当前位置:文档之家› 垂直冷冻施工技术

垂直冷冻施工技术

垂直冷冻施工技术
垂直冷冻施工技术

3-2-8垂直冷冻施工技术

1前言

1.1冻结法概述

1.1.1冻结法

冻结法是利用人工制冷技术,在地下开挖体周围需加固的含水软弱地层中钻孔铺管,安装冷冻器,然后利用制冷压缩机提供冷气,通过低温盐水在冻结器中循环,带走地层热量,使地层中的水结冰,将天然岩土变成冻土,形成完整、密闭、高强度的临时加固体,从而达到加固地层、隔绝地下水与地下工程联系的目的。然后,在冻结体的保护下进行地下工程的开挖施工,待衬砌支护完成后,冻结地层逐步解冻,最终恢复到原始状态。

1.1.2地层冻结技术的特点

同其它土体加固方法相比,冻结法具有以下优点:

1、冻结加固使土体中的大部分水分结冰,提高了土的强度,而且强度均匀。

2、整体支护性能好,冻结帷幕形成后,冻结帷幕内不会存在任何缝隙,是一个完整的支护体;封水效果好,可保证开挖工作面在无水条件下作业。

3、能适应不同的地质条件,冻结深度不受限制,而注浆、地下连续墙等方法对地质条件的适应能力差,而且其加固深度有一定的限制。

4、适应各种结构形状地下工程的施工。冻结加固体的形状、大小,可以根据需要灵活设计。

5、环保型工法。由于冻结法是一种临时措施,所冻地层最终要恢复到原始状况,因而能够保护城市地层地质结构和地下水不受污染。

6、施工方便,简单,经济上合理。国外的工程实例表明,冻结工程成本与其它施工(如注浆和旋喷)处于相同的数量级,而且随着加固深度的加大,冻结工法的经济性越来越来明显。

基于以上优点,冻结法在城市地下工程越来越受到重视,已经被广泛应用于地基基础工程、城市地铁、隧道工程、水利工程等市政工程中。

1.2冻结法的适用条件

根据相关资料及《建井工程手册》规定,冻结法主要适用于含水量超过10%,地下水速度不大于10m/d的软弱围岩隧道预加固工程中,遇有流砂、淤泥、卵石、砂砾等含水不稳定冲击层或裂隙中含水的岩层时都可采用。

目前冻结法在城市隧道工程中主要应用于:

1.盾构法隧道施工中,盾构进出洞土体加固。盾构进出洞时,承受着工作井附近土体产生的巨大地压和水压,可能导致涌水和土体坍塌。目前常用旋喷技术和注浆法加固土体,效果不够理想,常遇到注浆不均匀和盾构刀盘切削浆液结石体等困难,而冻结技术能有效地解决这些问题。

2.盾构法隧道施工中,地下或海底对接时土体加固。近年来,世界上许多国家的盾构隧道采用对头掘进,以缩短工期,除采用立井对接方式外,还采用不开凿立井而在地下或海底直接对接。

3.城市地铁泵房、旁通道和急转弯部分根据地铁设计要求,间距1km左右需在并排隧道间设立

泵站。地下工程经常遇到旁通道和急转弯部分,因其施工距离短、形状不规整,采用盾构施工困难,且经济上不合理,各国常采用冻结法对周围土层加固,然后用矿山法掘进。

4.建筑基坑加固。基坑冻结加固具有加固体均匀,强度高,阻水性好,加固深度大等优点,因而,采用冻结技术加固基坑越来越受到重视。

5.地下工程涌水、坍塌事故的抢险修复。

6.地下隧道交叉处施工。

1.3冻结法的发展历史

人工地层冻结技术起源于天然冻结现象,在土木工程中的应用是随19世纪制冷机械设备的发展开始的。

冻结法的第一次应用是1862年在南威尔士(South Wales)的一个矿山竖井施工中,使用人工地层冻结技术加固基坑。该竖井穿越了含水地层,采用由SiebeGorman有限公司提供的乙醚制冷设备冷却盐水,盐水在埋设于地层中的冻结管路系统里循环。早期冻结法主要应用于采矿行业。1880年,德国的F.H.Poetch首先提出冻结法原理,并应用于煤矿开凿立井,1883年,F.H.Poetell在Schneidlingen 开发煤矿,采用冻结法施工深103m的立井,并以此获得德国人工地层冻结法凿井专利。此后,该技术广泛应用于各国地下工程建设中。1885年在比利时,1888年,在美国Michigan,1892年在法国,1896年在奥地利,1900年在荷兰相继应用了冻结法。在这些工程中,开始仅冻结岩石顶部以上的表层饱和含水层,以使竖井达到下部的矿床。

冻结法初期应用得最多的领域是矿山工程,随着技术的成熟,逐步引入至城市隧道工程中。1886年瑞典一个长24m的人行隧道采用冻结法施工。1906年法国把冻结法应用于横穿河底地铁工程中。前苏联在70年代前,采用冻结法构筑了70个地铁斜井隧道。同矿山垂直孔冻结法相比,水平冻结或斜孔冻结的难度更大。瑞士苏黎士Milachounck公路隧道一段断面达146m2,宽度达15m,用每冻结段长度达35m共10段构筑了总长度达350m的隧道。80年代中期维也纳一段双轨地下隧道,水平冻结长度64m,采用相向钻35m水平冻结孔的方法安全建成。德国杜塞尔道夫一个115m的隧道单向钻冻结孔的方法进行了水平冻结。日本1962年首次在大阪市应用冻结法安全建成一个过河隧道,至今大约有340多项冻结工程,主要用于隧道、地铁、污水道工程等困难和特殊条件下的各类工程,其中最大的一项工程是80年代建设的东京地铁10号线和11号线冻结工程,在日本桥川河下施工,其冻结改良土体达37000m3,水平冻结长度47m,共计水平冻结管总长度达13750m。大阪交通局在该市地铁5号线工程中,也采用了冻结法确保盾构顺利出洞;日本东京湾隧道施工期间,川崎、木更津人工岛及浮岛八个盾构出洞工程都成功使用了冻结法,该隧道已于1998顺利通车。

我国于1955年开始应用冻结法凿井技术,迄今,应用冻结法共建造立井450多个,累计冻结长度70km之多,冻结法凿井所通过的第四纪地层最厚为383.1m(山东全桥煤矿副井);穿过最厚表土层374.5m,最大冻结深度435m(河南永夏矿区陈四楼矿副井);最大成井净直径8m;冻结深度超过300m的立井有50多个,其规模仅次于原苏联。1998年在北京地铁国贸站隧道进行的45m水平冻结加固的成功标志我国水平地层冻结施工进入城市地下工程的一个新阶段;1998年上海地铁2号线5个区间联络通道中有4个采用冻结法施工;2000年广州地铁1号线纪越区间过清泉街断层采用水平冻结,隧道长距离64m冻结取得成功,之后南京、深圳等地铁旁通道也相继使用了地层冻结法。地层冻结技术已全面进入我国城市地下工程领域。

2冻结设计

2.1确定冻结类型和冻结方法

按制冷原理,冻结法采用的冻结方式一般可分为直接冻结方式(直接冻结法)和间接冻结方式(间接冻结法)两类。

直接冻结方式一般靠低温液化气直接制冷,主要采用液氮冻结技术。液氮在常压下沸点为-195.8℃,气化潜热197.6KJ/kg,其理化性质稳定,是一种良好的制冷工质,和传统盐水——氨循环制冷相比,液氮冻结具有系统简单、低温、快速、高强等特点。目前使用的液氮温度通常在-196℃,经工厂加工后用储罐车将其运送到工地,并输入预先埋设在地层中的冻结管内,液氮在气化过程中大量吸收热量,使冻结管周围的地层冻结,经气化后的氮气逸入大气层后可自由扩散,浓度迅速降低。这类冻结方式由于直接冻结速度快,往往用于局部土体冻结或工程抢险中;同时由于其所需费用相对较高,目前仅用于处理规格较小的危急工程。

间接冻结方式又称盐水常规冻结法。采用这类冻结方式地面需建冷冻站,其内设有压缩调节制冷装置和输送泵,用氨、氟利昂等制冷剂通过制冷压缩机循环压缩制冷,使低温制冷剂与作为冷媒剂的盐水溶液进行热交换,将盐水冷却到-30℃~-20℃,输送到埋设在土层中的冻结管中然后回到冷冻站,经重新冷却后再输入冻结管,形成循环流动。冷却盐水在循环不息的流动过程中产生热交换,带走冻结管周围土体的热量,直至土体冻结,达到加固和稳定土体、封闭地下水的目的使冻结管周围的土层逐渐冻结,现形成冻土圆柱体,然后连成冻土帷幕,并达到设计规定的厚度和强度。盐水冻结法的费用一般较直接冻结法便宜,常用于冻土量大、施工期较长的工程。由于成本低,形成冻结帷幕均匀易于控制,已被工程界广泛采用。

2.2冻结参数的设计

冻结参数的设计包括冻结帷幕平均温度和厚度、冻结孔布置、积极冻结期时间、盐水温度等。

2.2.1基本冻结参数

盐水温度:积极期:-28oC~-25oC;维护期:-22oC~-20oC;

冻结帷幕平均温度:-8oC;

冻结孔偏斜要求在0.15%以内,最大孔间距中部1.6m,边部1.1m;

冻结管选用Φ127×4.5mm无缝钢管。

2.2.2冻结帷幕厚度

对于城市地下工程冻结方案设计而言,可采用如下步骤和方法来确定冻结帷幕的计算厚度。

①垂直冷冻中,冻结帷幕厚度主要受地面荷载和埋深的影响,地压是确定冻结帷幕厚度的主要考虑因素。通过计算求得冻结帷幕处最大地压。

②根据地下工程埋深不同,结合现有施工经验和工程类比,初选一个合适的冻结帷幕平均温度值。通常埋深小于200m时,平均温度选-7~-8℃;当深度大于200m时,且深部有厚层粘土层时,通常选用较低的平均温度,常用-10℃的平均温度。根据选定的平均温度和试验资料或有关经验公式,求得砂土层及一些粘土层的计算强度值。

③冻结帷幕厚度的初步计算。一般而言,水平冻结工程冻结帷幕厚度取值更多依赖于类似工程经验,但也可根据选定的控制砂层深度、地压大小、该处的荒径大小和土层的强度指标,用拉麦公式求出冻结帷幕的初选厚度作为参考:

1)E R = (2-1)

式中:E ——冻结帷幕计算厚度,cm ; R ——筒掘进荒半径,cm

P ——计算层位的地压,Pa

K ——系数,

][s σ——冻土的允许抗压强度,][s σ一般取用瞬时单轴抗压强度的1/2.5~1/5;砂土取小值时,粘土取大值

0][m s σσ=

(2-2) σ—冻土瞬时极限抗压强度;

0m —安全系数

当冲积层较厚,地压值较大时,按多姆克公式计算。

2[()()]s s p

p E R B C σσ=+ (2-3)

式中:,B C ——系数,用第三强度理论时B =0.29,C =2.3;用第四强度理论时B =0.56,C =1.33

④平均温度核算。

冻结帷幕的平均温度是确定冻结帷幕强度和稳定性的基本参数之一。从工程应用出发,一般取最大地压水平的冻结孔间距处的主、界面冻结帷幕平均温度的平均值作为冻结帷幕设计核算的依据,可参考煤矿系统相应的经验公式(如式2-4)。冻结帷幕平均温度能否达到按②中选用的平均温度值。

n b t E l E l T T ?+-+--=η466.0]266

.0/7851.0352.0135.1[3 (2-4)

式中:T ——冻结帷幕有效厚度中的平均温度; b T ——盐水温度,℃;

l ——冻结孔间距,m ;

E ——冻结帷幕厚度,m ;

η——经验系数,η=0.25~0.3;

n t ——计算水平的井帮温度,℃,根据要求或经验给出。

上述计算是针对砂层进行的。用上述方法得到的冻结帷幕厚度和实际施工可能有一定偏差,可在施工中进一步调整。

2.2.3冻结孔布置

冻结孔的间距和偏斜率是影响冻结孔布置圈直径的主要因素。开孔间距直接影响冻结孔的数量,终孔间距直接影响冻结帷幕的形成时间及其平均温度。

冻结孔布置圈直径

L T D D δ22.11++= (2-5)

式中:D ——冻结孔布置圈直径,m ;

1D ——立井开挖直径,m ;

T ——冻结帷幕厚度,m

δ——钻孔偏斜率,一般取0.3%~0.5%;

L ——最大地压层位的冻结的水平长度,m

冻结孔数量:

l D n π=

(2-6)

式中:n ——冻结孔计算个数; D ——冻结孔布置圈直径,m ;

l ——冻结孔开孔间距,m ;立井冻结工程中,冻结孔开孔间距一般为1~1.3m 。 确定冻结孔数量后,进一步核算冻结孔开孔间距

n D l π=

' (2-7)

2.2.4积极冻结期时间 积极冻结期是指冷冻站投入正式运转后,在最大地压水平的冻结管最大间距处,冻结帷幕扩展到设计厚度和强度的时间。积极冻结期时间主要与冻结孔的间距、盐水温度、土层性质、冻结管直径、地表温度等有关。

根据已有的冻土扩展速度推算冻结时间参考经验公式如式(2-8)。

v R T = (2-8)

221)6.0()2

(h T l R += (2-9)

式中:T ——积极冻结期的推算天数,d

R ——要求冻结圈的扩展半径,mm ; v ——在估算冻结时间内的冻土的平均扩展速度,mm/d ;

1l ——最大地压处的冻结孔的最大间距,m ;

h T ——冻结帷幕的厚度,m 。

2.2.5冷冻系统

①制冷设备

我国冻结施工所采用的制冷压缩机主要有活塞式和螺杆式两种,其中,螺杆式是回转式压缩机的一种,它只有旋转运动部件,没有往复运动部件,动平衡性好,性能稳定,制冷量大,可持续时间长。

冻结法一般采用串联双级压缩制冷。串联双级压缩制冷较单级压缩制冷具有以下优点:采用二次压缩和中站冷却,降低了压缩机的压缩比和排气温度,从而降低由于余隙容积、气缸壁与压气之间的热交换、泄漏所造成的容积损失,从而提高了压缩机的容积效率,消耗于压缩机的功减少。当冷却水温度过高,造成冷凝压力与蒸发压力之比≥8时,压缩机供给效率减小,制冷能力降低,采用单级压缩制冷是不经济的;当冷却水温度超过25℃时,单级压缩制冷的排气温度高达130℃以上,压缩机不能正常运转,盐水温度难以下降,影响冻结。而采用串联双级压缩制冷可以改善压缩机运转条件,提高制冷效果。当受到冷冻设备限制或冻结初期及维护冻结期要求的盐水温度较高时,可考虑单级压缩机制冷,但冷却水不应超过25℃。

②盐水系统

传统冷却剂采用盐水,一般是比重为1.24~1.28的氯化钙水溶液,也可采用氯化钠、氯化镁或氯化锂溶液,盐水的结晶点必须比用于地层冻结的极限温度至少低5℃。

溶液体积根据冻结管、盐水干管、集配液圈、蒸发器的盐水箱容积确定。

321V V V V ++=

(2-10)

式中:V ——氯化钙溶液总体积,m 3;

1V ——冻结管总容积,m 3;

2V ——盐水干管、集配液圈总容积,m 3;

3V ——盐水箱总容积,m 3。

固体氯化钙的需有量配制 ρV g G ?=2

.1 (2-11)

式中:G ——固体氯化钙的需用量,kg ; g ——单方溶液中固体氯化钙的含量,kg/m 3;

V ——氯化钙溶液总体积,m 3;

ρ——固体氯化钙纯度;一般无水氯化钙取96%,晶体氯化钙取70%。

③冷却水系统

冷却水的温度和量与冷冻站的正常运转、压缩机的制冷效率、盐水温度有直接关系。如果冷却

水温度高或水量不足,导致压缩机的排出温度、压力过高,使操作维护困难,制冷效率低,同时,盐水温度达不到设计要求,势必延长冻结时间,冻土强度低,降低施工安全性。

冷却水的需用量

21W W W += (2-12)

t

Q W c ?=10001 (2-13) nw W =2

(2-14)

式中:W ——冷冻站总需用水量,m 3/h

1W ——冷凝器需水量,m 3/h 2W ——冷冻机的冷却水套需水量,m 3/h

c Q ——冷凝器总热负荷,近似计算时可取冷冻站制冷能力的1.25倍

t ?——冷凝器进、出口水的温差,一般取3~5℃

n ——冷冻机台数

w ——单台冷冻机的冷却水套需水量

3垂直冷冻施工

冻结法施工技术的主要工序:钻孔→冻结器铺设→冷冻系统安装→冻结制冷→隧道开挖和衬砌。

3.1冻结孔成孔

应根据施工设计规定的孔位、孔径和孔深钻孔。冻结孔一般布置在以竖井井筒中心为圆心的圆周上,其直径由井筒直径、冻结深度和冻结帷幕设计厚度等确定。钻孔直径应比冻结管外径大10mm 。钻孔深度应比冻结管深度深0.5m 以上。

钻孔垂直度应满足以下要求:

(1)在冲击层中偏斜率不超过0.3%,且在最终成孔后冻结管管底间距不超过3m ;

(2)在分化带及含水基岩中偏斜率不超过0.5%,且冻结管管底间距不大于5m ;

(3)钻孔过程中应经常测斜,偏斜值超过规定时,应及时纠正;冻结管管底最大间距超过规定时,应进行补孔,成孔后应对不同水平面绘制偏斜平面图。

3.1.1钻机

浅埋隧道冻结孔要求钻机尺寸小、占用空间小,并且钻机操作要方便,重量要轻,移动要灵活,扭矩和推力要尽量大。冻结施工钻孔可采用改进后的坑道钻机,也可采用XQ-100型地质钻机,斜孔可采用斜孔地质钻机成孔。

3.1.2钻头和钻具

冻结孔钻进一般采取跟管钻进,一边钻孔一边铺设冻结管,即采用将冻结管兼做钻杆的工艺方法,钻孔完毕后,钻杆留在钻孔内作为冻结管,这样可防止发生钻孔塌孔。

跟管钻进要求钻头和钻杆连接部位密封,确保在钻进过程中钻杆内的泥浆通畅,达到泥浆护壁的目的。待钻孔完成后,对钻杆进行加压试漏,测试合格后作为冻结管使用。

用作冻结管的钻管需注意以下方面:

(1)用作冻结管的无缝钢管,壁厚应不小于4mm,管子外径宜为127mm~159mm;

(2)冻结管使用前应做耐压实验,如复用旧管,应全部通过检查予以鉴定;如采用新管,可按比例抽查,实验压力7MPa,无渗漏现象为合格;

(3)冻结管使用前应除绣;

(4)冻结管管端可采用加厚的锥形丝扣管箍或焊接管箍连接;

(5)冻结管底部应设有密封挡板,并焊有由钢板卷成的底锥,制成后应进行耐压实验,实验压力也为7MPa;

(6)冻结管送入冻结孔就位后,使用前应先进行检漏试验。实验压力取为全冻结管盐水与清水柱压力差及盐水泵工作压力之和的2倍,30min后如压力下降不超过0.05MPa,再延续15min压力可保持不变者为合格。

3.1.3钻进

每孔开钻前对钻机进行稳平找正,使起吊天轮与回转通孔及孔位点三点一线,并对钻机不带负荷试运转三分钟,对油路及浆液循环系统,进行详细检查是否畅通。

泥浆系统是导向孔钻进过程中的又一关键环节,泥浆作为冷却钻头、悬浮钻屑的流动体,以膨润土及外加剂为原料按一定比例搅拌而成,不同地层对泥浆粘度有不同要求,采用马氏漏斗粘度进行测定,膨润土泥浆适宜环境PH值控制在8.5~10;粘土层中粘土有一定自稳能力,膨润土泥浆粘度在30秒左右,粉细砂层中采用进口易钻膨润土外加少量聚合物,马氏漏斗粘度控制在40秒左右。施工中如发现漏浆,粘度应适当加大。泥浆泵量和泵压均应根据钻孔穿越的地层情况和钻孔的偏斜情况适时进行调整,以达到控制钻孔偏斜、泥浆护壁、防止塌孔的目的。

开钻时为确保钻孔垂直度,探明地下是否有管线及障碍物,前5m应轻压慢转,然后调整地层所需要的钻压及转速。

钻孔一径一次到底,钻孔深度不能小于设计深度,也不能大于0.5m,钻孔到底后如不漏浆停钻冲孔3分钟,减少孔底沉渣、保证冻结管下放深度。

钻孔完成后即时将冻结孔内灌满清水试压验收,初试压力 1.0MPa,前5分钟降压值不大于0.05MPa,再持续25分钟不降压为合格。

3.1.4测斜

钻孔过程中应经常测斜,偏斜值超过规定时,应及时纠正;冻结管管底最大间距超过规定时,应进行补孔,成孔后应对不同水平面绘制偏斜平面图。

开孔测斜:在完成井口管钻进后进行的测斜,用于防止因井口管偏斜导致下部钻孔大量偏斜、井口管深度一般为10m~15m,偏斜率应控制在0.05%以内;

段距测斜:在钻进过程中要经常进行的测斜,一般每钻进10m~20m测斜一次;

定点测斜:在容易发生侧移的钻孔区段上进行的测斜,用于监测地层或钻孔直径发生改变时钻孔的垂直度;

终孔测斜:钻孔达到一定深度后,在插入冻结管以前,对整个钻孔进行一次测斜,一般每10m~20m测一点;

目前可供采用的测斜设备有带有定点器经纬仪的灯光测斜仪和陀螺测斜仪。

3.1.5钻孔偏斜控制

钻孔偏斜的原因很多,大致分两类:

⑴客观原因,即地层软硬不均,倾角不同,地层中存在裂隙、空洞或薄弱带。

⑵主观原因,即操作技术不正确、导向管安装不正、钻孔角度设定不准确、钻压太大、泥浆质量不好等。

钻孔偏斜控制主要包括防偏和纠偏两个方面。水平冻结钻孔通过安设在孔口的导向装置和在钻孔过程中调整钻机位置、角度和钻孔工艺来控制钻孔偏斜。

3.2冻结器的铺设

冻结孔成孔后就可及时安装冻结管,冻结管可采用Φ127×4.5mm无缝钢管,地面制冷供液管道按单排冻结孔串联,然后再采用并联方式,主供液管可采用聚乙烯塑料软管,也可采用Φ159×5mm 无缝钢管,回液管亦采用同样方式反向设置。制冷供液管道的安装时须确保供液管道的密封性和隔热性。

3.3冷冻系统安装

3.3.1冷冻站位置的选择

在浅埋隧道冻结施工中,冷冻站设在地下或是地面均可。冷冻站设在地下,由于靠近工作面,冷量损耗低,管路和保温工程量小,便于集中管理,而且噪音对地面环境影响小,但供电线路损耗大。相反,冷冻站设在地面,如果冻结施工现场出现问题,则不便于及时采取解决的措施。

3.3.2冷冻系统的安装和调试

冷冻系统安装包括冷冻机组、盐水与清水系统、供电与控制线路的安装等,通过冷冻系统的整体调试,使冷冻系统的各种设备达到正常运转所要求的指标。冷冻系统安装过程需注意以下方面:(1)冷冻站房屋宜用防火材料建造,室内应通风良好,并有防火防毒安全设施及避雷装置;

(2)冷却水取水井必须设在冻结井地下水流的上方,与冻结井的距离应大于抽水影响半径,冻结过程中影响冻结的所有水井均应停止使用;

(3)盐水管路安装完毕后应试通水;

(4)地表环形冷冻沟槽(供冻结管出露用)净高以1.8~2.0m为宜,底部应在地下水位以上,并有排水设施沟槽顶部有保暖和防水设施;

(5)低温系统应隔热防潮,正常情况下,冷量损失不得超过冷冻站工作制冷能力的20%;

3.4冻结制冷

冻结帷幕厚度是依据设计冻结帷幕的平均温度来判定的,进而可指导隧道是否达到开挖条件,而冻结帷幕的平均温度可以相邻单圈冻结孔的单圈冻结帷幕的温度场交圈处的温度来反应。

根据工程具体情况布置相应数量的测温孔,在冻结管内分不同的高度,按地层岩石的分界面分别设置测温点,测温可采用SY-2型测温仪和PN结半导体温度传感器来量测。

冻结施工期间对整个冻结帷幕的温度发展进行监测,用以修正冻结制冷的各种施工参数。

形成冻土帷幕的时期称为积极冻结期,这一时期开始时系统正式启用,冷却盐水开始循环流动。应注意使盐水温度尽可能低,并昼夜不停的送入冻结管,以便在最短时间内形成厚度和强度达到规定要求的冻土帷幕。在冻结期内应加强观测,满足下列要求后可进行井筒试挖:(1)水文观测孔内的水位已经有规律上升并且有水冒出来;

(2)测温孔内的温度已经明显下降,并且已满足设计要求;

(3)按冻结速度及平均温度推算,地层冻结帷幕厚度和强度已经满足设计要求;

维护冻结期冻土帷幕形成后,在维护冻结期内仍需对系统供给冷量,使冻结帷幕厚度和强度在竖井施工期间始终满足设计要求。

3.5隧道开挖和支护

冻结帷幕是否形成、能否开挖要根据测温孔的温度资料,去回路盐水温度状况等来综合判定。对于冻结工程而言,冻结帷幕的平均温度达到设计温度,同时去回路盐水温差变化较为稳定时,即可以开挖。同时开挖过程中,还须加强测温孔的温度监测和去回路盐水的温度监测,并以此来安排隧道掘进的循环进尺和掘进速度以及维护冻结期的时间。

3.5.1隧道开挖

冻结达到开挖条件后,即可以开始隧道内掘进施工,隧道开挖依然采用短台阶法施工,台阶长度控制在5~7m,开挖循环进尺1.0m,初期支护在开挖出碴完成后立即进行,开挖暴露时间控制在12小时内。岩石部分仍采用微差控制爆破开挖,与正常区间隧道开挖相比,只是调整了装药量和炮孔深度。

3.5.2初期支护的结构形式

目前,在浅埋隧道施工中往往采用复合式支护结构。初期支护结构形式:钢拱架+钢筋网+喷射混凝土。厚度在200~300mm,混凝土标号为C20。钢筋格栅与冻结体之间填充密实,不留空隙。

在冻结段施工期间,喷混凝土宜采用湿喷混凝土施工,混凝土是在地面拌合,拌合后的混凝土成品温度平均为40℃,而冻结法施工段的掌子面平均温度为0~4℃,气温较低,需要解决混凝土在较高温度下拌合,较低温度下使用的问题,同时还需避免由于冻结低温而产生的温度应力引起的混凝土开裂的问题。针对这些问题,现场需要对混凝土的配比选择进行对比试验,可采取如下措施:(1)增加水泥用量,以提高混凝土的强度保证率;

(2)掺入防冻剂,以提高混凝土的强度保证率;

(3)选用能适合较低温度环境的速凝剂。

混凝土的配比如下表所示:

表3-1 防冻混凝土配合比

3.6施工监测

3.6.1冷冻系统监测

①去回路盐水温差监测

根据去回路的盐水温差,可判断冻结体的发展情况。

②去回路盐水流量监测

观察冻结系统盐水循环情况,应在去回路盐水干管、供液管处安装流量计。

3.6.2地层温度监测

冻结过程中应定时定人监测测温孔内不同位置的温度,根据测温结果,计算冻结峰面的发展位置,预测冻结体的扩展情况。

3.6.3变形监测

为了全面掌握水平冻结过程中隧道暗挖施工的地层变化情况,应在原有施工监测的基础上加密测点和观测次数,监测项目包括地面升降以及拱顶与拱脚变位。

在冻结施工区域应设置一定数量的沉降观测点,以显示冻结期间冻胀引起的地面隆起、隧道开挖时涨沉交替,停止冻结后的融沉。

此外,如果冻结工程周边有重要建筑物,也应在建筑物附近设置沉降观测点,并需在冻结施工前开始观测,以确保建筑物的安全。

3.7冻涨融沉的控制措施

土层冻涨主要是土层中的水结冰膨胀引起,影响冻胀因素除含水量多少外,还与冻土压力大小、冻结速度快慢、冻结温度高低、冻土中水量补给状况等因素相关。冻土的融沉是相对冻涨产生的,因为冻土融化后,土中水份因自重作用渐小,融土在压力及土颗粒自重作用下,压缩体积引起融沉。所采取的主要控制措施如下:

(1)加强冻结帷幕温度、厚度监测,及时调节冻结盐水温度和冻结时间,并尽可能采用间隔制冷措施;

(2)加快盐水降温速度,加大盐水流量,以利加快冻土发展进度,减少冻土的水份迁移,即减少冻涨;

(3)在隧道开挖过程中,根据揭露地层情况在软土、粘土中预埋或预留注浆孔,在冻结壁融化时,视融沉发展情况及时跟踪压密注浆控制融沉;

(4)在地面和开挖隧道断面内布设测点,跟踪监测地面及冻结帷幕井帮的位移情况,及时分析,及时处理,视情况可采取液氮冻结补强,卸压或注浆等措施控制

位移,以减少冻涨和融沉对工程施工和周围环境的影响;

(5)冻结停冻后及时回收供液管和冻结管,用比重1.6~1.7的水泥浆充填。

4劳动力组织

4.1主要管理人员

4.2施工劳动人员配置

冻结施工时,工种及人数配置见表4-2。

表4-2 主要施工人员表

5机具设备配置

5.1钻孔机具设备及附属设备的选型与配置

表5-1 钻孔设备表

5.2制冷设备的选型与配置

表5-2 制冷设备表

6质量控制要点

6.1钻孔施工的质量控制要点

①定位准确,按照测量组现场的放样进行施工。

②保证精度,一般控制在0.3%以内。

③保证设计深度。

6.2冻结实施阶段的质量控制要点

①保证在积极冻结期内在规定的时间内达到土体的冻结。

②加强监测,判断冻结体的发展情况,并根据监测结构及时调整冻结参数。

7安全注意事项

7.1施工现场的安全措施

①制度和实施安全生产责任制,建立健全各项规章制度,并严格执行。

②建立安全生产保证体系,管理有力,保障运行。

③组织工程项目施工的安全教育和技术培训,特殊工种作业人员必须持证上岗,并进行开工前技术考核。

④建立安全检查制度,实行安全生产奖惩制,消除事故隐患,引导职工齐抓共管,提高其安全生产的积极性。

⑤编制和呈报安全计划、安全技术方案和安全措施,做到组织、制度、措施之落实。

⑥设备使用期间要加强维修和保养,保证设备完好率和使用率及安全运行。

⑦施工现场临时用电要有施工组织设计和方案,健全安全用电管理制度和安全技术档案。

⑧加大安全投入、安全警示牌醒目,安全设备完备,满足安全生产需要。

7.2施工机械的安全措施

①钻机、泵及冷冻设备管路必须试运转,确认机械性能和各种阀门管路完好后,方准施工。

②时检查各种机具以及机电设备的安全可靠性,发现隐患及时处理。

③检修必须在配电处,检修处设置检修停用警示标志。

7.3施工用电的安全技术措施

①施工现场必须采用“三相五线制”TN-S系统布线,两级漏电保护,三级配电措施。做好过电流保护、PE保护和漏电保护。

②全部用电设备必须执行“一机一闸一漏一箱”制。

③电工必须持证上岗,禁止无证操作。

④发现用电事故隐患,须及时向上级领导汇报,按“三定”(定人、定时间、定整改措施)原则,由用电专业人员整改落实。

⑤统一布设线路,杜绝私拉乱接现象。

⑥工作中经常巡查工地,检查电源线路、照明、电器开关及设备运行情况,发现隐患立即排除。

⑦电工进行操作时,必须切断电源,严禁带电作业,并设置警示标志。

⑧操作高压电气设备主回路时,必须带绝缘手套,穿电工绝缘靴,并站在绝缘板上。

8工程实例

8.1工程简介

上海市地铁2号线陆家嘴站至河南中路站区间隧道联络通道(以下简称旁通道)位于两站区间隧道中部,作为地铁运营中隧道的集排水泵站和上下行隧道间的安全联络通道。其结构由两个与隧道相交的喇叭口、通道和泵站组成。从提供的地质柱状图、土工试验结果和地基土的物理力学性能指标可以看出,旁通道附近主要为黏性土,在该地层内进行联络通道开挖构筑时天然土体本身难以自稳,必须先对开挖影响范围内的土体进行冻结加固处理。

8.2施工情况

该工程根据实际情况选择的是“隧道内水平冻结加固土体,隧道内开挖构筑”的施工方案。

8.2.1积极冻结

设备安装完毕后进行调试和试运转。在试运转时,随时调节压力、温度等个状态参数,使机组在有关工艺规程和设计要求的技术参数条件下运行。在冻结过程中,定时检测盐水温度、盐水流量和冻土帷幕扩展情况,必要时调整冻结系统运行参数。冻结系统运转正常后进入积极冻结期,要求10d降温至-24℃以下。

8.2.2试挖与维护冻结

在积极冻结期,根据实测温度数据判断冻土帷幕是否交圈和到达设计厚度,测温判断冻土帷幕交圈并达到设计厚度后在进行探孔试挖,确认冻土帷幕内土层基本无压力后在进行正式开挖。正式开挖后,根据冻土帷幕的稳定性,进行维护冻结期,但盐水温度不得高与-18℃。

掘进采用短段掘砌技术,开挖步距控制在0.3~0.5m;两端喇叭口处断面较大,由于冻土强度高,韧性好,采用风镐开挖,风镐尖部做了特殊处理。在掘进施工中根据揭露冻土的冻结效果和监测信息,及时调整了开挖步距和支护强度,确保了施工安全。在开挖过程中,还及时对暴露的冻土墙进行了保温。

隧道全断面采用两次支护方式,初期支护(临时支护)采用预应力钢支架木背板,第二次支护(永久支护)采用现浇钢筋混凝土。永久支护与木背板临时支护之间铺设油毡或其他防水卷材,并进行壁间注浆。联络通道开挖后,为控制地层位移的发展,以及防止冻土帷幕内侧局部融冰和片帮,及时进行了支护。

临时支护采用18号工字钢加工的直腿拱形支架和矩形支架.钢拱架为封闭形式,每道支架中部加一根横撑.拱形支架的间排距相对应,为0.3~0.5m;相邻支架间有纵向拉杆,以增加整个支护体系的整体性和稳定性.

永久支护为钢筋混凝土结构.为了减少混凝土施工接缝,联络通道开挖和临时支架完成后,一次连续进行浇注.上部结构施工完成以后,开挖集水井. 集水井开挖到设计的深度时,首先对集水井底板进行封底浇注,然后一次完成集水井的钢筋混凝土浇注施工.

在开挖和临时支护过程中,布设通道收敛变形测点,及时掌握冻结壁的位移和发展速度,通过调整开挖步距和支护强度来控制冻结壁位移量,确保施工安全和进度。

8.3工程经验

本工程在施工中取得了一系列的数据,主要数据如表8-1和表8-2:

表8-2 冻结工艺参数表

项目指标参数积极冻结期盐水温度-24℃

维护冻结期盐水温度-18℃~-20℃

盐水循环总量100m3/h

冷却水循环总量198 m3/h

新鲜水补充量20 m3/h

《冻结法施工工法》

目录 一、前言 二、特点 三、使用范围 四、工艺原理 五、工艺流程 六、施工操作要点 七、机具设备 八、质量标准 九、劳动力组织 十、安全环境保护 十一、效益分析 十二、工程实例

冻结法施工工法 一、前言 作为一种成熟的施工方法,冻结法施工技术在国际上被广泛应用于城市建设和煤矿建设中,已有100多年的历史,我国采用冻结法施工技术至今也已有40多年的历史,主要用于煤矿井筒开挖施工,其中冻结最大深度达435m,冻结表土层最大厚度达375m。 自1992年起,冻结法工艺被广泛应用于上海、北京、深圳、南京等城市地铁工程施工中。中铁四局集团在上海地铁M8线Ⅲ标段黄兴路站~延吉中路站区间隧道旁通道工程施工中,采用了冻结法加固的施工方法,通过对施工工艺的归纳总结,以及参考有关施工技术资料,形成本工法。 二、特点 冻结法适用于各类地层尤其适合在城市地下管线密布施工条件困难地段的施工,经过多年来国内外施工的实践经验证明冻结法施工有以下特点: 1、可有效隔绝地下水,其抗渗透性能是其它任何方法不能相比的,对于含水量大于10%的任何含水、松散,不稳定地层均可采用冻结法施工技术; 2、冻土帷幕的形状和强度可视施工现场条件,地质条件灵活布置和调整,冻土强度可达5-10Mpa,能有效提高工效; 3、冻结法是一种环保型工法,对周围环境无污染,无异物进入土壤,噪音小,冻结结束后,冻土墙融化,不影响建筑物周围地下结构; 4、冻结施工用于桩基施工或其它工艺平行作业,能有效缩短施工工期。 三、使用范围 冻结法适用于各类地层,主要用于煤矿井筒开挖施工。目前在地铁盾构隧道掘进施工、双线区间隧道旁通道和泵房井施工、顶管进出洞施工、地下工程堵漏抢救施工等方面也得到了广泛的应用。 四、工艺原理 冻结法是利用人工制冷技术,使地层中的水结冰,将松散含水岩土变成冻土,增加其强度和稳定性,隔绝地下水,以便在冻结壁的保护下,进行地下工程掘砌作业。它是土层的物理加固方法,是一种临时加固技术,当工程需要时冻土可具有岩石般的强度,如不需要加固强度时,又可采取强制解冻技术使其融化。

冷冻法施工作业指导书

武汉长江隧道工程 冷冻法施工作业指导书 编制: 审核: 批准: 中铁隧道股份有限公司武汉长江隧道工程 项目经理部 二零零六年七月 一、编制依据 1.1《地下铁道工程施工及验收规范·GB50299-1999》; 1.2《盾构法隧道工程施工及验收规范·DGJ08-233-1999》;

1.3《地下防水工程施工及验收规范·GBJ208-83》; 1.4《煤矿井巷工程施工及验收规范·GBJ213-90》; 1.5本工程投标文件。 二、编制目的 规范操作程序,指导现场施工。 三、适用范围 武汉长江隧道盾构隧道联络通道冷冻施工。 四、作业概述 该工法是在地层中按预定间隔埋设冻结管(Φ100mm的管径),冷却液在冻结管上循环,则管周围地层中的孔隙水以管为中心生成年轮形状冻土。邻近的冻土柱连接在一起,形成止水墙。 本工程用冷冻机把盐水溶液冷却到-20~-40℃,由循环泵送至冻结管冷却地层,盐水吸收地层的内热后,温度上升,经由盐水冷却泵,返回冷却机降温后,再次进入冷却管,如此反复循环。 五、人员机械配置 机械设备配置表

六、部门职责 1、工程部: ①、负责冻结帷幕设计计算、冻结孔布置及制冷设计; ②、冻结施工过程现场监督,冻结效果检查。 2、设物部: ①、负责冷冻设备的维修、保养; ②、保证电力持续、足量供应。 3、操作班组: ①、严格按照冷冻设计布孔、埋管; ②、钻机、冷冻机械操作。 七、作业流程 作业流程见下图。 7.1 施工准备 7.1.1在隧道内敷设一条120mm2动力电缆,用于冻结钻孔施工及隧道内冻结

作业流程图 系统安装供电。 7.1.2利用隧道内清水、排污管道,用于冻结孔打钻和冻结站运转的供水和排污。 7.1.3在旁通道施工工作面两端砌高约0.5m的泥浆挡墙,以免冻结孔钻进时泥浆四溢影响隧道内环境整洁。 7.1.4用厚4~6cm的木板在旁通道处铺设冻结施工场地,按不同位置的冻结孔钻进要求,用φ1.5″钢管搭建冻结孔施工脚手架。 7.2冻结孔定位与管片开孔 根据冷冻设计计划的基准点,按冻结孔施工图进行冻结孔孔位放线,提请注意的是:孔位布置首先要依据管片配筋图和钢管片加强筋的位置,在避开主筋的前提下可适当调整,一般不应大于100mm。 7.2.1在正式开孔前,利用检查孔,即隧道管片上的补浆孔钻Ф38mm小孔径探孔,检查地层稳定性。 7.2.2开孔选用J-200型金刚石钻机,配φ130mm金刚石取芯钻头进行钻孔,深度约300mm,以不钻穿管片控制。用钢楔楔断岩心、取出后,打入加工好的孔口管,并固定,每个孔口管要至少有4个固定点固定在管片上。 7.2.3开孔顺序 根据旁通道施工的孔位,采用由上向下的顺序施工:即先施工穿透孔,根据穿透孔的偏差,进一步调整有关的钻进参数,再按由上向下的顺序施工,这样可防止因下层冻结孔的施工引起上部地层扰动,减小钻孔施工时的事故发生率。 7.2.4钻孔偏斜和终孔控制 钻孔的偏斜应控制在1%以内,在确保冻土帷幕厚度的情况下,相邻终孔间距不得大于1.0m,否则应补孔。 冻结孔钻进深度应不小于设计深度,不大于设计深度0.2m(钻头碰到隧道管片者除外)。 7.3冻结孔钻进与冻结管设置

地铁隧道联络通道开挖冻结法施工工艺

地铁施工旁通道冻结法施工工艺 一前言 作为一种成熟的施工方法,冻结法施工技术在国际上被广泛应用于城市建设和煤矿建设中,已有100多年的历史,我国采用冻结法施工技术至今也已有40多年的历史,主要用于煤矿井筒开挖施工,其中冻结最大深度达435m,冻结表土层最大厚度达375m.自1992年起,冻结法工艺被广泛应用于xx、xx、xx、xx 等城市地铁工程施工中。公司在xx地铁隧道旁通道工程施工中,采用了冻结法加固的施工方法,通过对施工工艺的归纳总结,以及参考有关施工技术资料,形成本工法。 二、特点 冻结法适用于各类地层尤其适合在城市地下管线密布施工条件困难地段的 施工,经过多年来国内外施工的实践经验证明冻结法施工有以下特点: 1、可有效隔绝地下水,其抗渗透性能是其它任何方法不能相比的,对于含水量大于10%的任何含水、松散,不稳定地层均可采用冻结法施工技术; 2、冻土帷幕的形状和强度可视施工现场条件,地质条件灵活布置和调整,冻土强度可达5-10Mpa,能有效提高工效; 3、冻结法是一种环保型工法,对周围环境无污染,无异物进入土壤,噪音小,冻结结束后,冻土墙融化,不影响建筑物周围地下结构; 4、冻结施工用于桩基施工或其它工艺平行作业,能有效缩短施工工期。 三、使用范围 冻结法适用于各类地层,主要用于煤矿井筒开挖施工。目前在地铁盾构隧道掘进施工、双线区间隧道旁通道和泵房井施工、顶管进出洞施工、地下工程堵漏抢救施工等方面也得到了广泛的应用。 四、工艺原理 冻结法是利用人工制冷技术,使地层中的水结冰,将松散含水岩土变成冻土,增加其强度和稳定性,隔绝地下水,以便在冻结壁的保护下,进行地下工程掘砌作业。它是土层的物理加固方法,是一种临时加固技术,当工程需要时冻土可具有岩石般的强度,如不需要加固强度时,又可采取强制解冻技术使其融化。 五、工艺流程冻结法 六、施工操作要点施工时,应不断对每个施工工序进行管理。控制冻结孔施工、冻结管安装、冻结站安装、冻结过程检测的质量。

冻结法施工技术

特殊凿井 绪论 一、特殊凿井分类 特殊施工是相对于普通施工技术而言,可定义为:在松散不稳定含水地层,或在涌水量很大的稳定裂隙岩层中,采用围岩加固、堵水、超前支护或采用大型钻井机械施工的技术,这种技术主要有:冻结法、注浆法、钻井法、沉井法、混凝土帷幕法等表土施工技术。 深表土——冻结法、沉井法、钻井法、注浆法。 特殊凿井施工技术按其实质和特点可分为三类: 1、超前支护类 在地下工程挖掘之前,采用超前支护以隔绝或减少流砂和地下水的涌入,然后在超前支护的保护下掘进,属于此类者有:沉井法、混凝土帷幕法。 2、围岩加固类 在地下工程开凿之前,采用措施暂时,永久地加固围岩,改善围岩的稳定条件,而后进行掘砌作业,如冻结法、注浆法等。 3、机械破岩类 应用大型机械直接破岩、出矸,使卸掘砌作业机械化图钻井法等。 二、岩特殊凿井的历史 53年新汶孙村矿注浆井首次采用深井法。 55年新汶张庄矿首次在井筒进行工作面预注浆 55年开滦矿物局林西矿采用冻结法(波兰设计与施工) 56年开滦矿物局唐家矿采用冻结法(苏联指导,自己设计施工) 58年峰峰矿物局薛村矿主井采用地面预注浆 69年淮北矿物局朔利村南风井采用钻井法 74年鹤岗矿物局兴安矿南风井采用混凝土帷幕法 目前: ①沉井法(沉箱法)于90年代在煤矿使用,软表土地基中土建工程用的很多。沉深192m——曲阜单家村主副井,上海基础公司沉井。 ②帷混凝土帷幕法84年施工新汶鄂庄注浆井是使用,单深57m,主要用于地下挡土墙,水电部的应用较多, ③钻井法主要在西淮地区,φ9m,单深513m, ④冻结法,目前龙崮主副风井三个井筒采用,副井冻结深度650m,巨野煤田郭屯冻结达到702m;国投新集口孜东主井冻深737m,万福主井894m,万福副风井840mm。 ⑤注浆法遍及各矿区主井,平巷,硐室均在采用。 主要内容:冻结法、注浆法、钻井法、沉井法、混凝土帷幕法看录像。 第一章:冻结法施工 冻结法应用较多,尤其对深层表土的矿区,目前冻结法施工逐渐有城市的地铁发展,这里我们以矿区为例介绍。 §1、概述 冻结法凿井既是在井筒开挖之前,用人工制冷的方法,将井筒周围的岩层冻结形成封闭的圆筒——冻结壁,以抵抗地压,隔绝地下水与井筒的联系,然后在其保护下,进

冻结施工方案设计

冻结施工方案设计 3、冻结施工关键技术 3.1 水平冻结孔施工技术 〔1〕采用二次开孔工艺,以防钻透地下连续墙时大量出泥出水。一次开孔采用金刚石取心钻在地下连续墙上钻进300mm深左右,不钻透连续墙。一次开孔钻进完毕,下入孔口管并安装阀门,接着进行二次开孔钻进,直至钻透连续墙。连续墙钻透后,立即退出开孔钻头,关闭阀门。 〔2〕用夯管法下冻结管,夯管和钻进时安装类似轴封的孔口止水装置。对于需要穿透对侧地下连续墙的冻结孔,那么先用夯管法下套管〔套管下至对侧连续墙墙面〕,然后用钻机在套管中钻透对侧连续墙,再用夯管法下入冻结管。钻进对侧地下连续墙时,钻头部位安装逆止阀和岩心管。 〔3〕下完冻结管后,对冻结管与孔口管及套管间的间隙和孔口附近地层进行注浆充填。 〔4〕下泄压管〔滤水管〕时,在泄压管内装满三合土,以防夯进泄压管时出水,影响施工。 〔5〕确保冻结孔定位准确。冻结管夯进时,预设朝隧道外结构面法向的外偏角为0 .5~1°,以防冻结孔太靠近开挖面,影响冻结壁有效厚度。 3.2 地层冻胀和融沉控制技术 〔1〕在冻结壁内未冻土中设泄压孔,通过放水、排泥来减小冻结壁内的水土压力和消散作用在地铁一号线上体馆站底板上的冻结附加力。泄压孔采用Φ140mm以上的钻孔。泄压孔滤管不包纱网,以便在冻胀引起地层压缩时,可从泄压孔泄水或排除部分土体。施中可根据车站结构及地层变形监测结果和泄压孔中的水压变化情况进行泄压。 〔2〕在地铁一号线上体馆站底板附近增设冻结孔和加热孔各1个,加热孔兼作测温孔。根据工程监测结果,合理调整冻结孔的供冷量。在特殊情况下,还可通过在加热孔中循环热水来迅速提高冻结壁温度,使冻结壁软化,从而减小冻胀力。在采取上述措施的同时,还注意控制好上体馆站底板附近冻结孔的盐水流量,使车站底板下边的温度处在-5~-10℃之间,实现了在保证冻土强度的情况下,尽量减小车站底板温度应力的目的。 〔3〕合理安排冻结顺序,减小冻胀引起的地层变形。根据不同位置冻结壁受力分布情

冻结法联络通道施工工法

7、冻结法联络通道施工工法 7.1 施工顺序 在第一台盾构机掘进贯通后立即开始联络通道施工,采用冻结法进行地层加固,然后采用矿山法在区间隧道内直接进行联络通道的开挖、初期支护、防水和衬砌施工。 由于盾构隧道内施工空间狭小,机械设备运输、转场困难,选择从最先贯通的隧道内向另外一侧隧道侧施工。 由于冻结加固和后续结构施工工序之间工艺要求衔接紧密,合理的安排各个联络通道的开工时间,是实现联络通道安全、快速施工的关键。 7.2施工流程 ①施工准备→②冻结孔施工和冻结管路安装→③积极冷冻,隧道管片加固保暖→④水平钻孔检验冻结效果→⑤打开钢管片→⑥联络通道开挖并实施临时支护,全过程维护冷冻→⑦防水层施工联络通道内衬结构施工→⑧冻结孔封孔、地层跟踪注浆、撤离。 7.3冻结加固方案施工 7.3.1 冻结帷幕 7.3.2 冻结孔布置及制冷 (1)冻结孔的布置 冻结孔开孔间距:冻结孔取0.8~1.0m。冻结孔偏斜控制,原则上不允许内偏,为减少冻土挖掘量,应控制终孔径向外的偏角在0.5~1.0°范围。终孔间距最大控制在1.4m之内。根据施工工艺确定,冻结管选用φ89×8mm低碳钢无缝钢管。 联络通道冻结施工冻结孔布置形式及数量见表。 联络通道冻结施工冻结孔布置形式及数量一栏表 (2)制冷

①冻结参数确定 设计盐水温度为-28℃~-30℃。 冻结壁厚度:3.0m。 冻结孔单孔流量不小于4m3/h。 冻结孔终孔间距Lmax≤1400mm,冻结帷幕交圈时间为35天,达到设计厚度时间为45天。积极冻结时间为50天,维护冻结时间为60天。为保证缩短冻结时间,保证整体冻结效果,在另一侧盾构隧道的联络通道冻结相应位置处在管片内部设置保温层。 测温孔和泄压孔分别为8个和4个,具体位置视现场情况而定。测温孔一般定在终孔间距较大的位置。 ②需冷量和冷冻机选型 冻结需冷量计算:Q=1.2·π·d·H·K 式中:H—冻结总长度; d—冻结管直径:φ89×8mm; K—冻结管散热系数:1.2; 将上述参数代入公式得: Q=1.2·π·d·H·K =61989Kcal/h 选用YSLGF300型螺杆机组2台套,设计工况制冷量为87500 Kcal/h,电机功率95KW。 ③冻结系统辅助设备 盐水循环泵选用200S42A型2台,流量200m3/h。 冷却水循环选用IS125-100~250J型2台,流量200m3/h,电机功率30KW。 冷却塔选用NBL-50型2台,补充新鲜水15m3/h。 ④管路选择 (1)冻结管选用Φ89×8mm,20#低碳钢无缝钢管,丝扣连接,单根长度1m 或1.5m。 (2)测温孔管选用Φ40×4mm,20#低碳钢无缝钢管。 (3)供液管选用Φ48×3mm钢管,采用焊接连接。 (4)盐水干管和集配液圈选用Φ159×6mm无缝钢管。 (5)冷却水管选用Φ133×4.5mm无缝钢管。

冻结法施工技术

冻结法施工技术 冻结法施工技术,即是利用人工制冷的方法把土壤中的水冻结成冰形成冻土帷幕,用人工冻土帷幕结构体来抵抗水土压力,以保证人工开挖工作顺利进行。作为一种成熟的施工方法,冻结法施工技术在国际上被广泛应用于城市建设和煤矿建设中,已有100多年的历史,我用冻结法施工技术至今也已有40多年的历史,主要用于煤矿井筒开挖施工,其中冻结最大深度达435m,冻结表土层最大厚度达375m。经过多年来国外施工的实践经验证明冻结法施工有以下特点: 1可有效隔绝地下水,其抗渗透性能是其它任何方法不能相比的,对于含水量大于10%的任何含水、松散,不稳定地层均可采用冻结法施工技术; 2冻土帷幕的形状和强度可视施工现场条件,地质条件灵活布置和调整,冻土强度可达5-10Mpa,能有效提高工效; 3冻结法施工对周围环境无污染,无异物进入土壤,噪音小,冻结结束后,冻土墙融化,不影响建筑物周围地下结构; 4冻结施工用于桩基施工或其它工艺平行作业,能有效缩短施工工期。 人工冻结法在地铁府园车站的应用

摘要:地铁一期工程府园车站南隧道盾构法施工时,洞门两侧出现大量流砂,附近区域的沉降量较大,为了确保地下管线和地面交通的正常使用和安全运行,在首次实施了地下工程的人工冻结法施工。本文论述了冻结法在该工程中的冻结设计、施工工艺及对周围环境影响等问题和实际取得的效果。 关键词:冻结法,地铁,盾构 引言 我国冻结法现已成为成熟的凿井施工技术,但在城市岩土工程中的应用还不多。冻结技术可在地面城市地下工程中的应用围包括:盾构隧道盾构进墙、深层搅拌桩以及压密注浆对土体进行加固,在凿除洞门钢筋混凝土时发现洞门中心处东、西两侧有流砂涌入,迅速采用双液注浆堵水,过了两天又在有大量流砂涌入,对周围环境产生较大的影响,其中端头井东侧的沉降量增大,东部20 平方米区域下陷1.5 m 左右(图1)。在这种情况下施工单位及时出洞土体加固、盾构隧道地下或海底对接时土体加采取措施,以保证施工以及周围环境的安全。固、城市地铁泵房、旁通道和急转弯部分、建筑基根据管线及房屋调查结果显示,在府园车站坑加固、地下工程涌水、坍塌事故的抢险修复、地南端头井的东侧沿南路方向15 m 围有下隧道交叉处土体加固、桥墩基础施工等。地380 V 的电缆一根,直径约900 mm 的下水管一根,铁南北线一期工程TA7 标府园车站端头井洞门南侧沿建邺路方向15 m 围有380 V 的电缆一补充加固时中煤矿山工程采用冻结法

地下工程冻结法施工工程实例

126 实例8:用于隧道支护中的地层冷冻法(隧道译丛1985-5) 1.以往的应用 在冻结的地层中开挖洞室,采用任何一种方法,有时总会遇到意外的困难。而爆破法或许是一种有效的方法。与岩石比较,当然冻结的材料不如其坚硬,但对于起爆点来说不存在裂化。冻结的地层是致密和不透水的。 用人工法来冻结地层使地层更加坚固和密实,这一概念是在大约一百年以前产生的。德国人首先采用在通过含水土层的矿山竖井施工中。 在瑞士第一次考虑采用这种方法要追溯到1908年对勒奇堡铁路隧道的病害处理。当时松散地层伴随高压水意外地坍塌,水和碎石涌入开挖的坑道,大约充填了1km ,淹没了25个人(图1)。 为了定出沿隧道轴向劣质土体的长度,用一台德国冷冻压缩机从地表打下两个勘探孔,一直打下220米深,超过隧道底部,发现底下没有岩石,即确定出隧道的位置后,沿轴向必须要通过350米极坏地层。若用冷冻压缩机从地表通过钻孔来冻结地层或许能够开挖,然而当时这样一种装置的造价超过一般通用的设备,造价昂贵。因此,决定改变隧道方向,来一个大的拐弯,使隧道轴线不脱离密实的岩层。这样就使隧道延长了约800米,但允许用常规的爆破法继续开挖。 在瑞士第一次真正使用冷冻法是1968年在翁格林(Hongrin )属于水工用途的一个过水隧洞。当时证明,在不得已的情况下冷冻法是最后一种可采用的手段。由于隧洞完全位于岩层之中,又加上高压水的作用,使隧洞堵塞停工达两年。在试用其它方法处理以后,在这种情况下求助于冷冻法。 围绕奥尔滕(Olten)铁路系统改建工程中,有一浅埋的博尔纳(Born)隧道已经施工。部分位于粘土层斜坡上,由于覆盖层相当薄,冷冻是靠从地表垂直打下或多或少的管子来实现的。 2.米尔黑布克隧道 最近的一个工程实例是在苏黎士市区的米尔黑布克(Milchbuck)公路隧道。对于这个例子我们将比较详细地加以讨论,不仅阐述这—施工方法的特性,还要对如何解决与市区的正确位置有关的问题进行讨论。 米尔黑布克隧道在苏黎士市高速公路网内,是一条重要线路。它从利马(Limmat)山谷通向米尔黑布克山,位于2.7%的坡道上(图3),其中有1300米长的一段是用常规明挖法施工的。上部位于泥灰岩和砂岩地层,不需赘述,剩下350米的一段通过冰积层,而更不利的

冻结法施工工艺

冻结法施工工艺 地铁施工旁通道冻结法施工工艺冻结法施工工法一、前言作为一种成熟的施工方法,冻结法施工技术在国际上被广泛应用于城市建设和煤矿建设中,已有100多年的历史,我国采用冻结法施工技术至今也已有40多年的历史,主要用于煤矿井筒开挖施工,其中冻结最大深度达435m,冻结表土层最大厚度达375m.自1992年起,冻结法工艺被广泛应用于上海、北京、深圳、南京等城市地铁工程施工中。公司在上海地铁隧道旁通道工程施工中,采用了冻结法加固的施工方法,通过对施工工艺的归纳总结,以及参考有关施工技术资料,形成本工法。 二、特点冻结法适用于各类地层尤其适合在城市地下管线密布施工条件困难地段的施工,经过多年来国内外施工的实践经验证明冻结法施工有以下特点: 1、可有效隔绝地下水,其抗渗透性能是其它任何方法不能相比的,对于含水量大于10%的任何含水、松散,不稳定地层均可采用冻结法施工技术; 2、冻土帷幕的形状和强度可视施工现场条件,地质条件灵活布置和调整,冻土强度可达5-10Mpa,能有效提高工效; 3、冻结法是一种环保型工法,对周围环境无污染,无异物进入土壤,噪音小,冻结结束后,冻土墙融化,不影响建筑物周围地下结构; 4、冻结施工用于桩基施工或其它工艺平行作业,能有效缩短施工工期。 三、使用范围冻结法适用于各类地层,主要用于煤矿井筒开挖施工。目前在地铁盾构隧道掘进施工、双线区间隧道旁通道和泵房井施工、顶管进出洞施工、地下工程堵漏抢救施工等方面也得到了广泛的应用。 四、工艺原理冻结法是利用人工制冷技术,使地层中的水结冰,将松散含水岩土变成冻土,增加其强度和稳定性,隔绝地下水,以便在冻结壁的保护下,进行地下工程掘砌作业。它是土层的物理加固方法,是一种临时加固技术,当工程需要时冻土可具有岩石般的强度,如不需要加固强度时,又可采取强制解冻技术使其融化。 五、工艺流程冻结法 六、施工操作要点施工时,应不断对每个施工工序进行管理。控制冻结孔施工、冻结管安装、冻结站安装、冻结过程检测的质量。 1、冻结孔施工 1.1开孔间距误差控制在±20mm内。在打钻设备就位前,用仪器精确确定开孔孔位,以提高定位精度。 1.2准确丈量钻杆尺寸,控制钻进深度。 1.3按要求钻进、用灯光测斜,偏斜过大则进行纠偏。钻进3m时,测斜一次,如果偏斜不符合设计要求,立即采取调整钻孔角度及钻进参数等措施进行纠偏,如果钻孔仍然超出设计规定,则进行补孔。 2、冻结管试漏与安装 2.1选择φ63×4mm无缝钢管,在断管中下套管,恢复盐水循环。 2.2冻结管(含测温管)采用丝扣联接加焊接。管子端部采用底盖板和底锥密封。冻结管安装完,进行水压试漏,初压力0.8MPa,经30分钟观察,降压≤0.05MPa,再延长15分钟压力不降为合格,否就近重新钻孔下管。 2.3冷冻站安装完成后要按《矿山井巷工程施工及验收规范》要求进行试漏和抽真空,确保安装质量符合设计要求。 3、冻结系统安装与调试 3.1按1.5倍制冷系数选配制冷设备。 3.2为确保冻结施工顺利进行,冷冻站安装足够的备用制冷机组。冷冻站运转期间,要有两套的配件,备用设备完好,确保冷冻机运转正常,提高制冷效率。 3.3管路用法兰连接,在盐水管路和冷却水循环管路上要设置伸缩接头、阀门和测温仪、压力表、流量计等测试元件。盐水管路经试漏、清洗后用聚苯乙烯泡沫塑料保温,保温厚度为50mm,保温层的外面用塑料薄膜包扎。集配液圈与冻结管的连接用高压胶管,每根冻结管的进出口各装阀门一个,以便控制流量。 3.4冷冻机组的蒸发器及低温管路用棉絮保温,盐水箱和盐水干管用50mm厚的聚苯乙烯泡沫塑料板保温。

(冷冻法施工)解析

地铁施工技术交流材料 冷冻法联络通道施工技术及风险控制措施 一、冻结法的基本原理与特点 采用冻结法对地层土体进行加固,是指利用人工制冷技术,使地层中的水结冰,把天然岩土变成冻土,增加其强度和稳定性,隔绝地下水与地下工程的联系,以便在冻结壁的保护下进行地下工程掘砌施工的特殊施工技术。其实质是利用人工制冷临时改变岩土性质以固结地层。 1、岩土冻结实质 岩土冻结性质的改变,即将含水地层(松散土层或裂隙岩层)冷却至结冰温度下,使土中孔隙水或岩石裂隙水变成冰,岩土的性质发生重要变化,形成一种新的工程材料——“冻土”。 2、冻土结构特点 而冻土结构具有较高的强度和绝对的封水性。 3、冻土结构功能 冻土结构的承载功能和封水的不承载功能。 4、制冷方法 其制冷技术方法,通常使用制冷设备,利用物质由液态变为气态,即气化过程的吸热现象来完成的。 4.1、有两种类型:⑴、冷媒剂(盐水)吸热:氨 (-33.4℃);干冰(-78.5℃);⑵、直接气化吸热:液氮(-19 5.8℃);干冰(-78.5℃) 4.2、冻结系统常有两种类型:⑴、封闭系统(盐水冻结);⑵、开放系统(液氮冻结) 5、冻结法的适应性 冻结法加固与其它加固方法相比,其适应性更强,能够适应粘土、粉土、砂层以及砾石、卵石等任何地层。

6、冻结法的特点 6.1、冻土帷幕的变化性:⑴、冻土范围可变;⑵、冻土温度可变;⑶、冻土强度可变(强度是温度的函数) 6.2、冻土帷幕的连续性:水在负温下结冰的必然性; 6.3、冻土帷幕的可知性:通过温度测试可判断冻结范围、冻土强度 7、冻结法施工的优点 7.1、安全性好:⑴、冻土强度较高;⑵、冻土连续性可靠、封水性好 7.2、适用性强:⑴、适用于几乎所有具有一定含水量的松散地层(包括岩石); ⑵、复杂地质条件可行(流砂、大深度、高水压) 7.3、灵活性高:⑴、冻土帷幕性状(范围、形状、温度、强度)可控 8、冻结法施工缺点 由于冻结法所形成的冻土帷幕其范围、温度、强度具有变化性,其冻结范围、强度随温度的变化而变化,如果供冷不足或外部热源可导致冻土帷幕性能(范围、强度)退化,安全性能降低,施工风险增大。众所周知,上海地铁4号线联络通道施工时,其冻结帷幕失效,发生重大工程风险事故,给国家造成严重的经济损失。 8.1、冻胀融沉:⑴、对环境有一定的影响,严重时具有一定的破坏力; ⑵、融沉控制不当可导致结构差异沉降和长期沉降; 8.2、风险性:⑴、供冷不足或外部热源可导致冻土帷幕性能退化(范围、强度); ⑵、流水作用下冻土可快速消融 8.3、局限性:⑴、地下水流速影响冻结效果;⑵、地层含盐影响冻结效果; ⑶、含气地层可影响冻结效果 9、冻结法的应用 通过冻结法加固所形成的冻土帷幕,其形状、范围、温度、强度完全可以受控,且通过温度测试可判断冻结范围、冻土强度。因此,人工冻结地层加固方法被广泛用于需要进行地层加固和封水(冻土帷幕)要求工程施工领域。特别是随着我国城市地铁轨道交通的发展,软土隧道盾构的进出洞、联络通道等风险性较高的工程项目,常

冻结法加固在盾构隧道施工中应用讲解

冻结法加固应用于盾构隧道施工 浙江大成建设集团有限公司章履远 由于搅拌桩、注浆、高压旋喷等土体加固方法存在土体加固不均,可能存在局部薄弱带而不能封堵具有压力的地下水。而采用冻结土形成的冻结帷幕,其冻土墙均匀性好、强度高(大于3MPa)。尤其是冻结体与井壁能做到无缝对接,可保证滴水不漏。因此,大直径的泥水平衡盾构大多采用冻结法加固技术。大直径泥水平衡盾构使用最多的是日本,其进出洞土体加固大多采用冻结法。 1995年,上海延安东路南线隧道,11.22m泥水盾构,当时始发井采用水泥土搅拌桩加固,盾构出洞始发,因覆土浅产生冒浆而不能建立泥水平衡,影响了3个月工期后,最后改用冻洁法加固土体取得成功(国内第一次)。从2001年以来,上海的泥水平衡越江隧道,如大连路隧道、复兴东路隧道、翔殷路隧道、上中路隧道等都采用了冻结法加固取得成功。因此,掌握冻结法施工技术对隧道工作者来说,也是必不可少的工作。 然而,冻结法施工最大缺点是施工成本高,冻融隆沉大,应该懂得采取相应技术措施。下面就来谈一谈冻结法的施工和用冻结法施工的成功案例。 一、冻结法施工技术 1、概况:

冻结法是利用人工制冷技术使地层中的水冻结,把天然岩土变成冻土,从而增加岩土的强度和稳定性,隔绝地下水与地下工程的联系,以便在冻结壁保护下进行隧道、竖井、地下联络通道和其他地下工程的开挖与施工的一种特殊施工技术。其实质是人工制冷技术临时性改变岩土的状态以固结地层。 冻结法施工技术在矿井建设、地基基础工程、水利工程、河底隧道、地下铁道和其他地下工程中,当遇到不稳定地层或含水量丰富地层、裂隙岩层等,只要是地下水含盐量不大,且流速慢(6m/d)都可以采用冻结法固结地层,完成地下工程施工。 英国人和德国人早在1862年、1883年利用冻结技术完成建筑基础、煤矿深井施工。1886年、1906年瑞典和法国用冻结法施工人行隧道,穿越河底地铁工程。前苏联、日本也在20世纪70年代用冻结法施工地铁隧道,排水管等。据不完全统计已有数百项工程用冻结法来完成工程施工。 我国从1955年~1999年在煤炭系统,利用冻结技术,建设煤矿竖井近500个,总长达70Km,最大冻结深度达435m。随着冻结技术不断发展,水平冻结、斜井冻结也取得成功。近年来,随着地下工程日益增多,特别是地下铁道建设兴起,冻结技术开始应用于城市地铁工程的隧道施工。北京、上海、广州已分别采用了垂直冻结、水平冻结技术完成了多

垂直冷冻施工技术

3-2-8垂直冷冻施工技术 1前言 1.1冻结法概述 1.1.1冻结法 冻结法是利用人工制冷技术,在地下开挖体周围需加固的含水软弱地层中钻孔铺管,安装冷冻器,然后利用制冷压缩机提供冷气,通过低温盐水在冻结器中循环,带走地层热量,使地层中的水结冰,将天然岩土变成冻土,形成完整、密闭、高强度的临时加固体,从而达到加固地层、隔绝地下水与地下工程联系的目的。然后,在冻结体的保护下进行地下工程的开挖施工,待衬砌支护完成后,冻结地层逐步解冻,最终恢复到原始状态。 1.1.2地层冻结技术的特点 同其它土体加固方法相比,冻结法具有以下优点: 1、冻结加固使土体中的大部分水分结冰,提高了土的强度,而且强度均匀。 2、整体支护性能好,冻结帷幕形成后,冻结帷幕内不会存在任何缝隙,是一个完整的支护体;封水效果好,可保证开挖工作面在无水条件下作业。 3、能适应不同的地质条件,冻结深度不受限制,而注浆、地下连续墙等方法对地质条件的适应能力差,而且其加固深度有一定的限制。 4、适应各种结构形状地下工程的施工。冻结加固体的形状、大小,可以根据需要灵活设计。 5、环保型工法。由于冻结法是一种临时措施,所冻地层最终要恢复到原始状况,因而能够保护城市地层地质结构和地下水不受污染。 6、施工方便,简单,经济上合理。国外的工程实例表明,冻结工程成本与其它施工(如注浆和旋喷)处于相同的数量级,而且随着加固深度的加大,冻结工法的经济性越来越来明显。 基于以上优点,冻结法在城市地下工程越来越受到重视,已经被广泛应用于地基基础工程、城市地铁、隧道工程、水利工程等市政工程中。 1.2冻结法的适用条件 根据相关资料及《建井工程手册》规定,冻结法主要适用于含水量超过10%,地下水速度不大于10m/d的软弱围岩隧道预加固工程中,遇有流砂、淤泥、卵石、砂砾等含水不稳定冲击层或裂隙中含水的岩层时都可采用。 目前冻结法在城市隧道工程中主要应用于: 1.盾构法隧道施工中,盾构进出洞土体加固。盾构进出洞时,承受着工作井附近土体产生的巨大地压和水压,可能导致涌水和土体坍塌。目前常用旋喷技术和注浆法加固土体,效果不够理想,常遇到注浆不均匀和盾构刀盘切削浆液结石体等困难,而冻结技术能有效地解决这些问题。 2.盾构法隧道施工中,地下或海底对接时土体加固。近年来,世界上许多国家的盾构隧道采用对头掘进,以缩短工期,除采用立井对接方式外,还采用不开凿立井而在地下或海底直接对接。 3.城市地铁泵房、旁通道和急转弯部分根据地铁设计要求,间距1km左右需在并排隧道间设立

土层冻结加固及支护施工技术要求

土层冻结加固及支护施工技术要求 1、冻结孔 1.1冻结孔施工前必须对要破除的管片位置及高程进行测量,确保定位准确。冻结孔开孔位置误差不大于100㎜,应避开管片接缝、螺栓、主筋和钢管片肋板。 1.2冻结孔最大允许偏斜(冻结孔成孔轨与设计轨迹之间的距离)为150㎜。1.3冻结孔成孔控制最大允许间距为1300㎜。 1.4冻结管用Ф89×8㎜低碳钢无缝钢管。冻结管耐压不低于1.0MPa,并且不低于冻结工作面盐水压力的1.5倍。 1.5冻结管接头抗拉强度不低于母管的75%。 1.6施工冻结孔时的土体流失量不得大于冻结孔体积,否则应及时进行注浆控制地层沉降。 1.7施工时首先打透孔复核两隧道预留口位置。如两隧道预留口相对位置误差大于100㎜,则应按保证冻结壁设计厚度的原则对冻结孔布置进行调整。 1.8两侧隧道沿通道外围冻结壁敷设5排冷冻排管,排管间距为500㎜;冷冻排管采用Ф45×3无缝钢管或采用槽钢焊接加工。排管敷设应密贴隧道管片。 1.9共设4个透孔用于冷冻排管及对侧冻结管供冷,透孔采用Ф89×8㎜低碳钢无缝钢管。 1.10本联络通道所处土层为含水率高,冻结孔施工时具有较大风险,冻结孔施工时需使用防喷装置。 2、冻结帷幕 2.1参照上海地区冻土物理力学性质试验,冻土强度的设计指标取为:单轴抗压不小于 3.6MPa,弯折抗拉不小于1.8MPa,抗剪不小于1.6MPa(-10℃)。为保证冻土平均温度达到设计时计算值,冻土验收时平均温度应不高于-10℃。 2.2积极冻结时,在冻结区附近200m范围内不得采取降水措施。在冻结区内土层中不得有集中水流。 2.3在冻结壁附近隧道管片内侧敷设保温层,敷设范围至设计冻结壁边界外2m。保温层采用阻燃(或难燃)的软质塑料泡沫软板,厚度不小于40㎜,导热系数不大于0.04w/mk。

井筒冻结法施工工艺和风险分析

井筒冻结法施工工艺和风险分析 【摘要】冻结法具有适应性强、支护结构灵活、隔水性好等特点,在深厚表土层中井筒施工主要采用冻结法。本文介绍冻结法的施工工艺进行介绍,为深厚表土层冻结施工提供经验。 【关键词】井筒冻结设计;冻结施工;冻结原理 【Abstract 】Freezing method has strong adaptability and flexible support structure ,impermeable and good features,in deep alluvium Shaft Construction mainly freezing method. This article describes the method to freeze the construction process will be introduced to freeze the construction of deep topsoil provide experience. 【Key words 】Freeze wellbore design;Freeze construction;Freeze principle 1.引言由于我国地层条件比较复杂,在华东、华北、西北地区井筒建设无法采用普通凿井法凿井,需要采用冻结法、沉降法和盾构法等特殊凿井技术进行建设。当建设井筒地层为不稳定厚表土层时,采用的施工方法主要以冻结法为主。并且煤矿向深部开采延伸,其井筒往往要穿过特殊地层,如过含水丰富或碎破的基岩,都要采用冻结法施工。因此,冻结法施工是广泛采用行之有效的技

术方法之一。 2.冻结原理在地下工程施工之前,采用人工技术制冷,将地下工程周围的含水或者含有松散碎石岩层冻结,形成冻土结构物 一一冻结壁,用来承受来自地层中压力和隔绝砂子和地下水涌入,然后在形成冻土结构中进行开挖、支护的特殊施工方法称为人工冻结法(简称冻结法) 。 3.冻结设计在深厚表土层采用冻结法建设井筒,冻结壁设计是关键问题之一。冻结壁设计的优劣直接关系到整个井筒施工能否安全顺利进行。冻结壁设计包括盐水温度、冻结深度、冻结壁厚度、冻结圈径等内容。设计和施工人员总结经验发现,冻结壁设计首先考虑冻结壁强度条件,其次要考虑地层、施工工艺等对冻结壁形成的影响,从而来设计冻结壁初始厚度。之后再用冻土平均温度检验其厚度是否满足要求,用冻结粘土的强度校核冻结壁厚,最终确定冻结壁厚度。以下为冻结壁厚度确定计算过程: 3.1初始设计冻结壁厚度。以最深部的砂层深度,采用公式 p=O.OI27H ( MPa)计算地压,运用多姆克公式来计算冻结壁初始厚度:E=R( 0.29Pmax/ 8 +2.3P2min/ 8 ),式中:P 地压;D 最大地压壁厚;E 井筒掘进半径;R 井筒掘进半径; 8冻土允许抗压强度。 3.2计算冻土平均温度。初始冻结壁厚度确定后,根据盐水、井帮预计温度及钻孔间距离等参数计算得出的冻结壁温度,判断其是否高于设计冻土平均温度,若大于则要增加冻结壁厚度或降低盐

盾构法冻结施工安全技术规定-最新范文

盾构法冻结施工安全技术规定 1 冻结站房区内应配备消防水及排气、防毒工具,高压容器和管道应涂抹相应颜色注明。 2 当冻土墙达到设计强度和厚度且与井壁完全胶结,方可进行完全进,出洞施工。破壁时间应尽量缩短,不宜超过三天,否则需对井壁进行保温。 3 控制板块部分冻结管拔除长度和数量。隧道外冻结管暂时不宜拔除,以备盾构被冻住时作为解冻之用;隧道内冻结管拔至洞圈以上0.5m,同时做好二次冻结的准备。 4 盾构进出洞顶进冻结壁时,盾构头端部要保持与冻土墙一定距离,一般不小于0.2m。防止盾构紧靠冻土墙,而使冻土墙变形,造成拔管困难。 5 盾构在穿越冻土墙时,尽量保证正常,不宜停留,防止盾构被冻抱住。 6 在原有垂直冻结孔的基础上,在盾构进洞口的下部应布置一排水平冻结孔,来保证垂直冻结孔拔除后下部能够继续冻结维护。 7 水平冻结孔施工,在冻结孔管片开孔前,应通过孔位确认,在预埋管内施工。 8 冻结施工前,必须对所有影响范围内的管线采取适当的保护措施。施工过程中,加强检测,控制冻胀影响。 9 解冻后,应在隧道内进行适当的跟踪注浆,减少

融沉量,减小冻结对周围环境的影响。在冻结管拔出的同时在孔内灌注水泥、粘土浆或粉煤灰浆,以防止低温对注浆强度的影响。水泥、粘土浆或粉煤灰浆内宜掺2~3%防冻早强剂氯化钙。 10 设计选用标准制冷量较大的冷冻机组,在短时间内把盐水温度降到设计值,以加快冻土发展,提高冻土强度,减少冻胀和融沉量。 11 掌握和调整盐水温度和盐水流量,必要时可采取间歇式冻结,控制冻土发展量,以减少冻胀和融沉。 12 预计融沉量较大的部位可采取压浆充填,以把融沉造成的危害降低到最低限度。 13 为防止解冻拔管后,由于地层沉降而导致的盾构磕头,解冻拔管后,在解冻孔内回填水泥-粘土浆或粉煤灰浆,密实冻结孔。 14 拔冰冻管要在盾构进入洞口内,且安装好密封装置后进行,盾构头部距冻土墙不小于0.2m,以防影响拔管。 15 盾构出洞拔管按推进方向由内到外依次先拔第 一、第二、第三排盾构行进区的冻结管,不需完全解冻。将板块隧道内冻结管拔至隧道顶板以上0.5m左右,并做二次冻结。 16 盾构进洞拔管按推进方向由内到外依次先拔第 三、第二、第一排盾构行进区的冻结管,不需完全解冻。要保证水平冻结孔在盾构没完全进洞前仍在积极冻结状态。 17 在隧道范围内所有冻结管全部拔出盾构顶板以

隧道水平冻结法施工工艺

水平冻结施工技术 1.水平冻结设计 1.1设计原则与关键技术 1.1.1设计原则 ⑴在水平冻结加固后,保证在隧道掘进过程中围岩具有足够的稳定性,确保施工安全。 ⑵保证施工过程中引起的地层沉降满足设计要求,以确保地面建筑物和地下管线的安全。 ⑶满足环境保护及施工供水、供电能力要求。 ⑷进行系统的施工监测,实现信息化施工。 1.1.2关键技术 ⑴冻结孔施工 为了确保冻结孔的施工质量,先在钻孔工作面(钻孔桩和旋喷桩复合结构)用金钢石取芯钻开孔,并埋设孔口管,正常钻进采用跟管钻,孔口安装密封装置,使泥浆在封闭系统中循环,并用特制的精密水平孔陀螺仪测斜,以确保钻孔质量与施工安全。 ⑵在积极冻结期内,根据监测信息控制冻土帷幕的温度,保证帷幕形成的强度和均匀性。 ⑶冻胀融沉的控制 1.2冻结段划分及施工顺序 由于水平冻结段施工81.86m,且在缓和曲线上,根据水平孔钻进技术条件,隧道分两段冻结。第一段冻结长度为55m,第二段冻结长度为37m,两段冻土帷幕间的搭接长度为10m。在第一段掘进至45m时,现浇400mm厚的钢筋混凝土墙密闭开挖工作面,并回头将断面径向扩大1.3~1.4m,长4m 的隧道断面,作为第二段隧道冻结施工作业面。其冻结段划分见图

2-13-2-1。 施工顺序为:明挖段工作井施工→第一段隧道冻结孔钻进→积极冻结→冻结维护及第一段隧道掘进及初衬施工→扩大段施工→第一段隧道地基强制化冻、注浆和施工内衬→第二段隧道冻结孔钻进→积极冻结→第二段隧道掘进和初衬施工→第二段隧道地基强制化冻、注浆和施工内衬→停止冻结及进行其它冻结孔注浆→冻结设备拆除。 1.3冻土帷幕设计 1.3.1设计基础资料 取土的平均容重为19kN/m3,变形模量为6MPa,泊松比0.395。取冻土(平均温度-10C)的变形模量150MPa,泊松比0.3,设计抗折强度为1.8MPa(上海地区淤泥质粘土的极限抗折强度试验值为 2.8~3MPa),单轴抗压强度5MPa。取地面超载为67kPa(约为土层承载力的2/3)。隧道覆土厚度按11m 考虑。 1.3.2冻土帷幕结构形式 冻土帷幕的断面形状与隧道开挖断面相似,其有效厚度为1.4m,见图2-13-2-2。 1.3.3冻土帷幕的承载力计算 取出冻土帷幕及地层的一个截面,按线弹性平面应变问题计算冻土帷幕的应力、应变分布。取模型的宽度为24m,高度为28m。 用有限元法进行冻土帷幕的受力与变形计算。经ANSYS计算,结果见表2-13-2-1。从表中可以看出,冻土帷幕的承载能力是足够的。 图2-13-2-1

地铁隧道冻结法施工融沉控制方案及实施

第6卷 第2期 地下空间与工程学报V o.l6 2010年4月 Ch i nese Journa l o f U nderg round Space and Eng ineer i ng A pr.2010 地铁隧道冻结法施工融沉控制方案及实施* 曹红林 (中铁第四勘察设计院集团有限公司,武汉 430063) 摘 要:人工冻结法开始逐步被应用于城市地下工程的开挖和支护以来,以其对各种地层的适应性强,对环境影响小等特点,较其他地基处理工法显示了较大的优势,但冻结引起的土体冻胀融沉对环境产生了负面影响,制约了冻结法在对环境要求高的地方的应用。为了减缓融沉对环境造成的影响,一般工程中采用注浆补偿的方法,在冻结后开始解冻时配合注浆来控制冻土的融化沉降。作者结合具体工程实例介绍了冻结法施工融沉控制方案及实施要点,给出了融沉注浆的施工工艺的原则和主要施工参数,该工程实践对以后类似工程的实施具有一定的指导和参考价值。 关键词:地铁隧道;冻结法施工;注浆;融沉控制 中图分类号:TU472.9 文献标识码:A 文章编号:1673-0836(2010)02-0387-04 Thaw i ng Settle m ent Control of Subway Tunnel Constructi on by Artificial Ground Freezi ng Cao H ong li n g (Ch i an R ail way S i yuan Survey an d D esign G roup Co.,L t d.,W uhan430063,China) Ab stract:A rtific i a l freezi ng me t hod is w i dely used i n t he c i v il underground excava ti on and suppo rti ng pro jects t hese years,it i s super i or to othe r g round treat m ent me t hods because it i s we ll suit for a l m ost a ll k i nds of l ayers and has l ess i m pac t on env iron m en t.H owever,t he frost heave and tha w i ng settle m en t exert bad i nfl uence on surround i ngs so tha t th i s me t hod is no t adopted i n pro j ects w here t here i s h i gh environment pro tecti on requ irem ent.In order to reduce the infl uence of t ha w i ng settl em ent on environm ent,the m ethod o f grouti ng and compensati on w hen thaw i ng is adopt i n gene ra l pro jects.T his text comb i nes a concrete eng i nee ri ng exa m ple tha t t he m easures and sche m es of t haw i ng se ttle m ent contro l are i ntroduced,and puts f o r w ard techno l og ical pr i nciples of tha w subsidence and its m ai n constructi on param eters,prov idi ng hi gher gu i dance and va l uable reference for si m ilar pro j ects i m p l em entation henceforth。 K ey w ords:underg round ra il w ay tunne;l construction by artificial ground freezi ng;grouting;thaw ing settle m en t contro l 1 引言 人工冻结法是利用人工制冷技术,使地层中的水冻结,把天然岩土变成冻土,增加其强度和稳定性,隔绝地下水与地下工程的联系,以便在冻结壁的保护下进行隧道、竖井和地下工程的开挖与衬砌施工的特殊施工技术。我国于1955年首次在开滦林西风井使用盐溶液冻结法凿井并获成功,之后便在全国推广使用。我国冻结法的应用已有50年的成熟经验,已建成400余项冻结立井工程,总延米 *收稿日期:2009 11 24(修改稿) 作者简介:作者简介:曹红林(1972-),男,安徽泾县人,硕士,工程师,主要从事隧道及地下工程方面的设计工作。 E ma i:l tsych@l163.co m

相关主题
文本预览
相关文档 最新文档