏度增加阻碍了单个分子的内旋转引起的,而当甘油含量进一步增加时,混合溶剂的溶解性变差,HPS在溶液中发生聚集,荧光强度的上升更为迅速。

图4 HPS的荧光强度随(a)甲醇/甘油混合溶剂的组成及(b)外加压力的变化Fan等[19]测量了HPS薄膜在不同外加压力下的荧光光谱,发现当压力小于104 atm时,随着压力的增大,荧光强度很快升高;当压力继续增大时,荧光强度开始缓慢下降,但是在压力达到600 atm时,荧光强度仍高于未受压时的强度(见图6b)。增大压力使邻近分子之间的距离减小,对HPS的发光起到两个相反的作用。一方面减小分子的自由体积,进一步限制了分子内运动,是荧光增强;另一方面增大了分子之间相互作用,使激基缔合物更容易形成,导致了荧光减弱。这就解释了HPS薄膜的荧光随着压力增大先增强后减弱的现象。作为对照,Alq3分子没有内旋转,在1-600 atm的压力范围内,Alq3薄膜的荧光强度随着压力增大呈单调下降。

时间分辨荧光技术可以获得相关分子运动的动态信息。Ren等[20,21]用时间分辨荧光光谱研究了HPS的荧光衰减动力学,结果如表1所示。在HPS的DMF溶液中加入水,不仅能提高荧光强度,也能使荧光寿命发生很大改变。在纯DMF中,HPS的荧光衰减符合单指数模式,荧光寿命非常短,仅为40 ps,即所有激发态分子都经由同一非辐射衰变渠道快速松弛。在DMF中加入水后,HPS的荧光衰减由单指数模式变为双指数模式,即激发态分子的松弛经由快

和慢两条不同的渠道。随着水含量的增加,快松弛的比例(A1)降低,慢松弛的比例(A2)增加。当水含量达到70%时,快松弛和慢松弛所占比例各为50%,两者的寿命分别为0.82 ns和4.98 ns;当水的含量达到90%时,慢松弛成为主要衰变渠道,其寿命达7.16 ns。采用上述降低温度和增大溶剂黏度的方法增加分子内旋转受限的程度,也得到了荧光寿命延长,慢松弛比例增加的结果。以上实验事实都是分子内旋转受限(RIR)机理的有力证据。

Li等[22]合成了在HPS的3,4位上分别取代了两个异丙基的化合物5。在丙酮溶液中5的荧光强度很高,量子产率达到83%,而HPS在丙酮溶液中的荧光量子产率仅为0.1%。5的分子结构更为拥挤,空间位阻更大。2,3,4,5位的苯环旋转非常困难,连有异丙基取代基的苯环旋转位垒甚至超过50 kal/mol,因而在溶解状态下苯环也不能自由旋转,表现出强的荧光。一般而言,刚性大的分子通常比结构类似,刚性小的分子发光更强,5中苯环的旋转受限使分子的刚性增大,导致5的荧光要强于HPS。

表1 HPS在DMF/H2O不同比例的混合溶剂中,不同粘度的溶剂中和不同温度下的荧光衰减动力学参数

基于分子HPS,Shuai课题组[23]的理论计算结果从另一个角度证实了RIR 机理的可靠性。他们通过结合量子力学和分子力学(QM / MM)模型,利用力场和静电相互作用建模,研究了HPS在单分子状态和固态下光物理性质。利用结合位移谐振子近似和第一性原理计算,在考虑Duschinsky旋动效应(DRE)的情况下),计算得到了固相HPS的吸收和发射光谱以及量子产率,与实验结果出奇的一致。研究结果发现,从气相到固相,5-位的侧苯基环与中心的噻咯环变得共平面,这增加了一定程度共轭,从而加速辐射衰变过程;2-位侧苯基环旋转受到限制,阻碍了激发态的无辐射衰变通道。这样的协同作用在很大程度上提高了固体发光量子效率。此研究成果更加直观,更加深入地证实了RIR机理的合理性。在理解RIR机理的基础上,人们已经设计合成了种类繁多的新AIE体系。

图5 (b) QM / MM模型图;(b) HPS晶体堆积图。

表2 HPS分子分别在气态和固态情况下基态和激发态的部分结构参数,其中键长单位为?,键角和二面角单位为度。

结论与展望

本文基于硅杂环戊二烯衍生物简要综述了聚集诱导发光现象的发现及其分子内旋转受限机理的提出。聚集诱导发光现象的发现更新了我们对光物理发

展进程中聚集效应影响的认识:聚集行为对物质的荧光不一定是负面因素。硅杂环戊二烯衍生物的聚集状态表现出强烈的发光,故聚集诱导发光现象的发现势必推动其在电致发光器件领域的发展,同时开拓该类化合物在化学、生物传感器等方面的应用[24,25]。

参考文献

[1] Braye, E. H.; Hübel, W. Chem. Ind. (London) 1959, 1250.

[2] Braye, E. H.; Hübel, W.; Caplier, I. J. Am. Chem. Soc. 1961, 83, 4406.

[3] Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun.2001, 1740.

[4] Thompson, R. B. Fluorescence Sensors and Biosensors , CRC , Boca Raton 2006

[5] Mei, J.; Hong, Y,; Lam, J. W. Y.; Qin, A,; Tang, Y.; Tang, B. Z. Adv. Mater.2014, 26, 5429

[6] Jares-Erijman, E. A.; Jovin, T. M.; Nat. Biotechnol.2003, 21, 1387.

[7] Tang, C. W.; Vanslyke, S. A. Appl. Phys. Lett.1987, 51, 913.

[8] Wang, J.; Zhao, Y.; Dou, Y. C.; Sun, H.; Xu, P.; Ye, K.; Zhang, J.; Jiang, S.; Li, F.; Wang, Y. J. Phys. Chem. B, 2007, 111, 5082.

[9] Hecht, S.; Frechet, J. M. J. Angew. Chem., Int. Ed.,2001, 40, 74.

[10] Nguyen, B. T.; Gautrot, J. E. C.; Brunner, Ji, P.-L.; Nguyen, M. T.; Zhu, X. X.; Langmuir, 2006, 22, 4799.

[11] Chen, L.; McBranch, S. Xu, D.; Whitten, D. J. Am. Chem. Soc.,2000, 122, 9302.

[12] Taylor, P. N.; Connell, M. J. O.; McNeill, L. A. M.; Hall, J. R.; Aplin, T.; Anderson, H. L. Angew. Chem., Int. Ed.,2000, 39, 3456.

[13] Chen, J. W.; Xu, B.; Ouyang, X. Y.; Tang, B. Z.; Cao, Y. J. Phys. Chem. A,2004, 108, 7522.

[14] Tong, H.; Hong, Y.; Dong, Y.; Ren, Y.; Haeussler, M.; Lam, J. W. Y.; Wong, K. S.; Tang,

B. Z. J. Phys. Chem. B, 2007, 111, 2000.

[15] Zeng, Q.; Li, Z.; Dong, Y.; Di, C.; Qin, A.; Hong, Y.; Ji, L.; Zhu, Z.; Jim, C. K. W.; Yu,

G.; Li, Q.; Li, Z.; Liu, Y.; Qin, J.; Tang, B. Z. Chem. Commun.,2007, 70.

[17] Hong, Y.; Lama, J. W. Y.; Tang, B. Z. Chem. Soc. Rev., 2011, 40, 5361–5388.

[18] Chen, J.W.; Law, C. C. W.; Lam, J. W. Y.; Dong, Y. P.; Lo, S. M. F.; Williams, I.D.; Zhu,

D. B.; Tang, B. Z. Chem. Mater.2003, 15, 1535.

[19] Fan, X.; Sun, J. L.; Wang, F. Z.; Tang, B. Z.; et al. Chem. Commun.,2008, 2989.

[20] Ren, Y.; Dong, Y. Q.; Tang, B. Z.; et al. Chem. Phys. Lett.,2005, 402, 468.

[21] Ren, Y.; Dong, Y. Q.; Tang, B. Z.; et al. J. Phys. Chem. B,2005, 109, 1135.

[22] Li, Z.; Dong, Y. Q.; Mi, B. X.; Tang, Y. H.; Tang, B. Z.; et al. J. Phys. Chem. B,2005, 109, 10061.

[23] Zhang, T.; Jiang, Y.; Niu, Y.; Wang, D.; Peng, Q.; Shuai, Z.; J. Phys. Chem. A2014, 118, 9094.

[24]Wang, M.; Zhang, D. Q.; Zhang, G. X.; Zhu, D. B. Chem.Phys. Lett.2009, 475, 64.

[25] Yu, D. F.; Zhang, Q.; Wang, Y. L. J. Phys. Chem. B2010, 114, 8934.

范德堡测试方法与变温霍尔效应

范德堡测试方法与变温霍尔效应 摘要:本实验采用范德堡测试方法,测量样品霍耳系数及电导率随温度的变化,可以确定一些主要特性参数——禁带宽度,杂质电离能,电导率,载流子浓度,材料的纯度及迁移率,从而进一步探讨导电类型,导电机理及散射机制。 关键词:霍尔效应、范德堡测试法、霍尔系数、电导率 引言:对通电导体或半导体施加一与电流方向相垂直的磁场,则在垂直于电流和磁场方向上有一横向电位差出现,此即为霍耳效应。利用霍尔效应测量霍耳系数及电导率是分析半导体纯度以及杂质种类的一种有力手段,也可用于研究半导体材料电输运特征,是半导体材料研制工作中必不可少的一种常备测试方法。 一、原理部分: (一)、半导体内的载流子 根据半导体导电理论,半导体内载流子的产生有两种不同的机制:本征激发和杂质电离。 1、本征激发 在一定的温度下,由于原子的热运动,价键中的电子获得足够的能量,摆脱共价键的束缚,成为可以自由运动的电子。这时在原来的共价键上就留下了一个电子空位,邻键上的电子随时可以跳过来填充这个空位,从而使空位转移到邻键上去,因此空位也是可以移动的。 这种可以自由移动的空位被称为空穴。半导体不 仅靠自由电子导电,而且也靠这种空穴导电。半 导体有两种载流子,即电子和空穴。 从能带来看,构成共价键的电子也就是填充 价带的电子,电子摆脱共价键而形成一对电子和 空穴的过程,就是一个电子从价带到导带的量子 跃迁过程,如图1 所示。 纯净的半导体中费米能级位置和载流子浓 度只是由材料本身的本征性质决定的,这种半导 体称本征半导体。本征半导体中,在电子—空穴 对的产生过程中,每产生一个电子,同时也产生 一个空穴,所以,电子和空穴浓度保持相等, n表示,称为本征载流图1 本征激发示意图 这个共同的浓度用 i 子浓度。这种由半导体本身提供,不受外来掺杂影响的载流子产生过程通常叫做本征激发。 2.、杂质电离 绝大部分的重要半导体材料都含有一定量的浅杂质,它们在常温下的导电性能,主要由浅杂质决定。浅杂质分为两种类型,一种是能够接收价带中激发的电子变为负离子,称为受主杂质。由受主杂质电离提供空穴导电的半导体叫做P 型半导体如图2(a)所示。还有一种可以向半导体提供一个自由电子而本身成为正离子,称为施主杂质。这种由施主杂质电离提供电子导电的半导体叫做n 型半导体,如图2(b)所示。

霍尔效应实验报告

霍耳效应实验报告 学号:200702050940 实验人:张学林 同组人: 杨天海 实验目的: 1、 观察霍耳效应; 2、 了解应用霍耳效应进行简单的相关测量的方法 实验内容: 1、确定样品导电类型; 2、测算霍耳系数、载流子浓度、霍耳灵敏度; 3、测算长螺线管轴线上的磁场分布。 实验原理: 一、关于霍耳效应 如图一所示。当电流通过一块导体或半导体制 成的薄片时,载流子会发生漂移。 而将这种通有电流的薄片置于磁场中,并使薄 片平面垂直于磁场方向。根据图一中的电流方向,并结合右手定则,我们可以看到:(1)无论导体中的载流子带正电荷还是负电荷,其受力均为F m 方向;(2)载流子均会沿X 轴方向运动,并最终靠在A 端。于是:(1)当载流子为正电荷时薄板A 端带正电荷,导致板A 端电势高于B 端;(2)当载流子为负电荷时薄板A 端带负电荷,导致板B 端电势高于A 端。 这就是霍耳效应。 二、关于霍耳效应性质的研究 如图一,关于霍耳效应的相关参量已如图所 示。 其中载流子所受的磁场力 m F qvB = (1) 载流子所受的电场力 e F qE = (2) 当其所受磁场力与电场力受力平衡时: (a B (b z y x (图一)

有关系, e m F F = (3) 且有, H H U E a vBa == (4) 我们又知道,(I v n nqab = 为载流子浓度) (5) 于是,由(1)~(3)可知 H IB E nqab = (6) 再结合(4)式可得 1 ()H IB U IB nqb nqb = = (7) 令 1 H R nq = (8) 为霍耳系数,并代入(7)式可得 H H B U R I b = (9) 那么,霍耳系数又可表示为 H H U b R IB = (10) 即, 1 H H U b R IB nq = = (11) 三、关于霍耳效应的应用 1、利用霍耳效应确定导体的类型 由(11)式可得,导体横向电势差与导体中载流子类型有关:当H U 为正时载流子为电子,导体为P 型半导体;反之,载流子为空穴,导体为N 型半导体。 2、利用霍耳效应计算霍耳系数 根据(9)式,可以固定B 、b ,改变I 得到U H ,多测几组U —I 值。然后根据几组U —I 值在直角坐标系中描 点,可根据拟合出来的直线的斜率求出霍耳系数。 3、 霍耳灵敏度的计算 若将(7)式中的括号以内的项定义为霍耳灵敏度,即令1 n H K R b nqb ==。于是,(二、2)中的霍耳系数计算出来,霍耳灵敏度也就计算出来了。 4、利用霍耳效应计算载流子浓度 由(7)、(11)式可得1H n R q = 。

霍尔效应实验

霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普斯金大学研究生霍尔于1879年发现的,后被称为霍尔效应。随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。若能测量霍尔系数和电导率随温度变化的关系,还可以求出半导体材料的杂质电离能和材料的禁带宽度。如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广阔的应用前景。了解这一富有实用性的实验,对日后的工作将有益处。 一、实验目的 1.了解霍尔效应实验原理以及有关霍尔元件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量并绘制试样的V H -I S 和V H -I M 曲线。 3.确定试样的导电类型、载流子浓度以及迁移率。 二、实验原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。对于图(1)(a )所示的N 型半导体试样,若在X 方向的电极D 、E 上通以电流Is ,在Z 方向加磁场B ,试样中载流子(电子)将受洛仑兹力 (1) 其中e 为载流子(电子)电量, 为载流子在电流方向上的平均定向漂移速率,B B v e F z V

变温霍尔效应

学号:PB07203143 姓名:王一飞院(系):物理系 变温霍尔效应 【实验目的】 1、通过该实验,学习利用变温霍尔效应测量半导体薄膜的多种电学性质的方法。 2、掌握霍尔系数、霍尔迁移率和电导率的测量方法,了解它们随温度的变化规律。 3、测定样品的导电类型和载流子浓度,并计算出禁带宽度和杂质电离能等。 【实验原理】 1、半导体的能带结构和载流子浓度 本征半导体中本征载流子(电子和空穴)总是成对出现的,它们的浓度相同,本征载流 子浓度仅取决于材料的性质(如材料种类和禁带宽度)及外界的温度。 若所掺杂质的价态大于基质的价态,即施主杂质,称为 n 型半导体;若所掺杂质的价态小 于基质的价态,即受主杂质,称为 p 型半导体。 当导带中的电子和价带中的空穴相遇后,电子重新填充原子中的空位,导致相应的电子 和空穴消失,这过程叫做电子和空穴的复合。在这一过程中,电子从高能态的导带回到低能态的价带,多余的能量以热辐射的形式(无辐射复合)或光辐射的形式(辐射复合)放出。 当温度在几十K左右时,只有很少受主电离,空穴浓度P远小于受主浓度,曲线基本上为 直线,由斜率可得到受主电离能Ei。 当温度升高到杂质全电离饱和区,载流子浓度与温度无关 当在本征激发的高温区,由曲线的斜率可求出禁带宽度Eg 2、电导率和迁移率 半导体中同时有两种载流子导电时,在过渡区及本征激发区电导率可写为: [p型半导体] 设p s 为杂质全部电离产生的空穴饱和浓度,p = p s + n 则 3、霍尔效应及其测量 如右图,霍尔系数 在考虑霍尔效用时,由于载流子沿y方向发生偏转,

造成在x方向定向运动的速度出现统计分布。 考虑载流子迁移率μ = v /E时,应采用速度的统计平均结果vH 稳态时,y 方向的电场力与罗伦兹力相抵消,故有 对p型半导体,当温度处在较低的杂质电离区时 在温度逐渐升高的过程中,电子由价带激发到导带的过程加剧,出现两种载流子导电机制。 温度进一步升高,更多的电子从价带激发到导带,使,故有。随后R H 将会 达到其极值R HM 。 3、范得堡法测量电阻率和霍耳效应 原理图如右图,在样品侧边制作四个电极,依次在一对相邻 的电极用来通入电流,另一对电极之间测量电位差。 电阻率 由于两霍尔电极位置不对称引起的,叫失排电压。 设B、D电极之间电压Vo,在 B、C电极间电压Vm,在理想范德堡样品中。电流线分布在磁场前后是不变的,因而加磁场后等位面的改变使B、D间电压改变(Vm-Vo)完全是由于霍尔效应引起的, 即电压改变量就是霍尔电压V H 。 4、霍尔效应测量中的副效应及其消除方法 在测量霍耳系数时,由于存在一系列电磁和热磁副效应,使得数字电压表测出的电位差V AB 并不 等于样品的霍耳电位差V H ,而是包括了由各种副效应引起的附加电位差与V H 之和。这些副效应主要 有以下几种。 ①由于电极A与B不能真正制作在同一等位面上,所以即使在没有加磁场B的情况下,A、B间也有一个电位差,其正负与电流I的方向有关。 ②由于载流子漂移速度有一定的分布范围,当它们在磁场作用下发生偏转时,速度快的高能粒子最早在y方向形成积累,于是在y方向两霍尔电极之间出现温度差,产生温差电压V E 。这就叫艾廷豪 森效应。不难看出,VE的极性总是与V H 一致,与B和I方向有关。 ③在沿x方向给样品加电流时,两个端电极与样品的接触电阻不同,产生的焦耳热不同,将造成沿电流方向的温差,有温度梯度就会有载流子的热扩散流。在横向磁场作用下,同样也要发生偏转,积累,产生附加的霍尔电压VN。这种效应叫能斯脱效应。VN的极性只随磁场方向改变。 ④上述热扩散速度也有个分布,从艾廷豪森效应的分析不难看出,热扩散的载流子在横向磁场作 用下向y方向积累的结果使霍尔电极间有温差电压VR。这叫里纪—勒杜克效应。V R 的极性只随磁场方向改变。

2016苏教版平移旋转轴对称知识点总结

2016苏教版平移、旋转、轴对称知识点总结 平移 1、物体在同一平面上沿直线运动,这种现象叫做平移。 注意:平移只是沿水平方向左右移动(×) 平移不仅仅局限于左右运动。 2、平移二要素:(1)平移方向;(2)平移距离。 将一个图形平移时,要先确定方向,再确定平移的距离,缺一不可。 3、平移的特征:物体或图形平移后,他们的形状、大小、方向都不改变,只是位置发生改变。 4、在方格纸上平移图形的方法: (1)找出图形的关键点; (2)以关键点为参照点,按指定方向数出平移的格数,描出平移后的点; (3)把各点按原图顺序连接,就得到平移后的图形。 注意:用箭头标明平移方向(→) 旋转 1、旋转:物体绕某一点或轴的转动。 2、旋转方向:与时针运动方向相同的是顺时针方向; 与时针运动方向相反的是逆时针方向; 3、旋转三要素:旋转点(旋转中心)、旋转方向、旋转角度。

4、图形旋转的特征:图形旋转后,形状、大小都没发生变化,只是位置和方向 变了。 5、图形旋转的性质:图形绕某一点旋转一定的角度,图形中的对应点、对应线 段都旋转相同的角度,对应点到旋转点的距离相等。 6、旋转的叙述方法:物体是绕哪个点向什么方向旋转了多少度。 7、简单图形旋转90°的画法: (1)找出原图形的关键线段或关键点,借助三角板作关键线段的垂线,或者作关键点与旋转点所在线段的垂线; (2)从旋转点开始,在所作的垂线上量出与原线段相等的长度取点,即所找的点是原图形关键点的对应点; (3)参照原图形顺次连接所画的对应点。 关键线段:水平的、竖直的、过旋转点的线段。 轴对称图形 1、将图形沿着一条直线对折,如果直线两侧的部分能够完全重合,这样的图形叫做轴对称图形。折痕所在的直线叫做对称轴。 注意:对称轴是直线,既不是线段,也不是射线,画时不用实线,用虚线(虚线、尺子、露头) 2、轴对称图形性质:对称点到对称轴的距离相等。 3、对称点:轴对称图形沿对称轴对折后,互相重合的点叫做对称点。 4、在方格纸上补全轴对称图形关键: 找出所给图形的关键点的对称点,要按照顺序将对称点连接起来。 5、不同的轴对称图形,对称轴的数量也不同,轴对称图形至少有一条对称轴。

霍尔效应的应用实验报告

一、 目的: 1.霍尔效应原理及霍尔元件有关参数的含义和作用 2.测绘霍尔元件的V H —Is ,V H —I M 曲线,了解霍尔电势差V H 与霍尔元件工作电流Is ,磁场应强度B 及励磁电流IM 之间的关系。 3.学习利用霍尔效应测量磁感应强度B 及磁场分布。 4.学习用“对称交换测量法”消除负效应产生的系统误差。 二、 器材: 1、实验仪: (1)电磁铁。 (2)样品和样品架。 (3)Is 和I M 换向开关及V H 、V ó 切换开关。 2、测试仪: (1)两组恒流源。 (2)直流数字电压表。 三、 原理: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图15-1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样 A-A / 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)() (N 0)(型型?>?

对称、平移、旋转知识点

对称、平移、旋转知识点标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

轴对称图形 1、将图形沿着一条直线对折,如果直线两侧的部分能够完全重合,这样的图形叫做轴对称图形。折痕所在的直线叫做对称轴。 注意:对称轴是直线,既不是线段,也不是射线,画时不用实线,用虚线(虚线、尺子、露头) 2、轴对称图形性质:对称点到对称轴的距离相等。 3、对称点:轴对称图形沿对称轴对折后,互相重合的点叫做对称点。 4、在方格纸上补全轴对称图形关键: 找出所给图形的关键点的对称点,要按照顺序将对称点连接起来。 5、不同的轴对称图形,对称轴的数量也不同,轴对称图形至少有一条对称轴。 平移 1、物体在同一平面上沿直线运动,这种现象叫做平移。 注意:平移只是沿水平方向左右移动(×) 平移不仅仅局限于左右运动。 2、平移二要素:(1)平移方向;(2)平移距离。 将一个图形平移时,要先确定方向,再确定平移的距离,缺一不可。 3、平移的特征:物体或图形平移后,他们的形状、大小、方向都不改变,只是位置发生改变。 4、在方格纸上平移图形的方法: (1)找出图形的关键点; (2)以关键点为参照点,按指定方向数出平移的格数,描出平移后的点;(3)把各点按原图顺序连接,就得到平移后的图形。 注意:用箭头标明平移方向(→)

旋转 1、旋转:物体绕某一点或轴的转动。 2、旋转方向:与时针运动方向相同的是顺时针方向; 与时针运动方向相反的是逆时针方向; 3、旋转三要素:旋转点(旋转中心)、旋转方向、旋转角度。 4、图形旋转的特征:图形旋转后,形状、大小都没发生变化,只是位置和方向 变了。 5、图形旋转的性质:图形绕某一点旋转一定的角度,图形中的对应点、对应线 段都旋转相同的角度,对应点到旋转点的距离相等。 6、旋转的叙述方法:物体是绕哪个点向什么方向旋转了多少度。 7、简单图形旋转90°的画法: (1)找出原图形的关键线段或关键点,借助三角板作关键线段的垂线,或者作关键点与旋转点所在线段的垂线; (2)从旋转点开始,在所作的垂线上量出与原线段相等的长度取点,即所找的点是原图形关键点的对应点; (3)参照原图形顺次连接所画的对应点。 关键线段:水平的、竖直的、过旋转点的线段。

低温实验讲义_霍尔效应测量汇编

实验8—1变温霍尔效应 引言 1879年,霍尔(E.H.Hall)在研究通有电流的导体在磁场中受力的情况时,发现在垂直于磁场和电流的方向上产生了电动势,这个电磁效应称为“霍尔效应”。在半导体材料中,霍尔效应比在金属中大几个数量级,引起人们对它的深入研究。霍尔效应的研究在半导体理论的发展中起了重要的推动作用。直到现在,霍尔效应的测量仍是研究半导体性质的重要实验方法。 利用霍尔效应,可以确定半导体的导电类型和载流子浓度,利用霍尔系数和电导率的联合测量,可以用来研究半导体的导电机构(本征导电和杂质导电)和散射机构(晶格散射和杂质散射),进一步确定半导体的迁移率、禁带宽度、杂质电离能等基本参数。测量霍尔系数随温度的变化,可以确定半导体的禁带宽度、杂质电离能及迁移率的温度特性。 根据霍尔效应原理制成的霍尔器件,可用于磁场和功率测量,也可制成开关元件,在自动控制和信息处理等方面有着广泛的应用。 实验目的 1.了解半导体中霍尔效应的产生原理,霍尔系数表达式的推导及其副效应的产生和消除。 2.掌握霍尔系数和电导率的测量方法。通过测量数据处理判别样品的导电类型,计算室温 下所测半导体材料的霍尔系数、电导率、载流子浓度和霍尔迁移率。 3.掌握动态法测量霍尔系数(R H)及电导率(σ)随温度的变化,作出R H~1/T,σ~1/T曲 线,了解霍尔系数和电导率与温度的关系。 4.了解霍尔器件的应用,理解半导体的导电机制。 实验原理 1.半导体内的载流子 根据半导体导电理论,半导体内载流子的产生有两种不同的机构:本征激发和杂质电离。 (1)本征激发 半导体材料内共价键上的电子有可能受热激发后跃迁到导带上成为可迁移的电子,在原共价键上却留下一个电子缺位—空穴,这个空穴很容易受到邻键上的电子跳过来填补而转移到邻键上。因此,半导体内存在参与导电的两种载流子:电子和空穴。这种不受外来杂质的影响由半导体本身靠热激发产生电子—空穴的过程,称为本征激发。显然,导带上每产生一个电子,价带上必然留下一个空穴。因此,由本征激发的电子浓度n和空穴浓度p应相等,并统称为本征浓度n i,由经典的玻尔兹曼统计可得 n i=n=p=(N c N v)1/2exp(-E g/2k B T)=K’T3/2 exp(-E g/2k B T) 式中N c,N v分别为导带、价带有效状态密度,K’为常数,T为温度,E g为禁带宽度,k B为玻尔兹曼常数。 (2)杂质电离 在纯净的第IV族元素半导体材料中,掺入微量III或V族元素杂质,称为半导体掺杂。掺杂后的半导体在室温下的导电性能主要由浅杂质决定。 如果在硅材料中掺入微量III族元素(如硼或铝等),这些第III族原子在晶体中取代部

霍尔效应实验报告98010

霍尔效应与应用设计 摘要:随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。本文主要通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,称为霍尔效应。 如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。 【实验目的】 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数、电导率、迁移率等参数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 4. 学习利用霍尔效应测量磁感应强度B 及磁场分布。 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。如图1所示。当载流子所受的横电场力与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有 B e eE H v = 其中E H 称为霍尔电场,v 是载流子在电流方向上的平均漂移速度。设试样的宽度为b , ? a

厚度为d ,载流子浓度为n ,则 bd ne t lbde n t q I S v =??=??= d B I R d B I ne b E V S H S H H =?= ?=1 比例系数R H =1/ne 称为霍尔系数。 1. 由R H 的符号(或霍尔电压的正负)判断样品的导电类型。 2. 由R H 求载流子浓度n ,即 e R n H ?= 1 (4) 3. 结合电导率的测量,求载流子的迁移率μ。 电导率σ与载流子浓度n 以及迁移率μ之间有如下关系 μσne = (5) 即σμ?=H R ,测出σ值即可求μ。 电导率σ可以通过在零磁场下,测量B 、C 电极间的电位差为V BC ,由下式求得σ。 S L V I BC BC s ?= σ(6) 二、实验中的副效应及其消除方法: 在产生霍尔效应的同时,因伴随着多种副效应,以致实验测得的霍尔电极A 、A′之间的电压为V H 与各副效应电压的叠加值,因此必须设法消除。 (1)不等势电压降V 0 如图2所示,由于测量霍尔电压的A 、A′两电极不可能绝对对称地焊在霍尔片的两侧,位置不在一个理想的等势面上,Vo 可以通过改变Is 的方向予以消除。 (2)爱廷豪森效应—热电效应引起的附加电压V E 构成电流的载流子速度不同,又因速度大的载流子的能量大,所以速度大的粒子聚集的一侧温度高于另一侧。电极和半导体之间形成温差电偶,这一温差产生温差电动势V E ,如果采用交流电,则由于交流变化快使得爱延好森效应来不及建立,可以减小测量误差。 (3)能斯托效应—热磁效应直接引起的附加电压V N

小学四年级数学学习:对称平移和旋转知识点_知识点总结

小学四年级数学学习:对称平移和旋转知识点_知识点总结 小学数学的学习需要不断的积累和创新,最重要的就是及时进行知识点的巩固和复习,对称平移和旋转知识点就是为大家准备的,希望可以帮助到大家! 1、画图形的另一半: (1)找对称轴(2)找对应点(3)连成图形。 2、正三边形(等边三角形)有3条对称轴,正四边形(正方形)有4条对称轴,正五边形有5条对称轴,……正n变形有n条对称轴。 3、图形的平移,先画平移方向,再把关键的点平移到指定的地方,最后连接成图。(本学期学习两次平移,如从左上平移到右下,先向右平移,再向下平移。) 4、图形的旋转,先找点,再把关键的边旋转到指定的地方,(注意方向和角度)再连线。(不管是平移还是旋转,基本图形不能改变。) >>>练习题 1、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形就叫( )图形,那条直线就是( )。 2、正方形有( )条对称轴。 3、这些现象哪些是“平移”现象,哪些是“旋转”现象: (1)张叔叔在笔直的公路上开车,方向盘的运动是( )现象。 (2)升国旗时,国旗的升降运动是( )现象。 (3)妈妈用拖布擦地,是( )现象。 (4)自行车的车轮转了一圈又一圈是( )现象。 >>>参考答案 1、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形就叫( 轴对称)图形,那条直线就是( 对称轴)。 2、正方形有( 4 )条对称轴。 3、这些现象哪些是“平移”现象,哪些是“旋转”现象: (1)张叔叔在笔直的公路上开车,方向盘的运动是( 旋转)现象。 (2)升国旗时,国旗的升降运动是( 平移)现象。 (3)妈妈用拖布擦地,是( 平移)现象。 (4)自行车的车轮转了一圈又一圈是( 旋转)现象。

霍尔效应实验报告

霍尔效应与应用设计 摘要:随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。本文主要通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,称为霍尔效应。 如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。 【实验目的】 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数、电导率、迁移率等参数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 4. 学习利用霍尔效应测量磁感应强度B 及磁场分布。 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。如图1所示。当载流子所受的横电场力与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有 B e eE H v 其中E H 称为霍尔电场,v 是载流子在电流方向上的平均漂移速度。设试样的宽度为b ,厚度为d ,载流子浓度为n ,则 图1. 霍尔效应原理示意图,a )为N 型(电子) b )为P 型(孔穴) f e f m v -e E H A / A B C I S V mA B a +e E H f e f m v I S B b l d b

变温霍尔效应.

变温霍尔效应 如果在电流的垂直方向加以磁场,则在同电流和磁场都垂直的方向上,将建立起一个电场,这种现象称为霍耳效应。霍尔效应是1879年霍耳在研究导体在磁场中受力的性质时发现的,对分析和研究半导体材料的电输运性质具有十分重要的意义。目前,霍耳效应不仅用来确定半导体材料的性质,利用霍耳效应制备的霍耳器件在科学研究、工业生产上都有着广泛的应用。 通过变温霍尔效应测量可以确定材料的导电类型、载流子浓度与温度的关系、霍耳迁移率和电导迁移率与温度的关系、材料的禁带宽度、施主或受主杂质以及复合中心的电离能等。 一 实验目的 1.了解和学习低温实验中的低温温度控制和温度测量的基本原理与方法; 2.掌握利用霍尔效应测量材料的电输运性质的原理和实验方法; 3.验证P型导电到N 型导电的转变。 二 实验原理 1. 半导体的能带结构和载流子浓度 没有人工掺杂的半导体称为本征半导体,本征半导体中的原子按照晶格有规则的排列,产生周期性势场。在这一周期势场的作用下,电子的能级展宽成准连续的能带。束缚在原子周围化学键上的电子能量较低,它们所形成的能级构成价带;脱离原子束缚后在晶体中自由运动的电子能量较高,构成导带,导带和价带之间存在的能带隙称为禁带。当绝对温度为0 k时,电子全被束缚在原子上,导带能级上没有电子,而价带中的能级全被电子填满(所以价带也称为满带);随着温度升高,部分电子由于热运动脱离原子束缚,成为具有导带能量的电子,它在半导体中可以自由运动,产生导电性能,这就是电子导电;而电子脱离原子束缚后,在原来所在的原子上留下一个带正电荷的电子的缺位,通常称为空穴,它所占据的能级就是原来电子在价带中所占据的能级。因为邻近原子上的电子随时可以来填补这个缺位,使这个缺位转移到相邻原子上去,形成空穴的自由运动,产生空穴导电。半导体的导电性质就是由导带中带负电荷的电子和价带中带正电荷的空穴的运动所形成的。这两种粒子统称载流子。本征半导体中的载流子称为本征载流子,它主要是由于从外界吸收热量后,将电子从价带激发到导带,其结果是导带中增加了一个电子而在价带出现了一个空穴,这一过程成为本征激发。所以,本征载流子(电子和空穴)总是成对出现的,它们的浓度相同,本征载流子浓度仅取决于材料的性质(如材料种类和禁带宽度)及外界的温度。 为了改变半导体的性质,常常进行人工掺杂。不同的掺杂将会改变半导体中电子或空穴的浓度。若所掺杂质的价态大于基质的价态,在和基质原子键合时就会多余出电子,这种电子很容易在外界能量(热、电、光能等)的作用下脱离原子的束缚成为自由运动的电子(导带电子),所以它的能级处在禁带中靠近导带底的位置(施主能级),这种杂质称为施主杂质。施主杂质中的电子进入导带的过程称为电离过程,离化后的施主杂质形成正电中心,它所放出的电子进入导带,使导带中的电子浓度远大于价带中空穴的浓度,因此,掺施主杂质的半导体呈现电子导电的性质,称为n型半导体。施主电离过程是施主能级上的电子跃迁到导带并在导带中形成电子的过程,跃迁所需的能量就是施主电离能;反之,若所掺杂质的价态小于基质的价态,这种杂质是受主杂质,它的能级处在禁带中靠近价带顶的位置(受主能级),受主杂质很容易被离化,离化时从价带中吸引电子,变为负电中心,使价带中出现空穴,呈空穴导电性质,这样的半导体为p型半导体。受主电离时所需的能量就是受主电离能。

大学物理实验报告霍尔效应

大学物理实验报告霍尔效应 一、实验名称:霍尔效应原理及其应用二、实验目的:1、了解霍尔效应产生原理;2、测量霍尔元件的、曲线,了解霍尔电压与霍尔元件工作电流、直螺线管的励磁电流间的关系;3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度及分布;4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。 三、仪器用具:YX-04 型霍尔效应实验仪(仪器资产编号)四、实验原理:1、霍尔效应现象及物理解释霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1 所示。半导体样品,若在x 方向通以电流,在z 方向加磁场,则在y 方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场,电场的指向取决于样品的导电类型。显然,当载流子所受的横向电场力时电荷不断聚积,电场不断加强,直到样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压)。设为霍尔电场,是载流子在电流方向上的平均漂移速度;样品的宽度为,厚度为,载流子浓度为,则有:(1-1) 因为,,又根据,则(1-2)其中称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出、以及知道和,可按下式计算:(1-3)(1-4)为霍尔元件灵敏度。 根据RH 可进一步确定以下参数。(1)由的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1 所示的和的方向(即测量中的+,+),若测得的 <0(即A′的电位低于A 的电位),则样品属N 型,反之为P 型。(2)由求载流子浓度,即。应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。(3)结合电导率的测量,求载流子的迁移率。电导率与载流子浓度以及迁移率之间有如下关系:(1-5)2、霍尔效应中的副效应及其消除方法上述推导是从理想情况出发的,实际情况要复杂得多。产生上述霍尔效应的同时还伴随产生四种副效应,使的测量产生系统误差,如图 2 所示。 (1)厄廷好森效应引起的电势差。由于电子实际上并非以同一速度v 沿y 轴负向运动,速度大的电子回转半径大,能较快地到达接点3 的侧面,从而导致3 侧面较4 侧面集中较多能量高的电子,结果3、4 侧面出现温差,产生温差电动势。 可以证明。的正负与和的方向有关。(2)能斯特效应引起的电势差。焊点1、2 间接触电阻可能不同,通电发热程度不同,故1、2 两点间温度可能不同,于是引起热扩散电流。与霍尔效应类似,该热扩散电流也会在 3、4 点间形成电势差。 若只考虑接触电阻的差异,则的方向仅与磁场的方向有关。(3)里纪-勒杜克效应产生的电势差。上述热扩散电流的载流子由于速度不同,根据厄廷好森效应同样的理由,又会在3、4 点间形成温差电动势。的正负仅与的方向有关,而与的方向无关。(4)不等电势效应引起的电势差。由于制造上的困难及材料的不均匀性,3、4 两点实际上不可能在同一等势面上,只要有电流沿x 方向流过,即使没有磁场,3、4 两点间也会出现电势差。的正负只与电流的方向有关,而与的方向无关。综上所述,在确定的磁场和电流下,实际测出的电压是霍尔

霍尔效应实验报告.doc

实验报告 姓名:学号:系别:座号: 实验题目 :通过霍尔效应测量磁场 实验目的 :通过实验测量半导体材料的霍尔系数和电导率可以判断材料的 导电类型、载流子浓度、载流子迁移率等主要参数实验内容 : 已知参数: b=4.0mm, d=0.5mm,l B 'C =3.0mm. 设 B KI M,其中K=6200GS/A; 1. 保持I M =0.450A 不变,测绘V H I S曲线 测量当 I M正(反)向时,I S正向和反向时 V H的值,如下表 调节控制电流I S/mA I S B 正向V H/mV 正 B 反向V H/mV 向 I S B 反向V H/mV 反 B 反向V H/mV 向 绝对值平均值 V H/mV 做出 V H I S曲线如下

v V m / b V 16 Linear fit of date v 14 12 10 8 6 4 2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Linear Regression for Data1_V: Y=A+B*X Parameter Value Error ----------------------------- -------------- A B Is/mA 由 origin 得 V H 3.564( ) I S 由 R V H d 108 (cm 3 / C ) 和 B KI M 得 H I S B V H d 10 8 3.564 0.05 10 8 6.39 10 3 3 / C ) R H I S KI M 6200 0.450 (cm 2. 保持 I S 不变,测绘 V H I M 曲线 = 测量当 I S 正( 反) 向时, I M 正向和反向时 V H 的值 , 如下表 调节励磁电流 I M /A I S B 正向 V H /mV 正 B 反向 V H /mV I S B 反向 V H /mV 反 B 反向 V H /mV 绝对值平均值 V H /mV 做出 V H I M 曲线如下

霍尔效应实验报告

霍尔效应与应用设计 摘要:随着半导体物理学得迅速发展,霍尔系数与电导率得测量已成为研究半导体材料得主要方法之一。本文主要通过实验测量半导体材料得霍尔系数与电导率可以判断材料得导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中得载流体,如果电流方向与磁场垂直,则在垂直于电流与磁场得方向会产生一附加得横向电场,称为霍尔效应。 如今,霍尔效应不但就是测定半导体材料电学参数得主要手段,而且随着电子技术得发展,利用该效应制成得霍尔器件,由于结构简单、频率响应宽(高达10GHz)、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制与信息处理等方面. 【实验目得】 1.通过实验掌握霍尔效应基本原理,了解霍尔元件得基本结构; 2.学会测量半导体材料得霍尔系数、电导率、迁移率等参数得实验方法与技术; 3.学会用“对称测量法"消除副效应所产生得系统误差得实验方法。 4.学习利用霍尔效应测量磁感应强度B及磁场分布. 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲就是运动得带电粒子在磁场中受洛仑兹力作用而引起得偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流与磁场得方向上产生正负电荷得聚积,从而形成附加得横向电场。如图1所示.当载流子所受得横电场力与洛仑兹力相等时,样品两侧电荷得积累就达到平衡,故有

? 其中EH 称为霍尔电场,就是载流子在电流方向上得平均漂移速度。设试样得宽度为b,厚度为d,载流子浓度为n ,则 ? ? ? 比例系数R H=1/n e称为霍尔系数. 1. 由RH 得符号(或霍尔电压得正负)判断样品得导电类型。 2. 由R H求载流子浓度n ,即 (4) 3. 结合电导率得测量,求载流子得迁移率. 电导率σ与载流子浓度n 以及迁移率之间有如下关系 (5) 即,测出值即可求。 电导率可以通过在零磁场下,测量B 、C 电极间得电位差为VBC ,由下式求得。 (6) 二、实验中得副效应及其消除方法: 在产生霍尔效应得同时,因伴随着多种副效应,以致实验测得得霍尔电极A 、A′之间得电压为V H 与各副效应电压得叠加值,因此必须设法消除。 (1)不等势电压降V 0 图1、 霍尔效应原理示意图,a)为N 型(电子) b)为P 型(孔穴)

图形的平移与旋转知识点

第三章图形的平移与旋转复习要点 专点一:图形的平移 1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移是由移动的方向和距离决定的。 2.平移的性质: (1)平移不改变图形的形状和大小:即平移前后的线段相等,平移前后的三角形或多边形全等。 (2)平移后的图形与原来图形的对应线段平行且相等,对应角相等。 (3)平移后两图形的对应点所连的线段平行且相等。 专点二:图形的旋转 ` 1.旋转的定义:在平面内,将一个图形绕着一个定点沿着某个方向(顺时针或逆时针)旋转一定的角度,这样的图形运动成为旋转,这个定点称为旋转中心,旋转的角度称为旋转角。 2.旋转的性质: (1)旋转不改变图形的形状和大小:即旋转前后的图形是一组全等形。 (2)旋转后的图形与原来的图形的对应线段相等,对应角相等。 (3)经过旋转,图形上的每一点都绕着旋转中心沿相同的方向转动了相同的角度。 (4)任意一对对应点与旋转中心的距离相等。 考点三、中心对称 ( 1、定义 把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。 2、性质 (1)关于中心对称的两个图形是全等形。 (2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。 (3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。 3、判定

^ 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。 4、中心对称图形 把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。 考点四、坐标系中对称点的特征 1、关于原点对称的点的特征:两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y) 2、关于x轴对称的点的特征:两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y) 3、关于y轴对称的点的特征:两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y) : 专点五:利用轴对称、旋转和平移作图 1.平移作图的一般步骤: (1)确定平移的方向和距离; (2)确定构成图形的关键点(线段两个端点,三角形三个顶点,n边形n 个顶点); (3)按照平移的方向和距离平移各个关键点; (4)顺次连接各个关键点的对应点,所得的图形就是平移后的图形。 2.旋转作图的一般步骤: * (1)确定旋转中心、旋转角及旋转方向; (2)确定原图形的关键点; (3)旋转个关键点,得到对应点; (4)依次连接各关键点的对应点,所得的图形就是旋转后的图形。 3.图形之间的变换关系: 在图形变换中,最常见的变换有轴对称、平移、旋转,它们都是把一个图形变成另外一个图形,并且这些变换都只是改变图形的位置,不改变图形的形状和大小。

霍尔效应(北京科技大学物理实验报告)完整版

霍尔效应 2019年10月8日一、实验目的 学习霍尔效应原理和霍尔效应实验中的副效应及其消除方法。 学习确定半导体试样的导电类型、载流子浓度以及迁移率的方法。 二、实验仪器 QS-H型霍尔效应实验组合仪,半导体(硅)样品,导线等。 三、实验原理 由于洛伦兹力的作用,电荷出现横向偏转并在样品边界处累积,产生一个横向的电场E。当载流子所受到的电场力与洛伦兹力相等时,样品两侧电荷累积达到动态平衡,此时,即 () 如果N型半导体薄片的载流子浓度为n,样品薄片宽度为b,厚度为d,则有 () 由(1)(2)可得 () 式中,称为霍尔系数,单位 若待测半导体材料只有一种载流子导电且所有载流子具有相同的漂移速度,则载流子浓度n为 () 若考虑载流子的速度统计分布,能带结构等因素,需引入的系数 载流子的迁移速率为 () 为样品的导电率 () 式中,为样品电阻率;为A、C电极间的距离(如图1所示);为样品的横截面积;为通过样品的电流;为在零磁场下A、C间的电压。

图(1) 输入输出输入 图(2) 四、实验步骤 1、线路连接,如图2所示

2、保持磁场(即励磁电流)大小不变,改变霍尔电流大小的大小,测绘霍尔电压与电流关系曲线。取,电压测量开关选择,分别改变和换向开关方向,将测量数据填入表1中。 3、保持样品电流不变()改变励磁电流的大小,测量霍尔电压与磁场的关系曲线。电压测量开关选择,分别改变和换向开关方向,将测量数据填入表2中。 4、根据以上和曲线验证在磁场不太强时霍尔电压与电流和磁场的关系。,已知。 5、根据测量电路中的电流、磁场、霍尔电压及测量数据的正负,判断导体的导电类型。 6、在零磁场()下,取,电压表开关合向测A、C间的电压,数据计入表3中。 五、数据处理

相关主题
文本预览
相关文档 最新文档