当前位置:文档之家› 外网远程控制WIFI智能小车机器人

外网远程控制WIFI智能小车机器人

外网远程控制WIFI智能小车机器人
外网远程控制WIFI智能小车机器人

本期教程专门介绍如何让我们的机器人与互联网相连,实现远程安防监控与控制!然后可以在全球范围内控制它。本教程使用的路由器为WR703N,DB120的路由外网控制设置。

一、基本原理

外网控制的基本原理就是“端口映射”+“动态域名”。什么叫端口映射呢?简单地说,就是在你家里的无线路由器上做一个设置,使得外网对于路由器上一个特定的端口的访问会被路由器重新转到一个指定的IP主机和端口,这样一来,家里的无线路由器就等于是一个“桥”,联通了外网和小车机器人上面的路由,使得我们可以在外网控制家里的机器人。

那么“动态域名”又是什么呢?大家可以想想:我们家里的路由器每次开机后,对外的IP 地址都是不同的,那么控制小车就需要每次通过查询路由对外的IP地址,然后重新设置控制端的IP,这是个很麻烦的事。“动态域名”就可以完美地解决这个问题,你先向动态域名提供商申请一个动态域名,这个域名是不变的,比如:https://www.doczj.com/doc/134536278.html,,提供商会给你一个账号密码,把这个账号密码填入路由的动态域名功能里面,每次开机的时候,路由就会向域名提供商的服务器登录,服务器就可以获取本次登录时,路由对外网的地址,然后自动帮你把这个新IP绑定在https://www.doczj.com/doc/134536278.html,这个域名上面,这样一来,我们就没必要每次都去找路由当前的IP了,直接输这个域名就可以连到我们的路由。

我们今天要做的也就是利用上面的原理完成外网到家里的无线路由器,再到机器人上面

的WIFI板这一过程。

二、外网映射设置

1、家庭路由器设置。

首先需要一个家用的路由器,可以上外网的,这个路由器就是作为沟通小车与外界的桥梁。在这里,我选用了我的TP-Link WR641G+路由器。

第一步:设置转发规则

如下图所示,登陆家庭路由器的192.168.1.1管理界面,找到转发规则——》虚拟服

务器

在这里,因为我们的WIFI机器人运行需要开两个端口,端口8080为视频端口,端口2001为控制端口,所以我们添加两个端口转发规则,这边我使用192.168.1.108作为转发的目标客户端,这就是我们的WIFI板IP地址。这个IP可以自己定的,但是必须为固定的。并

且在家庭路由器的DHCP范围内。

通过这个设置,来自外网的对8080端口和2001端口的访问将重新发送到

192.168.1.108这个IP的客户端上,也就是我们的WIFI板。

第二步:设置静态地址分配

如下图,这一步中的MAC地址即为WIFI板的MAC地址,WIFI板MAC地址可以在

其管理页面里面找到。IP地址固定为192.168.1.108,与上一步一样。

好的,家庭路由器这一端的设置就告一段落了。

2、WIFI板的设置

第一步:将WIFI板的模式从AP模式改成Client模式,如下图

点击“修改”

在配置模式的页面,修改为Client模式,如下图:

第二步:插上网线,因为这个时候模式已经从AP模式变成了Client模式了,所以我们是没法再搜索到WIFI板的SSID,此时关闭无线,改用网线进行操作。

插上网线登陆WIFI板,找到无线选项,如下图:

那个家庭路由的热点,选择“加入网络”。

点击之后,会跳出“加入网络”设置的页面,如下:

在WEP passphrase项里面,填入家庭路由器的密码,(不是管理页面的密码)。

同时防火墙区域选择“未指定”

络。

点击WWAN接口的“修改”,将打开该接口的设置页面,在这个页面里,把“协议”选为静态地址,IP设置为刚刚在家庭路由器上指定的静态地址“192.168.1.108”,子网掩码为:

“255.255.255.0”,网关为上一级路由网关,也就是“192.168.1.1”,执行保存。

第四步:回到“接口”选项卡,点击“LAN”设置LAN口IP地址,不要与上一级选为一样的管理

地址,所以在这里可以设置为192.168.2.1

执行保存,此时又会出现无法显示页面————那是当然的,因为管理的IP都变了,所以我们用192.168.2.1登陆WIFI板,又可以出现熟悉的Openwrt管理页面了。

第五步:关闭防火墙

如下图:

在防火墙配置页面里面,把“启用SYN-flood防御”去了,下面的所有选项,凡是“禁止”的一概

设为“允许”,保存。

好了,通过以上的配置,你现在可以拔掉网线,打开电脑的无线,连上家庭路由器,然后打开CMD命令提示行,尝试输入ping 192.168.1.108 如果能ping通,基本就大功告成了!现在,我们来尝试远程查看视频,登陆https://www.doczj.com/doc/134536278.html,网站,或者,登陆家庭路由器的路由状态页面,可以看到当前路由器对外网的IP地址,把这个地址替换掉我们原来看机器人摄像头视频的地址,比如,假设现在路由器对外网的IP是202.119.23.122,那么把

http://202.119.23.122:8080/?action=stream这个地址发送给你在外网的朋友,让他用火狐浏览器打开,如果一切正常,他看到的页面里面有一个视频窗口,显示着当前摄像头的实时视频,和我们直连WIFI小车的方式所见到的是一样的效果。

OK,到这一步,就意味着外网映射控制智能小车机器人设置成功了。那么如果使用工作室开发的PC版、手机版上位机如何查看视频和控制呢?操作如下:

打开控制端的“设置”界面,在视频地址项里,填入视频地址:http://你的当前路由外网IP地址:8080/?action=stream控制地址项:你的当前路由外网IP地址控制端口:2001

这样就行了。

目前经过几位外地网友的测试,发现视频传输速度还是很不错的,基本能达到7fps,没有很

明显的卡屏现象。

至此,远程控制设置算基本结束,下方是花生壳域名,想了解的继续往下看。

二、动态域名设置

如果不嫌麻烦,那么如上的设置就可以做到在全世界任何有互联网的地方控制家里的智能小车机器人了,当然,只要你家里的路由器不要关,这个IP是可以一直保持的,但是难免会关闭的情况,每关闭一次就得重新查询当前路由的外网IP,这多麻烦!

为了解决这个问题,可以去花生壳动态域名服务商或者3322域名服务商申请一个动态域名,同时他们会提供一个账号密码,以花生壳为例,在家庭路由器的动态DNS选项中,填入账号

密码,如下图:

保存后,每次重新开家庭路由,你都可以不用关心目前对外网IP多少了,因为已经绑定在了你的动态域名上了,你只需要把我们控制端的设置里面把IP部分替换成你的动态域名即可!

(注:V1.25版本上位机控制端已经支持动态域名,控制地址处可以直接填入域名。)

TP-bridge.png(113.16 KB, 下载次数: 50)

外网远程控制WIFI智能小车机器人

本期教程专门介绍如何让我们的机器人与互联网相连,实现远程安防监控与控制!然后可以在全球范围内控制它。本教程使用的路由器为WR703N,DB120的路由外网控制设置。 一、基本原理 外网控制的基本原理就是“端口映射”+“动态域名”。什么叫端口映射呢?简单地说,就是在你家里的无线路由器上做一个设置,使得外网对于路由器上一个特定的端口的访问会被路由器重新转到一个指定的IP主机和端口,这样一来,家里的无线路由器就等于是一个“桥”,联通了外网和小车机器人上面的路由,使得我们可以在外网控制家里的机器人。 那么“动态域名”又是什么呢?大家可以想想:我们家里的路由器每次开机后,对外的IP 地址都是不同的,那么控制小车就需要每次通过查询路由对外的IP地址,然后重新设置控制端的IP,这是个很麻烦的事。“动态域名”就可以完美地解决这个问题,你先向动态域名提供商申请一个动态域名,这个域名是不变的,比如:https://www.doczj.com/doc/134536278.html,,提供商会给你一个账号密码,把这个账号密码填入路由的动态域名功能里面,每次开机的时候,路由就会向域名提供商的服务器登录,服务器就可以获取本次登录时,路由对外网的地址,然后自动帮你把这个新IP绑定在https://www.doczj.com/doc/134536278.html,这个域名上面,这样一来,我们就没必要每次都去找路由当前的IP了,直接输这个域名就可以连到我们的路由。 我们今天要做的也就是利用上面的原理完成外网到家里的无线路由器,再到机器人上面 的WIFI板这一过程。 二、外网映射设置 1、家庭路由器设置。 首先需要一个家用的路由器,可以上外网的,这个路由器就是作为沟通小车与外界的桥梁。在这里,我选用了我的TP-Link WR641G+路由器。 第一步:设置转发规则 如下图所示,登陆家庭路由器的192.168.1.1管理界面,找到转发规则——》虚拟服 务器 在这里,因为我们的WIFI机器人运行需要开两个端口,端口8080为视频端口,端口2001为控制端口,所以我们添加两个端口转发规则,这边我使用192.168.1.108作为转发的目标客户端,这就是我们的WIFI板IP地址。这个IP可以自己定的,但是必须为固定的。并 且在家庭路由器的DHCP范围内。 通过这个设置,来自外网的对8080端口和2001端口的访问将重新发送到 192.168.1.108这个IP的客户端上,也就是我们的WIFI板。

基于单片机的WIFI智能小车毕业设计论文

毕业设计方案 课题名称:《基于51单片机的WIFI 遥控小车设计》

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

安川机器人远程控制总结 _机器人端

安川机器人远程控制总结 一、m aster程序 1、master程序的设置 单击【主菜单】—>选择屏幕上的【程序内容】—>【新建程序】,如图1-1。 图1-1 单击【选择】显示如图1-2所示的界面,单击【选择】,输入程序名,单击软键盘【ENTER】,显示如图1-3所示的界面,单击【执行】,此处程序名为“MASTER”,程序创建完毕。

图1-2 图1-3 单击【主菜单】—>选择屏幕上的【程序内容】—>【主程序】,如图1-4。 图1-4 单击【选择】,显示如图1-5所示的设置主程序界面。

图1-5 单击【选择】,出现如图1-6所示的界面,单击【向下】选择“设置主程序”。 图1-6 显示如图1-7所示的界面,单击【向下】选择“MASTER”单击【选择】。

如图1-7 主程序设置完毕。 2、MASTER程序的编辑 单击【主菜单】—>选择【程序内容】—>【选择程序】—>【选择】,出现如图1-7所示的界面,单击【向下】,选择“MSATER”,单击【选择】。在如图2-1所示的界面下编辑主程序。 图2-1 此处以2个工位,每个工位3种工件的工作站为例创建主程序内容,需要熟悉机器人示教器的基本操作(如【命令一览】【插入】【回车】【选择】)。 插入DOUT OT#(1) OFF程序举例: 光标定位在左侧行号处,如图2-2,如图单击【命令一览】,选择【I/O】,单击【选择】,选择【DOUT】,如图2-3所示的界面

图2-2 图2-3 单击【选择】,显示如图2-4所示的界面,光标定位在“DOUT”上,单击【选择】,显示如图2-5所示的界面,光标定位到“数据”行的ON,单击【选择】,切换成“OFF”,单击两次【回车】则可出入该指令。需要指出的是在光标定位处插入指令是向下插入。

智能wifi小车源程序

由于今年组委会光电管和摄像头分开比赛。所以传感器部分我们选择了光电管,比赛以小车的速度记成绩,为了让小车更快更稳得跑完全程,传感器的探测距离必须要远,既要有大的前瞻,普通的红外对管由于功率较小,探测距离增大时,干扰严重,所以我们自制了大功率对管,同时采用了程序控制脉冲发光的办法,有效的降低了发热,提高了系统的稳定性。 系统采用采用了7.2V 2000mAh Ni-Cd蓄电池作为系统能源,并且通过稳压电路分出6伏,5伏已分别给舵机和单片机供电。 直流电机驱动模块接收速度控制信号控制驱动电机运行,达到控制车速目的。转向伺服模块控制舵机转向,进而控制智能车转弯。速度测量模块实时测量智能车车速,用于系统的车速闭环控制,以精确控制车速。 系统充分使用了MC9S12DG128单片机的外围模块,具体使用到的模块包括:ADC模拟数字转换模块、定时器模块、PWM脉冲宽度调制模块、中断模块、I/O 端口和实时时钟模块等。 系统调试过程中,使用了组委会提供的代码调试环境CodeWarrior IDE,同时使用了清华的软件进行了仿真试验。 图1.1 系统结构框图 3.1舵机部分 为了使转弯更加灵活,对舵机相关部分作了部分改动。首先,我们将舵机力臂加长85mm。这样,对于同样的转弯角度值,只需更小的舵机转角,减小了舵机转弯时惯性带来的弊端。其次,我们将舵机反装,使舵机连杆水平,因为此时舵机提供的力全部用在转弯上。 3.2前轮部分 为了增加前轮转弯时的稳定性,对前轮相关部分进行了部分改动。首先,更改前后垫片

的数量,使前轮主销后倾,这样,车轮具有更好的自动回正功能。其次,更改连杆的长度,使车轮外倾,车轮转弯时,前半部分重心上移,促使赛车转弯更加稳定。再次,我们通过更改舵机连杆的长度,增加前轮前束,同样增加了前轮的稳定性。 3.3底盘部分 为了提高赛车运行时的稳定性,对地盘相关部分作了部分改动。首先,前轮相关位置加垫片,降低了前轮重心。其次,更改后轮车轴处的调节块,使后轮重心升高,这样,车身前倾,一定程度上,增加了车的稳定性。 3.4后轮部分 首先,更换后轮轮距调节块,使后轮两轮之间间距加大。这样,车在转弯时不容易产生侧滑。其次,调节后轮差速,使赛车转弯更加灵活。 4.1电源部分 为了能使智能车系统能正常工作,就需要对电池电压调节。其中,单片机系统、车速传感器电路需要5V 电压,路径识别的光电传感器和接收器电路电压工作为5V 、伺服电机工作电压范围4.8V 到6V(或直接由电池提供),直流电机可以使用7.2V 2000mAh Ni-cd 蓄电池直接供电。考虑到由于驱动电机引起的电压瞬间下降的现象,因此采用低压降的三端稳压器成为必然。我们在采用lm7805,和lm7806作为稳牙芯片。经试验电压纹波小,完全可以满足要求。 电池(7.2v ) 2000mAh Ni-cd 稳压电路 电机 图4.1系统电压调节图 5V 对管 单片机 舵机 测速板 6V 7.2V

机器人无线远程控制系统的人机接口_王晓亨

中图分类号:TP393 文献标识码:A 文章编号:1009-2552(2007)01-0001-03 机器人无线远程控制系统的人机接口 王晓亨,陆宇平 (南京航空航天大学自动化学院,南京210016) 摘 要:在无线局域网环境中,建立了一套以移动机器人为控制对象的、模拟Internet传输特征的远程控制技术研究平台。通过可视化的人机接口界面,可以直接向远端机器人发送控制指令,并能看到反馈的状态数据;还可通过手柄控制,语音控制、命令集可编程接口等方式控制机器人。最后的开发实例具有操作简便、界面友好、易于扩展等特点。 关键词:人机接口;Speec h API;机器人 Man-machine interface of robot wirless remote distance control system WANG Xiao-heng,LU Yu-ping (College of Auto mation,Nanjing University of Aeronautics and Astronautics,Nanjing210016,C hina) Abstract:The research platform of remote distance control technology of simulating the characters of Internet communication is established in wireless local area network.The operators can directly send control instr uc-tions to the remote robot,and vie w the feedbacked state data through the visualized man-machine interface, also can control the r emote robot by handle c ontr ol,speech control,pr ogrammable command sets and so on. The instance has some advantages such as convenient operation,friendly interface,adapted extension. Key words:man-machine interface;Speech API;robot 0 引言 近年来,基于Internet的远程控制技术是一个研究热点,随着无线网络技术的发展和日益成熟,使得基于无线网络的远程控制技术的研究得到了极大的关注。 利用VC++设计了一套以移动机器人为复杂控制对象,在无线局域网环境下模拟广域网络的特征,用软件的方式人为再现不确定性时延,数据传输丢失等网络现象的远程技术研究平台。并利用该开发平台建立一套面向无线网的机器人远程控制系统。该平台通过可视化的人机接口界面可方便的进行操作和进一步的研究。 1 硬件环境 如图1所示,在实验室内搭建了无线网络环境,无线路由器通过其广域连接端口连接到校园网,并能通过校园网访问Internet,从而构成了一个广域网系统。机器人通过其车载计算机上的无线网卡与实验室内的无线局域网互联,可以实现从网络的任何节点来远程控制机器人 。 图1 硬件结构 被控的机器人采用了美国Activmedia Robotics 公司的P3-DX多功能智能移动机器人,它配备了车载计算机(装有无线网卡、视频采集卡)、带抓手的 收稿日期:2006-08-08 基金项目:国家863重点课题资助项目(2003AA755021) 作者简介:王晓亨(1981-),男,硕士研究生。主要从事网络与控制等方向的研究。 DOI:10.13274/https://www.doczj.com/doc/134536278.html, ki.hdzj.2007.01.001

智能小车控制程序1

/*实现前进与后退功能*/ /*控制智能车向前行驶10秒,然后停3秒,再向后行驶6秒,停止*/ /********************************************************/ #include #define uint unsigned int /*进行端口声明时,应与具体硬件连接相对应,如不相互对应,将影响程序功能的正常实现*/ sbit S1=P1^3; //对电机端口声明 sbit S2=P1^4; sbit S3=P1^5; sbit S4=P1^6; /*功能函数定义*/ void delay(uint del) //延时函数,延时del毫秒 { uint i,j; for(i=0; i

{ go(); //前进 delay(10000); //前进10秒 stop(); //停止 delay(3000); //停3秒 back(); //后退 delay(6000); //后退6秒 stop(); //停止 }

基于Arduino单片机控制的WiFi智能小车

呼伦贝尔学院 计算机科学与技术学院 本科生毕业论文(设计) 题目:基于Arduino控制的 WIFI智能小车 学生姓名:苑伟 学号: 专业班级:2011级计算机科学与技术一班 指导教师:陶锐 完成时间: 2015年5月22日

目录

摘要 本次设计wifi智能小车主要采用Arduino作为底层硬件控制核心,接收来自路由器的指令执行相关操作;采用PWM脉冲调节小车速度、舵机控制以及灯光亮度;采用定时器实现小车数据的发送、小车的避障及计算小车的行驶速度;运用简单的PID算法实现轮胎直接的差速控制;采用路由器发射无线wifi,使用Lua脚本实现了接收单片机数据及发送操作指令,设计了web页面控制小车的B/S模式结构。 关键字:Arduino;PWM脉冲;PID算法;web控制

Abstract The design of wi-fi smart cars mainly adopts the Arduino as the control core to receive instructions from the router perform related operations; Using PWM pulse to adjust the vehicle speed, steering gear control and lighting brightness; using timer to realise the transmission of car data ,the breakdown of the car and calculate the car speeds; Using the simple PID algorithm tyre direct differential control; Using wireless wifi router launch, using the Lua script implements receiving MCU data and send operation instructions,and at last, it designs a web page to control the car B/S mode structure. Keyword: Arduino; PWM Pulse; PID arithmetic; Web manage

工业机器人控制系统组成及典型结构

工业机器人控制系统组成及典型结构 一、工业机器人控制系统所要达到的功能 机器人控制系统是机器人的重要组成部分,用于对操作机的控制,以完成特定的工作任务,其基本功能如下: 1、记忆功能:存储作业顺序、运动路径、运动方式、运动速度和与生产工艺有关的信息。 2、示教功能:离线编程,在线示教,间接示教。在线示教包括示教盒和导引示教两种。 3、与外围设备联系功能:输入和输出接口、通信接口、网络接口、同步接口。 4、坐标设置功能:有关节、绝对、工具、用户自定义四种坐标系。 5、人机接口:示教盒、操作面板、显示屏。 6、传感器接口:位置检测、视觉、触觉、力觉等。 7、位置伺服功能:机器人多轴联动、运动控制、速度和加速度控制、动态补偿等。 8、故障诊断安全保护功能:运行时系统状态监视、故障状态下的安全保护和故障自诊断。 二、工业机器人控制系统的组成 1、控制计算机:控制系统的调度指挥机构。一般为微型机、微处理器有32位、64位等如奔腾系列CPU以及其他类型CPU。 2、示教盒:示教机器人的工作轨迹和参数设定,以及所有人机交互操作,拥有自己独立的CPU以及存储单元,与主计算机之间以串行通信方式实现信息交互。 3、操作面板:由各种操作按键、状态指示灯构成,只完成基本功能操作。 4、硬盘和软盘存储存:储机器人工作程序的外围存储器。 5、数字和模拟量输入输出:各种状态和控制命令的输入或输出。 6、打印机接口:记录需要输出的各种信息。 7、传感器接口:用于信息的自动检测,实现机器人柔顺控制,一般为力觉、触觉和视觉传感器。 8、轴控制器:完成机器人各关节位置、速度和加速度控制。 9、辅助设备控制:用于和机器人配合的辅助设备控制,如手爪变位器等。 10、通信接口:实现机器人和其他设备的信息交换,一般有串行接口、并行接口等。 11、网络接口 1)Ethernet接口:可通过以太网实现数台或单台机器人的直接PC通信,数据传输速率高达10Mbit/s,可直接在PC上用windows库函数进行应用程序编程之后,支持TCP/IP通信协议,通过Ethernet接口将数据及程序装入各个机器人控制器中。

主题-系统登录-吉利汽车远程维修问诊系统(GTAC)

全国吉利汽车授权服务商: 从技术咨询热线反映出:多数服务站的维修技师对远景发动机电子防盗系统的匹配方法知之不祥,甚至和遥控防盗系统混淆。因此,现将该系统的部件区分和匹配方法进行整理、重新梳理,以指导服务站学习和匹配,具体如下: 一、 电子防盗系统简单说明 1、 远景车型的发动机电子防盗系统和遥控防盗器系统是两个完全相互独立的系统,在车辆上所起的防盗作用也是各不相同的、互不干涉的; 2、 原车更换下来的发动机ECU 、防盗控制器及转发器不能在其他车辆上再次使用; 3、 发动机ECU 、钥匙转发器、防盗控制器等三个元件,一经在同一车辆上匹配后便不能在其他车辆上使用; 4、 经过匹配后的发动机ECU 、钥匙转发器、防盗控制器等三个部件中,若更换其中任一部件,则必须进行匹配。 二、 部件识别 备注:远景车型配置的发动机电子防盗(锁定)系统是基于发动机 ECU 与电子防盗(锁定)控制模块进行变码数据交换,来实现禁止发动机起动控制的。 三、 系统匹配方法 1、更换钥匙转发器(芯片)后的匹配步骤 第一步:连接诊断仪(K61or K81) 到车辆诊断连接口; 第二步:在车型菜单中选择“远景”; 第三步:选择“防盗系统”; 第四步:选择“输入代码”; 第五步:选择“输入安全代码”; 第六步:"确认输安全代码; 第七步:按F1进入输入代码界面; 第八步:按F1键进入代码界面; 第九步:在代码界面输入相应的代码; 第十步:按F1键进入下一输入界面; 主 题 关于远景发动机电子防盗系统匹配操作的技术通知 ■专题技术信息 □ 新技术信息 □更新技术信息 编号FW/JS-ZC-45-2008 生效日期:2008年12月17日 涉及车型:吉利远景 此处代码仅做演示 钥匙转发器 电子防盗控制器 发动机ECU

智能车控制算法

智能车转角与速度控制算法 1.检测黑线中点Center:设黑、白点两个计数数组black、white,从第一个白点开始,检测到一个白点,白点计数器就加1,检测到第一个黑点,黑点计数器就加1,并且白点计数器停止,以此类推扫描每一行;黑线中点=白点个数+(黑点的个数/2) 2.判断弯直道: 找出黑线的平均位置avg (以每10行或者20…作为参照,行数待定) 算出相对位移之和(每一行黑线中点与黑线平均位置距离的绝对值之和) 然后用Curve的大小来确定是否弯直道(Curve的阀值待定)。 3.控制速度: 根据弯度的大小控制速度大小。 //*****************************弯度检测函数*******************************// Curvecontrol () { int black[N]; //黑点计数器 int white[N]; //白点计数器 int center[N]; //黑线中点位置 int avg; //黑线中点平均位置 int curve;//N行的相对位移之和 if(白点) ++white[N]; //判断黑白点的个数 else ++black[N]; center[N]=white[N]+black[N]/2; //每一行的黑线中点avg=(center[1]+center[2]+...+center[N])/N; //求出黑线中点的平均位置 curve=(|avg-center[1]|+|avg-center[2]|+...+|avg-center[N]|)/N //求出N行的相对位移之和 return curve; //返回弯度大小

基于无线网络的小车远程控制系统的设计分解

毕业设计(论文) 题目: 基于无线网络的小车远程控制系统的设计 作者阳开届别2015届 院别机械工程学院专业机械电子工程指导教师李锶职称副教授 完成时间2015年5月2日

摘要 Wifi小车主要由电机、小车车底盘、STC89C52芯片、wif固化模块、电机驱动模块、舵机、电源、摄像头等主要部件组成。Wifi小车利用手提电脑或者android 系统手机等能连接无线路由器,通过专业应用软件在终端上显示路由器连接的摄像头所采集到的视频信号。而在控制方面,由电脑或手机上的特定软件发送控制指令到wifi板,通过wifi板转将控制指令传给单片机处理。然后通过单片机控制电机驱动电机转动,舵机转动,就实现了控制小车的运动和视频采集。 关键字路由器;wifi;智能小车;89C52

Abstract The Wifi car mainly by the electrical machinery, the car chassis, the STC89C52 chip, the wif solidification module, the motor-driven module, the servo, the power source, the photograph prime major component is composed.The Wifi car use portable computer or the android system handset and so on can connect the wireless router, through the specialized application software in the terminal demonstrated the router connection the camera gathers video signal.But in the control aspect, from on the computer or the handset specific software transmission control command to the wifi board, the control command will pass to monolithic integrated circuit processing through the wifi rotary-inversion.Then through the monolithic integrated circuit control motor-driven electrical machinery rotation, the servo rotation, realized has controlled the car the movement and video frequency gathering. Key words :router; wifi; Intelligent car; 89C52

智能小车控制基本原理

【机器人创意工作室教程一】WIFI智能小车机器人基本原理 [复制链接] liuv ikin g 管 理 员 做 中 国 人 自 己 的 W I F I 机 器 人 ! 贡献 2 4 9 电梯直达 楼主 发表于 2012-5-13 11:58:55 |只看该作者|倒序浏览 分享到:11 WIFI智能小车机器人是很多人童年时的梦想,就好比当年看着《小鬼当家》里面的那个视频遥控车一样,看着就激动! 然而对于大部分初学者而言,本身并非电子专业,也不是计算机专业,可是却对WIFI/蓝牙控制的智 能小车机器人情有独钟,怎么办呢?对于一个专业不对的人来说,确实是隔行如隔山,但是没有关系,从今天起,WIFI机器人网·机器人创意工作室不间断地推出一系列教程,手把手教你如何DIY一个属 于自己的智能小车机器人。 鉴于蓝牙智能车和WIFI智能车其实很类似的,只是把WIFI模块换成了蓝牙模块,所以蓝牙车就不再 详细阐述了,弄明白了WIFI车,蓝牙车也一样的。 OK,进入正题,机器人创意工作室教程第一讲《WIFI智能小车机器人基本原理》 我们的这款WIFI智能小车机器人采用的路由器+PC或者手机、网页控制方式。其基本原理分为4大块: 1、把普通的无线路由器通过刷入开源的Openwrt系统,使之成为一个运行了Linux系统的小电脑,何 为Openwrt? 请看: 什么是OpenWRT? 1. 关于 OpenWrt 当Linksys 释放 WRT54G/GS 的源码后,网上出现了很多 不同版本的 Firmware 去增强原有的功能。大多数的 Firmware 都是99%使用 Linksys的源码,只有 1%是加上去的,每一种 Firmware 都是针对特定的市场而设计,这样做有2个缺点,第一个是难以集 合各版本Firmware的长处,第二个是这版本距离 Linux 正式发行版越来越远。OpenWrt 选择了另一 条路,它从零开始,一点一点的把各软件加入去,使其接近 Linksys 版 Firmware的功能,而OpenWrt 的成功之处是它的文件系统是可写的,开发者无需在每一次修改后重新编译,令它更像一个小型的 Linux 电脑系统,也加快了开发速度。 以上解释摘自百度百科。简而言之,就是从思科的路由源码改造过来的,一个适用于某些特定芯片的 路由器的小型Linux系统,有了这个系统,我们的路由就不再是上网那么简单了,我们可以在上面安 装各种程序、驱动,以路由为平台,用户可以自由地加载USB摄像头、网卡、声卡、等等设备。 我们的WIFI板上运行着一款程序,叫做mjpg-streamer,这个程序可以把USB摄像头的视频进行编码,然后通过WIFI返回给上位机,这样,我们就可以看到来自机器人的视频了。 同时路由一般都预留有TTL串口,TTL串口是用来调试或者刷机用的,我们把这个TTL串口引出来, 然后通过安装在路由里面的Ser2net软件,就能把来自WIFI信道的指令转到串口输出,而串口在这里 的作用就是与单片机芯片MCU通信,让单片机知道用户要让他做什么动作。关于TTL的介绍,请看后 文。 WIFI(路由)模块:

WIFI智能小车机器人

WIFI智能小车机器人 作者:福建师范大学协和学院陈洋斌叶志燕沈渊 指导教师:钟伟雄林民庆 作品简介 在平常的生活中,我们经常会见到有人在玩遥控车,甚至现在还有了遥控飞机。这一切在过去那些年都还只是人们眼中孩子们的玩具而已,然而随着科技的发展,关于机器人的电影,或者是现实生活中科学研究者研发出来的仿生机器人经常在各种媒体中不断的报导。这毫无疑问,再过个几十年,机器人将走进我们的家庭中,它将为我们带来更多的便利。如今,很多电子发烧友DIY出了各种版本WIFI机器人。Wifi Robot,顾名思义就是通过wifi无线网控制的机器人,比起普通的遥控车,它的好处就是遥控信号覆盖范围可以做到很广。 WIFI智能小车机器人是一种基于WIFI的无线远程智能遥控机器人,利用非常成熟的WIFI无线网络为数据载体,实现控制数据,视频数据传送而达到控制小车和视频监控等等功能。它是集无线通信、实时电机驱动、多向机械云台、视频监控、环境温度检测、为一体的多功能智能遥控车。本系统在电脑端上位机采用QT编程,由于QT面向多平台,并且可移植性好。通过QT编写的上位机,便可以把控制数据通过Socket发送到路由器,路由器再通过ser2net把数据包解开,然后转发到路由器的串口; 该系统的控制端采用STC15单片机作为微处理器,通过STC15单片机与路由器建立串口通信,便能利用路由器的串口数据进行控制电机的工作状态模式和三个陀机的工作角度。STC15单片机还负责实时监控环境温度并经过路由器反馈至电脑,让使用者可以实时了解小车所在地的气温,以便于在到达目的地之前设定好空调温度等应用。

平台选型说明 本设计使用本届大赛指定的单片机开发板(以STC15F2K61S2芯片为控制核心) 设计说明 1、设计要求 1.找一台能刷Linux的无线路由器,将其操作系统刷成OpenWrt。

ROBOT 远程控制

12. 远程控制
12. 远程控制
借助输入/输出、Ethernet (TCP/IP) 和 RS-232C,控制器可以从外部设备上控制机器 人。外部设备可以执行多个命令,包括 Motor On/Off、开始、暂停、继续和停止。 有关远程 I/O 的扩展功能的详细信息,请参阅 EPSON RC+ 7.0 远程控制参考手册 。
12.1 远程 I/O
远程控制的配置需要有三个基本步骤:
1. 使用[设置]-[设置控制器]-[远程控制]页面上的[远程控制]来配置远程控制输入和 输出。 最初并不分配到远程功能上。
2. 将控制装置设置到[设置]-[设置控制器]-[配置]页面上的远程控制上。 若要启用外部远程输入,分配远程功能并将远程功能设置到控制设备上。设置为 远程控制设备时,控制器只能从远程设备上进行控制。
远程控制功能可在以下系统中使用。
示例:从 PLC 上控制机器人 使用远程控制从 PLC 上控制机器人(控制器)。 使用 PLC 时,您需要熟悉使用远程输入所需的信号交换。详见下文。
示例:使用带按钮和指示灯的按钮盒来控制机器人 这 些 灯 连 接 到 控 制 器 上 的 远 程 控 制 输 出 上 来 指 示 状 态 , 如 AutoMode 、 MotorOn、Error 等。这些按钮连接到远程输入上来控制电机功率和启动程序。
有关 I/O 连接的详细信息,请参阅以下手册。
机器人控制器的设置与操作
I/O 连接器
I/O 远程设置
扩展 I/O 板
机器人控制器选件现场总线 I/O
EPSON RC+ 7.0(Ver.7.0)用户指南 Rev.3
281

安川机器人远程控制总结机器人端

安川机器人远程控制总结 一、master程序 1、master程序的设置 单击【主菜单】—>选择屏幕上的【程序内容】—>【新建程序】,如图1-1。 图1-1 单击【选择】显示如图1-2所示的界面,单击【选择】,输入程序名,单击软键盘【ENTER】,显示如图1-3所示的界面,单击【执行】,此处程序名为“MASTER”,程序创建完毕。 图1-2 图1-3 单击【主菜单】—>选择屏幕上的【程序内容】—>【主程序】,如图1-4。 图1-4 单击【选择】,显示如图1-5所示的设置主程序界面。 图1-5 单击【选择】,出现如图1-6所示的界面,单击【向下】选择“设置主程序”。 图1-6 显示如图1-7所示的界面,单击【向下】选择“MASTER”单击【选择】。 如图1-7 主程序设置完毕。 2、MASTER程序的编辑 单击【主菜单】—>选择【程序内容】—>【选择程序】—>【选择】,出现如图1-7所示的界面,单击【向下】,选择“MSATER”,单击【选择】。在如图2-1所示的界面下编辑主程序。 图2-1 此处以2个工位,每个工位3种工件的工作站为例创建主程序内容,需要熟悉机器人示教器的基本操作(如【命令一览】【插入】【回车】【选择】)。 插入DOUT OT#(1) OFF程序举例: 光标定位在左侧行号处,如图2-2,如图单击【命令一览】,选择【I/O】,单击【选择】,选择【DOUT】,如图2-3所示的界面 图2-2 图2-3 单击【选择】,显示如图2-4所示的界面,光标定位在“DOUT”上,单击【选择】,显示如图2-5所示的界面,光标定位到“数据”行的ON,单击【选择】,切换成“OFF”,单击两次【回车】则可出入该指令。需要指出的是在光标定位处插入指令是向下插入。 图2-4 图2-5 程序内容如下(安装在机器人中的MASTER程序见附件MASTER):第二行的NAME才是机器人控制器登录的程序名,单纯的修改文件名不能改变程 序名 /JOB //NAME MASTER

基于单片机的WIFI智能小车设计

基于单片机的WIFI智能小车设计 摘要 WIFI智能小车由电机、小车车体、89C52控制芯片、WIFI收发模块、电机驱动、舵机、电源、摄像头等主要部件以及灯光、蜂鸣器、电平转换等辅助模块构成。WIFI智能小车利用笔记本或手机等能连接无线路由器的终端智能设备连接到路由器,通过应用软件显示路由器上摄像头上采集到的视频信号,再通过这些智能的终端设备发送控制指令到无线路由器,通过无线路由器将指令传送给单片机进行处理。然后通过单片机控制电机驱动驱动电机转动、舵机转动,从而实现控制小车的运动及视频采集。 关键词:路由器;wifi;智能小车;89C52

Abstract The intelligent WIFI car involved a motor, a body, the 89C52 control chip, a WIFI transfer module, motor drivers, a power supply, lights, a buzzer and a voltage converter. The intelligent WIFI car can use an intelligent terminal (such as a laptop or a mobile phone) to connect with the router and use application software to display the video signal collected by the camera, then the intelligent terminal will send control commands which can be processed by the MCU though the routers. The MCU will control the turning of motors and realize the moving of the car and the video collection. Keywords:Router;WIFI;intelligent car;89C52

智能小车蓝牙控制技术设计方案

智能小车蓝牙控制技术设计方案 手机遥控智能小车设计技术设计方案

文档修订记录

一、项目名称 《基于32F407的手机遥控智能小车的设计》 二、设计要求及性能指标 设计一个基于32F407的手机遥控智能小车,选用32F407作为主控芯片进行设计和实现。具体任务包括项目的可行性分析,硬件电路的设计,系统软件设计,仿真调试,实际测试等。 具体要求如下: (1)根据提供的原理图和相关资料,了解、掌握小车运行的工作原理,熟悉所用到的硬件模块工作原理 (2)学习掌握32F407库函数编程环境,掌握相关的库函数 (3)编写32F407程序,应用电机驱动模块、蓝牙模块和语音模块,实现小车根据接收到的指令(手机发出)完成相应的动作,并通过语音模块告知指令内容 三、项目总体方案设计 1、系统总体方案 根据课程设计的要求,系统设计方案如下:以32F407作为微控制器,以电机驱动电路和两个直流减速电机构成电机驱动模块;语音模块作为语音控制电路、以在特定的操作下产生相应的语音;以蓝牙模块和手机蓝牙相连接,以接收手机相应的指令;以7805稳压管构成电源电路。手机遥控智能小车系统结构框图如图1所示。

图1 手机遥控智能小车系统结构框图 手机遥控小车就是通过手机蓝牙和智能小车无线连接,通过蓝牙发送指令,小车接送到指令后,就会按照预先设定的程序,执行相应的操作,并由语音模块发出一系列相应的语音。为了实现这一目的,就需要有信息处理功能的微处理器来接收手机蓝牙发送的相应指令,然后将处理的指令发送到执行机构来执行,这就需要电机驱动模块,来实现小车的行走功能,而一个完整的系统,还需要有电源模块来提供能量。 系统的基本原理:预先在单片机内编程,使得相应的指令对应控制小车相应的轮子。然后手机通过蓝牙将相应的指令发送到单片机,以控制小车的运行。 2、关键技术、设计难点及其解决方案 关键技术: 1、能做到小车和手机无线连接,控制方便。 2、需要一个中央大脑,既能接收到手机的指令,又能奖指令传送给小车。 3、小车的接收到相应的指令后,可以做出相应的运用或者操作。 难点: 1、如何选择相应的中央大脑,选好之后怎么设置指令能做到简单和准确。 2、如何选择相应的驱动电路。如何操作。 解决方案 1、选择单片机芯片作为中央控制大脑,

机器人控制系统组成、分类及要求资料

机器人控制系统 一、工业机器人控制系统应具有的特点 工业机器人控制系统的主要任务是控制工业机器人在工作空间中的运动位置、姿态和轨迹、操作顺序及动作的时间等项。其中有些项目的控制是非常复杂的,这就决定了工业机器人的控制系统应具有以下特点: (1)工业机器人的控制与其机构运动学和动力学有着密不可分的关系,因而要使工业机器人的臂、腕及末端执行器等部位在空间具有准确无误的位姿,就必须在不同的坐标系中描述它们,并且随着基准坐标系的不同而要做适当的坐标变换,同时要经常求解运动学和动力学问题。 (2)描述工业机器人状态和运动的数学模型是一个非线性模型,随着工业机器人的运动及环境而改变。又因为工业机器人往往具有多个自由度,所以引起其运动变化的变量不止个,而且各个变量之间般都存在耦合问题。这就使得工业机器人的控制系统不仅是一个非线性系统,而且是一个多变量系统。 (3)对工业机器人的任一位姿都可以通过不同的方式和路径达到,因而工业机器人的控制系统还必须解决优化的问题。 二、对机器人控制系统的一般要求 机器人控制系统是机器人的重要组成部分,用于对操作机的控制,以完成特定的工作任务,其基本功能如下: ?记忆功能:存储作业顺序、运动路径、运动方式、运动速度和与生产工艺有关的信息。 ?示教功能:离线编程,在线示教,间接示教。在线示教包括示教盒和导引示教两种。 ?与外围设备联系功能:输入和输出接口、通信接口、网络接口、同步接口。?坐标设置功能:有关节、绝对、工具、用户自定义四种坐标系。 ?人机接口:示教盒、操作面板、显示屏。 ?传感器接口:位置检测、视觉、触觉、力觉等。 ?位置伺服功能:机器人多轴联动、运动控制、速度和加速度控制、动态补偿等。?故障诊断安全保护功能:运行时系统状态监视、故障状态下的安全保护和故障

智能小车速度控制程序

************************************************************************ 简单寻迹程序:接法 EN1 EN2 PWM 输入端,本程序不输入PWM ,直接使插上跳线帽,使能输出,这样 就能全速运行 接上测速模块 测速模块电源+5V GND 取自于单片机板靠近液晶调节对比度的电源输出接口把测速模块输出OUT1 OUT2 接入单片机P3。 2 P3。3 时左上电机正转左上电机接P1_0 P1_1 接IN1 IN2 当P1_0=1,P1_1=0; 驱动板子输出端(蓝色端 OUT1 OUT2 ) 子 P1_0 P1_1 接IN1 IN2 当P1_0=0,P1_1=1; 时左上电机反转 P1_0 P1_1 接IN1 IN2 当P1_0=0,P1_1=0; 时左上电机停转 时左下电机正转左下电机接P1_2 P1_3 接IN3 IN4 当P1_2=1,P1_3=0; 驱动板子输出端(蓝色端 OUT3 OUT4 ) 子 P1_2 P1_3 接IN3 IN4 当P1_2=0,P1_3=1; 时左下电机反转 P1_2 P1_3 接IN3 IN4 当P1_2=0,P1_3=0; 时左下电机停转 时右上电机正转右上电机接P1_4 P1_5 接IN5 IN6 当P1_4=1,P1_5=0; 驱动板子输出端(蓝色端 子OUT5 OUT6 )

P1_4 P1_5 接IN5 IN6 当P1_4=0,P1_5=0; 时右上电机停转 时右下电机正转右下电机接P1_6 P1_7 接IN7 IN8 当P1_6=1,P1_7=0; 驱动板子输出端(蓝色端 OUT7 OUT8 ) 子 P1_6 P1_7 接IN7 IN8 当P1_6=0,P1_7=1; 时右下电机反转 P1_6 P1_7 接IN7 IN8 当P1_6=0,P1_7=0; 时右下电机停转 P3_2 接四路寻迹模块接口第一路输出信号即中控板上面标记为OUT1 P3_3 接四路寻迹模块接口第二路输出信号即中控板上面标记为OUT2 P3_4 接四路寻迹模块接口第三路输出信号即中控板上面标记为OUT3 P3_5 接四路寻迹模块接口第四路输出信号即中控板上面标记为OUT4 四路寻迹传感器有信号(白线)为0 没有信号(黑线)为 1 四路寻迹传感器电源+5V GND 取自于单片机板靠近液晶调节对比度的电源输出接口 关于单片机电源:本店驱动模块内带LDO 稳压芯片,当电池输入6V 时时候可以输出稳定的5V 分别在针脚标+5 与GND 。这个输出电源可以作为单片机系统的供电电源。 ****************************************************************************/ #include

相关主题
文本预览
相关文档 最新文档