当前位置:文档之家› 智能化大厦综合布线系统防雷与接地技术

智能化大厦综合布线系统防雷与接地技术

智能化大厦综合布线系统防雷与接地技术
智能化大厦综合布线系统防雷与接地技术

智能化大厦综合布线系统防雷与接地技术

来源:建筑电气商务网

摘要:随着信息处理系统的电子化、设备的高度集成化的提高和数字技术的发展,智能大厦综合布线纵横交错智能化大楼的网络系统对浪涌较为敏感,电路的雷电承受能力进一步下降,特别是综合布线连接的网络交换机、服务器、计算机、监控系统、终端设备容易遭受雷电的侵害,因而这些网络系统的各类接口应具有更好的防雷性能。文章着重论述智能化大夏综合布线系统的防雷与接地。

综合布线系统(PDS)是利用双绞线或光缆集成的通用传输系统,它是智能化建筑物连接“3A”系统的媒介,采用标准的信息配线系统,综合了所有语音、数据、图像与监控设备,并将各类设备终端插头插入标准的终端盒内。由于PDS系统在建筑物内纵横交错,它可以使交换系统与其他信息系统彼此相连,使这些系统成为外部通信网络的一个接入网点。但PDS连接的数据、网络计算机设备对雷电非常敏感,雷电可以对这些设备造成毁灭性的破坏。

智能大厦受到雷击时,大楼内冲击电位分布和空间瞬时电磁场将关系到建筑物内人身和设备的安全。由于受冲击时地电位升高,将影响到装在大楼内而与楼外有电气联系的网络系统。为此,雷电对智能大厦的设备危害来自三个方面,首先,浪涌电流沿着缆线进入网络系统;其次,由于地电位对网络系统产生影响,设备的冲击阻抗的反击地电位通常可达数十至数千伏;另外,现代的计算机网络对雷电极为敏感,即使几公里以外的高空雷闪或对地雷闪都有可能导致这些设备的薄弱环节——计算机CPU控制中心误动或损坏。根据国外资料介绍0.03高斯的磁场强度可造成计算机误动,2.4高斯即可将元件击穿。

对于雷电磁场的影响,主要是雷击大楼时雷电流在建筑物的分布直接影响到网络系统设备,特别是对雷击敏感的计算机控制单元及数字终端设备在智能大厦的布局。合理的在机房安装设备布局可有效减少雷害;大楼采用联合接地可有效解决地电位的影响;在大楼内电源、计算机、控制终端、监控系统、终端设备的接口处安装浪涌保护装置,并对大楼的出入缆线采取屏蔽、接地等措施,可有效减少雷电对信号及网络系统的侵害。

1 智能大厦PDS系统遭受雷击的因素

PDS系统作为整个大楼的核心要害信息中枢,自然要预先消除任何事故诱发的因素。直击雷及雷击时雷电电磁场分布、接地系统。各个子系统的配电单元及计算机网络与外界联系的信号数据线、建筑物内部较长的网络数据线,卫星小站的高频头、天馈线应该是雷击的核心。对于雷电电磁场的影响,主要是雷击大楼时雷电流在建筑物的分布直接影响到网络系统设备,特别是对雷击敏感的计算机控制单元及数字终端设备在智能大厦的布局,合理的布局可将雷害的损失降低到最低限度。大楼采用联合接地,均压等电位可有效解决地电位升高的影响,而在大楼内设备间、建筑群子系统、管理子系统、垂直和水平子系统、配电系统、UPS、交换机、服务器、Hub、监控系统、终端设备的接口处安装浪涌保护装置,并对大楼的出入缆线采取屏蔽、接地等措施,可有效减少雷电对信号及网络系统的侵害。卫星通信及无线通信天馈线屏蔽与接地,根据馈线的长度辅以同轴雷电过电压保护器可充分抑制雷电流通过馈线系统进入卫星收发信机的量级。

2 PDS系统的雷电过电压保护

2.1 PDS配电系统的雷电过电压保护

配电系统雷电过电压保护并非简单应用雷电过电压保护器件,而是运用电磁兼容原理,根据雷电保护区的划分,对一个需要保护的系统进行综合、多级雷电过电压保护。传统的雷电浪涌保护方法,在选择浪涌SPD件时,仅考虑被保护的通信设备本身,没有根据电磁兼容(EMC)原理,把局部或单一的防护措施归结到系统防雷,即整体防护的概念。由于缺乏系统整体观念,容易导致在电源系统网络,甚至在雷电防护的薄弱环节不同点安装过电压保护器时,各类防护器件相互之间不能控制和相互协调。由于防护器件在设计时,其防护性能仅仅考虑被保护设备本身的需求,而对于系统的防护,各级防护器件是相辅相成,互相影响的,若用于局部防护的过电压器件不能有效发挥其防护性能,就会影响整体防护。另外,还有一个重要的立论基础:“雷电过电压保护设计必须是建立在联合接地基础上”。

2.1.1 PDS系统设备间雷电过电压保护

在智能大厦配电变压器低压侧应安装标称放电电流不小于100kA的过压型SPD(包括主楼与各建筑群低压电缆引入子系统间的配电箱前)。低压电力电缆引入设备间机房人口处(在交流稳压器或交流配电屏前),相线及零线应分别对地加装过压型SPD,其标称放电电流应大于20kA(相应的最大通流量为50kA)。并且,在SPD回路中串接保险丝,其主要目的是防止SPD因各类因素损坏或由于暂态过电压使SPD燃烧(国内外各类系统曾发生过多次此类事故,国内外防雷公司的SPD产品在工程上都要求采用串接保险丝,IEC60364-5-534《过电压保护装置》对此有专门论述),影响供电线路的正常工作(由于以往的规范忽视了在SPD并联回路中串接保险丝,从而给正常供电带来了隐患)。保险丝标称电流的量级一般为上一级保险丝的1-1.6倍。

根据对雷电活动区的划分以及智能大厦的分类、所处的地理环境、建筑物的形式、供电方式的情况,在设计中对电源SPD提出了不同要求。

2.1.2 PDS系统二级交接间、各管理子系统设备间的雷电过电压保护

在智能大厦配电低压电力电缆引入二级交接间或各管理子系统设备间机房人口处,相线及零线应分别对地加装过压型SPD,其标称放电电流应大于20kA (相应的最大通流量为50kA);

2.1.3 各设备间机房内的雷电过电压保护

交换机、Hub、路由器、网络服务器、远程传感器控制系统、测试仪表的拖板式电源插座排内应安装标称放电电流为10kA的电源SPD。另外,各类设备应避免直接使用建筑物外墙体的电源插座,直流供电系统也应加装SPD进行保护。

2.1.4 两级SPD的隔距

按照国内外有关文献及标准,根据两级SPD的类型,SPD对雷电反应时间的长短,连接线缆的材料粗细都有要求。当两级都为MOV时,连接线缆隔距一般要求为3-5m;当两级SPD为不同器件时,连接线缆隔距一般要求为10m或连接线缆电感量为7-15H。因此,为了有可操作性,当上一级为雷击电流型SPD,次级采用过压型SPD时,两者之间的配电缆线隔距应大于10m。当上一级SPD与次级SPD都采用过压型SPD时,两者之间配电缆线的隔距应大于5m。

2.2 PDS计算机网络系统的雷电过电压保护

2.2.1 信号系统的雷电过电压保护

根据ITU-TK11规定笔者建议应坚持《过电压和过电流防护的原则》电磁兼容的基本原理,配线架与程控交换机用户板过电压和过电流防护的关系应是相辅相成的。作为出入通信局站的市话

电缆,是雷电过电压和用户线与电力线碰线引人的过电流的主要诱因。由于配线架与程控交换机用户板都具备抗击雷电过电压和过电流的能力,作为第一级配线架的保安单元与第二级程控交换机用户板的保护电路之间有一个协调的关系,第一级用于一次保护的元件与第二级用于二次保护的元件作用是不同的。雷电过电压和工频过电流防护的原则:第一级的保护元件要承受雷电过电压和工频过电流的主要能量,而第二级保护元件则承受经过第一级保护后剩余的能量,第一级是粗保护,而第二级则是精细保护。第一级元件需承受较大的能量,因为元件选择问题,所以元件参数动作反应时间可能较慢;而第二级是精细保护,承受的能量较小,故元件参数动作反应时间可以较快。

通信行业标准目前还没有提出在智能大厦使用总配线架保安器的应用要求,在YD/T694-1998《总配线架》技术要求中也未作规定,因此,本文根据雷电活动区的划分,提出了各类保安单元的应用条件,并且对总配线架必须就近接地的原则和缆线的雷电过电压保护提出了要求,从智能大厦防雷的角度出发,应考虑以下措施:

(1)进楼电缆应从地下入局;

(2)进楼电缆的金属外护套应在智能大厦进线室内就近接地或与地网连接后再人局;

(3)进楼电缆的信号线均应对地加装信号SPD后,再接入网络系统,电缆内的空线对应作保护接地;

(4)地处少雷区、中雷区的智能大厦的市话配线箱,可采用由气体放电管或半导体放电管(SAD)与正温度系数热敏电阻(PTC)组成的保安单元;

(5)地处多雷区和强雷区的市话配线箱,必须采用由半导体放电管(SAD)与高分子PTC组成的保安单元;

(6)总配线架必须就近接地是关系到配线架的保安单元能否对交换机用户板起到有效保护的关键问题。在机房总体规划时,总配线架宜安装在建筑物的低层,接地引入线应从地网两个方向就近分别引入(从地网在建筑物预留的接地端子接地或从接地汇集线上引人);

(7)市话电缆空线对,应在配线架上接地。

2.2.2 建筑物内部计算机网络系统的雷电过电压保护

长期以来,建筑物防感应雷都是以防止雷电涌沿外线路感应为主,随着网络系统的电子化、高度集成化、微型计算机控制、智能化,特别是数字通信技术的发展,通信系统对雷电的承受能力下降,特别是智能大厦内计算机、控制终端、监控系统、终端设备更容易遭受雷电的侵害。由于在智能大厦内集中了交换机、传输设备、监控及网络设备、控制终端、电源、无线设备等系统,各系统之间的内部连接线路纵横交错、非常复杂,连接线路可达100~200m,这些连接线路因雷电电磁场的感应,将雷电浪涌传到系统之间的接口电路中去,对浪涌较为敏感的接口电路产生影响和冲击。另外,由于线缆物理结构上的差异,对雷电电磁场感应影响的大小也有所不同,因而就要求这些通信系统的接口应具有更好的防雷性能。

IEC-61644对连接通信、信号网络接口的浪涌保护装置提出了基本的要求和测试方法,ITU-TK 系列文件对于各种通信系统的雷电保护和测试也提出了指导性方法,最近,ITU推出的K41建议——《电信中心内部通信接口抗雷电过电压能力》中,主要涉及的是不出局且长度在100m左右的网络数据线。该建议的推出表明,国际上已经将电信中心内部通信接口抗雷电过电压的要求提到很重要的位置上。这些文件表明:“建筑物内部的计算机雷电防护方法和SPD的应用已趋成熟,并走向规范化”。

另外,通过邮电部设计院对深圳、江门、茂名、东莞、韶关、南昌、湖南、河北、南宁等十几

个省市的通信大楼雷害事故的统计表明:楼内网络接口设备、计算机控制终端、交换机的CPU 控制模块、交换机及移动通信的控制终端、微机接口电路、设备测试台、交换机计费系统微机、营业厅内的收费微机、营业用多路计费器、测量室自动测量系统、监控系统等雷击损坏的事故时有发生。另外,移动通信、微波站内的网管监控及干线监控、遥信接口、数据采集板等设备也时遭雷击。这表明,计算机、控制终端及网络设备的接口是防雷电浪涌侵入的薄弱环节。国外的研究表明:“现代数字化网络系统的控制计算机,对雷电极为敏感。即使几公里以外的高空雷闪或对地雷闪出也有可能导致这些网络系统的薄弱环节计算机CPU控制中心误动或损坏。根据国外资料统计,0.03高斯的磁场强度可造成计算机误动,2.4高斯即可使元件击穿”。

从另一个方面讲,国外厂商早在20世纪90年代初期(国内在1995年前后)就已经推出了大量的计算机、控制终端及网络设备用的SPD,并已有很大规模。其中,用于计算机、控制终端及网络设备的SPD已经系列化,并且其质量和性能完全能满足通信系统的要求。另外,由于半导体放电管的出现,其元件的特殊性及优良品质使得用半导体放电管元件组合的SPD可以免去每年的例行检测,且保证了通信系统安全可靠的运行。

因此,对智能大厦计算机、控制终端及网络设备进行雷电过电压保护的条件已经成熟,从减少成本和合理投资的角度出发,建议仅对建在多雷区、强雷区的智能大厦内的计算机、控制终端及网络设备进行雷电过电压保护,对于建在中雷区的智能大厦内的计算机、控制终端及网络设备,如果该区时有雷击损坏的事故发生,则应参考执行。另外,从智能大厦的调研情况看,现有的智能大厦计算机、控制终端及网络设备的数据线,由于各方向的线数不多、控制单元分散,一般都用的是无屏蔽的线缆,改为屏蔽线和串金属管线在施工和运作方面都有困难(垂直管线除外),而且成本将非常高,而安装SPD既经济、又方便,并且提高了通信系统安全可靠性。对智能大厦计算机、控制终端及网络设备实施雷电过电压保护,可参照下列条款:

(1)智能大厦内计算机、控制终端及网络数据线的雷电过电压保护设计应根据其在大楼内具体的雷电保护区位置、保护等级来确定SPD的保护参数;

(2)建在城市内,地处中雷区以上的智能大厦内计算机、控制终端及各类网络数据线,若长度小于50m,各类网络数据线宜穿金属管道(金属管道应电气连接),金属管两端应就近与均压网焊接。建在郊区或山区,地处多雷区、强雷区内的智能大厦的计算机、控制终端及各类网络数据线,若长度小于30m,各类网络数据线宜穿金属管道,金属管两端应就近与均压网焊接;

(3)建在城市,地处中雷区以上的智能大厦内的计算机、控制终端及各类网络数据线,若长度大于50m而小于100m,应在设备的一端采用数据线SPD保护,若长度大于100m,应在两端采用数据线SPD保护;

(4)建在郊区或山区,地处多雷区、强雷区的智能大厦内计算机、控制终端及各类网络数据线,若长度大于30m、小于50m,应在设备的一端采用数据线SPD保护,若长度大于50m,应在两端采用数据线SPD保护;

(5)地处多雷区以上的智能大厦对于有出人网络数据线的设备,雷电过电压保护设计必须采用下列措施:

①控制及数据采集用的计算机接口应采用计算机接口SPD保护;

②在局域网工作站的输入端及文件服务器前应采用数据线SPD;

③出人大楼的各类金属数据线两端设备必须采用数据线SPD保护;

(6)出人大楼的各类金属信号线应穿金属管后,再从地下引入其他机房,金属管两端应就近与地网焊接。

2.2.3 建筑物内PDS系统与外界有联系的传输设备的雷电过电压保护

邮电部设计院对全国十几个省市智能大厦的雷害调研表明,“许多出入智能大厦的电缆及光缆未按智能大厦的标准进行接地处理,由于进入大楼的PCM电缆芯线未加装保安单元,特别是进入无线智能大厦的缆线未加装保安单元,致使PCM接口、PCM逻辑盘、话路板以及2Mb接口被雷击坏的事故时有发生”。而这些存在的问题,正是IECl312和ITU-K系列文件专门论述的要点,为了减少雷害事故的发生,这些问题更应引起我们的注意。

(1)出人智能大厦的电缆,应在进线室将金属铠装外护层做接地处理;

(2)出入智能大厦的光缆,应将缆内的金属构件,在终端处接地;

(3)进入智能大厦的PCM电缆芯线应加装保安单元,空线对应就近接地;

(4)进入无线智能大厦的缆线应加装保安单元后,再与上下话路的终端设备相连。

2.3 卫星、无线天馈系统的雷电过电压保护

根据对广东、福建、广西、湖南、浙江、辽宁等省无线系统的雷击情况调研,由天馈线引入的雷电浪涌损坏通信设备的事故概率是小概率事件。鉴于无线通信系统依据所处的具体地理环境来确定同轴SPD的安装原则,并根据电磁兼容的原理,提出同轴SPD接地端子的接地引线应在机房外接地。另外,无线通信的天馈线的雷电过电压保护还应满足:

(1)建在城市内孤立的高大建筑物或建在郊区及山区,地处中雷区以上的无线系统,当馈线采用同轴电缆,且长度超过30m时,应在同轴电缆引进机房入口处安装标称放电电流不小于5kA 的同轴SPD,同轴SPD接地端子的接地引线应从天馈线人口处外侧的接地线、避雷带或地网引接;

(2)建在城市内孤立的高大建筑物上的卫星站,其馈线系统应穿铁管(铁管应与避雷带焊接相连)并且馈线两端应接地后再进入机房。

2.4 智能大厦遥控、监控系统雷电过电压保护设计

(1)出入智能大厦的遥控、监控系统控制线必须埋地,线缆的金属外护套两端应就近接地;

(2)建在中雷区以上的智能大厦,其内部的遥控、监控系统的缆线(缆线中含控制、电源、视频线),若长度大于50m小于100m时,应在设备的一端采用SPD保护,若长度大于100m,应在两端采用SPD保护。对于出入智能大厦的遥控、监控系统的缆线(缆线中含控制、电源、视频线),应在两端分别安装SPD保护;

(3)出入智能大厦遥控、监控系统的缆线若采用光缆传输信号,应将缆内的金属构件在两端接地,无需采用SPD保护。但为两端设备供电的电源芯线应对地安装标称导通电压大于供电电压最大值10V,标称放电电流为10kA的过压型SPD(应根据3.6.2条对长度要求的内容确定一端或两端采用SPD保护);

(4)监控信号采集器的遥信输入端应加装由SAD组成的数据线SPD;

(5)监控系统的云台、防雨罩必须就近接地。

2.5 PDS雷电过电压保护器件的选择

2.5.1 配电系统的雷电过电压保护器件的选择

(1)电源用雷电过电压保护器件的选择,雷电过电压保护器件包括:

浪涌保护器的分类:根据IECl312-1(通则)、IEC-1312-3(浪涌保护器的要求)、IECl643-2(低压系统的浪涌保护器)及ITU-TK36(保护装置的选择),浪涌保护器(SurgeProtectiveDevices简称SPD)可由气体放电管、放电间隙、MOV、SAD、齐纳二极管、滤波器、保险丝等元件混合组成。国内外各种类型SPD产品一般都由这些元器件组成。浪涌保护器可分为三类:电压开关型SPD(V oltage Wwitehing Type SPD);限压型SPD (V oltage LimitingTypeSPD);组合型SPD(CombinationTypeSPD)。

雷击电流型SPD(归属于电压开关型SPD类):是安装在通信局(站)建筑物外雷电保护区0区的SPD,可最大限度地消除电网后续电流,以疏导10/350μs的模拟雷电冲击电流(无论这些电流是远处的雷电过电压还是由直击雷引起的)。雷击电流型SPD一般由高性能火花隙组成,它的特点是放电能力强,但残压较高,通常为2000~4000V,检验测试器件采用一般10/350μs的模拟雷电冲击电流波型。

限压型SPD:限压型SPD一般由氧化锌压敏电阻 (MOV)及半导体放电管(SAD)等元器件组成,是安装在雷电保护区建筑物内的SPD,可疏导8/20μs的模拟雷电冲击电流,在过电压保护中具有逐级限制雷电过电压的功能,检验测试器件的残压一般采用8/20μs的模拟雷电冲击电流波型。

混合型电源SPD:半导体放电管(SAD)与MOV组成的混合型电源SPD。

半导体放电管主要技术特征包括:对浪涌电压的响应速度非常快,与原有的保护单元相比,对陡峭的雷击电压可以充分抑制,这样使原来的保护单元多级保护设计变得简单,而且更加小型化;利用半导体内部的电子和空穴原理进行工作,不存在劣化问题,保养简单,使用寿命增加;用硅PN结的工作原理设计半导体放电管,其双向、单向、开关动作均能自由、精确地设计出来,一致性较好。因此,采用半导体放电管(SAD)与MOV组成的混合型电源SPD,可能利用SAD对浪涌电压的响应速度非常快等特点,在一般雷电过电压的保护时,由SAD承受浪涌电流,其标称放电电流可达10~20kA;若遇到较大量级的雷电过电压,第一级由SAD组成的电路保险管可自动断开,由第二级MOV作为雷电过电压保护,作为混合型电源SPD,其MOV能承受冲击通流能量一般大于100kA。

MOV与滤波器组成的混合型电源SPD:根据一个典型的沿配电线路侵入的雷电波,其浪涌波形是符合傅立叶变换的,其大部分能量分量具有相对较低的频率,采用MOV与滤波器组成的混合型电源SPD在同一测试条件下,可以具有比单一并联的SPD更低的残压。RFI滤波器可对150kHz~20MHz的雷电波进行滤波;标称放电电流40kA时残压可小于1000V。

(2)SPD技术参数和名称术语:

标称导通电压:在施加恒定直流lmA电流的情况下,MOV启始动作电压。

SPD的标称放电电流:用来划分SPD等级,具有8/20μs、10/350μs模拟雷电电流冲击波的放电电流。

冲击通流容量:SPD不发生实质性破坏而能通过规定次数、规定波形的电流峰值最大限度。SPD残压:模拟雷电冲击电流通过SPD时,SPD端子间呈现的电压(其中采用MOV的限压型SPD,残压的大小与采用元件的直流1mA参考电压、元件的组合形式及所承受的雷电电流大小等参数有关)。

10/350s与8/20μs模拟雷电电流冲击波能量的比较:10/350μs是描述建筑物遭受直击雷时的模拟雷电电流冲击波,脉冲为10/350μs波形的电荷量约为8/20μs模拟雷电电流冲击波电荷量的20倍。即:Q(10/35μs)≌20Q(8/20μs)由于10/350μs模拟雷电电流冲击波的能量远大于8/20μs模拟雷电电流冲击波的能量,因此,一般需要使用电压开关型SPD(如放电间隙、放电管)才能承受10/350μs模拟雷电电流冲击波,而由MOV、SAD组成的SPD所承受的标称放电电流是8/20μs模拟雷电电流冲击波。

(3)SPD的功能要求。

电源用SPD模块及SPD箱的功能既要满足SPD一般性能的需要,又要考虑环境集中监控对

SPD性能监控的要求。另外,根据IECl643-1相关条文规定,用于电源配电系统、由MOV、SAD 及滤波器组成的混合型SPD在国内外通信局(站)已经大量使用。

一般要求:SPD应根据雷电保护区分区原则,按照雷电保护区所在位置正确选用;SPD的残压并非是衡量SPD好坏的唯一指标,选择SPD应在同一测试指标下考虑SPD所选元器件的参数及元器件组合方式;SPD的选择应考虑通信局(站)遥信及监控的需要;用于交流系统的过压型SPD标称导通电压一般为Un=2.2U(U为运行工作电压的最大值);用于直流系统的过压型SPD 标称导通电压一般为1.5U≥Un≥1.2U(U为运行直流工作电压的最大值)。功能要求:建在城市、郊区、山区等不同环境下的通信局(站),设计选用过压型SPD时,必须考虑通信局(站)供电电源的不稳定因素,对SPD的标称导通电压提出要求;通信局(站)采用的雷电过电压模块SPD,应具有以下功能:SPD模块损坏告警、遥信插孔、SPD模块替换、热容和过流保护;通信局(站)采用的雷电过电压保护电源避雷箱,应根据通信局(站)的具体情况,具有供电电压显示、SPD模块损坏告警、雷电记数、保险跳闸显示、备用SPD模块自动转换、遥信插孔、SPD模块替换、浪涌识别抑制器、热容和过流保护等功能,可根据用户要求进行选择。

SPD冲击通流容量的选择。单纯从价格的意义上讲,冲击通流容量较小的SPD的价格小于冲击通流容量大的SPD,但从技术经济比的角度去考虑问题,可能这一观点又有了新的含义,通流容量是指SPD不发生实质性破坏而能通过规定次数、规定波形的最大电流峰值,冲击通流容量较小的SPD在通过同样的雷电流的条件下其寿命远小于冲击通流容量大的SPD。根据有关资料介绍:“MOV元件在同样的模拟雷电流8/20μs、10kA测试条件下,通流容量为135kA的MOV的寿命为1000-2000次,通流容量为40kA的MOV的寿命为50次,两者寿命相差几十倍(据笔者分析,被测试的MOV元件可能是由小通流容量的MOV组合型的产品。但测试结论也可以说明,冲击通流容量较小的SPD在通过同样的雷电流的条件下其寿命远小于冲击通流容量大的SPD)”。由于配电室、电力室人口处的SPD要承受沿配电线路侵入的浪涌电流的主要能量,因此,其SPD在满足人口界面处标称放电电流要求的前提下,可根据情况选择较大通流容量的SPD。

2.5.2网络数据线雷电过电压保护器件的选择

(1)SPD标称导通电压:各类信号线、数据线、天馈线、计算机网络接口的SPD标称导通电压

1.2U≥Un≤1.5U(U为额定工作电压的最大值),工作电流应满足系统的要求;

(2)各类SPD用元器件:各类信号线、数据线、天馈线、计算机网络接口的SPD元器件一般可有:陶瓷放电管、半导体放电管(SAD)、氧化锌压敏电阻(MOV)、PTC等元器件组成。陶瓷放电管的优点在于通流能力大,但响应速度慢,该器件主要用于非灵敏设备的保护。MOV的缺点主要是极间电容较大,不适合传输速率较快的快速以太网和ATM网络。SAD的广泛应用是由于响应速度快,极间电容界于放电管和MOV之间,缺点是通流能量小(其失效模式是短路接地,在信号回路中作为防雷使用是最好的选择)。

在满足信号传输速率及带宽的情况下,尽可能采用半导体放电管,半导体放电管有以下主要技术特征:

①对浪涌电压的响应速度非常快,与原有的保护单元相比,对陡峭的雷击电压可以充分抑制,使原来的保护单元多级保护设计变得简单,而且更加小型化;

②利用半导体内部的电子和空穴原理进行工作,不存在劣化问题,其保养简单,使用寿命增加,无须进行经常性保安单元放电管的检测工作;

③用硅PN结的工作原理设计的半导体放电管,其双向、单向开关动作均能自由精确设计,一致性较好;

④半导体放电管既适用于普通电话的300-3400Hz模拟传输,又适用于ISDN的2B+D数字传

输(MDF配线架国内基本上采用由放电管作为雷电的过电压保护器件,随着程控交换机在国内的普及,程控交换机内集成化程度不断提高及控制方式不断更新,程控交换机内部使用的器件要求具备高速率、宽频带、可靠性强等特点,现代化程控交换机需要与之特点相适应的保安单元。因此,原有放电管式的保安单元已经不可能有效地保护程控交换机的安全运行,现阶段半导体放电管是取代现有气体放电管保护电话交换机和用户终端设备抗雷电电涌理想的器件。为此,国外已经大量采用固体放电管SAD组成的保安单元)。

2.5.3 SPD的选择

SPD选择原则可参考下列要求:

(1)信号线SPD的选择

①信号线SPD的箝位电压应满足网络系统接口的需要,工作电压及电流应满足系统的要求,对雷电响应时间应在纳秒级;

②总配线架的保安单元应符合YD/T694-1998总配线架技术要求的规定;

③信号SPD应满足信号传输速率及带宽的需要,其接口应与被保护设备兼容;

④信号SPD的插入损耗应满足通信系统的要求;

⑤信号SPD的标称放电电流为3kA。

(2)同轴SPD的选择

①同轴SPD插入损耗应≤0.2dB,驻波比≤1.2,工作电压及电流应满足系统的要求,同轴SPD 最大输入功率能满足发射机最大输出功率的需要,安装与接地方便,具有不同的接头,同轴SPD 与同轴电缆接口应具备防水功能;

②同轴SPD的标称放电电流应≥5kA。

(3)网络数据线SPD的选择

计算机、控制终端、监控系统网络数据线用的雷电过电压保护器件有RJ45、RJll、RS232、RS422、RS485接口及同轴型数据线SPD等,其中,RJ系列的SPD分为单端口和多端口产品,其SPD 的工作电压和传输速率可供选择。

计算机接口、控制终端、监控系统的网络数据线SPD应满足各类接口设备传输速率的要求,SPD 接口的线位、线排、线序应与被保护设备接口兼容,设计时应在满足设备传输速率条件下,优先采用由半导体放电管组成的保护电路SPD。计算机接口、控制终端、监控系统的网络数据线SPD 的标称放电电流应≥3kA。

2.6 PDS系统的接地

2.6.1 相关防雷接地标准

(1)信息产业部标准YDJ26-89《通信局(站)接地设计暂行技术规定》(综合楼部分);

(2)信息产业部标准YD5098-2001《通信局(站)雷电过电压保护工程设计规范》;

(3)国家标准GB50057-94《建筑物防雷设计规范》;

(4)国家标准GB50174-93《电子计算机机房设计规范》(标准要求采用联合接地);

(5)国家标准GB9361-88《计算机场地安全要求》 (要求分设计算机接地专设并与建筑物内部金属构件绝缘);

(6)国家标准GB2887-89《计算机场地技术条件》也规定了计算机接地工作地、保护等地的接地电阻值;

(7)公安部标准GAl73-1998《计算机信息系统防雷保安器》(中华人民共和国社会公共安全行业标准,即各部标准外的行业)。

2.6.2 PDS系统的接地要求

(1)智能大厦PDS系统接地的目的智能大厦的接地,其主要目的有:

①保护工作人员和维护人员及设备的使用者,防止危险电压的安全保护;

②保证通信设备的安全,防止危险电压的保护;

③限制通信系统中的串话电流(如市话交换机)、噪声和电磁干扰电流,使其低于某一个(规定)数值,以保证通信系统的正常工作;

④防止整流器产生的高频电流和交流工频电流影响通信;

⑤提供人地通道,保护通信局(站)的安全。

(2)信息系统接地的分类

针对上述目的,在20世纪90年代以前由于通信局(站)接地一般采用分散接地,接地方式有:

①直流工作地;

②交流工作地;

③保护地(交、直流保护地;防雷接地);

④防止电磁干扰和屏蔽接地;

⑤信号接地(电路接地,即工作接地)。

在90年代以后,原邮电部标准YDJ26-89《通信局(站)接地设计暂行技术规定》(综合楼部分)将局(站)的接地分为:

①工作地;

②保护地(含屏蔽地);

③建筑物的防雷接地。

这三种地在标准中规定共同合用一组接地体,即通信局(站)的联合接地方式。

(3)智能大厦建筑物的混凝土钢筋基础为PDS系统提供一个良好的地网。国家标准GB50057-94《建筑物防雷设计规范》要求建筑物的接地一般都采用其钢筋混凝土基础作为地网,因为建筑物钢筋混凝土基础埋地较深,与大地的接触面积大,在相同的土质条件下,用其基础作接地体比一般人工接地所得的电阻低得多。另外,基础钢筋埋设在混凝土中,作为接地体的钢筋不会受到外力的损伤和破坏,不需要维护,使用期限长,接地电阻稳定,对于通信局(站)这种接地方法是相当有效的。同样,利用办公大楼、高层建筑的基础作为智能大厦PDS系统的接地是可行的;

(4)网型、星型和星型一网状混合型接地的特点

①网状分配接地如图1所示。网状分配接地减少了不同设备接地之间的电位差,通信系统可以从不同的方位就近接地。另外,这种网状分配接地由于相互之间没有一个严格的绝缘要求,对建筑物内的金属构件包括可能被连接的混凝土的钢筋,以及电缆支架、槽架无需专门做绝缘处理,因此,实施施工较为容易;

②星型分配接地如图2所示。提出星型分配接地主要解决了通信系统的干扰问题,因为这种分配接地的方式减少了环流电流的干扰,使得干扰电流不能形成回路。星型分配接地的实施方案,一般由若干个主干地线分别由公共接地汇流排引出,每个主干地线(120mm2)再分几路分支地线,每个分支地线(50imm2)接到n个大列地线,每根大列地线分别接到列内各个机架;

③星型一网状混合型接地如图3所示。星型一网状混合型接地对设备的一部分接地采用网状布置,而另一部分对交流和杂音较为敏感的设备的接地采用星型布置;

④PDS系统及网络设备的接地。PDS系统的地线系统是典型的星型分配接地的衍生物树枝型分配接地,只需从公共接地汇流排引出一根垂直的主干地线到各子系统室的分接地汇流排,再由分接地汇流排分若干路引至列架和机架,互相之间没有回路。因此,不会通过地线网络对其它电路产生影响。

另外,接至列架和机架的接地线,其目的是为列架和机架中的各类网络设备提供接地通路,因此,机架中所有设备均应与其保持良好的电气连接,即所有网络设备的外壳接地线应通过该点接地。

(5)从电磁兼容的角度谈屏蔽接地和信号接地。星型网络实际上也被称为“一点接地”网络,其各个分支点之间没有闭合回路,从而防止了相互之间的传导耦合干扰,由于它们仅在“一点”相互连接,由此获得基准“零电位”。从信号接地系统来讲,应分别连在这个“基准点”,其“基准点”可设在智能大厦内或设施的任何位置,国外的做法一般是采用将该点接至“大地”的接地电极上,认为在这一点的电位接近于“大地”的零电位。

从雷电保护和电力故障保护来讲,将防雷保护地线和交流保护地接至“大地”接地电极上是有意义的,这样可以避免雷电流和电力故障影响其它系统的正常工作,并能迅速安全地通过接地电极流人地下,就近散流。但“一点接地”在智能大厦中作为接地网络有其致命的缺点,因为要用很长的接地连接线,而对于信号接地系统,较长的接地连接线在低频时对信号影响不大,高频时又有很多问题:

①高频时网络将变为高阻抗;

②高频时各路地线之间将会出现由分布电容形成的电容耦合;

③高频时长导线将变为等效天线。

由于“一点接地线”网络只有在低频时才是低阻抗,当频率升高时由于导线电感的作用而变为高阻抗。从电磁兼容的角度考虑频率的划分是依照1MHz为高频、低频的分界频率。

一般认为,以1MHz为低频与高频的分界频率是恰当的,在信号频率为1MHz以下时,用“一点接地”系统(在自然空间1MHz的波长为300m,为了消除接地连线成为等效天线的概率、减少长导线相互间的电感耦合,其长度不超过波长的十分之一,即λ/10。对于MHz的波长来讲λ/10就是30m),信号频率为1MHz以上时,则采用多点接地系统(同样在高频时,屏蔽体一端接地是无效的,因为屏蔽体(线)对地有分布电容的耦合,所以实际上等效于多点接地,因此,高频时电缆的屏蔽层必须两端接地才能有好的屏蔽效果)。

(6)SPD的连接线、接地线的要求。电源SPD的连接线及接地线截面积应符合下表的要求,数据线SPD以及其他类型SPD的接地线截面积应不小于2.5mm2,连接线及接地线材料为多股铜线。模块电源SPD的接线端子与相线和零线之间的连接线长度应小于0.5m,其接地线的长度应小于1m,且应就近接地。SPD箱的接线端子与相线和零线之间的连接线长度可根据实际情况适当加长,避雷箱连接线加长后,其截面积应适当增大。避雷箱接地线的长度应小于1m,连接线宜采用凯文接线方式就近接地。

(7)雷电过电压保护SPD对接地电阻的要求。智能大厦的联合接地地网的接地电阻值已满足SPD接地的需要,因此,对在使用的SPD接地电阻值不做严格要求,设计时仅需将使用的各类SPD的接地端子就近接地。

3 结束语

智能大厦内部的计算机网络系统包含了ATM(异步)交换机、传输设备、监控及网络设备、控制终端、电源、无线等子系统。各子系统之间的内部连接线路纵横交错,其网络接口对雷电较为敏感的电路又是防雷电侵入的薄弱环节,大楼雷电电磁场的分布直接影响到具有敏感元器件的计算机及控制终端的布局。在设计规划时,对大楼内网络设备的安装位置应避开雷电涌集中的雷电流

分布通道,力求安装在建筑物的中部位置,即雷电电磁场最小的室内中央位置,并且网络设备避免直接使用大楼的外墙体的电源插孔。

另外,智能大厦PDS系统的雷电过电压保护建立在大楼的接地系统共用一个接地网,即联合接地的基础上,采用SPD(正确选用各类SPD)对侵人大楼内计算机、控制终端及网络数据线、信号线、传输设备、遥控、监控系统及无线系统天馈线的雷电过电压进行抑制,并对智能大厦出入缆线采取屏蔽、接地等措施,可有效减少雷电对信号及网络系统的侵害。虽然智能大厦PDS系统雷电过电压保护是防雷要素中极为重要的因素之一,但由于如何减少雷害确是一个整体的、全面的防雷问题,因此只有将防雷问题从各个方面加以解决,按照联合接地均压等电位的理论、避雷针的保护半径、浪涌电流就近疏导分流、内线缆的屏蔽接地和通信电源及信号线的雷电过电压多级保护的原则,正确选择雷电过电压保护器件和防雷方案(根据年雷暴日、海拔高度、环境因素做出选择和考虑),进行整体的、综合的雷电防护,才能有效减少雷害。

智能楼宇的电气保护与接地

来源:中智网

【摘要】本文通过对几种供电接地系统的概括介绍,筛选出适合作为智能楼宇的供电接地系统,并对其所应采取的各类接地措施作了较为详尽的说明与分析,对智能楼宇应采取的电气保护与接地方法提出了适当的建议。

【关键词】负荷平衡电位基准点 TN-S 单点接地防静电接地统一接地体在建筑物供配电设计中,接地系统设计占有重要的地位,因为它关系到供电系统的可靠性,安全性。不管哪类建筑物,在供电设计中总包含有接地系统设计。而且,随着建筑物的要求不同,各类设备的功能不同,接地系统也相应不同。尤其进入90年代后,大量的智能化楼宇的出现对接地系统设计提出了许多新的内容。在常用的几种接地方式中,哪一种能够适合智能化楼宇呢?我们不妨分析一下下面几种接地系统。

1.TN-C系统 TN-C系统被称之为三相四线系统,该系统中性线N与保护接地PE合二为一,通称PEN线。这种接地系统虽对接地故障灵敏度高,线路经济简单,但它只适合用于三相负荷较平衡的场所。智能化大楼内,单相负荷所占比重较大,难以实现三相负荷平衡,PEN线的不平衡电流加上线路中存在着的由于荧光灯、晶闸管(可控硅)等设备引起的高次谐波电流,在非故障情况下,会在中性线N上叠加,使中性线N电压波动,且电流时大时小极不稳定,造成中性点接地电位不稳定漂移。不但会使设备外壳(与PEN线连接)带电,对人身造成不安全,而且也无法取到一个合适的电位基准点,精密电子设备无法准确可靠运行。因此TN-C接地系统不能作为智能化建筑的接地系统。

2.TN-C-S系统 TN-C-S系统由两个接地系统组成,第一部分是TN-C系统,第二部分是TN-S系统,分界面在N线与PE线的连接点。该系统一般用在建筑物的供电由区域变电所引来的场所,进户之前采用TN-C系统,进户处做重复接地,进户后变成TN-S系统。TN -C系统前面已做分析。TN-S系统的特点是:中性线N与保护接地线PE在进户时共同接地后,不能再有任何电气连接。该系统中,中性线N常会带电,保护接地线PE没有电的来源。PE线连接的设备外壳及金属构件在系统正常运行时,始终不会带电.因此TN-S接地系统明显提高了人及物的安全性.同时只要我们采取接地引线,各自都从接地体一点引出,及选择正确的接地电阻值使电子设备共同获得一个等电位基准点等措施,那么TN-C-S系统可以作为智能型建筑物的一种接地系统。

3.TN-S系统 TN-S是一个三相四线加PE线的接地系统。通常建筑物内设有独立变配电所时进线采用该系统。TN-S系统的特点是,中性线N与保护接地线PE除在变压器中性点共同接

地外,两线不再有任何的电气连接。中性线N是带电的,而PE线不带电。该接地系统完全具备安全和可靠的基准电位。只要象TN-C-S接地系统,采取同样的技术措施,TN-S系统可以用作智能建筑物的接地系统。如果计算机等电子设备没有特殊的要求时,一般都采用这种接地系统。

4.TT系统通常称TT系统为三相四线接地系统。该系统常用于建筑物供电来自公共电网的地方。TT系统的特点是中性线N与保护接地线PE无一点电气连接,即中性点接地与PE线接地是分开的。该系统在正常运行时,不管三相负荷平衡不平衡,在中性线N带电情况下,PE线不会带电。只有单相接地故障时,由于保护接地灵敏度低,故障不能及时切断,设备外壳才可能带电。正常运行时的TT系统类似于TN-S系统,也能获得人与物的安全性和取得合格的基准接地电位。随着大容量的漏电保护器的出现,该系统也会越来越作为智能型建筑物的接地系统。从目前的情况来看,由于公共电网的电源质量不高,难以满足智能化设备的要求,所以TT系统很少被智能化大楼采用。

5.IT系统 IT系统是三相三线式接地系统,该系统变压器中性点不接地或经阻抗接地,无中性线N,只有线电压(380V),无相压压(220V),保护接地线PE各自独立接地。该系统的优点是当一相接地时,不会使外壳带有较大的故障电流,系统可以照常运行。缺点是不能配出中性线N。因此它是不适用于拥有大量单相设备的智能化大楼的。

在智能化楼宇内,要求保护接地的设备非常多,有强电设备,弱电设备,以及一些正常情况下不带电的导电设备与构件,均必须采用有效的保护接地。如果采用TN-C系统,将TN-C 系统中的N线同时用做接地线;或者在TN-S系统中将N线与PE线接在一起,再连接到底板上去;再或不设置电子设备的直流接地引线,而将直流接地直接接到PE线上;有的干脆把N线、PE线、直流接地线混接在一起。以上这些做法都是不符合接地要求的,且是错误的。前面已经分析过,在智能化大楼内,单相用电设备较多,单相负荷比重较大,三相负荷通常是不平衡的,因此在中性线N中带有随机电流。另外,由于大量采用荧光灯照明,其所产生的三次谐波叠加在N线上,加大了N线上的电流量,如果将N线接到设备外壳上,会造成电击或火灾事故;如果在TN-S系统中将N线与PE线连在一起再接到设备外壳上,那么危险更大,凡是接到PE线上的设备,外壳均带电;会扩大电击事故的范围;如果将N线、PE线、直流接地线均接在一起除会发生上述的危险外,电子设备将会受到干扰而无法工作。因此智能建筑应设置电子设备的直流接地,交流工作接地,安全保护接地,及普通建筑也应具备的防雷保护接地。此外,由于智能建筑内多设有具有防静电要求的程控交换机房,计算机房,消防及火灾报警监控室,以及大量易受电磁波干扰的精密电子仪器设备,所以在智能化楼宇的设计和施工中,还应考虑防静电接地和屏蔽接地的要求。

下面,我们接着分析一下智能化楼宇应采取的各种接地措施。 (1)防雷接地:为把雷电流迅速导入大地,以防止雷害为目的的接地叫作防雷接地。智能化楼宇内有大量的电子设备与布线系统,如通信自动化系统,火灾报警及消防联动控制系统,楼宇自动化系统,保安监控系统,办公自动化系统,闭路电视系统等,以及他们相应的布线系统。从已建成的大楼看,大楼的各层顶板,底板,侧墙,吊顶内几乎被各种布线布满。这些电子设备及布线系统一般均属于耐压等级低,防干扰要求高,最怕受到雷击的部分。不管是直击,串击,反击都会使电子设备受到不同程度的损坏或严重干扰。因此对智能化楼宇的防雷接地设计必须严密,可靠。智能化楼宇的所有功能接地,必须以防雷接地系统为基础,并建立严密,完整的防雷结构。

智能建筑多属于一级负荷,应按一级防雷建筑物的保护措施设计,接闪器采用针带组合接闪器,避雷带采用25×4(mm)镀锌扁钢在屋顶组成≤10×10(m)的网格,该网格与屋面金属构件作电气连接,与大楼柱头钢筋作电气连接,引下线利用柱头中钢筋,圈梁钢筋,楼层钢筋与防雷系统连接,外墙面所有金属构件也应与防雷系统连接,柱头钢筋与接地体连接,组成具有多层屏蔽的笼形防雷体系。这样不仅可以有效防止雷击损坏楼内设备,而且还能防止外来的电磁干扰。

各类防雷接地装置的工频接地电阻,一般应根据落雷时的反击条件来确定。防雷装置如与电气设备的工作接地合用一个总的接地网时,接地电阻应符合其最小值要求。

2.交流工作接地:将电力系统中的某一点,直接或经特殊设备(如阻抗,电阻等)与大地作金属连接,称为工作接地。工作接地主要指的是变压器中性点或中性线(N线)接地。N线必须用铜芯绝缘线。在配电中存在辅助等电位接线端子,等电位接线端子一般均在箱柜内。必须注意,该接线端子不能外露;不能与其它接地系统,如直流接地,屏蔽接地,防静电接地等混接;也不能与PE线连接。在高压系统里,采用中性点接地方式可使接地继电保护准确动作并消除单相电弧接地过电压。中性点接地可以防止零序电压偏移,保持三相电压基本平衡,这对于低压系统很有意义,可以方便使用单相电源。

3.安全保护接地:安全保护接地就是将电气设备不带电的金属部分与接地体之间作良好的金属连接。即将大楼内的用电设备以及设备附近的一些金属构件,用PE线连接起来,但严禁将PE 线与N线连接。

在智能化楼宇内,要求安全保护接地的设备非常多,有强电设备,弱电设备,以及一些非带电导电设备与构件,均必须采取安全保护接地措施。当没有做安全保护接地的电气设备的绝缘损坏时,其外壳有可能带电。如果人体触及此电气设备的外壳就可能被电击伤或造成生命危险。在中性点直接接地的电力系统中,接地短路电流经人身,大地流回中性点;在中性点非直接接地的电力系统中,接地电流经人体流入大地,并经线路对地电容构成通路,这两种情况都能造成人身触电。如果装有接地装置的电气设备的绝缘损坏使外壳带电时,接地短路电流将同时沿着接地体和人体两条通路流过。Id=Id'+IR,我们知道:在一个并联电路中,通过每条支路的电流值与电阻的大小成反比,即,式中:Id-接地回路中的电流总值 Id'-沿接地体流过的电流 IR-流经人体的电流 rR-人体的电阻 rd-接地装置的接地电阻由上式可以看出,接地电阻越小,流经人体的电流越小,通常人体电阻要比接地电阻大数百倍经过人体的电流也比流过接地体的电流小数百倍。当接地电阻极小时,流过人体的电流几乎等于零。即Id≈Id'。实际上,由于接地电阻很小,接地短路电流流过时所产生的压降很小,所以设备外壳对大地的电压是不高的。人站在大地上去碰触设备的外壳时,人体所承受的电压很低,不会有危险。加装保护接地装置并且降低它的接地电阻,不仅是保障智能建筑电气系统安全,有效运行的有效措施,也是保障非智能建筑内设备及人身安全的必要手段。

4.直流接地:在一幢智能化楼宇内,包含有大量的计算机,通讯设备和带有电脑的大楼自动化设备。在这些电子设备在进行输入信息,传输信息,转换能量,放大信号,逻辑动作,输出信息等一系列过程中都是通过微电位或微电流快速进行,且设备之间常要通过互联网络进行工作。因此为了使其准确性高,稳定性好,除了需有一个稳定的供电电源外,还必须具备一个稳定的基准电位。可采用较大截面的绝缘铜芯线作为引线,一端直接与基准电位连接,另一端供电子设备直流接地。该引线不宜与PE线连接,严禁与N线连接。

5.屏蔽接地与防静电接地:在智能化楼宇内,电磁兼容设计是非常重要的,为了避免所用设备的机能障碍,避免甚至会出现的设备损坏,构成布线系统的设备应当能够防止内部自身传导和外来干扰。这些干扰的产生或者是因为导线之间的耦合现象,或者是因为电容效应或电感效应。其主要来源是超高电压,大功率幅射电磁场,自然雷击和静电放电。这些现象会对设计用来发送或接收很高传输频率的设备产生很大的干扰。因此对这些设备及其布线必须采取保护措施,免受来自各种方面的干扰。屏蔽及其正确接地是防止电磁干扰的最佳保护方法。可将设备外壳与PE线连接;导线的屏蔽接地要求屏蔽管路两端与PE线可靠连接;室内屏蔽也应多点与PE线可靠连接。防静电干扰也很重要。在洁净、干燥的房间内,人的走步、移动设备,各自磨擦均会产生大量静电。例如在相对湿度10~20%的环境中人的走步可以积聚3.5万伏的静电电压、如果没有良好的接地,不仅仅会产生对电子设备的干扰,甚至会将设备芯片击坏。将带静电物体或有可能产生静电的物体(非绝缘体)通过导静电体与大地构成电气回路的接地叫防静电接地。防静电接

地要求在洁静干燥环境中,所有设备外壳及室内(包括地坪)设施必须均与PE线多点可靠连接。智能建筑的接地装置的接地电阻越小越好,独立的防雷保护接地电阻应≤10Ω;独立的安全保护接地电阻应≤4Ω;独立的交流工作接地电阻应≤4Ω;独立的直流工作接地电阻应≤4Ω;防静电接地电阻一般要求≤100Ω。

智能化楼宇的供电接地系统宜采用TN-S系统,按规范宜采用一个总的共同接地装置,即统一接地体。统一接地体为接地电位基准点,由此分别引出各种功能接地引线,利用总等电位和辅助等电位的方式组成一个完整的统一接地系统。通常情况下,统一接地系统可利用大楼的桩基钢筋,并用40×4(mm)镀锌扁钢将其连成一体,作为自然接地体。根据规范,该系统与防雷接地系统共用,其接地电阻应≤1Ω。若达不到要求,必须增加人工接地体或采用化学降阻法,使接地电阻≤1Ω。在变配电所内设置总等电位铜排,该铜排一端通过构造柱或底板上的钢筋与统一接地体连接,另一端通过不同的连接端子分别与交流工作接地系统中的中性线连接,与需要做安全保护接地的各设备连接,与防雷系统连接,与需做直流接地的电子设备的绝缘铜芯接地线连接。在智能大厦中,因为系统采用计算机参与管理或使用计算机作为工作工具,所以其接地系统宜采用单点接地并宜采取等电位措施。单点接地是指保护接地、工作接地、直流接地在设备上相互分开,各自成为独立系统。可从机柜引出三个相互绝缘的接地端子,再由引线引到总等电位铜排上共同接地。不允许把三种接地联结在一起,再用引线接到总等电位铜排上。实际上这是混合接地,这种接法既不安全又会产生干扰,现在的规范是不允许的。

防雷器的主要技术参数

来源:安防科技网

防雷器的主要技术参数

1.标称电压Un

与被保护系统的额定电压相符,在信息技术系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。

2.额定电压Uc

能长久施加在保护器的指定端,而不引起保护器特性变化和激活保护元件的最大电压有效值。

3.额定放电电流Isn

给保护器施加波形为8/20μs的标准雷电波冲击10次时,保护器所耐受的最大冲击电流峰值。

4.最大放电电流Imax

给保护器施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。

5.电压保护级别Up

保护器在下列测试中的最大值:1KV/μs斜率的跳火电压;额定放电电流的残压。

6.响应时间tA

主要反应在保护器里的特殊保护元件的动作灵敏度、击穿时间,在一定时间内变化取决于du/dt或di/dt的斜率。

7.数据传输速率Vs

表示在一秒内传输多少比特值,单位:bps;是数据传输系统中正确选用防雷器的参考值,防雷保护器的数据传输速率取决于系统的传输方式。

8.插入损耗Ae

在给定频率下保护器插入前和插入后的电压比率。

9.回波损耗Ar

表示前沿波在保护设备(反射点)被反射的比例,是直接衡量保护设备同系统阻抗是否兼容的参数

(完整版)防雷接地技术交底

工程名称分部工程 分项工程名称防雷接地安装 交底内容: 3.屋顶避雷带、避雷网、避雷针安装作业条件 (1)避雷带、避雷网支架做完。 (2)防雷引下线做完。 (3)具备调直场地和垂直运输条件。 (4)需用脚手架处,脚手架已搭设完毕。 三、施工工艺 3.1 工艺流程 3.2 操作工艺 1. 接地装置安装 (1)人工接地体(极)安装 1)接地体的加工:接地体应使用热镀锌钢材制作,长度不应小于2.5m。为便于打入,可将接地体一端加工成尖型。 2)挖沟:根据施工图要求及现场接地体的实际布置情况,沿接地体的线路挖深为0.8m~1m,底宽为0.5m 的沟,沟底清理干净。见图20-37。 3)安装接地体(极):沟挖好后,应及时安装接地体和焊接接地干线。将接地体用手锤打 交底单位接收单位本单位水电班组 交底人接收人 年月日

工程名称大连红星国际项目分部工程电气工程技术分项工程名称防雷接地安装 交底内容: 人地中。土质较坚硬时,防止将接地体顶端打劈,可在顶端加护帽或焊一块钢板加以保护。当接地体顶端距离地面600mm时停止打人。 4)接地体间的干线焊接:接地体间的连接干线一般采用40x4mm镀锌扁钢。首先应将镀锌扁钢调直,侧放于接地体一侧。从接地体一端开始,用接地卡子卡住。接地极与扁钢焊接牢固,如图20-38所示。清除药皮,做好防腐处理。 接地体安装完毕后,应对接地电阻进行测试。合格后方可进行回填,分层夯实。并做好电阻测试记录及电气接地装置隐检记录。 (1)自然接地体安装 1)利用底板钢筋做接地体。将底板钢筋搭接焊成方格形接地网。再将标有防雷引下线的柱内主筋(不少于2根)底部与底板筋接地网搭接焊好,并在室外地面以下将柱内主筋焊好连接板,并将两根主筋用色漆做好标记。 交底单位接收单位本单位水电班组 交底人接收人 年月日

智能建筑的防雷接地

智能建筑的防雷接地 随着信息技术的发展,特别是internet技术的高速发展,以及经济快速的发展,全世界各大城市争先构建数字化城市,大量的智能化建筑拔地而起,其中采用了大量的电子设备,如楼宇自控系统(BA)、消防报警系统(FA)、闭路电视监控系统(CCTV)、门禁及保安报警系统(SA)、综合布线及通讯系统(CA)等等,这些设备的耐压等级低、抗干扰能力差,另一方面由于信号来源路径增多,系统较以前更容易遭受雷电波的侵入,致使雷电灾害频频发生。据统计,雷电对电子设备的损坏占设备损坏因素的比例高达26%,防雷过电压已成为具有时代特点的一项迫切要求。因此在智能建筑的设计施工中,不仅要重视智能建筑的性能指标和设备的先进性,更要注意做好建筑物的防雷接地。防雷与接地对于智能建筑中的弱电设备的安全运行和数据的可靠传输有着重要的影响,并且是抑制电磁干扰、提高电子设备电磁兼容性的重要手段之一。如果建筑物的防雷接地没有处理好,不管是雷电的直击、串击、反击,轻则会造成设备不能有效传输数据,降低智能建筑设备的可靠性;重则会损坏设备的部件,甚至导致设备瘫痪并危及人员的安全。 近年来我国每年因雷击破坏建筑物内电气设备的事件时有发生,所造成的损失非常巨大。因此建筑物的防雷接地设计就显得尤为重要。目前一些城市和地方的立法,如从2002年9月1日开始执行的《北京市防御雷电灾害若干规定》,使人们越来越多的认识到做好建筑物防雷及接地的重要性及迫切性。 1.雷击一般分为直击雷击和感应雷击 1.1直击雷击--指雷电直接击在建筑物、构架、树木、动植物上,由于电效应、热效应和机械效应等混合力作用,直接摧毁建筑物,构筑物以及引起人员伤亡等。由于直击雷的电效应,有可能使机房微电子设备遭受浪涌过电压的危害。 1.2感应雷击(又称二次雷击)--指雷云之间或雷云对地之间的放电而在附近的架空线路、埋地线路、金属管线或类似的传导上产生感应电压,该电压通过传导体传送至设备,间接摧毁微电子设备。感应雷击对微电子设备,特别是通讯设备和电子计算机网络系统的危害最大,据资料显示,微电子设备遭雷击损坏,80%以上是由感应雷引起的。 1.3另外还有操作过电压,即是指当电流在导体上流动时,会产生磁场储存能量,当负载(特别是电感性大的负载)电器设备开关时,会产生瞬时过电压,操作过电压同感应雷击一样,可以间接损坏微电子设备。 2.外部防雷措施 根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版),外部防雷装置包括接闪器、引下线和接地装置。 2.1接闪器:根据建筑物的特点和防雷等级选用避雷网、避雷带或避雷针。在保护范围以外的突出金属物,如金属设备、金属管道、金属栏杆、广告牌、航空标志灯等,均应与防雷系统相焊接或卡接,构成统一的导电系统。屋顶的金属装饰物如金属旗杆或满足规范要求壁厚的金属屋面,均可作为接闪器。 2.2引下线:尽量利用建筑物钢筋混凝土柱内的对角主筋作为引下线,建筑物的消防梯、钢柱等金属构件也可作为引下线,但其各防雷部件之间均应连成电器通路。 2.3接地装置:设计接地装置时,当基础采用硅酸盐水泥和周围土壤的含水量不低于4%,基础表面无防水层时,可利用基础内的钢筋作为接地装置(详后面的说明),如果基础被塑料、橡胶、油毡等防水材料包裹或涂有沥青质的防水层时,不得利用基础内的钢筋作为接地装置,此时在基础槽的周围敷设环型接地装置,并与基础内的钢筋做可靠连接。 3.内部防雷措施及防雷击电磁脉冲

防雷接地装置安装施工方案

目录 一、工程内容 0 本作业为广汽本田汽车有限公司增城工厂焊装车间二期改造工程全厂接地装置安装工程。 0 二、编制依据与相关文件 0 三、作业进度、劳动力安排 0 四、作业的准备工作及条件 (1) 五、施工方法、步骤及作业程序 (2) 六、作业的质量要求 (4) 七、作业的环境要求 (7) 八、作业的安全要求 (9)

一、工程内容 本作业为广汽本田汽车有限公司增城工厂焊装车间二期改造工程全厂接地装置安装工程。 二、编制依据与相关文件 2.1 《电力建设施工及验收技术规范》 2.2 《火电施工质量检验及评定标准》 2.3 《电力建设安全工作规程》火力发电厂部分 2.4 《电力建设安全健康与环境管理工作规定》 2.5 接地相关图纸及资料 三、作业进度、劳动力安排 3.1作业进度 本工程开工日期为2014年01月17日,完工为2014年6月8日。 以上具体工期还要根据现场土建施工的具体情况而更改。 3.2劳动力安排

班长、技术员、安全员、质检员各1人,焊工——1人,电工——1人, 力工——1人。 3.3 作业机械、工具、仪器、仪表的要求: 无齿锯1台角向砂轮2把 台钻1台电工工具4套 卷尺4把大锤2把 手锤3把板车(8T)1台 四、作业的准备工作及条件 4.1作业人员的资质要求: 4.1.1所有施工人员必须经过三级安全考试并合格。 4.1.2所有施工人员必须经过体检合格方可施工作业。 4.1.3特殊工种必须持证上岗。 4.1.4作业组长要有安装过主厂房防雷接地的经验,工作认真负责,并能组织好本组人员完成所承担的作业任务。 4.1.5组员要有一定的电气安装经验,听从指挥,积极肯干。 4.2作业机械、工具、仪器、仪表要求: 4.2.1电焊机.冲击钻等电动工具性能稳定,能满足现场使用。 4.2.2仪器、仪表等要经校验合格,并在有效期内使用。 4.3作业技术交底的安排

防雷接地工程施工方案

防雷接地工程施工方案 1 建筑防雷说明 (1)本工程主楼年预计雷击次数N为0.116,按第三类防雷建筑物设计。 (2)沿屋顶女儿墙或屋顶结构飘板上设置一圈接闪带,并在屋面上设置不大于20x20m(24x16m)的避雷网格,形成本建筑物的避雷网。接闪带与避雷网格均采用Ф10镀锌圆钢,女儿墙上接闪带搞0.1m。 (3)利用柱内两根大于Ф16的对角主筋通过焊接做避雷引下线,引下线的上端伸出女儿墙(或通过顶层相联挑梁内两根以上主筋转接出女儿墙)与屋面避雷网焊接,下端直接或通过转换梁内连接钢筋后与接地体焊接。 (4)利用结构底板及桩基内的结构体内钢筋做接地体。 (5)本工程保护接地、弱电接地、防雷接地共用接地装置,接地电阻小于1.0欧姆,实测不足补打接地极。 (6)所有突出屋面的金属件、管道、风机等均应与屋面避雷网可靠焊接。60m及以上建筑物外侧的金属栏杆、门窗等金属构件均需与结构圈梁内与引下线联接的钢筋焊接。竖直敷设的各种金属管道及金属物的顶端和底端应与防雷装置连接 2 主要施工方法 2.1施工工艺流程 防雷接地施工工艺流程图 本工程防雷接地采用结构基础内主钢筋和人工接地体作为接地体。安装时配合土建钢筋施工进行可靠连接。依照图纸部分建筑基础横纵轴交叉点结构柱内钢筋与垂直结构主筋焊成一体,并与配电室槽钢可靠焊接。人工接地体在基础做垫层前做好,并将其穿透防水层与

建筑周边有引下线的柱内主筋可靠焊接,而且要与护坡桩内两根钢筋焊接。 引上点在各层楼板上表面焊处留钢筋头,供各层设备接地用。在各个电缆竖井预留一条镀锌扁钢,镀锌扁钢在偶数层均与垂直引下线焊接,被弱电系统接地。作为防雷下线及接地体的钢筋,采用搭接焊,钢筋端部搭接长度大于6倍钢筋直径,并且至少要三边焊(两侧和一个端头),以保证电气通路。屋面上的避雷带支架与墙内的立筋、立筋与结构柱内两主筋、每个结构柱内两主筋与基础梁内两主筋均进行可靠焊接,从而保证每个结构柱从上至下连成电气通路。 防雷接地搭接长度质量要求 结构柱内主筋每层施工时,将作为引下线的钢筋刷涂上醒目的红漆,以便施工时准确寻找。屋面的避雷带支架间距为1米。各层圈梁内两主筋焊接连通成闭环,并与结构柱内防雷引下线焊接连通作均压环,以防止侧击雷。所有防雷接地装置的金属构件均采用镀锌制品(利用钢筋混凝土的钢筋除外),焊接完后焊渣应清除干净,焊接处和其它有镀锌层破坏处,必须刷红丹二道、银粉漆二道,焊接处不损坏原有的钢材应力、强度及结构。 施工人员配合土建按图进行管路、接地扁钢、铁构件及设备基础、孔洞的预留预埋。其中穿越构筑物基础的部分要及时预埋,与土建结构矛盾之处,由技术人员进行协商处理,不得随意损伤建筑钢筋。 3 等电位联结端子板箱安装 在总配电房内内设置总等电位联结端子箱,在各机房内设置局部等电位端子箱。各等电位端子箱通过接地母排相互连通。

防雷接地施工工艺

防雷接地施工工艺 一、施工准备 (一)作业条件 1、接地体安装: (1)人工接地体:设计位置的场地没被占用,且巳经清理好。 (2)利用底板钢筋或深基础做按地体:底板筋与柱筋连按处 已绑扎完。 2、接地干线安装: (1)支架安装完毕。 (2)土建抹灰已完成。 (3)穿墙保护管巳预埋。 3、支架安装: (1)各种支架已运到现场。 (2)结构工作巳经宪成。 (3)室外必须有脚手架或爬梯。 4、防雷引下线暗敷设: (1)建筑物有脚手架或爬梯,达到能上人操作的条件。 (2)利用主筋作引下线时,钢筋绑扎完毕。 5、避雷引下线明敷设: (1)支架安装完毕。 (2)建筑物有脚手架或爬梯,达到能上人操作的条件。 (3)土建外装修完毕。

6、避雷网安装: (1)支架安装完毕。 (2)具备调直场地和垂直运输条件。 (3)接地体与引下线必须做完。 7、避雷针安装: (1)接地体及引下线必须安装完毕。 (2)需要脚手架处,脚手架搭设完毕。 (3)土建结构工程己完,并随结构施工做完预埋件。 (二)材料要求 1、防雷及接地装置所有部件均应采用镀锌材料,并有出厂合格 证和镀锌质量证明书。在施工过程中应注意保护镀锌层。其 主要镀锌材料有:扁钢、角钢、圆钢、钢管、铅丝、螺栓、 垫圈、弹簧垫圈、U形螺栓、元宝螺栓、支架等。 2、电焊条、氧气、乙炔、沥青油、混凝土支座、预埋铁件、小 线、防腐油、银粉、黑色油漆等。 (三)主要机具 1、常用电工工具:手锤、钢锯、压力案子、大锤等。 2、线坠、卷尺、大绳、粉线袋、绞磨(或倒链)、紧线器、电锤、 冲击钻、电焊机、气焊工具等。 二、质量要求 质量要求符合《建筑电气工程施工质量验收规范》(GB50303-2002)的规定。

监控系统的接地与防雷接地

监控系统的接地与防雷 接地 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

监控系统的接地与防雷接地 监控系统的接地与防雷接地有矛盾么有!!! 有的防雷器产品厂家明确主张“到处接地”,特别指出摄像机要接地;为了防雷制造了“多点接地”,那地环路问题怎么办 监控系统的接地要求是:系统(主机)单点接地——摄像机不接地,那防雷又怎么办这都是尖锐的问题、有趣的问题,又是很久以来许多人一直关注的问题!!!。 一个网友问:“多点接地可以防雷却制造地环路干扰,单点接地虽可排除地环路干扰,但能防雷吗”这个问题提得太好了!!值得深思和重视。 不过,我也要提醒的发问:“多点接地真能防雷吗”,“摄像机接地到底是防雷还是引雷呢”下面想就这些疑问,谈点抛砖引玉的看法,以求探讨监控系统的接地与防雷接地,能有个基本合理统一的设计方法。 【防雷第一类观点】 这是转载时间最久,转载次数最多,又比较“权威的防雷论述”。 1)“监控室内应设置等电位连接母线(或金属板),该等电位连接母线应与建筑物防雷接地、PE线、设备保护地、防静电地等连接到一起防止危险的电位差。各种电涌保护器(避雷器)的接地线应以最直和最短的距离与等电位连接母排进行电气连接”——总之一句话:主机系统机壳接大地。 2)“前端设备如摄像头应置于接闪器(避雷针或其它接闪导体)有效保护范围之内。当摄像机独立架设时,原则上为了防止避雷针及引下线上的暂态高电位,避雷针最好距摄像机3-4米的距离。如有困难避雷针也可以架设在摄像机的支撑杆上,引下线可直接利用金属杆本身或选用Φ 8的镀锌圆钢。为防止电磁感应,沿电线杆引上的摄像机电源线和信号线应穿在金属管内以达到屏蔽作用,屏蔽金属管的两端均应接地”。

电气安装中防雷接地工程的技术浅谈

电气安装中防雷接地工程的技术浅谈 摘要:在变电站电气安装中的防雷接地安装技术的作用尤为突出,面对现今安 装技术方面所存在的弊端,相应的变电站电气安装单位必须对防雷接地系统的安 装工作进行合理分析,在明确防雷接地等级需求的基础上,对其安装技术要点进 行掌握,将其中的各组成部分进行合理安装,进而保证其能够发挥较强的安全保 障效果。 关键词:电气安装;防雷;接地工程;技术 1电气安装中防雷接地工程安装技术的重要性 在当今社会经济水平不断提升的背景下,我国居民的用电量不断提升,而随 着变电站工程项目的逐渐增多,变电站工程项目的复杂性也在逐渐增大。通过防 雷接地工程安装技术,可以降低雷电对变电站电气设备的影响。变电站电气工程 受到雷电的影响和威胁比较大,不仅会造成变电站电气工程中各类设备的损伤, 还会对相关工作人员的工作造成威胁。因此,利用防雷接地系统可以有效解决此 类问题,防雷接地系统的应用可以提升变电站工程对于雷电损害的防控效果,将 所存在的雷电威胁及时导入地下,进而对变电站电气工程发挥较强的保护作用, 从而可以保证变电站电气设备的安全运行。 2电气安装中防雷接地施工技术 2.1防雷接地施工技术 防雷接地施工是整个防雷系统中非常重要的组成部分,各种形式的雷电反击 都是通过防雷接地设备将电流引入大地。因此,在施工时要严格按照施工标准开 展测量工作,当实际测量值不符合标准时,要及时通过人工接地极进行调节。例 如在搭建圆钢与底钢板时,要采取双面焊的方法,确保搭接为圆钢直径的6倍长,焊接工艺要保证焊接的高质量和高饱满度度,防止出现夹渣、裂纹、虚焊等不合 格的现象。为了方便防护工作的高效进行,要做好防腐工作以便延长装置的使用 寿命的同时,将焊接触用有色油漆做好标注,为方便防雷地下引线工作的开展做 好准备。 2.2避雷带支架安装技术 在防雷接地施工中,避雷带支架的安装也是非常重要的一步。避雷带支架的 安装首先,要严格依照施工情况和设计图纸,准确确定安装位置,不能单凭个人 主观臆断。如果实际情况和设计图纸有差距时,要及时进行沟通后进行人工调整。其次,要应用电锤在屋面沿外墙上进行直线打孔,然后将避雷带支架插入已打好 的孔中并及时浇灌泥浆,将其堵实,按相关规范标准直径≥8圆钢避雷带横平坚直 安装牢固。最后,要及时清理安装过程中产生的粉尘,确保整个支架安装工作的 顺利完成。 2.3防雷地下引线施工 防雷地下引线施工也是整个防雷接地施工的重要组成部分,在安装防雷引线时,施工人员要严格按照实际图纸的设计开展施工,保证施工操作合理,使工程 施工符合相关标准与规范。防雷地下引线对安装位置、施工材料选择、安装线路 都有严格的要求,如果施工人员擅自更改引下点的位置,将会大大影响整个防雷 系统的效果。因此,在施工前,工作人员要对不同强弱的电箱位置进行观察,在 进行引下线工作时,要保证设备不外漏、导电部位已隐藏。同时,充分利用扁钢 将电缆桥架、金属线槽及接地装置三者有效了解,提高连接的可靠性。

防雷接地装置施工专项安全技术措施示范文本

防雷接地装置施工专项安全技术措施示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

防雷接地装置施工专项安全技术措施示 范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1、坚决执行“安全第一,预防为主,综合治理”的安 全施工方针; 2、施工人员进场施工绝对服从安全监察人员和施工管 理人员的管理; 3、施工前,应检查施工工器具的安全可靠性,施工人 员应佩带安全合格的施工防护用品; 4、做好施工技术交底工作和安全作业命令票的签发工 作; 5、施工机械应有技术人员在场指导施工,避免盲目和 违章作业;

6、焊接施工应设专人,杜绝无证上岗操作; 7、文明施工,作到“工完料尽,场地清”。 请在此位置输入品牌名/标语/slogan Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

防雷接地施工技术交底

成都市温江区彩叠园商住项目1B期施工技术交底彩叠园1B期工程防雷接地施工技术交底 施工准备:1、入场工人进场安全技术交底。 2、熟悉施工图纸、规范要求。 3、结合本工程具体情况与现场实际进行有效调配人员和机具。 4、样板带路全面 1、防雷及接地安装 其工艺流程为: 网施工接地极、引下线施工均压环施工金属门窗接地施工 屋面避雷网通路测试接地极测试成都市桂林建设有限公司页7 共页1 第施工技术交底期成都市温江区彩叠园商住项目1B

①接地极施工:地梁的主筋构成,接地极施工时,基础的钢筋与地本工程接地极由桩基、,柱与柱、柱园钢焊接,采用双面焊,焊缝长度≥6D12梁的钢筋采用不小于φ与梁、柱与挡土墙地梁之间应用园钢焊接连接,焊接必须采用双面焊,以保证总等电位连接地可靠性和安全性。整个地极施及隐蔽前均有业主及监理单位、防雷办参加并监督,接地极测试由防雷中心测试,同时作好隐蔽资料(即引下Φ其桩插筋与柱插筋、地梁筋与桩筋间也必须采用线位置在蓝图上标注出来)。 12的园钢焊通,其作法详见下图:基础桩主筋作接地体的地梁二根面筋 圆钢跨接12ф6D双面焊,焊缝≥ 地梁钢筋与桩主筋焊接 根据成都市防雷中心建设项目防雷工程设计审核意见书和设计图纸,本工。1Ω程评定为二类防雷,其综合接地阻为②接地网施工本工程利用基础桩与地梁钢筋焊接连通作共用水平接地体,无地梁时采用镀锌扁钢连接。具体作法是:用地梁的两根面筋焊通作水平接地体,4mm-40×园钢焊连,为便于接地电阻测试,按图再与桩和用作引下线的柱内钢筋用Φ1212Φ示设置接地电阻测试点。(地梁钢筋采用螺纹连接时,螺纹连接处必须用园钢作跨接焊)③建筑物的等电位连接。的圆钢与防雷接地12进出建筑物的金属管道、电缆铠装护层、应就近用ф装置相连,室内的各种金属构件,应与室内设置的接地连接板焊连。其作法详

机房工程及防雷接地系统(一)汇总

机房工程及防雷接地系统 一、系统概述 计算机机房工程是随着信息化系统对环境的要求越来越高而出现的新兴行业,涉及到电子工艺、建筑结构、空气调节、给水排水、电器技术和消防安全等多种专业,它是为解决诸如温湿度、洁净度、电磁场强度、防静电、供配电、接地与防雷、消防安全等综合技术问题,为电子计算机系统稳定可靠运行和工作人员提供良好的工作环境。 为确保计算机设备能够安全、可靠、稳定的运行并充分发挥其效益,为使各计算机设备中的机密数据、有价经济数据等重要内容便于保密、管理及通过计算机研究开发出更新更高的高科技产业,就必须依靠科学地设计计算机专业用房来保证以上功能的实现。计算机机房作为整座建筑计算机网络线路和设备的中心枢纽,在现代化建筑中占据着极其重要的位置,计算机机房的建设直接影响着整个建筑物网络结构和管理和维护的工作。 此次根据重庆市第一中级人民法院对机房工程及防雷接地系统的技术要求以及我公司丰富的工程设计和施工经验,为重庆市第一中级人民法院进行如下机房工程及防雷接地系统设计。 二、系统功能 2.1 机房工程系统 机房工程主要包括机房装修、UPS电源、空调系统等,通过对

机房工程的标准规范实施,满足机房内设施的正常、稳定运行的要求,创建一个清馨、现代化的标准功能机房;为机房内部工作人员提供一个舒适、安全的工作环境。 2.2 防雷接地系统 防雷系统主要是为保护大楼内部的精密电子器件,当内部电子器件在遭受雷击时通过避雷器将瞬时高电流泄放掉,以保护设备的安全。 接地系统主要是将避雷器泄放的电流导入大地,达到完善的电子器件的保护措施。 三、方案总体设计 3.1 系统设计思想 此次系统设计总的指导思想是数据中心的设计既满足当前各项需求应用,又面向未来快速增长的发展需求,建成为高质量的、高安全可靠的、灵活的、开放的现代化智能机房。我们在进行设计时,依据招标书要求,对下述机房进行整体设计:五层的信息中心机房(144平方米);GF层的楼宇及消防控制机房(100平方米);负二层UPS 机房(30平方米)。 3.2 机房主要技术指标 温度:24℃±2℃ 湿度:50% ±10% 洁净度:18000粒/升(≥0.5μm 的尘埃)

防雷接地施工技术措施

目录 一编制说明 编制依据 《湖南城步十里平坦风电场110kV升压站工程项目管理实施规划》 《电力建设安全工作规程》(DL ) 《变电(换流)站土建工程施工质量验收及评定规程》(Q/GDW1183-2012)

《中华人民共和国工程建设标准强制性条文电力工程部分(2006版)》 《国家电网公司电力建设安全健康与环境管理工作规定》(国家电网工[2003]168号) 《国家电网公司输变电工程施工工艺示范手册》(基建质量[2006]135号)《关于利用数码照片资料加强输变电工程安全质量过程控制的通知》(基建安全[2007]25号); 《湖南省电力公司输变电站工程施工标准化作业指导书(2007)》 湖南省电力公司变电站工程标准化施工作业票(湘电公司基建[2008]755号) 《电气装置安装工程接地施工及验收规范》(GB50169-2006); 《电气装置安装工程质量验收及评定规程》DL/T 《国家电网公司十八项电网重大反事故措施》 施工图纸《防雷接地》 适用范围 本措施适用于湖南城步十里平坦风电场110kV升压站工程防雷接地施工。二、工程概况 湖南城步十里平坦风电场110kV升压站工程采用避雷针方式防直击雷,设两根构架避雷针30m。 根据本工程岩土电阻率测试报告,所区平均土壤电阻率取值为1427Ω.m。接触电势、跨步电势分别要求接地电阻为Ω和Ω。 根据所区电阻率分布特点,本工程采用以水平接地体为主的人工接地网,埋深,考虑在填方区敷设深层接地网,在允许的范围内尽量埋深。局部采用垂直接地体作为集中接地装置。避雷针集中接地装置不敷设降阻剂。各级电压避雷器接地引线与主地网连接处设置5根50×50×5 L=2500㎜的镀锌角钢作垂直接地极。 三、人员组织及分工 表3-1

防雷接地施工方案

1变电站接地的施工要求 (2) 2概述 (3) 3施工流程 (4) 4技术措施 (4) 5主要施工方法 (4) 6变电站主接地网的接地设计、布置和连接: (7)

1变电站接地的施工要求 1.1站内接触电位差超过规定值,因此在操作机构前后1m内地面铺设15cm厚混凝土,使接 触电位差满足要求。 1.2电气设备每个接地部分应以单独的接地引下线与地网主干线相连接,严禁在一个接地引 下线中串接几个需要接地的部分。 1.3接地引下线及主网的所有连接点不得采用点焊或螺栓连接。扁钢搭焊长度应不小于其宽 度的两倍并三面焊接;所有焊接点均应经防腐处理。地面以上的焊接处,刷银粉漆;地面以下及电缆沟内接地线的焊接处,刷防腐漆。 1.4室外架构接地线当地面上长度超过8m且中间无紧固点时,应每隔4m左右用一卡环固定,以确保接地扁铁牢固地紧贴在砼线杆表面。 1.5设备接地引下线应远离设备的辅助开关和二次控制回路,室内平行布置的应远离300毫 米以上,室外架构上布置的应尽量不同杆或同杆背向布置,控制箱应外附接地线并可靠接地。 1.6不得利用水泥架构内的钢筋作为接地引下线,应外敷明线与地网连接;上下层布置的变电站其上层亦应有明显的接地引下线与地网连接。 1.7电缆外皮不能用作接地引下线。 1.8设备的接地引下线与地网可靠的焊接在一起,焊口要刷防锈漆进行处理,接地线地面以上1.2米应刷黄、绿相间的色标漆,全站统一规格。 1.9在接地线引向建筑物的入口处的墙壁上,各刷一块(150m M 150mm白色底漆,中间标以黑色符号“ ”。 1.10对站内变压器中性点、充油设备和避雷器,要实行“双接地”,并与地网的两个不同点相连接,每根接地引下线均应符合热稳定的要求;电气主设备为单相架构式或落地式时,每相应单独接地,当为三相架构式时,可每组只设两根引下线,与地网的两个不同点相连接,每根接地引下线均应符合热稳定的要求。

接地与防雷安全技术措施

接地与防雷安全技术措施 1) 备的金属外壳必须与保护零线连接。保护零线应由工作接地线、配电室(总配电箱)电源侧零线或总漏电保护器电源侧零线处引出(图16—1)。 图16一l专用变压器供电时TN—S接零保护系统示意 1-工作接地 2-PE线重复接地 3-电气设备金属外壳 (正常不带电的外露可导电部分)Ll、L2、D一相线N-工作零线 PE-保护零线 DK-总电源隔离开关 RCD-总漏电保护器 (兼有短路、过载、漏电保护功能的漏电断路器)T-变压器 2) 当施工现场与外电线路共用同一供电系统时,电气设备的接地、接零保护应与原系统保持一致。不得一部分设备做保护接零,另一部分设备做保护接地。 采用TN系统做保护接零时,工作零线(N线)必须通过总漏电保护器,保护零线(PE线)必须由电源进线零线重复接地处或总漏电保护器电源侧零线处,引出形成局部TN—S接零保护系统(图16—2)。 3) 在TN接零保护系统中,通过总漏电保护器的工作零线与保护零线之间不得再做电气连接。 4) 在TN接零保护系统中,PE零线应单独敷设。重复接地线必须与PE线相连接,严禁与N线相连接。 5) 使用一次侧由50V以上电压的接零保护系统供电,二次侧为

50V及以下电压的安全隔离变压器时,二次侧不得接地,并应将二次线路用绝缘管保护或采用橡皮护套软线。当采用普通隔离变压器时,其二次侧一端应接地,且变压器正常不带电的外露可导电部分应与一次回路保护零线相连接。以上变压器尚应采取防直接接触带电体的保护措施。 T一变压器 图16—2三相四线供电时局部TN—S接零保护系统保护零线引出示意 1-NPE线重复接地2-PE线重复接地L1、L2、L3一相线 N-工作零线PE一保护零线 DK-总电源隔离开关 RCD-总漏电保护器(兼有短路、过载、漏电保护功能的漏电断路器) 6) 施工现场的临时用电电力系统严禁利用大地做相线或零线。 7) 接地装置的设置应考虑土壤干燥或冻结等季节变化的影响,并应符合表16—5的规定,接地电阻值在四季中均应符合JGJ46—2005规范中第5.3节的要求。但防雷装置的冲击接地电阻值只考虑在雷雨季节中土壤干燥状态的影响。 表16—5接地装置的季节系数y值

建筑电气安装中防雷接地施工技术范本

解决方案编号:LX-FS-A29862 建筑电气安装中防雷接地施工技术 范本 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

建筑电气安装中防雷接地施工技术 范本 使用说明:本解决方案资料适用于日常工作环境中对未来要做的重要工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 随着社会经济的不断发展,人们对生活质量的要求越来越高,逐渐向智能化发展,因此建筑电气化的复杂程度也越来越高,而雷击时间也不断的发生,这对人们的生活产生了较大的影响,严重时可能危及人们生命财产安全。因此,在建筑电气安装工程中,应该加强防雷接地施工的质量,以此来确保防雷接地装置的可靠性,保证电气设备的安全稳定运行。 1建筑电气安装中防雷接地施工概述 1.1原理及重要性 接地装置的安装是建筑电气防雷接地施工中最重

某小区智能化系统设计-防雷接地系统方案

防雷接地系统 16.1 防雷系统 各个弱电系统配备了大量的精密电子设备,如网络主干交换机房、计算机服务器、视频矩阵、广播主机、UPS等等,建设防雷接地系统可以以较小投资在极大程度上保证设备的安全性和稳定性,有效的保护业主的设备投资。 本工程防雷系统有以下特点和需求: 所有智能化系统的接地与鄞和置业〃银河湾小区联合接地系统连接,接地电阻小于1欧姆,所有不带电的弱电金属管、线槽、分线箱均与电气接地系统等电位连接。 此次考虑二级、三级电源防雷,保护机房重要设备的电源防护。 室外进线(除光纤外)需安装信号保护器。 16.1.1 设计原则 a、室外引入的各种线缆(除光纤外),在其接入设备前安装浪涌保护器:如有线电视系统、广播系统等。 b、室内重要设备或高价值设备:如服务器、交换机、监控主机等安装保护器。 16.1.2 电源防雷 选用较小通流量的插座电源防雷器杭州鸿雁FRCZ-0,并联插接在重要设备如服务器、交换矩阵、路由器等插座处,使整个机房的重要用电设备得到电源三级保护,主要应用在各个机房重要设备的用电插座上。 在计算机网络系统中的各个楼栋交换机(IDF)的用电插座处安装插座型电源避雷器LT A6-420NS。 16.1.3 信号防雷 安防系统:安装视频信号避雷器(FRX-AS-BNC+DC12)和控制线保护器(FRX-AS-BNC+DCK);红外对射避雷器FRX-485 公共广播系统:广播进出线路安装FRX-485保护器。

16.2 接地系统 ①机房接地 机房接地主要是指放置重要设备的场所内机房设备的等电位连接,此次宁波鄞和置业〃银河湾小区主要对物管机房实现局部等电位连接。具体施工方案如下:沿墙体四周分别均布安装环形接地母排,其截面为60mm×6mm的铜排母环,该接地母排距地面高约150-350mm,距墙800 mm,并每隔300mm在铜排上钻一个孔Φ10,且每隔1200mm用绝缘胶木板与地面实现绝缘可靠连接,并采用BVR16mm2将环形母排至少两处连接到机房局部等电位汇集点上;机房内的防雷地、工作交流地(N线)、静电地、屏敝地、直流地、绝缘地、安全保护地等接地直接连接到环形接地母排上。 ②弱电井设备接地 弱电井设备接地主要是指弱电井内IDF、汇集层交换机及其它中继设备的接地,主要措施是设备部分通过其供电插座内的PE线直接接地,机柜部分引出接地线到弱电接地干线上。 ③重要终端设备接地 重要终端设备主要指计算机终端设备、弱电主机等设备,其接地主要通过供电插座的PE线接地。 ④弱电接地干线 弱电接地干线是指安装在弱电井内的弱电接地引下线,如预埋的扁钢、BVR50线缆、40*4铜排等。本系统建议采用40*4镀锌扁钢。 ⑤弱电系统接地体 大多数建筑物采用联合接地系统,采用共地不共线原则,其弱电系统接地体就是大楼的基础接地体。 机房环形接地母排安装示意图:

防雷接地施工方案78296

目录 1 工程概况 (1) 2 编制依据、标准及规范 (1) 3 施工准备 (1) 4 施工说明 (2) 5 安全接地措施 (2) 6 安装施工 (3) 7 质量标准 (5) 8应注意的质量问题 (6) 9文明施工要求 (8) 10质量,安全,环保等组织措施 (8)

一、工程概况 本工程为山西医科大学临床技能教学楼,共五层.功能为学生阶梯教室,训练室,图书馆等教学二、适用范围用房,及办公室,会议室等办公用房。 本工程年预计雷击次数为0.08,为二类防雷建筑。采取防直击雷,防雷电波侵入,防侧击雷及等电电位联接等措施。 本方案适用于山西医科大学临川技能教学楼防雷接地系统工程。 二、编制依据、标准及规范 GB50169—2006《电气装置安装工程接地装置施工及验收规范》 D562 《建筑物、构筑物防雷设施安装图集》 三、施工准备 1、材料要求: 1.1主材钢材严格按照规范要求材料,材质及规格应符合要求。产品应有材质检验证明及产品出厂合格证。接地极及接地干线均选用镀锌钢材。 1.2辅材有焊条、氧气、乙炔、沥青漆,预埋铁件,水泥等。 2、主要工机具: 2.1常用电工工具:焊机、切割机、磨光机等。 2.2线坠、卷尺、绳、粉线袋、绞磨(或倒链)、紧线器、电锤、冲击钻、电焊机、电焊工具等。 3、作业条件: 3.1基础钢筋绑扎完毕后就可以 3.2按照要求位置清理好场地。 3.3避雷网安装作业条件: 3.3.1接地体与引下线必须做完。 3.3.2进行屋面避雷网安装时,建筑物(或构筑物)有脚手架或爬梯达到能上人操作的条件。 3.3.4具备作业场地和垂直运输条件。

3.4.1接地体及引下线必须做完。 四、施工说明 4.1 防直击雷:在屋顶用防直击雷:在屋顶用?10避雷带作接闪器,避雷带网格不大于10mx10m或12mx8m,在檐口顶板明敷设,并采用?10镀锌圆钢作避雷带支架,支架间距为1m,高为0.1m,利用结构柱内两根主筋(?>16mm)作为引下线,间距不大于18m.避雷带和引下线可靠焊接,利用结构基础做为接地极,引下线和基础底钢筋可靠焊接.要求将基础底板上下两层主筋(不小于?10)沿建筑物外圈焊接成环形,并将主轴线上的基础梁及结构底板上下两层主筋相互焊接成网,在建筑物外墙四角防雷引下线的位置,距离室外地坪0.5m处预留测试点,在对应的室外埋深0.8m处由被利用作为引下线的钢筋上焊出一根-40x4镀锌扁钢,伸向室外散水外1.0m,施工后实测接地电阻,若不满足要求,须增补人工接地极。 4.2 防雷电波侵入:对进出建筑物的电气管线,金属管道,应在进出端将缆线金属外皮,金属管道就近与接地装置可靠连接。 4.3 防侧击雷:垂直敷设的金属管道及金属物的顶端和末端要求与防雷装置连接。 4.4 所有屋面上无金属外壳或网罩用电设备应布置在避雷网保护之内.屋顶的配电穿线管要求分别与配电盘外壳,另一端与用电设备外壳或保护罩相连。 4.5 本工程采用TN-C-S接地系统,电源重复接地,防雷接地以及弱电接地系统为共用接地系统.总接地电阻R<1.0欧姆,当实测达不到要求时,可补打接地极,直至符合要求。 五、安全接地措施 5.1 本工程设置总等电位联结.在配电室设总等电位端子板,所有的正常不带电,绝缘破坏时有可能带电的电气设备的金属外壳,穿线钢管,电缆外皮,支架,进出建筑物的金属管等部位进行联结。 5.2 在配电室,电梯机房,各专业技能训练室等专用房间及设有洗浴设备的卫生间等处作局部等电位联结。并在各管井内各等电位端子板就近通过等电位联结线牢固焊接,卫生间内LEB板,电气管井内的接地干线要求每层与楼板钢筋就近联结,通过梁柱内钢筋

外脚手架避雷接地施工技术措施完整版

外脚手架避雷接地施工 技术措施 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

外脚手架避雷接地施工技术措施 一、编制依据1、工程设计图纸; 2、国家施工规范、规程和行业标准:《建筑电气工程施工质量验收规范》、 (GB50302-2002)《民用建筑电气设计规范》(JGJ16-2008)、《建筑物防雷设计规范》(GB50057-94)《临时用电安全技术规范》(JGJ462005)及国家和地方现行的其他设计规范及标准。 3、公司颁发的《项目管理手册》、《质量保证手册》等; 4、与业主签定的工程承包合同。 5、本工程施工组织设计。 二、工程概况 1、本工程名称为焦作煤业(集团)有限责任公司中央医院综合楼主楼工程,位于河南省焦作市焦作煤业(集团)有限责任公司中央医院院内。 2、综合楼长,宽,建筑高度为(从室外地面至主楼屋面结构板顶),地上20层,地下1层(为人防工程和设备用房),总建筑面积为67291m2 ,为钢筋混凝土框架剪力墙结构。 建筑性质为综合医院;设计使用年限:50年;建筑类别:一类;抗震设防烈度7度;建筑耐火等级:一级;人防工程等级:抗力核五级,防化乙级;防水等级:地下室二级,屋面二级(防水层合理使用年限15年),卫生间、阳台、外墙、水池一级。 地基基础设计等级:乙级;抗震设防类别:丙类;抗震等级:二级;抗震措施:一级;砼抗渗等级:P6? 3、1层层高:,2至4层层高:,5层以上层高:。 4、本建筑属于人员密集的高层公共建筑,年雷击数次/a(年平均雷暴日a)按二类防雷建筑设计。与大楼其它接地系统共用接地网。 三、施工质量及施工规范要求 (一)引下线的安装 1、防雷装置引下线一般采用明敷,暗敷,也可以利用建筑物内主筋或其他金属构件作为引下线。引下线可沿建筑物最易受雷击的屋角外墙处明敷设,建筑艺术要求较高者也可暗敷设。建筑物的消防梯、钢柱等金属构件宜作为引下线,各部件之间均应连接成电气通路。各金属构件可被覆有绝缘材料。 2、引下线可采用圆钢或扁钢,优先采用圆钢,圆钢直径不应小与8mm,扁钢截面面积不应小于48m㎡,厚度不小于4mm。引下线采用暗敷时,圆钢直径不应小于 10mm,扁钢截面面积不应小于80?m㎡、厚度不应小于4mm。 3、第二类防雷建筑物引下线不应少于2根,并应沿外架四周均匀或对称布置,其间距不大于18m.

配电系统的防雷与接地(标准版)

配电系统的防雷与接地(标准 版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0628

配电系统的防雷与接地(标准版) 雷电的危害,大家是有目共睹的。然而,近几年随着电网的改造,特别是城网改造和变电所自动化系统的建设,大家可能对这些设备的防雷接地保护还是认识不足,以致造成了多起雷害事故,造成自动化系统的瘫痪和一些电网设备事故,损失是比较严重的。因此,我们有必要探讨一下供、配电系统的防雷接地问题,为设计和施工人员提供一定的帮助。 1电力线路的防雷与接地 1.1输电线路的防雷与接地 输电线路的防雷,应根据线路的电压等级、负荷性质和系统运行方式,并结合当地地区雷电活动的强弱、地形地貌特点及土壤电阻率高低等情况,通过技术经济比较,采用合理的防雷方式。 (1)35kV线路不宜全线架设避雷线,一般在变电所的进线段架设

1~2km的避雷线,同时在雷电活动强烈的地段架设避雷线,或者安装线路金属氧化物避雷器。 (2)110kV线路应全线架设避雷线,山区应采用双避雷线;但在年平均雷暴日数不超过15日或运行经验证明雷电活动轻微的地区,可不架设避雷线。 (3)220kV线路应全线架设避雷线,同时应采用双避雷线。 对于架设避雷线的线路,应注意杆塔上避雷线对边导线的保护角,一般采用20°~30°保护角,同时做好杆塔的接地。根据土壤电阻率的不同,杆塔的工频接地电阻,不宜大于表1所列数值。 表1杆塔的接地电阻 地壤电阻率(Ω·m)100及以下100以上至500500以上至1000 工频接地电阻(Ω)101520 对于35kV线路装设的金属氧化物避雷器的技术参数,一般应满足以下条件: ①持续运行电压(有效值)不小于40.8kV; ②额定电压(有效值)不小于51kV;

防雷接地工程施工方案

. . . .. . 省直机关集中办公区办公楼工程 防雷接地工程 施 工 方 案 编制人: 审核人: 审批人: 施工单位:省建筑工程集团总公司 日期:二○一三年四月八日

目录 一、工程概况 .................................................................................................................................................... - 2 - 二、防雷接地概况............................................................................................................................................. - 2 - 三、标准及规 .................................................................................................................................................... - 5 - 四、施工组织部署............................................................................................................................................. - 5 - 五、施工准备 .................................................................................................................................................... - 6 - 4.1技术准备 (6) 六、施工方法及质量要求................................................................................................................................. - 8 - 七、质量保证措施........................................................................................................................................... - 10 - 八、安全保证措施........................................................................................................................................... - 12 -

相关主题
文本预览
相关文档 最新文档