当前位置:文档之家› Composite catalytic materials for steam reforming of methane and oxygenates

Composite catalytic materials for steam reforming of methane and oxygenates

Composite catalytic materials for steam reforming of methane and oxygenates
Composite catalytic materials for steam reforming of methane and oxygenates

Composite catalytic materials for steam reforming of methane and

oxygenates:Combinatorial synthesis,characterization and performance

Vladislav Sadykov a ,*,Natalia Mezentseva a ,Galina Alikina a ,Rimma Bunina a ,Vladimir Rogov a ,Tamara Krieger a ,Sergey Belochapkine b ,Julian Ross c

a

Boreskov Institute of Catalysis,https://www.doczj.com/doc/1c3892725.html,vrentieva,630090Novosibirsk,Russia b

Materials &Surface Science Institute,University of Limerick,Limerick,Ireland c

Centre of Environmental Research,University of Limerick,Limerick,Ireland

1.Introduction

In the last years biomass has been recognized as one of the major world renewable energy sources.Bio-oil derived from the fast pyrolysis of biomass or bio-ethanol can be converted via steam reforming into hydrogen or syngas,which can be further used in fuel cells for power generation or directed to synthesis of liquid fuels (gasoline and diesel)and valuable chemicals [1,2].For solid oxide fuel cells,an attractive option is direct internal reforming of biofuels on catalytically active anodes [3].Hence,ef?cient,inexpensive and robust catalysts for the steam reforming of biofuel are required.To improve the overall ef?ciency of biofuels transformation into synfuels or energy,the steam excess in these endothermic processes should be kept to a minimum.However,the most demanding problem of their design is heavy coking of catalysts even in the feeds with excess of steam caused by a high reactivity of biofuel components (carboxylic acids,aldehydes,ketones,alcohols and phenols),thus excluding application of traditional Ni-based steam reforming catalysts [4],Ni–yttria-

doped zirconia (YSZ)anode cermets [3]or precious metals (Pt,Pd and Ru)supported on traditional carriers with developed surface area (alumina and zirconia [5,6]).A promising approach to design of steam reforming catalysts resistant to coking consists in synthesis of nanocomposites comprised of components able to ef?ciently activate C–H and C–C bonds in the fuel molecules (Ni,precious metals)and oxide components providing activation of water molecules and transfer of hydroxyls and/or hydroxocarbo-nate/oxygen species to the metal particles where they interact with activated C–H–O species producing syngas [4,7–9].Basic oxides such as lanthana [4,10],ceria [11],yttria [12],zirconia [13],ceria–zirconia [14–16],etc.were shown to be quite ef?cient in this respect.Recently,modi?cation of traditional Ni/YSZ anode cermets with ceria–zirconia ?uorite-like solid solutions doped by Pr,La or Gd was shown to suppress their coking in stoichiometric methane–steam feeds,while supporting small ($1wt.%)amounts of precious metals (Pt,Ru and Pd)allowed to provide a high performance in the intermediate temperature range (500–6008C)at short (millise-conds)contact times [17–19].Such inexpensive composites could be also attractive as active components of catalysts for steam reforming of biofuels,though this has not been properly veri?ed up to date.To ensure a high performance of these composites in steam reforming of a given type of biofuel component,their composition

Catalysis Today 145(2009)127–137

A R T I C L E I N F O Article history:

Available online 13June 2008Keywords:Composites Ni–YSZ

Doped ceria–zirconia oxides Ru

Steam reforming CH 4

Ethanol Acetone

Using robotic workstation,a number of composite materials based on NiO/yttria-doped zirconia (YSZ)cermet promoted with doped ceria–zirconia ?uorite-like mixed oxides and Ru were synthesized.The materials were characterized by XRD,BET,TEM,H 2TPR,and their catalytic performance was estimated in the reactions of methane,ethanol and acetone steam reforming at short (10–36ms)contact times.The amount of deposited carbonaceous species was estimated by temperature-programmed https://www.doczj.com/doc/1c3892725.html,plex ?uorite-like oxides as promoters minimize coking even in stoichiometric fuel/steam feeds.Promotion by small (<1wt.%)amount of Ru further decreases coking and facilitates activation of such molecules as CH 4and acetone,thus ensuring a high level of performance in the intermediate temperature (500–6008C)range.Factors controlling performance of these composites in steam reforming reactions such as lattice oxygen mobility in complex oxide promoters controlled by their chemical composition,strong interaction between components in composites,state and reactivity of supported Ru were assessed.

?2008Elsevier B.V.All rights reserved.

*Corresponding author.Tel.:+73833308763;fax:+73833308056.E-mail address:sadykov@catalysis.ru (V.Sadykov).Contents lists available at ScienceDirect

Catalysis Today

journal homepage:https://www.doczj.com/doc/1c3892725.html,/locate/cattod

0920-5861/$–see front matter ?2008Elsevier B.V.All rights reserved.doi:10.1016/j.cattod.2008.04.034

and preparation procedures are to be properly optimized,?rst of all,as related to the type and content of doping cations in?uorite-like ceria–zirconia solid solutions controlling mobility and reactivity of the surface and bulk oxygen species[20,21].In this respect,application of the combinatorial synthesis procedures using robotic workstations[22]which provide unique possibilities of fast preparation of a large number of samples required for such optimization seems to be very promising.

Hence,this paper presents results of research aimed at design of active components of catalysts for steam reforming of biofuel components(ethanol and acetone)comprised of YSZ+NiO+com-plex?uorite-like doped ceria–zirconia oxides+Ru.Selection of acetone along with ethanol stems from the fact that acetone is formed as an intermediate product during steam reforming of ethanol[5]or acetic acid[23]—typical components of bio-oil. Namely subsequent steps of acetone transformation on oxide supports are considered as being responsible for the catalysts coking[23].Similarly,cracking of ethanol in the course of steam reforming is known to produce methane[5],which,as the most stable alkane,could limit the total degree of ethanol conversion into hydrogen/syngas.This consideration determined selection of methane as the third compound to be tested in steam reforming reaction over prepared series of composite catalysts.Since all these compounds strongly differ by their chemical stability,nature of functional groups and reactivity,comparison of results obtained for the same series of catalysts in transformation of different molecules could provide valuable information about the structural sensitivity of respective reactions related to the nature of their rate-limiting stages.

Based upon results of our previous research for doped ceria–zirconia(1:1)solid solutions[16–21],Pr was chosen here as a dopant providing the highest surface/bulk lattice oxygen mobility due to formation of Pr3+/Pr4+redox pairs.However,at a high(30at.%)Pr content a strong Pr segregation in the surface layer was observed,which might result in too strong interaction with supported precious metals leading to stabilization of their oxidic forms less reactive in activation of fuel components [17,18].To check this hypothesis,in this work,Pr was incorporated into ceria–zirconia solid solution along with bigger (La3+)or smaller(Sm3+)cations which were also found to be quite ef?cient dopants increasing lattice oxygen mobility[19].This allows to control also the acid–base properties of these complex oxide promoters determining mobility and reactivity of surface hydroxyls and hydroxocarbonates and check their effect on catalytic properties.Moreover,in this work,Ce/Zr ratio was also tuned to elucidate the effect of the overall content of reducible cations in doped ceria–zirconia complex oxides on their ef?ciency as promoters.

Selection of Ru as a co-promoter along with the?uorite-like oxides was primarily determined by its lowest price among precious metals which is a very important factor for any possible practical application.At least,in partial oxidation of ethanol on Pd-or Ru-supported yttria,Ru was found to be much more ef?cient than Pd[12].

To elucidate the effect of the lattice oxygen mobility on performance of composites in steam reforming reactions,H2TPR was applied for its characterization,while the temperature-programmed oxidation(TPO)of samples discharged after reaction was used to characterize the amount and reactivity of deposited carbonaceous species.

From the practical point of view,the most ef?cient and robust catalytic compositions could also be used for design of catalytically active anodes of solid oxide fuel cells operating in regimes of direct internal reforming of methane and/or biofuels.2.Experimental

2.1.Catalysts preparation

The composite anode materials based on60%NiO–40%YSZ composite promoted with10wt.%?uorite-like oxides and Ru ($1wt.%)were synthesized using robotic workstation based on the Hamilton Microlab Duo system[22]via multistage incipient wetness impregnation followed by drying overnight in air at908C and then calcination at8008C and regrinding after each stage.At the?rst stage,NiO was added to powdered Y0.08Zr0.92O2ày(8YSZ, Russian source)using nitrate solution,then this basic composite was promoted by?uorite-like oxides(Pr x Ce y Zr z O2,La q Pr x Ce y Zr z O2, Sm q Pr x Ce y Zr z O2,where y=0.35,0.5;z=0.35,0.25,0.2;x=0.15–0.3;q=0.15)using respective mixed nitrates solutions.At last,Ru (0.9wt.%or1.3wt.%)was supported on complex oxides promoted composites by impregnation with RuCl3solution followed by calcination at8008C.

2.2.Catalysts characterization

The speci?c surface area(BET area)was determined by the express BET method using Ar thermodesorption data obtained on a SORBI-M instrument.

The TEM micrographs were obtained with a JEM-2010 instrument(lattice resolution 1.4A?)and acceleration voltage 200kV.Local elemental analysis was performed with EDX method (a Phoenix Spectrometer).

The XRD patterns were recorded using an URD-6M diffract-ometer with Cu K a radiation in the range of2u angles10–908.

H2TPR experiments were carried out for samples pretreated in O2at5008C using feed containing10vol.%H2in Ar at?ow rate 40ml minà1and temperature ramp108C minà1from$258C to 9008C.During the experiment H2O was frozen out atà808C.The hydrogen concentration was determined using a thermal con-ductivity detector.

For TPO experiments,samples after achieving a steady-state performance in the steam reforming of acetone or ethanol at the highest temperature of experiments(7008C),were cooled in the same feed to5008C within$3h,then cooled to room temperature in a closed reactor,discharged from the reactor and transferred into another one under contact with air.Before TPO run,samples were heated in the stream of He up to1008C,kept at this temperature for0.5h,then He was changed to0.5%O2in He feed, and temperature was increased up to8808C with a ramp of58C/ min,products evolution being monitored by PEM-2M gas analyzer as described elsewhere[17].

2.3.Catalyst testing

Catalytic activity in the steam reforming of methane(CH4SR)at short contact times(10ms)was studied using8%CH4+8–24%H2O in N2feeds for samples(0.5–1mm fraction)pretreated in O2at temperatures up to8508C in a?ow installation by using a?ow quartz reactor and earlier described procedures[16–18].

Catalytic activity in the reactions of ethanol steam reforming (ESR)(standard feed0.5%C2H5OH+2.5%H2O in He)at short contact times(36ms)was estimated in a?ow installation by using a?ow quartz reactor(internal diameter2.5mm)packed with a catalyst(0.25–0.5mm fraction)diluted with a quartz sand.In these tests catalysts were heated to the temperature of experiment in the ?ow of1%O2in He,and then the reaction mixture was fed till the stationary concentrations of the products were attained.

Catalytic activity of samples(0.25–0.5mm fraction)in the acetone steam reforming(ASR)at short contact times(20ms)was

V.Sadykov et al./Catalysis Today145(2009)127–137 128

studied using0.8%C3H6O+3.5%H2O in He feed in the temperature range of500–7008C.To accelerate attainment of steady-state activity in this reaction at moderate(500–6008C)temperatures in rather diluted feed containing acetone(less reactive than ethanol), catalysts were subjected to a mild reducing pretreatment(1h at 5008C in the stream of2%H2in He)to convert NiO into Ni.

The products(H2,CO and CO2)and CH4concentrations in converted feeds were continuously monitored by using on-line IR absorbance gas analyzer PEM-2M,TCD and an electrochemical H2 sensor with the data acquisition and processing through a PC.

In all experiments,a cooled trap kept either at$à408C(for oxygenates steam reforming in diluted feeds)or at108C(for methane steam reforming)was placed at the reactor exit to condense excess water and/or non-reacted oxygenates as well as intermediate products of their transformation(aldehydes,etc.),thus preventing condensation of liquids within analyzers and damage of sensors.Hence,the results obtained in this work with a?xed composition of model diluted reaction feeds are to be considered as mainly aimed at scanning catalytic properties of a library of samples within routine of the combinatorial approach,while more detailed studies of the most promising samples using feeds with realistic compositions will be mainly presented elsewhere.

Catalytic experiments in ethanol steam reforming in a realistic feed(EtOH:H2O:N2=1:4:5)presented for comparison in this work for one selected sample with the aim to demonstrate typical products distribution for composite catalysts were carried out in U-shaped tubular quartz?ow reactor(4.5mm i.d.)at atmospheric https://www.doczj.com/doc/1c3892725.html,ually0.18g of pelletized catalyst(fraction0.5–0.25mm)diluted in a1:10weight ratio with quartz sand was taken.Reaction was performed at600–8008C and the total?ow rate9l/h(contact time ca.70ms).Before testing,the catalyst was pretreated for1h at4008C in the?ow of10%O2in N2.Three on-line gas chromatographs(GC)‘‘LHM-8’’equipped with thermal conductivity detectors and a?ame ionization detector respectively were used for the analysis of reactants and products.Hydrocarbons (CH4,C2H6,C2H4,etc.)and oxygenates(EtOH,CH3OH,acetone, diethyl ether,acetaldehyde,etc.)were analyzed using a Porapak T column;N2,O2,CH4and CO were analyzed with a molecular sieve column,and H2,N2,CO,CO2,CH4with an active carbon‘‘SYT’’column.Ar and He were used as carrier gases.

3.Results and discussion

3.1.Catalysts characterization

3.1.1.Structural characteristics and microstructure of composites

The BET surface area of composite materials was$9(?1)m2/g.

Fig.1presents XRD patterns of NiO+YSZ composite,?uorite-like Pr0.15La0.15Ce0.35Zr0.35O2oxide and NiO+YSZ composite promoted by this oxide.For Pr0.15La0.15Ce0.35Zr0.35O2oxide prepared via Pechini route[19–21]and calcined at8008C,broad diffraction peaks correspond to

a cubic?uorite-like phase[JCPDS89-7130]with small particle sizes.In promoted composite,along with strong re?ections corresponding to doped zirconia and NiO phases[17],weak broad re?ections of added?uorite-like phase were observed as well. However,in these composites,both before and after supporting doped ceria–zirconia oxide,along with re?ections corresponding to cubic/tetragonal YSZ phase[JCPDS70-4431](highly dispersed c-or t-ZrO2phases are not discerned easily by routine XRD analysis[24]), re?ections corresponding to monoclinic zirconia phase[JCPDS78-1807]were observed as well.As judged by the ratio of re?ections intensity,promotion of NiO+YSZ composite by doped ceria–zirconia oxide increases further the content of monoclinic zirconia. This implies that preparation procedure used in our robotic synthesis route,namely,successive impregnation of YSZ powders with the excess of acidic nitrate solutions followed by evaporation to dryness and calcination[22],favors leaching of Y from doped zirconia.This results in destabilization and disordering of the cubic zirconia structure,while at least the surface layers of perovskite-like yttrium nickelates can be formed.Earlier[17],such variation of the structural features of doped zirconia was not observed for NiO+YSZ (ScCeSZ)composites promoted by complex oxides via impregnation with solutions of polymeric polyester precursor(Pechini route).

Fig.2demonstrates typical morphology,microstructural features and local composition of composites prepared in this work.Samples are comprised of big($1m m)porous aggregates formed by stacking of particles with typical sizes in the range of 10–100nm strongly differing by contract(Fig.2a).EDX analysis revealed presence of zirconia particles containing some amounts of elements corresponding to supported doped ceria–zirconia oxide (Fig.2b)but without any traces of nickel.These zirconia particles are comprised of well-crystallized coherently stacked domains with distances3.02A?corresponding to the(111)planes of cubic zirconia[JCPDS70-4431]separated by nanopores with walls oriented along the lattice planes.In other regions(Fig.2c) juxtaposed NiO and?uorite-like oxide particles containing elements corresponding to cations of doped ceria–zirconia oxide are revealed.A distance of 3.4A?observed in some particles corresponds to the(111)planes in doped ceria–zirconia oxide with a bigger lattice parameter than in YSZ[19].

A high-resolution image of these regions(Fig.2d)shows nearly coherently intergrown particles of?uorite-like oxide(mainly, doped zirconia phase in this case)and NiO.EDX analysis revealed considerable incorporation of components corresponding to doped ceria–zirconia phase into zirconia,which is also re?ected in the increase of(111)spacing to3.08A?.Simultaneously,presence of some Ni in EDX spectrum suggests that at least the surface layer of ?uorite-like phase contains this element,perhaps,as perovskite-like clusters(vide supra),though incorporation of some amount of Ni cations into the lattice of?uorite-like oxides[25,26]and/or into nanopores of YSZ(vide supra)is possible as well.Traces of Zr and Y were also revealed in the regions of NiO particles.

Separate particles of supported Ru were not observed in all samples,which is explained by its low content as well as pronounced interaction with other components of composite (vide infra).Some traces of Ru were revealed by EDX practically in all regions(Fig.2).

Hence,structural studies revealed pronounced interaction between phases present in composites with detectable variation of the chemical composition of?uorite-like oxide particles.

Fig.1.XRD patterns of Ce0.35Zr0.35La0.15Pr0.15O2(1),10%Ce0.35Zr0.35La0.15Pr0.15O2/ NiO+YSZ(2)and NiO+YSZ(3).

V.Sadykov et al./Catalysis Today145(2009)127–137129

3.1.2.Temperature-programmed reduction

Typical H 2TPR spectra are shown in Figs.3–6.For all composites,NiO reduction was completed up to 600–6508C.For unpromoted NiO +YSZ composite,reduction starts at $3308C (Fig.3),while for pure NiO [10,27]or its mechanical mixture with YSZ [17]it begins already at $2808C.Moreover,for both pure NiO and NiO +YSZ mixture,only one reduction peak is observed with T max $3508C [10,17,27],which is rather close by position to the ?rst reduction peak observed in unpromoted composite (Fig.3).Hence,this peak can be assigned to reduction of NiO particles non-modi?ed by interaction with YSZ.Reduction peak with a maximum at $4008C in the spectrum of unpromoted composite (Fig.3)

is

Fig.2.Typical morphology,microstructure and local composition (by EDX)of NiO +YSZ composite promoted by Pr 0.15La 0.15Ce 0.35Zr 0.35O 2oxide and Ru.(a)Macro/mesoporous aggregates of particles;(b)disordered nanodomain ZrO 2particle containing internal nanopores and respective EDX spectrum;(c)disordered nanodomain particles of ?uorite-like oxide promoter on the surface of NiO particle and respective EDX spectrum;(d)contact area between NiO and YSZ particle modi?ed by the elements of complex oxide promoter.

V.Sadykov et al./Catalysis Today 145(2009)127–137

130

similar by position to peaks earlier observed for NiO supported on CeO 2[25]and for NiO +YSZ mechanical mixture promoted by Ce 0.5Zr 0.5O 2oxide [17].Appearance of this peak was explained by stabilization of Ni 2+cations on the surface of NiO particles by decoration with Ce 4+cations or CeO x fragments.TPR peaks with T max situated even at higher (450–6008C)temperatures were observed in the case of NiO supported on zirconia [27–29],ceria–zirconia [27]or alumina [27].Moreover,in the case of NiO +Sc 0.1Ce 0.01Zr 0.89O 2ày composite sintered into dense pellets and then ball milled into powders,two overlapping peaks with T max $4508C and 5008C were observed [18].This suggests that decoration of the surface of NiO particles by irreducible cations (Zr 4+,Sc 3+and Y 3+)and/or strong interaction between particles of NiO and zirconia further hampers NiO reduction.The high-temperature (up to 7008C)tail of hydrogen consumption observed for undoped composite (Fig.3,curve 7),by analogy with published data [25–29],can be assigned to reduction of Ni cations incorporated into the bulk of doped zirconia particles,perhaps,primarily being located within nanopores detected by TEM (vide supra).Hence,TPR data revealed pronounced variation of the reactivity of NiO particles/species in unpromoted NiO +YSZ

composite,which could re?ect different degree of chemical interaction between components.

Supporting complex oxides practically eliminates the ?rst TPR peak situated at $3508C (Fig.3),slightly shifts the second peak to higher temperatures and increases the relative share of the high-temperature peak at $4708C.A high-temperature reduction tail extending up to 7008C remains to be observed for all samples.This implies that the second impregnation provides modi?cation of the surface of all NiO particles present in composite by Zr and rare-earth cations.More detailed analysis of reduction patterns agrees with this suggestion.Thus,the biggest share of the second high-temperatures peak is found for composite promoted by Pr 0.15La 0.15Ce 0.35Zr 0.35O 2complex oxide containing La.Indeed,this could favor appearance of perovskite-like lanthanum nickelate fragments on the surface of NiO particles.According to known data [10,30],supported La–Ni–O oxides are intensively reduced only at temperatures exceeding 6008C.Similarly,incorporation of Ni cations into the bulk of doped ceria–zirconia particles

[25,26]

Fig. 3.H 2TPR spectra of NiO +YSZ-based composites promoted by Pr 0.3Ce 0.35Zr 0.35O 2(1),Pr 0.25Ce 0.5Zr 0.25O 2(2),Pr 0.15La 0.15Ce 0.35Zr 0.35O 2(3),Pr 0.15La 0.15Ce 0.5Zr 0.2O 2(4),Pr 0.15Sm 0.15Ce 0.35Zr 0.35O 2(5),Pr 0.15Sm 0.15Ce 0.5Zr 0.2O 2(6)or unpromoted NiO +YSZ

(7).

Fig.4.Effect of Ru-supporting on H 2TPR spectra of Pr 0.25Ce 0.5Zr 0.25O 2/NiO +YSZ

composite.

Fig. 5.H 2TPR spectra of composites co-promoted with 0.9wt.%Ru and Pr 0.3Ce 0.35Zr 0.35O 2(1),Pr 0.25Ce 0.5Zr 0.25O 2(2),Pr 0.15La 0.15Ce 0.35Zr 0.35O 2(3),Pr 0.15La 0.15Ce 0.5Zr 0.2O 2(4),Pr 0.15Sm 0.15Ce 0.35Zr 0.35O 2(5)and Pr 0.15Sm 0.15Ce 0.5Zr 0.2O 2

(6).

Fig.6.H 2TPR spectra of composites co-promoted with Ru (0.9wt.%)and ?uorite-like oxides (1,Pr 0.3Ce 0.35Zr 0.35O 2;2,Pr 0.25Ce 0.5Zr 0.25O 2;3,Pr 0.15La 0.15Ce 0.35Zr 0.35O 2;4,Pr 0.15La 0.15Ce 0.5Zr 0.2O 2;5,Pr 0.15Sm 0.15Ce 0.35Zr 0.35O 2;6,Pr 0.15Sm 0.15Ce 0.5Zr 0.2O 2)corresponding to reduction of different oxidic forms of Ru in the low-temperature range.

V.Sadykov et al./Catalysis Today 145(2009)127–137131

could be another reason for appearance of NiO x species reduced only at high temperatures.

On the other hand,increasing content of red-ox cations(Ce and Pr)in supported?uorite-like oxides and replacing La by Sm somewhat facilitates reduction as revealed by shift of the?rst peak to lower temperatures and increasing its share(Fig.3).Since reduction of NiO into Ni is well known to be a topochemical process occurring through generation of Ni8phase nuclei at some speci?c highly reactive sites(usually,located at outlets of extended defects such as dislocations,etc.)with their subsequent growth,in fact,oxide additives should not cover all the surface of NiO particles by a dense layer to cause noticeable effect on their reduction characteristics.It is suf?cient to decorate a small number of surface defect sites in vicinity of the dislocation outlet or domain/grain boundaries to hamper or accelerate removal of oxygen from these sites,and,hence,dynamics of Ni8nucleation, thus shifting TPR peak position upward or downward,respectively. Indeed,promotion of NiO reduction by Ce cations was detected by Srinivas et al.[26].

Promotion of composites by Ru clearly accelerates their reduction by hydrogen(Figs.4and5)characterized by the main peak situated at370–4008C and increases the total degree of samples reduction achieved during TPR run up to9008C(Table1). In general,promoting effect of supported Pt group metals on the oxides reduction by hydrogen is a well-documented phenomenon explained by the ef?cient activation of H2molecules on the metal particles and spill-over of atomic hydrogen onto the oxide surface, thus easily removing reactive oxygen forms[31].Downward shift of H2TPR peak is observed for any mechanism of the solid oxide reduction,either topochemical(such as NiO reduction)or diffusion-controlled(reduction of ceria–zirconia solid oxide solution)[31].Facilitation of the lattice oxygen mobility due to incorporation of precious metals into domain boundaries and subsurface layers is demonstrated as well[32].

In addition,for Ru-promoted samples,in the low-temperature (100–2308C)range,new peaks appear(Fig.5)apparently corresponding to reduction of different Ru oxidic species [13,33,34].For Ru supported on ceria or zirconia,peaks assigned to reduction of RuO2species with different dispersion are situated at80–1008C[13,34].Hence,TPR peaks at115–1508C observed for some samples(Fig.6,curves1–3)suggest rather weak interaction of RuO x species with other phases present in composites.When Ru cations are incorporated into the surface vacancies of La–Sr–chromate with the perovskite structure,these peaks are shifted to higher(180–2008C)temperatures[33].Hence,peaks observed at $1708C for composite samples promoted by complex?uorites containing Sm cations and a larger fraction of reducible cations(Ce and Pr),can be assigned to reduction of RuO x species strongly interacting with these oxidic promoters,perhaps,modi?ed also by dissolved Ni cations(Fig.6,curves4–6).This interaction apparently facilitates reduction of NiO present in promoted composites,since for the latter samples T max of the main reduction peak is shifted downward(Fig.5a),and the total amount of consumed hydrogen increases(Table1)despite disappearance of the low-intense broad reduction peak at$5008C(Fig.5b)assigned to reduction of Ni and/or Ce4+/Pr4+cations in the bulk of?uorite-like oxide particles.This implies that both Ru and promoting ?uorite-like oxides are rather uniformly distributed within composite decorating NiO particles and,perhaps,even incorpor-ating into domain boundaries/interfaces of oxide particles.

3.2.Catalytic performance

3.2.1.Methane steam reforming

In the reaction of methane steam reforming in the stoichio-metric feed,in studied temperature range,performance of Ni–YSZ composites promoted by?uorite-like oxides(both with and without Ru)was in general stable at least for several hours at each temperature.This stability is achieved despite accumulation of some amount of coke on the surface,which is the most ef?ciently hampered by combination of complex oxide and precious metal promoters[17].To illustrate the scale of speci?c catalytic activity of composites in this reaction,the ef?cient?rst-order reaction rate constants estimated for the plug-?ow reactor following earlier suggested routine[17]are given in Figs.7and8.The values of ef?cient rate constants varying in the range of10–30sà1at6008C demonstrate a high speci?c activity of these composites in the middle-temperature range required for their application as catalytically active anodes of solid oxide fuel cells operating in regimes of direct internal reforming of methane[17].

Performance of composites without Ru strongly depends on composition of the oxide additives(Fig.7).The most important feature is a rather high middle-temperature activity of some composites in stoichiometric feed even without addition of precious metals,which was not observed earlier for Ni–YSZ based composites[17,18].This seems to be provided by a strong interaction of promoting?uorite-like oxides with NiO particles due to speci?city of the preparation route(vide supra)as well as by their speci?c chemical composition,namely,a high fraction of reducible Ce and Pr cations along with basic La and Sm cations affecting the oxygen mobility in composites.This implies that a good performance in methane steam reforming in the middle-temperature range in stoichiometric feed can be provided by Ni as

Table1

Effect of chemical composition of composite materials on hydrogen consumption (mmol H2/g Cat)in different temperature ranges

Catalyst Without Ru+0.9wt.%Ru

Temperature range(8C)40–90040–230230–900

NiO+YSZ 6.37––

Pr0.3Ce0.35Zr0.35O2/NiO+YSZ 6.330.19 6.18 Pr0.25Ce0.5Zr0.25O2/NiO+YSZ 6.210.19 6.24 Pr0.15La0.15Ce0.35Zr0.35O2/NiO+YSZ 6.200.19 6.35 Pr0.15La0.15Ce0.5Zr0.2O2/NiO+YSZ 6.000.17 6.13 Pr0.15Sm0.15Ce0.35Zr0.35O2/NiO+YSZ 6.200.19 6.45 Pr0.15Sm0.15Ce0.5Zr0.2O2/NiO+YSZ 6.250.18

6.43Fig.

7.Ef?cient?rst-order rate constants vs.T for CH4SR on composites promoted by Pr0.3Ce0.35Zr0.35O2(1),Pr0.15La0.15Ce0.35Zr0.35O2(2),Pr0.25Ce0.5Zr0.25O2(3), Pr0.15La0.15Ce0.5Zr0.2O2(4),Pr0.15Sm0.15Ce0.35Zr0.35O2(5)and Pr0.15Sm0.15Ce0.5Zr0.2 O2(6).Feed8%CH4+8%H2O in He,10ms contact time,O2pretreatment.

V.Sadykov et al./Catalysis Today145(2009)127–137 132

an active metal in combination with ?uorite-like oxides if a good decoration of its surface by these oxide promoters is achieved.A high catalytic activity of small NiO clusters stabilized on the surface of ?uorite-like oxide promoters could be possible as well [17].In these cases,activated CH x fragments generated on Ni are rapidly transformed into CO and H 2by interaction with hydroxyls or hydroxocarbonates supplied by the oxide promoters.In turn,these species are generated by water and CO 2adsorption and activation on the surface sites of these complex oxides.Perhaps,redox properties of oxide promoters as well as their basicity play also an important role in this interaction of hydroxyls/hydro-xocarbonates with CH x fragments.Though pronounced rearrange-ment of composites microstructure in operation conditions [17]precludes any simple straightforward correlations between activity and oxygen mobility/reactivity in composites estimated by H 2TPR,some general trends could be nevertheless outlined.First,samples possessing a high activity in the middle-temperature range (Fig.7,curves 4and 6)are among samples the most easily reduced by H 2(Fig.3,curves 4and 5).A lower performance of composite promoted by La-containing complex oxide (Fig.7,curve 4)as compared with that promoted by Sm-containing oxide (Fig.7,curve 6)implies that too high basicity of the largest La cation hampers mobility and/or reactivity of hydroxocarbonate species.On the other hand,in the high-temperature range,the highest level of activity is observed for composites promoted by oxides containing only Pr,Ce and Zr cations (Fig.7,curves 1and 3).Perhaps,at high temperatures,where the rate of methane activation is very fast and the surface coverage by hydroxyls and carbonates declines due to desorption of water and CO 2,red-ox properties of promoting oxides play determining role in preventing coking of Ni surface.

In general,Ru-supporting promotes performance of composites in stoichiometric feed (Fig.8).This certainly correlates with much faster reduction of Ru-promoted composites by H 2(vide supra),suggesting increased surface/near-surface oxygen mobility.In addition,formation of Ru–Ni surface alloy might prevent coking of Ni surface [17].However,in general,effects of Ru addition on activity in CH 4SR could broadly vary due to pronounced variation of samples microstructure.Thus,for systems ef?cient in the middle-temperature range without Ru,effect of Ru supporting is either weak or absent.Since for these systems the most strong

stabilization of RuO x species by oxidic components is observed,including,probably,Ru incorporation into domain boundaries of NiO particles,?uorite-like oxides or nanopores of YSZ (vide supra),a moderate activity of these composites promoted by Ru can be assigned to a low surface concentration of metallic Ru particles ef?cient in methane activation.This conclusion agrees with the highest activity of composite co-promoted by Ru and Pr 0.15La 0.15-Ce 0.35Zr 0.35O 2oxide.Indeed,this sample is characterized by the intermediate reduction characteristics of RuO x surface species (Fig.6,curve 3),so in the reaction conditions its surface contains Ru clusters both highly active in CH 4activation and stabilized by support to prevent their aggregation or coking.

The increase of Ru content from 0.9to 1.3wt.%decreases composite performance in stoichiometric feed in nearly all temperature range (Fig.9).This is explained by the fact that stable performance of these composites is determined by the balance between accumulation of surface carbon-containing species–coke precursors generated on Ni and Ru centers,and their gasi?cation due to interaction with oxygen-containing species generated on complex oxide components.Apparently,the increase of Ru loading increases the rate of carbon accumula-tion,while the rate of their gasi?cation at least remains constant,hence,the overall decrease of performance is observed due to coking.The increase of steam content in the feed increases performance of composite promoted by 1.3wt.%Ru,which is clearly explained by removal of coke from the surface in more oxidizing conditions.For sample promoted by 0.9wt.%Ru,more complex effects are observed when increasing steam excess in the feed:activity declines at lower temperatures and increases at high temperatures (Fig.9).Decline of activity in the low-temperature range in feeds with the excess of steam was also observed in the case of Ni–YSZ composites co-promoted by Pd and ?uorite-like complex oxides and explained by stabilization of less reactive oxidic Pd forms due to interaction with oxide promoters [18,19].Hence,for samples promoted by Ru,performance is strongly affected by the content of Ru and feed composition,both too oxidizing and too reducing conditions being not favorable for a high performance in some range of temperature.

3.2.2.Ethanol steam reforming

In this reaction,in general,in the middle-temperature range,activity of all composites,promoted by Ru or not,was rather high (Fig.10).This is explained by a high activity of Ni in this

reaction

Fig.8.Ef?cient ?rst-order rate constants vs.T for CH 4SR on composites promoted with ?uorite-like oxides and 0.9wt.%Ru.8%CH 4+8%H 2O in He,10ms contact time,O 2pretreatment.Type of oxide promoters:(1)Pr 0.3Ce 0.35Zr 0.35O 2;(2)Pr 0.15La 0.15Ce 0.35Zr 0.35O 2;(3)Pr 0.25Ce 0.5Zr 0.25O 2;(4)Pr 0.15La 0.15Ce 0.5Zr 0.2O 2;(5)Pr 0.15Sm 0.15Ce 0.35Zr 0.35O 2;(6)Pr 0.15Sm 0.15Ce 0.5Zr 0.2O 2

.

Fig.9.Effect of steam/CH 4ratio in the feed (CH 4content 8%)on CH 4conversion for composite 10%Pr 0.15La 0.15Ce 0.35Zr 0.35O 2/NiO +YSZ promoted with 1.3wt.%Ru (1and 2)or 0.9wt.%Ru (3and 4).

V.Sadykov et al./Catalysis Today 145(2009)127–137133

provided coking of its surface is hindered by oxidic promoters [5,4].Moreover,speci?c activity of Ni supported on alumina is reported to be even higher than that of low-loaded Ru [4,5,10].This agrees with the results of Srinivas et al.[26]demonstrating a high and stable activity in ESR of composites comprised of 40wt.%NiO and 60wt.%CeO 2(CeO 2–ZrO 2)prepared via hydrothermal route.Hence,promoted composites ef?cient and stable in steam reforming of methane are also quite promising for the steam reforming of ethanol.As can be inferred from the hydrogen content in converted feed,at 7008C,even at short contact time,up to 70%of ethanol is converted along the steam reforming route.Since breaking of C–C bond in the ethanol molecule is less demanding than in the case of C–H bond in methane molecule,this could be one of the reasons of rather weak structural sensitivity of this reaction as related to hydrogen yield.

Experiments with realistic feed composition (10%EtOH,vide supra experimental)con?rmed a high performance and stability to coking (at least for 10–20h of time-on stream)for one of the best composites (Fig.11).In these experiments,ethanol conversion exceeds 92%achieving complete conversion at 8008C.In agree-ment with earlier results for Ni-based composites [25,26],the main by-product is CH 4(selectivity up to 25%at 6008C),with only traces of methanol being revealed.Appearance of methanol as by-product certainly suggests that cracking of some ethanol-derived

surface species (perhaps,acetates located on support sites adjacent to the metal ones [36])takes place.However,such a cracking of acetates usually produces CH 4and not CH 3OH [36].Hence,for composite catalysts of the type considered in this work,the ef?cient interaction of CH 3radicals produced by such a cracking with hydroxyls supplied by the complex oxide promoter or YSZ might be speculated as a possible route explaining appearance of methanol traces in products.Note that even at rather short contact times (70ms),C 2H 4was not revealed in the products,while it was inevitably present for catalysts comprised of precious metals supported on alumina [5,6,25,36].Hence,for developed in this work composite systems containing YSZ and complex ?uorite-oxide promoters,the primary route of ethanol transformation into syngas seems not to include ethanol dehydration.This agrees with very high CO 2/CO ratio in products at 7008C in diluted feed clearly not conforming to the equilibrium composition of converted feed [26]or to results obtained with a high content of ethanol in the feed rather close to equilibrium at high temperatures (Fig.11).Absence or very low concentration of CO in products for composites promoted by oxides with a high Ce content implies that red-ox properties of promoters are also responsible for routes of ethanol transformation into carbon oxides [35,36].Since at high temperatures acetates are the only surface species detected by infra-red spectroscopy [36],at short contact times CO 2can be considered as primary product of their decomposition.

For a sample discharged after ESR,temperature-programmed oxidation of deposited coke (Fig.12,curve 1)revealed rather low amount of carbonaceous species (close to earlier estimated values for composite samples after operation in stoichiometric methane/steam feed [17])rather easily removed at temperatures below 3508C.According to the usual assignment [25],this peak corresponds to oxidation of super?cial carbon in close contact with the metallic particles.Since this sample possesses the lowest performance in the ethanol steam reforming (Fig.10),a lower carbon coverages for more active samples could be expected.Moreover,in fact,due to applied procedure of cooling samples in the reaction atmosphere before TPO tests clearly favoring additional coking at low temperatures (see Section 2),thus estimated amount of deposited carbon could be in fact several times bigger than the actual content of carbonaceous deposits in the steady-state conditions at operational

temperatures.

Fig.10.Concentration of products in the steam reforming of ethanol on composites promoted with ?uorite-like oxides and 0.9wt.%Ru.7008C,contact time 0.036

s.

Fig.11.Product distribution for steam reforming of ethanol on 0.9wt.%Ru/Pr 0.15Sm 0.15Ce 0.35Zr 0.35O 2/NiO +YSZ sample.Feed composition EtOH:H 2O:N 2=

1:4:5.

Fig.12.Typical curves of CO 2(1–6a),CO (6b)and H 2(6c)evolution during temperature-programmed oxidation of carbonaceous deposits for some studied samples of composites promoted by Pr 0.15La 0.15Ce 0.5Zr 0.2O 2(1),Pr 0.15La 0.15Ce 0.5Zr 0.2O 2(2),Pr 0.15Sm 0.15Ce 0.35Zr 0.35O 2(3),0.9wt.%Ru +Pr 0.15La 0.15Ce 0.35Zr 0.35O 2(4),1.3wt.%Ru +Pr 0.15La 0.15Ce 0.35Zr 0.35O 2(5)and Pr 0.15La 0.15Ce 0.35Zr 0.35O 2(6)discharged after reaction of ethanol (1)or acetone (2–6)steam reforming.Amount of removed carbon (mmol/g)is indicated at the right end of each curve.

V.Sadykov et al./Catalysis Today 145(2009)127–137

134

More detailed analysis allowed to assess the relative impor-tance of different factors responsible for the composite perfor-mance in ethanol steam reforming in diluted feed.

As far as the effect of?uorite-like additives is concerned,the highest activity was demonstrated by composites promoted with Sm-containing oxides,while La-containing additives demon-strated the lowest yields of hydrogen.According to H2TPR data, a higher reducibility,and,hence,lattice oxygen mobility is revealed for composites promoted by Sm-containing oxides,while the lowest for those containing La cations(vide supra).This suggests that the most important factor responsible for a high activity of promoted composites in steam reforming of ethanol is the oxygen mobility of oxide additives preventing catalysts deactivation by coke deposition[10].

Supporting Ru on Pr0.15Sm0.15Ce0.5Zr0.2O2composite slightly decreases hydrogen yield which can be assigned to somewhat higher yield of CH4due to reaction of CO(CO2)methanation[6].For composite promoted by Pr0.15Sm0.15Ce0.35Zr0.35O2,co-promotion with Ru increases CO2yield but decreased CO and H2yield,which can be explained by a higher conversion of ethanol on Ru-containing sample along with preferential CO methanation.Hence, at short contact times and in diluted feeds,the water gas shift reaction is apparently not equilibrated.

When Ru was supported on less active composites promoted by La-containing oxides,another effects were observed:both hydro-gen and CO x yields were increased.While the increase of CO yield can be assigned to acceleration of reverse water gas shift reaction catalyzed by Ru particles weakly interacting with promoting ?uorite-like oxides in these composites(vide supra),the increase of hydrogen and CO2content in the feed suggests that the overall transformation of ethanol along the steam reforming route is accelerated as well,perhaps,due to decreasing the surface coking and/or accelerating other stages of intermediates(acetate, methane,etc.)transformation into hydrogen and carbon oxides as was demonstrated by similar increase of the middle-tempera-ture performance in steam reforming of methane(vide supra).

Hence,for ethanol steam reforming reaction,the effect of supported promoters(complex?uorite-like oxides and Ru)also depends upon their combinations despite reasonably high activity of promoted Ni in these composites by itself.For this reaction,the structural sensitivity is also revealed despite much easier activation of ethanol than methane via ethoxide intermediates [36].Apart from the effects of oxygen mobility and redox activity of promoting complex oxides affecting both overall performance and CO selectivity,more speci?c action of Ru able to catalyze different stages of the overall catalytic reaction could be important as well. This means that any combinatorial strategy of synthesis of active components for ethanol steam reforming reactions should take into account not only their chemical composition but structural arrangement as well.

3.2.3.Acetone steam reforming

In the reaction of acetone steam reforming concentrations of H2 and CO x were chosen as parameters characterizing catalytic activity along the steam reforming route.In majority of cases, some amount of methane was detected at5008C,while it disappeared at higher temperatures.This indicates that cracking of acetone occurs yielding methane as by-product.When after attainment of a steady-state at5008C the temperature was increased by a step of1008C from500to7008C,H2concentration was increased and CO2concentration declined,achieving a new stationary level within$10min.On the other hand,at each step, CO concentration was?rst rapidly increased following the same time scale$10min,then slowly($60min)declined to a new stationary level which can be somewhat higher or lower as compared with the level obtained at a previous temperature of experiment(not shown for brevity).This behavior implies that some progressive coking of the surface happens with the increase of the temperature leading to decline of the rate of transformation of surface compounds into CO.At the same time,generation of hydrogen and CO2,perhaps occurring on sites of a different nature (site of support in close contact with metal particles)depends rather weakly upon the surface coking in the time scale of these experiments.According to results of Vargas et al.[35],deactivation of Ce–Zr–Co?uorite-type oxide catalysts in steam reforming of ethanol due to coking was accompanied by going of acetone concentration in products through the maximum and continuous increase of CH3CHO concentration,while concentrations of H2and CO2were practically constant and that of CO slowly declined. Similarity with the dynamics observed in our case suggests that at higher temperatures a part of acetone is transformed into hydrogen and some short-chain oxygenates such as CH3CHO, formic acid,etc.which are retained in the cold trap after reactor. Since there are practically no data published on the mechanism of acetone steam reforming,this question certainly deserves further studies.However,we should stress that for all samples,the level of activity achieved at a given temperature was constant for at least 2–3h,hence,it corresponds to a steady-state in applied experi-mental conditions.This implies that a steady-state surface coverage by coke precursors is achieved due to parallel occurrence of reactions leading to coke generation and its gasi?cation by steam.

Steady-state concentrations of products for some samples of studied series are shown in Fig.13.As follows from these data,the maximum yield of H2is obtained for composite co-promoted with Pr0.15Sm0.15Ce0.35Zr0.35O2and0.9%Ru,while the lowest yield is obtained for samples promoted by Pr0.15La0.15Ce0.35Zr0.35O2oxides with the lowest reducibility(cf.Fig.3).This fact is in a good agreement with the results obtained for steam reforming of ethanol as well as methane(vide supra)thus evidencing again importance of the lattice oxygen mobility in promoted composites required to prevent coking.

Indeed,as follows from analysis of our dynamics data,TPO results(Fig.12)as well as published results[23],for the reaction of acetone steam reforming coking appears to be more important problem than for the reaction of ethanol steam reforming.For samples discharged after acetone steam reforming(Fig.12),the amount of deposited carbon is usually bigger than for

sample

Fig.13.Concentration of products in the steam reforming of acetone at5008C and 6008C for different composites:(1)Pr0.15Sm0.15Ce0.35Zr0.35O2;(2)Ru/Pr0.15 Sm0.15Ce0.35Zr0.35O2;(3)Pr0.15La0.15Ce0.5Zr0.2O2;(4)Pr0.15La0.15Ce0.35Zr0.35O2;(5) 0.9wt.%Ru/Pr0.15La0.15Ce0.35Zr0.35O2;(6)1.3wt.%Ru/Pr0.15La0.15Ce0.35Zr0.35O2.

V.Sadykov et al./Catalysis Today145(2009)127–137135

discharged after ethanol steam reforming,and new peaks of CO2 evolution situated at higher temperatures usually assigned to oxidation of?lamentous carbon[25]appear.The highest amount of deposited carbonaceous species was revealed for composite promoted by Pr0.15La0.15Ce0.35Zr0.35O2oxide(Fig.12,curve6a) with the lowest oxygen mobility(Fig.3)and the lowest activity at 6008C(Fig.13).Their oxidation proceeds with evolution of not only CO2as found for all other samples,but CO and H2as well (Fig.12,curves6b and6c).This suggests that these carbonaceous species also contain appreciable amount of hydrogen atoms.

For composite co-promoted by0.9wt.%Ru and Pr0.15La0.15-Ce0.35Zr0.35O2oxide,the amount of deposited carbon is drastically decreased(Fig.12,curve4),which is re?ected in the increase of hydrogen yield(Fig.13).As was considered for the case of methane steam reforming(vide supra),both increase of the oxygen mobility due to Ru incorporation into the surface layers of complex?uorite-like oxide and formation of surface Ru–Ni alloys more resistant to coking could be responsible for these effects.Similarly for the case of methane steam reforming in the stoichiometric feed,the increase of Ru content from0.9to1.3%decreases hydrogen yield (Fig.13),which correlates with the increase of the amount of deposited carbon(Fig.12,curve5).In this case,not only the amount of deposited carbon but its reactivity might be important for composites performance.Indeed,for sample promoted by 1.3wt.%Ru less reactive(and,perhaps,more dense)forms of carbonaceous deposits oxidized at temperatures exceeding6008C dominate(Fig.12),so their gasi?cation by steam may be dif?cult as well.Samples promoted only by complex oxides Pr0.15La0.15-Ce0.5Zr0.2O2or Pr0.15Sm0.15Ce0.35Zr0.35O2and demonstrating a higher reducibility/lattice oxygen mobility as compared with composite promoted by Pr0.15La0.15Ce0.35Zr0.35O2(Fig.3)are characterized by much smaller amount of deposited carbon oxidized at lower temperatures(Fig.12,curves2and3).Despite a bigger amount of deposited coke than for composite co-promoted by0.9wt.%Ru and Pr0.15La0.15Ce0.35Zr0.35O2oxide (Fig.12),samples with a higher lattice oxygen mobility demon-strate a higher hydrogen yield(Fig.13,samples1and3)as compared with the former composite(Fig.13,sample4).This feature can be explained by a higher reactivity of carbonaceous species deposited on the surface of composite without Ru,which facilitates their gasi?cation by steam.For composites without Ru,a lower amount of deposited coke(Fig.12,curves2and3) corresponds to a higher performance(hydrogen yield)for the sample promoted by complex oxide with a higher content of reducible Ce and Pr cations(Fig.13,samples1and3).However, even for composites promoted by oxides with a high lattice oxygen mobility co-promotion by0.9wt.%Ru allows to increase the hydrogen yield(Fig.13,samples1and2),which can be explained by factors considered above.

In general,the scale of variation of hydrogen yield within studied series of samples in acetone steam reforming(Fig.13)is comparable with that for ethanol steam reforming(Fig.10).The main difference between these two reactions is that for the former supporting0.9% Ru increases hydrogen yield,similar to that for the case of methane steam reforming,while for the latter Ru supporting on composites promoted by Sm-containing complex oxides decreases it.The difference is apparently explained by more dif?cult activation of acetone molecule,including rupture of C–H bond which is facilitated by Ru as in the case of methane steam reforming.

At5008C,concentrations of all products vary in parallel in studied series of samples,re?ecting their intrinsic catalytic properties after standard pretreatment in hydrogen.At higher temperatures,this parallelism disappears due to progressive surface coking considered above.Nevertheless,in any case,for used feed and studied temperature range,hydrogen and carbon dioxide are main products into which at least50%of acetone in the feed is converted at short contact times at temperatures as low as 5008C.Taking into account that such model biofuel as acetic acid is easily converted into acetone on zirconia,while subsequent transformation of acetone was found to be the main cause of ZrO2-supported Pt deactivation due to coking,promoted nano-composites could be really promising for steam reforming of bio-oil containing organic acids.Certainly more detailed studies of the most promising compositions in realistic feeds are required to assess their performance and stability for the practical application.

4.Conclusions

Robotic workstation was successfully applied for synthesis of a series of YSZ+NiO composites co-promoted by complex doped ?uorite-like ceria–zirconia oxides and Ru.This multistage pre-paration procedure based upon consecutive impregnation of YSZ powder with the excess of solutions of other components followed by evaporation and calcination resulted in strong interaction between components of composites re?ected in such phenomena as decoration,redistribution of elements between different phases and variation of their structural features,reactivity and oxygen mobility as revealed by TEM with EDX,XRD and H2TPR.Promoted composites demonstrate a stable and broadly varying activity in the reactions of methane,ethanol and acetone steam reforming in stoichiometric feeds explained with a due regard for decreasing Ni coking due to positive effect of the oxygen mobility in complex oxide promoters,redox and acid–base properties of doping cations in complex oxide promoters and their ability to stabilize different types of Ru clusters/species taking part in activation of methane and oxygenates.Within studied series of composites,the scale of their catalytic performance variation is determined by the relative ease of fuel molecule activation,being the broadest for steam reforming of methane.The most promising systems for oxygenates and methane steam reforming possessing a high performance and stability to coking contain as promoters ceria–zirconia solid solutions with Ce/Zr ratio>1co-doped with Pr and Sm cations.

Acknowledgements

The authors acknowledge the?nancial support of INTAS YSF06-1000014-5773,INTAS05-1000005-7663,NATO SFP980878,FP6 SOFC600Projects and Integration Project95SB RAS-NAN Ukraine. References

[1]A.Demibras,Prog.Energy Comb.Sci.33(2007)1.

[2]M.Asadullah,S.Ito,K.Kunimori,M.Yamada,K.Tomishige,J.Catal.208(2002)

255.

[3]W.Jamsak,S.Assabumrungrat,P.L.Douglas,https://www.doczj.com/doc/1c3892725.html,osiripojana,R.Suwanwarangkul,

S.Charojrochkul,E.Croiset,Chem.Eng.J.133(2007)187.

[4]A.N.Fatsikostas,D.I.Kondarides,X.E.Verykios,Catal.Today75(2002)145.

[5]A.Haryanto,S.Fernando,N.Murali,S.Adhikari,Energy Fuels19(2005)2098.

[6]P.Breen,R.Burch,H.M.Coleman,Appl.Catal.B:Environ.39(2002)65.

[7]M.C.J.Bradford,M.A.Vannice,J.Catal.173(1998)157.

[8]M.M.V.M.Souza,M.Schmal,Appl.Catal.A:Gen.255(2003)83.

[9]V.A.Sadykov,T.G.Kuznetsova,Yu.V.Frolova,G.M.Alikina,A.I.Lukashevich,V.A.

Rogov,V.S.Muzykantov,L.G.Pinaeva, E.M.Sadovskaya,Yu.A.Ivanova, E.A.

Paukshtis,N.V.Mezentseva,L.Ch.Batuev,V.N.Parmon,S.Neophytides,E.Kem-nitz,K.Scheurell,C.Mirodatos,A.C.van Veen,Catal.Today117(2006)475.

[10]M.C.Sanchez-Sanchez,R.M.Navarro,J.L.G.Fierro,Catal.Today129(2007)336.

[11]P.Y.Sheng,W.W.Chiu,A.Yee,S.J.Morrison,H.Idriss,Catal.Today129(2007)313.

[12]A.M.Silva,A.P.M.G.Barandas,L.O.O.Costa,L.E.P.Borges,L.V.Mattos,F.B.Noronha,

Catal.Today129(2007)297.

[13]J.-L.Bi,Y.-Y.Hong,C.-C.Lee,C.-T.Yeh,C.-B.Wang,Catal.Today129(2007)322.

[14]C.Diagne,H.Idriss,A.Kiennemann,https://www.doczj.com/doc/1c3892725.html,mun.3(12)(2002)565.

[15]J.A.Montoya,E.Romero-Pascual,C.Gimon,P.D.Angel,Catal.Today63(2000)71.

[16]V.A.Sadykov,T.G.Kuznetsova,Yu.V.Frolova,et al.Catal.Today117(2006)475.

[17]V.A.Sadykov,N.V.Mezentseva,R.V.Bunina,G.M.Alikina,A.I.Lukashevich,T.S.

Kharlamova,V.A.Rogov,V.I.Zaikovskii,A.V.Ishchenko,T.A.Krieger,O.F.Bobre-nok,A.Smirnova,J.Irvine,O.D.Vasylyev,Catal.Today131(2008)226.

V.Sadykov et al./Catalysis Today145(2009)127–137 136

[18]V.A.Sadykov,N.V.Mezentseva,R.V.Bunina,Mater.Res.Soc.Symp.Proc.972

(2007)AA03–AA06.

[19]V.Sadykov,N.Mezentseva,G.Alikina,A.Lukashevich,V.Muzykantov,R.Bunina,

A.Boronin,E.Pazhetnov,E.Paukshtis,V.Kriventsov,A.Smirnova,O.Vasylyev,J.

Irvine,O.Bobrenok,V.Voronin,I.Berger,Mater.Res.Soc.Symp.Proc.1023(2007) JJ02–JJ07.

[20]V.A.Sadykov,N.V.Mezentseva,G.M.Alikina,A.I.Lukashevich,Yu.V.Borchert,T.G.

Kuznetsova,V.P.Ivanov,S.N.Trukhan, E.A.Paukshtis,V.S.Muzykantov,V.L.

Kuznetsov,V.A.Rogov,J.Ross,E.Kemnitz,K.Sheurell,Solid State Phenom.128 (2007)239.

[21]V.A.Sadykov,N.Mezentseva,G.Alikina,A.Lukashevich,V.Muzykantov,T.

Kuznetsova,L.Batuev,M.Fedotov,E.Moroz,D.Zyuzin,V.Kolko,V.Kriventsov, V.Ivanov, A.Boronin, E.Pazhetnov,V.Zaikovskii, A.Ishchenko,V.

Rogov,J.Ross,E.Kemnitz,Mater.Res.Soc.Symp.Proc.988(2007)QQ04–QQ06.

[22]G.Grasso,B.Harji,E.Xue,S.Belochapkine,J.R.H.Ross,Catal.Today81(2003)369.

[23]K.Takanabe,K.Aika,K.Seshan,L.Lefferts,J.Catal.227(2004)101.

[24]D.A.Zyuzin,S.V.Cherepanova, E.M.Moroz, E.B.Burgina,V.A.Sadykov,V.G.

Kostrovskii,V.A.Matyshak,J.Solid State Chem.179(2006)2965.

[25]F.Romero-Sarria,J.C.Vargas,A.-C.Roger,A.Kiennemann,Catal.Today133–135

(2008)149.[26]D.Srinivas,C.V.V.Satyanarayana,H.S.Potdar,P.Ratnasamy,Appl.Catal.A:Gen.

246(2003)323–334.

[27]J.A.Montoya,E.Romero-Pascual,C.Gimon,P.Del Angel,A.Monzon,Catal.Today

63(2000)71.

[28]Y.Matsumura,T.Nakamori,Appl.Catal.A:Gen.258(2004)107.

[29]F.Pompeo,N.N.Nichio,M.M.V.M.Souza,D.V.Cesar,O.A.Ferretti,M.Schmal,Appl.

Catal.A:Gen.316(2007)175.

[30]S.N.Pavlova,N.N.Sazonova,V.A.Sadykov,O.I.Snegurenko,V.A.Rogov,E.M.

Moroz,A.V.Simakov,V.N.Parmon,Kinet.Catal.45(2004)589.

[31]S.Bernal,J.J.Calvino,J.M.Gatica,C.L.Cartes,J.M.Pintado,Catalysis by ceria and

related materials,in:A.Trovarelli(Ed.),Catalytic Science Series,vol.2,Imperial College Press,London,UK,2002,pp.85–168.

[32]E.M.Sadovskaya,Y.A.Ivanova,L.G.Pinaeva,G.Grasso,T.G.Kuznetsova,A.van

Veen,V.A.Sadykov,C.Mirodatos,J.Phys.Chem.A111(2007)4498.

[33]A.Yan,B.Liu,B.Tu,Y.Dong,M.Cheng,Sh.Song,P.Tsiakaras,J.Fuel Cell Sci.

Technol.4(2007)79.

[34]S.Hosokawa,H.Kanai,K.Utani,Y.Taniguchi,Y.Saito,S.Imamura,Appl.Catal.B:

Environ.45(2003)181.

[35]J.C.Vargas,S.Libs,A.-C.Roger,A.Kiennemann,Catal.Today107–108(2005)417.

[36]A.Erdo?helyi,J.Rasko′,T.Kecske′s,M.To′th,M.Do¨mo¨k,K.Baa′n,Catal.Today116

(2006)367.

V.Sadykov et al./Catalysis Today145(2009)127–137137

信息管理系统流程图

ERP 标准业务流程 上海()有限公司 二〇二〇年六月

一、销售部分: (一)、发出商品销售业务: 编号: PR-SA-003业务编号SA-003业务名称发出商品销售业务 流程适用范 围 无论赊销、现销,当月完成发货后,以后月份结算的销售业务 相关岗位及权限 岗位系统操作权限 销售助理销售管理模块中录入销售订单录入 销售主管销售管理模块中审核销售订单审核 销售助理销售管理模块中录入发货单增加、审核 保管员库存管理模块中仓库调拨单录入、一审录入、一审 发货检验员仓库调拨单二审二审 财务开票员以后期间,开据销售发票录入 材料成本会计根据销售调拨单生成出库单并钩稽发发票,存货核算模 块中记账、制单 记账、制单 应收往来会计应收账款模块中结转收入、应收往来核算审核、核销、制单 相关部门或岗位 客户销售部库房记账员材料成本会计/往来会计

具体工作流程以后结算 钩稽 流程描述1、销售业务员与客户签订销售合同,销售助理依据在【销售管理】模块录入销售订单并销售主管对销售订单进行确认,并在系统中对订单进行审核。 2、产品生产完毕完工入库后,销售助理在【销售管理】模块根据销售订单生成销售发货通知单, 3、保管员根据【销售管理】模块中审核后的销售发货单通知单生成仓库调拨单并进行审核,产品出门。 4、以后期间结算时,销售助理根据客户开票需求,对已审核的提货存根联及开票通知单,并送财务部门进行开票; 5、财务开票员根据销售助理复核后的开票通知单,开具销售发票。 6、材料成本会计在【仓库核算】模块根据仓库调拨单生成销售出库单,材料会计对销售发票进行审核处理并钩稽销售出库单,月底根据根据销售出库单生成销售成本结转凭证。。 7、往来会计收款时在【应收管理】模块中填制收款单并根据收款单生成收款凭证。 合同签定, 或接到订 单。 填制发货通知 收 货 填写销售订单 仓库调拨单 审核销售订单 开据销售 审核调拨单 销售发票 应收账款 现结 审核 收款 填制收款单 销 售 收 结 转 销 售

Material studio软件介绍

单击此处编辑母版标题样式
单击此处编辑母版文本样式 第二级 第三级 第四级 第五级
Materials Studio分子模拟软件
Version 2011
Copyright ?2010, Neotrident Technology Ltd. All rights reserved.

虚拟 “实验”(分子模拟技术)
C R E A T V I T Y
决定依据
单击此处编辑母版标题样式
单击此处编辑母版副标题样式
虚拟设计
表征材料结构,以及与结构相关的性质 —— 解释 设计材料结构,以及与结构相关的性质 —— 预测

Materials Studio是整合的计算模拟平台
? 可兼顾科研和教学需求 ? 可在大规模机群上进行并行计算 ? 客户端-服务器 计算方式 – Windows Linux Windows, – 最大限度的使用已有IT资源 – – – – – – – – DFT及半经验量子力学 线形标度量子力学 分子力学 QM/MM方法 介观模拟 统计方法 分析仪器模拟 …… ? 全面的应用领域 - 固体物理与表面化学 - 催化、分离与化学反应 - 半导体功能材料 - 金属与合金材料 - 特种陶瓷材料 - 高分子与软材料 - 纳米材料 - 材料表征与仪器分析 - 晶体与结晶 - 构效关系研究与配方设计 - ……
单击此处编辑母版标题样式 ? 包含多种计算方法
单击此处编辑母版副标题样式

Materials Studio?
Menu Toolbar
单击此处编辑母版标题样式 Property
View
单击此处编辑母版副标题样式
Job s us status
Project

信息系统软件开发流程管理规范_初稿

软件开发流程管理规范

一、概述 随着公司规模的扩大、各部门对软件需求的激增、提高效率的工作要求,IT 部门承接的软件开发项目越来越多,而与之相对应的就是软件开发流程不明确,软件项目的随意性较大、可追溯性较差、可统计性模糊、可预测性不足是摆在我们面前最直接的问题。为了适应公司的发展,IT 部软件开发项目特制订本流程。 二、流程 由上图可以得出以下几个关键步骤: 一、需求部门: I、需求部门首先需要填写《软件需求申请表》,说明需要开发的软件具体用途径、目前工作模式、工作不方便之处、基本功能等信息; II、待 IT 部门评审通过后,通知需求部门,填写《软件开发申请表》,具体列明需要实现的功能、目前工作流程、使用系统后需

要达到的状态,可节省的人力、物力,调高的效率等信息; III、软件开发测试完成之后,接受 IT 部门的软件使用培训,并填写《参与培训确认单》; IV、软件试用结束后,填写《软件验收表》,完成软件项目的开发流程; V、在开发测试过程中,遇到开发风险增加、需求变更等,都需要配合 IT 软件开发人员 填写相关的《项目风险管理表》和《项目 变更管理表》。二、IT 部门: I、积极对需求部门提出的《软件需求申请表》进行评审、审批,限 3 个工作日完成, 及时反馈结果给需求部门;

II、指导需求部门填写各类表格; III、积极评审需求部门填写的表格、积极沟通,有效获得相对准确的需求,并填写完善, 让需求部门签字确认; IV、进入开发流程后,积极填写《项目成员组成表》、《项目策划任务书》、《WBS 表》、 《项目进度计划表》等(具体见附件); V、积极开展人员培训和软件试用工作,编写完善的《XXX 软件试用说明书》,并要求相关人员签字确认,并存档处理。 三、附件附件一、编码规范1、 命名空间 1. 公共类库(公司功能业务): (1)全局公共类库: 例:生成 dll 文件,添加至最小应用库可全程序引用 (2)局部公共类库(主要区分公司),命名方式为专有业务场景+专有业务名+具体类名:例:(总部)/In(国内市场)/Rb(生产)注:(公共类库)信息登记、评审、信息共享,命名空间最多三层2. 项目程序文件:项目文件名,以核心功能的英文名称为准,格式:ECO_英文名词首字母大写 2、命名规则 文件夹及相关文件命名规则 a) 文件夹:功能文件夹,采用驼峰形式,首字母大写全称 b) 窗体文件:采用驼峰形式,首字母大写全称

Materials studio简介

Materials studio简介 1、诞生背景美国Accelrys公司的前身为四家世界领先的科学软件公司――美国Molecular Simulations Inc.(MSI)公司、Genetics Computer Group(GCG)公司、英国Synopsys Scient ific系统公司以及Oxford Molecular Group(OMG)公司,由这四家软件公司于2001年6月1日合并组建的Accelrys公司,是目前全球范围内唯一能够提供分子模拟、材料设计以及化学信息学和生物信息学全面解决方案和相关服务的软件供应商。 Accelrys材料科学软件产品提供了全面完善的模拟环境,可以帮助研究者构建、显示和分析分子、固体及表面的结构模型,并研究、预测材料的相关性质。Accelrys的软件是高度模块化的集成产品,用户可以自由定制、购买自己的软件系统,以满足研究工作的不同需要。Accelrys软件用于材料科学研究的主要产品包括运行于UNIX工作站系统上的Cerius2软件,以及全新开发的基于PC平台的Materials Studio软件。Accelrys材料科学软件被广泛应用于石化、化工、制药、食品、石油、电子、汽车和航空航天等工业及教育研究部门,在上述领域中具有较大影响的世界各主要跨国公司及著名研究机构几乎都是Accelrys产品的用户。 2、软件概况 Materials Studio是专门为材料科学领域研究者开发的一款可运行在PC上的模拟软件。它可以帮助你解决当今化学、材料工业中的一系列重要问题。支持Windows 98、2000、NT、Unix以及Linux等多种操作平台的Materials Studio使化学及材料科学的研究者们能更方便地建立三维结构模型,并对各种晶体、无定型以及高分子材料的性质及相关过程进行深入的研究。 多种先进算法的综合应用使Materials Studio成为一个强有力的模拟工具。无论构型优化、性质预测和X射线衍射分析,以及复杂的动力学模拟和量子力学计算,我们都可以通过一些简单易学的操作来得到切实可靠的数据。 Materials Studio软件采用灵活的Client-Server结构。其核心模块Visualizer运行于客户端PC,支持的操作系统包括Windows 98、2000、NT;计算模块(如Discover,Amorphous,Equilibria,DMol3,CASTEP等)运行于服务器端,支持的系统包括Windows2000、NT、SGIIRIX以及Red Hat Linux。浮动许可(Floating License)机制允许用户将计算作业提交到网络上的任何一台服务器上,并将结果返回到客户端进行分析,从而最大限度地利用了网络资源。 任何一个研究者,无论是否是计算机方面的专家,都能充分享用Materials Studio软件所带来的先进技术。Materials Studio生成的结构、图表及视频片断等数据可以及时地与其它PC软件共享,方便与其他同事交流,并能使你的讲演和报告更加引人入胜。 Materials Studio软件能使任何研究者达到与世界一流研究部门相一致的材料模拟的能力。模拟的内容包括了催化剂、聚合物、固体及表面、晶体与衍射、化学反应等材料和化学研究领域的主要课题。 3、模块简介 Materials Studio采用了大家非常熟悉的Microsoft标准用户界面,允许用户通过各种控制面板直接对计算参数和计算结果进行设置和分析。目前,Materials Studio软件包括如下功能模块: Materials Visualizer: 提供了搭建分子、晶体及高分子材料结构模型所需要的所有工具,可以操作、观察及分析结构模型,处理图表、表格或文本等形式的数据,并提供软件的基本环境和分析工具以及支持Materials Studio的其他产品。是Materials Studio产品系列的核心模块。

信息管理与信息安全管理程序

1 目的 明确公司信息化及信息资源管理要求,对外部信息及信息系统进行有效管理,以确保各部门(单位)和岗位能及时、安全地识别、获取并有效运用、保存所需信息。 2 适用围 适用于公司信息化管理及信息收集、整理、转换、传输、利用与发布管理。 3 术语和定义 3.1 信息 有意义的数据、消息。公司的信息包括管理体系所涉及的质量、环境、职业健康安全、测量、标准化、部控制、三基等和生产经营管理中所有信息。 3.2 企业信息化 建立先进的管理理念,应用先进的计算机网络技术,整合、提升企业现有的生产、经营、设计、制造、管理方式,及时为企业各级人员的决策提供准确而有效的数据信息,以便对需求做出迅速的反应,其本质是加强企业的“核心竞争力”。 3.3 信息披露 指公司以报告、报道、网络等形式,向总部、地方政府报告或向社会公众公开披露生产经营管理相关信息的过程。 3.4 ERP 企业资源规划 3.5 MES 制造执行系统 3.6 LIMS 实验室信息管理系统 3.7 IT 信息技术 4 职责 4.1 信息化工作领导小组负责对公司信息化管理工作进行指导和监督、检查,对重大问题进行决策,定期听取有关信息化管理的工作汇报,协调解决信息化过程中存在的有关问题。 4.2 ERP支持中心负责公司ERP系统运行、维护管理,每月召开ERP例会,分析总结系统运行情况,协调处理有关问题,及时向总部支持中心上报月报、年报。 4.3 信息中心是公司信息化工作的归口管理部门,主要职责: a)负责制定并组织实施本程序及配套规章制度,对各部门(单位)信息化工作进行业务指导和督促; b)负责信息化建设管理,组织进行信息技术项目前期管理,编制信息建设专业发展规划并组织实施; c)负责统一规划、组织、整合和管理公司信息资源系统,为各部门(单位)信息采集、整理、汇总和发布等环节提供技术支持;对Internet用户、电子进行设置管理;统一管理分公司互联网出口; d)负责计算机网络系统、信息门户和各类信息应用系统的安全运行和维护及计算机基础设施、计算

管理信息系统流程图

管理信息系统流程图 电商121 王旺 实验三业务流程图 [ 实验目的] 1. 熟练绘制组织结构图 2. 掌握业务流程图的绘制方法 [ 实验内容] 1.试根据下述业务过程画出物资订货的业务流程图: 采购员从仓库收到缺货通知单以后,查阅订货合同单,若已订货,向供货单位发出催货请求,否则,填写订货单交供货单位,供货单位发出货物后,立即向采购员发出取货通知。 2. 某工厂成品库管理的业务过程如下: 成品库保管员按车间送来的入库单登记库存台帐。发货时,发货员根据销售科送来的发货通知单将成品出库,并发货,同时填写三份出库单,其中一份交给成品库保管员,由他按此出库单登记库存台帐,出库单的另外两联分别送销售科和会计科。试按此业务过程画出业务流程图。 1图:

ft ft 电商121王旺 2图:

firl H'.di 电商121王旺 实验三(二) [实验目的] 1.掌握业务流程图和业务流程图的绘制方法[实验内容]

1.根据下述业务过程绘制业务流程图:采购部门准备采购单一式四份,第一张交给卖方;第二张交到收货部门,用来登记收货清单;第三张交给财会部门,登记应付账;第四张存档。到货时,收货部门按待收货清单校对货物是否齐全后填写收货单四张,其中第一张交财会部门,通知付款,第二张通知采购部门取货,第三张存档,第四张交给卖方。 2..绘制业务流程图。 销售科负责成品销售及成品库管理。该科计划员将合同登记入合同台账,并定期根据合同台账查询库存台账,决定是否可以发货。如果可以发货,则填写出库单交成品库保管员。保管员按出库单和由车间送来的入库单填写库存台账。出库单的 另外两联分送计划员和财务科。计划员将合同执行情况登入合同台账。销售部门负责人定期进行销售统计并上报厂办。 电商121王旺F H ◎------ E A

信息系统管理制度

信息系统管理制度 第一章总则 第一条为明确岗位职责,规范操作流程,保障本中心信息系统安全、有效运行,根据有关法律、法规和政府有关规定,结合信息统计中心实际情况,特制定本制度。 第二条目的:使信息化建设工作规范化进行,做到统一规划、统一标准、统一建设、统一管理。使用范围:适用于本中心信息化建设。 第三条利用信息系统实施内部控制至少应当关注下列风险: (一)信息系统缺乏或规划不合理,可能造成信息孤岛或重复建设,导致中心管理效率低下。 (二)系统开发不符合内部控制要求,授权管理不当,可能导致无法利用信息技术实施有效控制。 (三)系统运行维护和安全措施不到位,可能导致信息泄漏或毁损,系统无法正常运行。 第四条职责: (一)信息统计中心负责中心信息化管理总体规划,建立统一的信息化建设标准、规范。负责中心各科(所)信息化项目总体协调及中心办公自动化网络和系统软硬件的维护工作。 (二)各科(所)负责指定专人担任本专业信息化网络工作,并负责本科(所)日常信息管理工作。 第五条工作要求: (一)各科(所)在开展涉及信息化建设及申报信息化建设项目之前,需报主管领导审批后,将业务需求、建设规划等报信息统计中心,信息统计中心应按照中心信息化建设规划及相关要求进行审核。 (二)经信息统计中心审核同意后的信息化建设项目,由信息中心提出信息化技术要求及软硬件需求,同意规划整合后报市卫生局信息中心。 (三)各科(所)申报的信息化项目批准后,信息统计中心技术人员全程参与项目的招标、实施、验收。

第二章信息系统的开发 第六条信息统计中心根据信息系统建设整体规划提出项目建设方案,明确建设目标、人员配备、职责分工、经费保障和进度安排等相关内容,按照规定的流程报批通过后配合相关公司实施。 信息统计中心负责监督开发流程,明确系统设计、安装调试、验收、上线等全过程的管理要求。 第七条信息统计中心需要深入了解各个业务科(所)的业务流程、关键控制点、处理规则、用户范围以及手工环境下难以实现的控制功能等较为核心的信息系统需求点。在系统开发过程中,应当按照不同业务的控制要求,通过信息系统中的权限管理功能控制用户的操作权限,避免将不相容职责的处理权限授予同一用户。 应当针对不同数据的输入方式,考虑对进入系统数据的检查和校验功能。对于必需的后台操作,应当加强管理,建立规范的流程制度,对操作情况进行监控或者审计。 应当在信息系统中设置操作日志功能,确保操作的可审计性。对异常的或者违背内部控制要求的操作,应当设计系统自动报告并设置跟踪处理机制。 第八条信息统计中心需要组织开发单位或开发人员与各科(所)的日常沟通和协调,督促开发单位或开发人员按照建设方案、计划进度和质量要求完成编程工作。 第九条统计中心应根据配备的硬件设备和系统软件的具体情况,组织安排相应的硬件厂家或软件开发商的技术人员入场安装调试。对于关键的软硬件设备,应安排专人负责跟踪、记录整个安装调试过程;在完成软硬件设备的安装调试后,应注意做好有关文档的验收及归档保存工作。 第十条信息系统上线前,需要对信息系统进行等保定级,没有定级的信息系统不能正式上线。另外,信息统计中心都应当切实做好上线的各项准备工作,应查验设备厂商或软件开发商或开发人员提交的有关运行维护资料,包括技术手册、操作手册等,并负责监督设备厂商或软件开发商提供对相关岗位人员的技术培训。制定科学的上线计划和新旧系统转换方案,考虑应急预案,确保新旧系统顺利切换和平稳衔接。系统上线涉及数据迁移的,还应制定详细的数据迁移计划。

Materials Studio是Accelrys专为材料科学领域开发的可运行于PC机上的新一代材料计算软件

Materials Studio是Accelrys专为材料科学领域开发的可运行于PC机上的新一代材料计算软件,可帮助研究人员解决当今化学及材料工业中的许多重要问题。Materials Studio 软件采用Client/Server结构,客户端可以是Windows 98、2000或NT系统,计算服务器可以是本机的Windows 2000或NT,也可以是网络上的Windows 2000、Windows NT、Linux或UNIX系统。使得任何的材料研究人员可以轻易获得与世界一流研究机构相一致的材料模拟能力。 Materials Studio 由分子模拟软件界的领先者--美国ACCELRYS公司在2000年初推出的新一代的模拟软件Materials Studio,将高质量的材料模拟带入了个人电脑(PC)的时代。 Materials Studio是ACCELRYS 公司专门为材料科学领域研究者所涉及的一款可运行在PC上的模拟软件。他可以帮助你解决当今化学、材料工业中的一系列重要问题。支持Windows98、NT、Unix以及Linux等多种操作平台的Materials Studio使化学及材料科学的研究者们能更方便的建立三维分子模型,深入的分析有机、无机晶体、无定形材料以及聚合物。 任何一个研究者,无论他是否是计算机方面的专家,都能充分享用该软件所使用的高新技术,他所生成的高质量的图片能使你的讲演和报告更引人入胜。同时他还能处理各种不同来源的图形、文本以及数据表格。 多种先进算法的综合运用使Material Studio成为一个强有力的模拟工具。无论是性质预测、聚合物建模还是X射线衍射模拟,我们都可以通过一些简单易学的操作来得到切实可靠的数据。灵活方便的Client-Server结构还是的计算机可以在网络中任何一台装有NT、Linux或Unix操作系统的计算机上进行,从而最大限度的运用了网络资源。 ACCELRYS的软件使任何的研究者都能达到和世界一流工业研究部门相一致的材料模拟的能力。模拟的内容囊括了催化剂、聚合物、固体化学、结晶学、晶粉衍射以及材料特性等材料科学研究领域的主要课题。 Materials Studio采用了大家非常熟悉Microsoft标准用户界面,它允许你通过各种控制面板直接对计算参数和计算结构进行设置和分析。 模块简介: 基本环境 MS.Materials Visualizer 分子力学与分子动力学 MS.DISCOVER https://www.doczj.com/doc/1c3892725.html,PASS

IT信息系统外购管理程序

IT信息系统外购管理程序 1 目的 为了规范信息系统的外购业务,确保信息系统满足预定需求,依据相关法律法规和公司内部控制手册,制定本细则。 2 适用范围与定义 2.1 本细则适用于信息管理部门及相关部门办理信息系统外购业务事宜。 2.2 本细则所称信息系统外购,是指公司委托供应商开发或安装调试信息系统。 3 引用标准及关联制度 3.1 《企业内部控制基本规范》 3.2 《企业内部控制应用指引第18号——信息系统》 3.3 《ABC公司内部控制手册2012》 3.4 《ABC公司招标管理办法》 4 职责 4.1 信息管理部制定信息发展规划和年度建设计划。 4.2 项目责任部门负责联系供应商、监督项目实施、组织验收。 4.3 财务部门办理付款和账务处理,参与验收。 5 内容、要求与程序 5.1 制定信息化建设发展规划和年度项目建议计划 5.1.1 根据公司发展战略目标和核心业务,结合信息技术发展和公司实际,信息管理部负责组织制定《股份公司信息化建设发展规划》(主要包括指导思想、基本原则、发展目标、主要任务、措施要求等),在充分征求职能部门、事业部和下属公司意见汇总后,组织专家组对其评审,并根据《专家评审记录》

负责组织修改,经信息管理部负责人签署意见、股份公司信息化工作领导小组审批后,纳入公司发展规划,在执行过程中适度调整和完善。 5.1.2 各下属公司根据《股份公司信息化建设发展规划》,结合自身生产经营管理的需要,负责编制本单位的信息化建设规划,并报股份公司备案。 5.1.3 信息管理部根据《股份公司信息化建设发展规划》和职能部门申报的《项目建议计划》,结合年度计划,编制总部《年度信息化项目建议计划》,经职能部门分管副总审核并签字确认后,报股份公司信息化工作领导小组审查,小组组长签字通过后,纳入股份公司年度预算计划中。 5.2 项目可行性研究和评审 5.2.1 项目责任部门(单位)负责分析应用系统需求和确定目标后编制《项目需求分析报告》,对总投资超过1000万元的重大项目应编制《项目可行性研究报告》,并由责任部门(单位)负责人签字确认后报送至股份公司信息管理部。 5.2.2 信息管理部会同项目责任部门(单位)组织相关单位承担项目可行性研究,对于重大项目应组织专家组对《项目可行性研究报告》进行评审,专家组对项目需求、目标、技术路线、投资与效益、进度、组织落实等提出可行性研究评审意见并签字。 5.3 项目立项审批 5.3.1 通过可行性研究或评审的股份公司统一建设的信息技术项目,由信息管理部将《项目需求分析报告》或《项目可行性研究报告》以专项报告的形式报股份公司信息化工作领导小组,小组组长签字批准立项,财务部将其列入股份公司年度预算计划。 5.4 选择供应商 5.4.1 对项目计划金额在100万以上建设项目应按公司《招标管理办法》,

《全国党员管理信息系统》软件及工作流程

《全国党员管理信息系统(基层版)》软件 及工作流程 一、软件介绍 (一)概述 为适应组织工作需要,进一步改进基层党组织信息库建设和党内统计工作手段,中央组织部信息管理中心与北京万里红科技股份有限公司联合研发了《全国党员管理信息系统(基层版)》(简称《基层版》)软件,作为《中国共产党基本信息管理系统2005》(简称《系统2005》)软件的升级替换版本。《基层版》软件是基于国产数据库和国产中间件,支持网络环境下开展基层党务管理和党内统计的专用软件。该软件完善组织关系接转、党组织换届、党费收缴、流动党员和发展党员管理等功能,实现了网上组织关系接转和网上党务信息动态更新;优化数据结构,进一步完善了党内统计功能。通过新的用户界面降低了操作难度,增强了软件的稳定性和兼容性。该软件将为各级组织部门和基层党委开展日常党务管理和党内统计提供有力支持。 (二)软件特点 ?采用党员、党组织卡片的方式进行信息采集和展示,符合基层工作习惯,方便信息的打印输出,软件中各业务模块相对独立,升级容易;

?增加了党费管理及组织生活管理功能,辅助党组织对党员进行动态管理; ?关注党组织、党员历史沿革,可管理查看某一党组织的多届次班子成员信息,某党员的多次关系接转及多次流动信息; ?通过关系接转、流动党员、换届选举及发展党员等业务操作,对党组织、党员的信息进行维护,以业务使用促进信息库建设; ?采用B/S结构设计,适合网络部署,使用浏览器访问,实现了真正的网络化应用,大大减轻了客户端电脑负载,符合信息化发展趋势。 ?进行了数据库的升级改造,提高了统计效率,适应Windows 7等主流操作系统下的应用环境。 ?通过业务流程进行重要统计字段的维护,进一步保障了统计质量。 (三)功能模块介绍 《基层版》软件分为管理系统、统计报表、系统工具三个子系统。包含以下功能模块: ?管理系统-日常管理:可维护、查看及打印党组织及党员、申请人的信息,建立基层党组织党员信息库,并可进行日常查询及统计;

Materials Studio软件介绍(非常详细)

1、诞生背景美国Accelrys公司的前身为四家世界领先的科学软件公司――美国Molecular Simulations Inc.(MSI)公司、Genetics Computer Group(GCG)公司、英国Synopsys Scient ific 系统公司以及Oxford Molecular Group(OMG)公司,由这四家软件公司于2001年6月1日合并组建的Accelrys公司,是目前全球范围内唯一能够提供分子模拟、材料设计以及化学信息学和生物信息学全面解决方案和相关服务的软件供应商。 Accelrys材料科学软件产品提供了全面完善的模拟环境,可以帮助研究者构建、显示和分析分子、固体及表面的结构模型,并研究、预测材料的相关性质。Accelrys的软件是高度模块化的集成产品,用户可以自由定制、购买自己的软件系统,以满足研究工作的不同需要。Accelrys软件用于材料科学研究的主要产品包括运行于UNIX工作站系统上的Cerius2软件,以及全新开发的基于PC平台的Materials Studio软件。Accelrys材料科学软件被广泛应用于石化、化工、制药、食品、石油、电子、汽车和航空航天等工业及教育研究部门,在上述领域中具有较大影响的世界各主要跨国公司及著名研究机构几乎都是Accelrys产品的用户。 2、软件概况 Materials Studio是专门为材料科学领域研究者开发的一款可运行在PC上的模拟软件。它可以帮助你解决当今化学、材料工业中的一系列重要问题。支持Windows 98、2000、NT、Unix以及Linux等多种操作平台的Materials Studio使化学及材料科学的研究者们能更方便地建立三维结构模型,并对各种晶体、无定型以及高分子材料的性质及相关过程进行深入的研究。 多种先进算法的综合应用使Materials Studio成为一个强有力的模拟工具。无论构型优化、性质预测和X射线衍射分析,以及复杂的动力学模拟和量子力学计算,我们都可以通过一些简单易学的操作来得到切实可靠的数据。 Materials Studio软件采用灵活的Client-Server结构。其核心模块Visualizer运行于客户端PC,支持的操作系统包括Windows 98、2000、NT;计算模块(如Discover,Amorphous,Equilibria,DMol3,CASTEP等)运行于服务器端,支持的系统包括Windows2000、NT、SGIIRIX以及Red Hat Linux。浮动许可(Floating License)机制允许用户将计算作业提交到网络上的任何一台服务器上,并将结果返回到客户端进行分析,从而最大限度地利用了网络资源。 任何一个研究者,无论是否是计算机方面的专家,都能充分享用Materials Studio软件所带来的先进技术。Materials Studio生成的结构、图表及视频片断等数据可以及时地与其它PC软件共享,方便与其他同事交流,并能使你的讲演和报告更加引人入胜。 Materials Studio软件能使任何研究者达到与世界一流研究部门相一致的材料模拟的能力。模拟的内容包括了催化剂、聚合物、固体及表面、晶体与衍射、化学反应等材料和化学研究领域的主要课题。 3、模块简介 Materials Studio采用了大家非常熟悉的Microsoft标准用户界面,允许用户通过各种控制面板直接对计算参数和计算结果进行设置和分析。目前,Materials Studio软件包括如下功能模块: Materials Visualizer: 提供了搭建分子、晶体及高分子材料结构模型所需要的所有工具,可以操作、观察及分析结构模型,处理图表、表格或文本等形式的数据,并提供软件的基本环境和分析工具以及支持Materials Studio的其他产品。是Materials Studio产品系列的核心模块。

信息系统开发管理程序

信息系统开发管理程序 1、目的 为确保信息系统的获取、开发全过程中的信息安全, 并保证公司信息系统整体的安全,特制定本程序。 2、适用范围 ISMS范围内所有参与信息系统的获取、开发过程的相关人员。 3、术语和定义 4、职责和权限 DKC负责信息系统的获取、开发和维护; 相关部门配合DXC及时响应相关要求。 5、相关浯动 5.1 信息系统的安全要求 信息系统在建设或升级之前,根据业务活动要求, 要通过调研、风险评估等手段识别存在的各种安全风险, 并依据公司信息安全管理相关规定,提出信息安全需求, 作为信息系统整体功能需求的一部分。安全需求包括: 信息系统安全需求的准确性; 系统容量设计的合理性; 技术设计和施工组织两方面的安全性: 对项目建设过程中可能存在的安全风险和处理办法;与国家相关法律、法规、标准、公司信息安全有关规定的符合性。

5.2信息系统的获取与开发 521信息系统开发管理 对承建单位在几个方面提出要求: 保守公司商业秘密的责任和义务要求; 保护知识产权的责任和义务要求; 使用公司信息处理设施的信息安全责任和义务要求。 对使用的产品,应有相应的证明材料,如软件产品必须为正版的商业软件,信息安全产品必须通过国家相应机构的检测认证,特别是涉密产品,必须使用国家保密单位批的信息安全产品。 在条件允许的前提下,要将开发、测试与运行系统分离,避免开发和测试活动对运行系统的稳定和安全造成影向。 在信息系统开发过程中,出DXC负责安全控制与管理,重点监控以下内容: 测试数据的输入验证,以减少输入错误造成的风险: 系统对处理过程中的数据完整性验证检查,防止因数据完整性的 错误造成的风险; 要对输出进行验证,确保输出的完整、正确; 对程序源代码的访问要做出明确的规定; 公司的敏感数据不允许作为测试数据使用。 5.2.2重要信息的保护 信息系统的运行系统文件、重要要测试数据、程序源代码是采取措施加以保护。这些数据必须进行备份,条件允许的前提下,对备份数据要保

实验1:Materials_Studio软件简介及基本操作

《计算材料学》实验讲义 实验一:Materials Studio软件简介及基本操作 一、前言 1.计算材料学概述 随着科学技术的不断发展,科学研究的体系越来越复杂,理论研究往往不能给出复杂体系解析表达,或者即使能够给出解析表达也常常不能求解,传统的解析推导方法已不敷应用,也就失去了对实验研究的指导意义。反之,失去了理论指导的实验研究,也只能在原有的工作基础上,根据科研人员的经验理解、分析与判断,在各种工艺条件下反复摸索,反复实验,最终造成理论研究和实验研究相互脱节。近年来,随着计算机科学的发展和计算机运算能力的不断提高,为复杂体系的研究提供了新的手段。 在材料学领域,随着对材料性能的要求不断的提高,材料学研究对象的空间尺度在不断变小,纳米结构、原子像已成为材料研究的内容,对功能材料甚至要研究到电子层次,仅仅依靠实验室的实验来进行材料研究已难以满足现代新材料研究和发展的要求。然而计算机模拟技术可以根据有关的基本理论,在计算机虚拟环境下从纳观、微观、介观、宏观尺度对材料进行多层次研究,进而实现材料服役性能的改善和材料设计。因此,计算材料学应运而生,并得到迅速发展,目前已成为与实验室实验具有同样重要地位的研究手段。 计算材料学是材料科学与计算机科学的交叉学科,是一门正在快速发展的新兴学科,是关于材料组成、结构、性能、服役性能的计算机模拟与设计的学科,是材料科学研究里的“计算机实验”。计算材料学主要包括两个方面的内容:一方面是计算模拟,即从实验数据出发,通过建立数学模型及数值计算,模拟实际过程;另一方面是材料的计算机设计,即直接通过理论模型和计算,预测或设计材料结构与性能。计算材料科学是材料研究领域理论研究与实验研究的桥梁,不仅为理论研究提供了新途径,而且使实验研究进入了一个新的阶段。 计算材料学的发展是与计算机科学与技术的迅猛发展密切相关的。从前,即便使用大型计算机也极为困难的一些材料计算,如材料的量子力学计算等,现在使用微机就能够完成,可以预见,将来计算材料学必将有更加迅速的发展。另外,随着计算材料学的不断进步与成熟,材料的计算机模拟与设计已不仅仅是材料物理以及材料计算理论学家的热门研究课题,更将成为一般材料研究人员的一个重要研究工具。由于模型与算法的成熟,通用软件的出现,

学生信息管理系统程序

. C语言上机实践报告 专业:冶金工程 班级:冶金1102 姓名: 学号: 任课教师:丽华 时间:2012年8月

一、题目 学生信息管理系统设计 ●学生信息包括:学号,姓名,年龄,性别,出生年月,地址,,E-mail等。 ●试设计一学生信息管理系统,使之能提供以下功能: a)系统以菜单方式工作 b)学生信息录入功能(学生信息用文件保存)---输入 c)学生信息浏览功能---输出 d)查询、排序功能---算法 (1) 按学号查询 (2) 按姓名查询 e)学生信息的删除与修改(可选项) 一、系统功能模块结构图

二、数据结构设计及用法说明#include"stdio.h" #include"stdlib.h" #include"string.h" /*定义结构体用作创建链表*/ typedef struct z1 { char no[11]; //学生学号 char name[15]; //学生姓名 int age; //学生年龄 char sex; //学生性别 char birthday[8]; //学生出生年月char address[20]; //学生住址 char tel[12]; //学生联系 char e_mail[20]; //学生e-mail struct z1 *next; //指向下一链表}STUDENT; /*声明用户自定义函数*/ STUDENT *init();

STUDENT *create(); STUDENT *del(STUDENT *h); STUDENT *insert(STUDENT *h); STUDENT *revise(STUDENT *h); void print(STUDENT *h); void search1(STUDENT *h); void search2(STUDENT *h); void save(STUDENT *h); int menu_select(); void inputs(char *prompt,char *s,int count); /*主函数,用于选择功能*/ void main() { STUDENT *head; head=init(); //初始化链表表头 for(;;) { switch(menu_select()) { case 0:head=init();break; //初始化 case 1:head=create();break; //创建列表

信息系统安全管理流程

信息系统安全管理流程 Document number:BGCG-0857-BTDO-0089-2022

信息系统安全管理 1范围 适用于信息技术部实施网络安全管理和信息实时监控,以及制定全公司计算机使用安全的技术规定

2控制目标 2.1确保公司网络系统、计算机以及计算机相关设备的高效、安全使用 2.2确保数据库、日志文件和重要商业信息的安全 3主要控制点 3.1信息技术部经理和公司主管副总经理分别审批信息系统访问权限设置方案、 数据备份及突发事件处理政策和其它信息系统安全政策的合理性和可行性3.2对终端用户进行网络使用情况的监测 4特定政策 4.1每年更新公司的信息系统安全政策 4.2每年信息技术部应配合公司人力资源部及其它各部门,核定各岗位的信息设 备配置,并制定公司的计算机及网络使用规定 4.3当员工岗位发生变动,需要更改员工的邮件帐号属性、服务器存储空间大小 和文件读写权限时,信息技术部必须在一天内完成并发送邮件或电话通知用户 4.4对于信息系统(主要为服务器)的安全管理,应有两名技术人员能够完成日 常故障处理以及设置、安装操作,但仅有一名技术人员掌握系统密码,若该名技术人员外出,须将密码转告另外一名技术人员,事后应修改密码,两人不能同时外出,交接时应做好记录

4.5普通事件警告是指未对信息系统安全构成危害、而仅对终端系统或局部网络 安全造成危害,或者危害已经产生但没有继续扩散的事件,如对使用的终端和网络设备未经同意私自设置权限等;严重事件警告是指对信息系统安全构成威胁的事件,如试图使病毒(木马、后门程序等)在网络中扩散、攻击服务器、改变网络设备设置场所的设置状态、编制非法软件在网络系统中试运行等;特殊事件是指来自公司网络外部的恶意攻击,如由外部人员使用不当造成或其它自然突发事件引起。事件鉴定小组由相关的网络工程师、终端设备维护工程师和应用系统程序员等相关人员组成 5信息系统安全管理流程C-14-04-001

信息系统软件管理程序(含表格)

信息系统软件管理程序 (ISO27001-2013) 第一章总则 第一条为加强软件版本管理,规范软件版本管理工作流程,提高版本运行维护质量,保证信息系统安全可靠高效地运行,特制定本办法。 第二条本办法涉及的软件包括在线运行的软件和拟投产的软件。软件版本管理对象包括应用软件版本以及相关操作系统、数据库、中间件等基础软件。 第三条软件版本管理是信息系统开发管理和日常维护管理工作的一个重要组成部分,本办法作为软件版本管理的重要依据,软件版本管理归口管理部门、业务支撑部门、信息部门、内审部门及各软件供应商要认真履行各自职责,严格执行软件版本管理的各项流程和规定,保障信息系统的安全稳定运行。 第四条任何未经版本归口管理部门许可的软件版本不允许在生产环境使用。在商务合同中若涉及信息系统软件版本,应确认为版本归口管理部门允许使用的软件版本。因使用未经许可的软件版本而造成系统故障影响正常业务交易,相关部门及各厂商要承担相应的责任。 第五条本办法由信息部负责解释和修订,自发文之日起开始执行。 第二章组织与职责 第六条软件版本管理实行总行集中管理体系。 第七条信息部是信息系统软件版本的归口管理部门。

第八条人事部是信息系统软件版本管理的内审部门。 第九条信息部是信息系统软件版本管理的风险控制部门。 第十条信息系统软件版本管理工作还涉及软件提供商,软件提供商包括软件最终提供商、代理商和维保服务商(以下简称厂商)。 第一节归口管理部门职责 第十一条归口管理部门负责制定和完善的软件版本管理办法。 第十二条归口管理部门负责制定信息系统软件版本管理工作的工作计划、工作要求和技术规范,并组织实施。 第十三条归口管理部门负责审批业务支撑部门上报的版本变更申请,组织进行资料审核和上线测试,安排试运行工作及全行推广实施。 第十四条归口管理部门负责建立软件版本信息库,发布软件版本管理各类信息;建立版本预警体系,发布软件版本缺陷信息和版本预警信息。 第十五条归口管理部门负责与业务支撑部门、信息部门、内审部门、厂商协调信息系统软件版本管理的相关工作。 第二节业务支撑部门职责 第十六条版本管理业务支撑部门负责业务类需求的日常收集和集中收集。 第十七条版本管理业务支撑部门负责发起新版本的试运行申请。 第十八条版本管理业务支撑部门负责协助归口管理部门审核新版本发布资料

IT信息系统变更管理程序

IT信息系统变更管理程序 第一节总则 第一条为规范软件变更与维护管理,提高软件管理水平,优化软件变更与维护管理流程,特制定本制度。 第二条本制度适用于应用系统已开发或采购完毕并正式上线、且由软件开发组织移交给应用管理组织之后,所发生的生产应用系统(以下简 称应用系统)运行支持及系统变更工作。 第二节变更流程 第三条系统变更工作可分为下面三类类型:功能完善维护、系统缺陷修改、统计报表生成。功能完善维护指根据业务部门的需求,对系统进行 的功能完善性或适应性维护;系统缺陷修改指对一些系统功能或使 用上的问题所进行的修复,这些问题是由于系统设计和实现上的缺 陷而引发的;统计报表生成指为了满足业务部门统计报表数据生成 的需要,而进行的不包含在应用系统功能之内的数据处理工作。 第四条系统变更工作以任务形式由需求方(一般为业务部门)和维护方(一般为信息部门的应用维护组织和软件开发组织,还包括合作厂商) 协作完成。系统变更过程类似软件开发,大致可分为四个阶段:任 务提交和接受、任务实现、任务验收和程序下发上线。

第五条因问题处理引发的系统变更处理,具体流程参见《问题处理管理制度》。 第六条需求部门提出系统变更需求,并将变更需求整理成《系统变更申请表》(附件一),由部门负责人审批后提交给系统管理员。 第七条系统管理员负责接受需求并上报给IT主管。IT主管分析需求,并提出系统变更建议。IT经理根据变更建议审批《系统变更申请表》。第八条系统管理员根据自行开发、合作开发和外包开发的不同要求组织实现系统变更需求,将需求提交至内部开发人员、合作开发商或外包 开发商,产生供发布的程序。 第九条实现过程应按照软件开发过程规定进行。系统变更过程应遵循软件开发过程相同的正式、统一的编码标准,并经过测试和正式验收才 能下发和上线。 第十条系统管理员组织业务部门的系统最终用户对系统程序变更进行测试,并撰写《用户测试报告》(附件二),提交业务部门负责人和IT 主管领导签字确认通过。 第十一条在系统变更完成后,系统管理员和业务部门的最终用户共同撰写《程序变更验收报告》(附件三),经业务部门负责人签字验收后,报送 IT经理审批。 第十二条培训管理员负责对系统变更过程的文档进行归档管理,变更过程中涉及的所有文档应至少保存两年。 第三节紧急变更流程

Material-Studio建模学习资料

铁基块体非晶合金-纳米晶转变的动力学模拟过程 Discover模块 1 原子力场的分配 在使用Discover模块建立基于力场的计算中,涉及几个步骤。主要有:选择力场、指定原子类型、计算或指定电荷、选择non-bond cutoffs。 在这些步骤中,指定原子类型和计算电荷一般是自动执行的。然而,在某些情形下需要手动指定原子类型。原子定型使用预定义的规则对结构中的每个原子指定原子类型。在为特定的系统确定能量和力时,定型原子使工作者能使用正确的力场参数。通常,原子定型由Discover使用定型引擎的基本规则来自动执行,所以不需要手动原子定型。然而,在特殊情形下,人们不得不手动的定型原子,以确保它们被正确地设置。 图 3-1 1)计算并显示原子类型:点击Edit→Atom Selection,如图所示

弹出对话框,如图所示 从右边的…的元素周期表中选择Fe,再点Select,此时所建晶胞中所有Fe原子都将被选中,原子被红色线圈住即表示原子被选中。再编辑集合,点击Edit→Edit Sets,如图所示 弹出对话框见图,点击New...,给原子集合设定一个名字。这里设置为Fe,则3D视图中会显示“Fe”字样,再分配力场: 在工具栏上点击Discover按钮,从下拉列表中选择Setup,显示Discover Setup对话框,选择Typing选项卡。

图3-2 Discover Setup对话框Typing选项卡 在Forcefield types里选择相应原子力场,再点Assign(分配)按钮进行原子力场分配。注意原子力场中的价态要与Properties Project里的原子价态(Formalcharge)一致。 2力场的选择 1)Energy 力场的选择: 力场是经典模拟计算的核心,因为它代表着结构中每种类型的原子与围绕着它的

相关主题
文本预览
相关文档 最新文档