当前位置:文档之家› 铁电材料介绍课件

铁电材料介绍课件

材料概论

第二章 1 普通的混凝土中有几种相?请分别写出各种相的名称。若在其中加入钢筋,则钢筋起到什么作用?此时又有几种相? 答:3相;砂子、碎石、水泥浆;增强作用;4。 2 比较晶体与非晶体的结构特性,了解晶体的结构不完整性有哪些类型?并区分三大材料的结构类型与比较其各自的特点。 答:晶体结构的基本特征是原子或分子在三维空间呈周期性的规则而有序地排列,即存在长程的几何有序。 结构的不完整性:实际上,极大多数晶体都有大量的与理想原子排列的轻度偏离存在,依据其几何形状而分为点缺陷、线缺陷和面缺陷。 金属材料的结构:一般都是晶体。金属键无方向性,晶体结构具有最致密的堆积方式。体心立方、面心立方和紧密堆积六方结构,金刚石结构。 无机非金属材料的结构:金刚石型结构;硅酸盐结构; 玻璃结构; 团簇及纳米材料 高分子材料的结构包括高分子链的结构及聚集态结构 各自的特点: 3 高分子材料其聚集态结构可分为:晶态和非晶态(无定形)两种,与普通的晶态和非晶态结构比较有什么特点? 答:晶态有序程度远小于小分子晶态,但非晶态的有序程度大于小分子物质液态。 4 如何区分本征半导体与非本征半导体材料? 答:本征半导体:材料的电导率取决于电子-空穴对的数量和温度的材料。 非本征半导体:通过加入杂质即掺杂剂而制备的半导体,杂质的多少决定了电荷载流子 的数量。

5 极大多数晶体实际上都存在有种种与理想原子排列的轻度偏离,依据结构不完整性的几何形状可分为哪几种缺陷类型?按溶质原子在溶剂晶格中的位置不同,固溶体可分成哪几种类型? 答:依据其几何形状而分为点缺陷、线缺陷和面缺陷。 按溶质原子在溶剂晶格中的位置不同,固溶体可分成: 置换型固溶体(或称取代型):溶剂A晶格中的原子被溶质B的原子取代所形成的固溶体。原子A同B的大小要大致相同。 填隙型固溶体(也称间隙型):在溶剂A的晶格间隙内有溶质B的原子填入(溶入)所形成的固溶体。B原子必须是充分小的,如C和N等是典型的溶质原子。 6 比较热塑性高分子材料和热固性高分子材料的结构特点,并说明由于结构的不同对其性能的影响。 答:线型结构的高分子化合物:在适当的溶剂中可溶胀or溶解,升高温度时则软化、流动,∴易加工,可反复加工使用,并具有良好的弹性和塑性。(热塑性) 交联网状结构高分子:性能特点:较好的耐热性、难溶剂性、尺寸稳定性和机械强度,但弹性、塑性低,脆性大。∴不能进行塑性加工,成型加工只能在网状结构形成前进行,材料不能反复加工使用。(热固性) 7 聚二甲基硅氧烷的结构式为?其柔顺性怎么样? 答:非常好 8 何为材料的力学强度?影响力学强度的主要因素有哪些?按作用力的方式不同,材料的力学强度可分为哪几种强度? 答:材料在载荷作用下抵抗明显的塑性变形或破坏的最大能力。 通常材料中缺陷越少、分子间键合强度越大,材料的强度也越高。 按作用力的方式不同,可分为:拉伸强度;压缩强度;弯曲强度;冲击强度;疲劳强度等。 9 区分高分子材料的大分子之间的相互作用中的主价力和次主价力,比较两者对其性能的影响。 答:大分子链中原子间、链节间的相互作用是强大的共价键这种结合力称为主价力,大小取决于链的化学组成→键长和键能。对性能,特别是熔点、强度等有重要影响。 大分子之间的结合力是范德华力和氢键,称为次价力,比主价力小得多(只有主价力1-10%),但对高分子化合物的性能影响很大。如乙烯呈气态,而聚乙烯呈固态并有相当强度,∵后者的分子间力较前者大得多。 10 按电阻率的大小,可将材料分成哪几类?何谓超导性? 答:按电阻率的大小,可将材料分:超导体;导体;半导体;绝缘体。 超导性:一旦T< Tc(超导体临界T)时,电阻率就跃变为零。Tc依赖于作用于导体的磁场强度。

压电和铁电材料

7.4 热电、压电和铁电材料 根据固体材料对外电场作用的响应方式不同,我们可以把它们分成两类。一类是导电材料,即超导体、导体、半导体和绝缘体,它们是以传导方式传递外界电场的作用和影响(可以是电子传导、空穴传导和离子传导)。另一类固体材料则是以感应方式来传递外界电场的作用和影响,这类材料叫做介电材料或电介质材料。 电介质材料置于外电场作用下,电介质内部就会出现电极化,原来不带电的电介质,其内部和表面将受感应而产生一定的电荷。电极化可以用极化强度P 表示(单位体积内感应的偶极矩),这种电极化可以分为电子极化、离子极化和取向极化。有一类电介质即使无外电场的作用其内部也会出现极化,这种极化称为自发极化,它可用矢量来描述。由于这种自发极化的出现,在晶体中形成了一个特殊的方向,具有这种特殊结构的电介质,每个晶胞中原子的构型使正负电荷重心沿这个特殊方向发生相对位移,形成电偶极矩,使整个晶体在该方向上呈现了极性,一端为正,一端为负,这个特殊方向称为特殊极性方向,在晶体学中通常称为极轴。而具有特殊极性方向的电介质称为极性电介质。 晶体的许多性质,诸如介电、压电、热电和铁电性,以及与之相关的电致伸缩性质、非线性光学性质、电光性质、声光性质、光折变性质等,都是与其电极化性质相关的。晶体在外电场作用下,引起电介质产生电极化的现象,称为晶体的介电性。 7.4.1热电材料 1. 热电效应 (1) 塞贝克(Seebeck)效应 当两种不同金属接触时,它们之间会产生接触电位差。如果两种不同金属形成一个回路时,两个接头的温度不同,则由于该两接头的接触电位不同,电路中会存在一个电动势,因而有电流通过。电流与热流之间有交互作用存在,其温度梯度不但可以产生热流,还可以产生电流,这是一种热电效应,称为塞贝克效应,其所形成的电动势,称为塞贝克电动势。塞贝克电动势的大小既与材料有关,也是温度差的函数。在温度差?T较小时,塞贝克电动势E AB与温度差呈线性关系,即E AB=S AB?T,式中S AB为材料A和B的相对塞贝克系数。通常规定,在热端的电

铁电陶瓷

第四章铁电陶瓷 一、教学内容及要求 掌握铁电体的基本概念,理解电滞回线的形成,理解BaTiO3的结构与自发极化特性以及其介电性能的特点,掌握电畴的基本概念,电畴的成核与生长过程,180°畴和90°畴的异同。理解居里温区的相变扩张的机理,几种相变扩散的异同。掌握展宽效应,移动效应,重叠效应的作用机制。掌握铁电老化,铁电疲劳,去老化的概念。 二、基本内容概述 4.1概述 重点掌握的几个概念:自发极化、、剩余极化、、矫顽场、铁电体、电滞回线、电畴、铁电陶瓷 1、感应式极化:离子晶体中最主要的极化形式是电子位移极化和离子位移极化,这两种极化都属于感应式极化,极化强度大小依赖于外施电场。线性关系,E=0,P=0。 2、自发极化:铁电体所表现的自发极化,却是不依赖于外电场,并能随外电场反向而发生反转。非线性关系,E=0,P≠0。 3、铁电体(ferroelectric):具有自发极化,且自发极化方向能随外场改变的晶体。它们最显著的特征,或者说宏观的表现就是具有电滞回线。 4、电滞回线(hysteresis curve):铁电体在铁电态下极化对电场关系的典型回线。 5、电畴(domain):在铁电体中,固有电偶极矩在一定的子区域内取向相同的这些区域就称为电畴或畴。 6、畴壁(domain wall):畴的间界。 7、铁电相变:铁电相与顺电相之间的转变。当温度超过某一值时,自发极化消失,铁电体变为顺电体。 8、居里温度(Curie temperature or Curie point):铁电相变的温度。 9、铁电体的分类:1)按结晶化学;2)按力学性质;3)按相转变的微观机构;4)按极化轴多少。

铁电材料的特性及应用综述

铁电材料的特性及应用综述 孙敬芝 (河北联合大学材料科学与工程学院河北唐山 063009)摘要:铁电材料具有良好的铁电性、压电性、热释电以及性光学等特性以及原理,铁电材料是具有驱动和传感2 种功能的机敏材料, 可以块材、膜材(薄膜和厚膜) 和复合材料等多种形式应用, 在微电子机械和智能材料与结构系统中具有广阔的潜在应用市场。 关键词:铁电材料;铁电性;应用前景 C haracteristics and Application of Ferroelectric material Sun Jingzhi ( Materials Science and Engineering college, Hebei United University Tangshan 063009,China ) Abstract:Ferroelectric material has good iron electrical, piezoelectric , pyroelectric and nonlinear optical properties, such as a driver and sensing two function piezoelectric materials, can block material, membrane materials (film and thick film) and the compound Material of a variety of forms such as application, in microelectromechanical and intelligent materials and structures in the system with vast potential application market. Keywords: ferroelect ric materials Iron electrical development trend 0前言 晶体按几何外形的有限对称图象, 可以分为32 种点群, 其中有10 种点群: 1, 2, m , mm 2, 4,4mm , 3, 3m , 6, 6mm , 它们都有自发极化。从对称性分析它们的晶体结构都具有所谓的极轴, 即利用对称操作不能实现与晶体的其它晶向重合的轴向, 极轴二端具有不同的物理性能。从物理性质上看, 它们不但具有自发极化, 而且其电偶极矩在外电场作用下可以改变方向。在介电强度允许条件下, 能够形成电滞回线。晶体这种性能称为铁电性, 具有铁电性的材料称为铁电材料。1920 年法国人V alasek 发现了罗息盐(酒石酸钾钠 ) 的特异介电性, 导致“铁电性”概念的出现(也有人认为概念出现更早)。现在各种铁电材料十分丰富,

铁电陶瓷材料的应用以及生产工艺之七

铁电陶瓷材料的应用以及生产工艺之七 铁电陶瓷材料,是指具有铁电效应的一类功能性陶瓷材料,它是热释电材料的一个分支。 可用于大容量的电容器、高频用微型电容器、高压电容器、叠层电容器和半导体陶瓷电容器等,可以制作介质放大器和相移器等。利用其热释电性,可制作红外探测器等。也用于制造光阀、光调制器、激光防护镜和热电探测器等。 广泛应用于航天、军工、新能源产品。 这里介绍,主要是参考它的加工工艺,比如为固体电解质的加工提供一定的参考。另一方面是顺便了解一下这特种陶瓷的用途。 室温研磨法固相反应制备铁电陶瓷粉末: ――机械合金化制备的铁电体:锆钛酸铅 锆钛酸铅(Pb(ZrxTi1-X)O,或PZT)是PT和锆酸铅(PbZrO3或PZ)的 固溶体,具有杰出的铁电、压电、热电和光电性能,广泛应用于传感器、声纳、微动台、旋转式激励器和热电传感器中。 有专家研究了用具有碳化钨筒和球的行星高能球磨机对(PbO、ZrO2和TiO2)混合物球磨不同时间后PZT相的形成情况。球磨4h没有形成PZT,但PbO衍射峰大大变宽并弱化,球磨15和24h后,PZT成为主要相。球磨过程中,相变会导致不同程度的体积膨胀。研究表明,延长球磨时间,体积膨胀程度减小,意味着未反应的氧化物数量减少。球磨24 h的混合物反应完全,故几乎没有观察到体积膨胀。 有专家通过行星球磨机对PbO、ZrO2、TiO2氧化物强化粉碎(高的 球磨速度和大的球料比)5—480min后发现,球磨lh便得到PZT相及少量未反应的ZrO2,球磨2h时后相组成相同,未反应的ZrO2量达到最少。对球磨粉末做比表面积测试后发现,球磨30min后其比表面积达到最大,并促进了初始氧化物间的反应,以致球磨1h后几乎得到纯PZT相,

铁电性能综合测试概要

铁电薄膜的铁电性能测量 引言 铁电体是这样一类晶体:在一定温度范围内存在自发极化,自发极化具有两个或多个可能的取向,其取向可能随电场而转向.铁电体并不含“铁”,只是它与铁磁体具有磁滞回线相类似,具有电滞回线,因而称为铁电体。在某一温度以上,它为顺电相,无铁电性,其介电常数服从居里-外斯(Curit-Weiss)定律。铁电相与顺电相之间的转变通常称为铁电相变,该温度称为居里温度或居里点Tc。铁电体即使在没有外界电场作用下,内部也会出现极化,这种极化称为自发极化。自发极化的出现是与这一类材料的晶体结构有关的。 晶体的对称性可以划分为32种点群。在无中心对称的21种晶体类型种除432点群外其余20种都有压电效应,而这20种压电晶体中又有10种具热释电现象。热释电晶体是具有自发极化的晶体,但因表面电荷的抵偿作用,其极化电矩不能显示出来,只有当温度改变,电矩(即极化强度)发生变化,才能显示固有的极化,这可以通过测量一闭合回路中流动的电荷来观测。热释电就是指改变温度才能显示电极化的现象,铁电体又是热释电晶体中的一小类,其特点就是自发极化强度可因电场作用而反向,因而极化强度和电场E 之间形成电滞回线是铁电体的一个主要特性。 自发极化可用矢量来描述,自发极化出现在晶体中造成一个特殊的方向。晶体红,每个晶胞中原子的构型使正负电荷重心沿这个特殊方向发生位移,使电荷正负中心不重合,形成电偶极矩。整个晶体在该方向上呈现极性,一端为正,一端为负。在其正负端分别有一层正和负的束缚电荷。束缚电荷产生的电场在晶体内部与极化反向(称为退极化场),使静电能升高,在受机械约束时,伴随着自发极化的应变还将使应变能增加,所以均匀极化的状态是不稳定的,晶体将分成若干小区域,每个小区域称为电畴或畴,畴的间界叫畴壁。畴的出现使晶体的静电能和应变能降低,但畴壁的存在引入了畴壁能。总自由能取极小值的条件决定了电畴的稳定性。 参考资料 [1]钟维烈,铁电物理学,科学出版社,1996。 [2]干福熹,信息材料,天津大学出版社,2000 [3]J.F.Scoot,Ferroelectric Memories,Springer,2000。 实验目的 一、了解什么是铁电体,什么是电滞回线及其测量原理和方法。 二、了解铁薄膜材料的功能和应用前景。 实验原理 一、铁电体的特点 1.电滞回线 铁电体的极化随外电场的变化而变化,但电场较强时,极化与电场之间呈非线性关系。在电场作用下新畴成核长,畴壁移动,导致极化转向,在电场很弱时,极化线

压电陶瓷材料及应用

压电陶瓷材料及应用 一、概述 1.1电介质 电介质材料的研究与发展成为一个工业领域和学科领域,是在20世纪随着电气工业的发展而形成的。国际上电介质学科是在20世纪20年代至30年代形成的,具有标志性的事件是:电气及电子工程师学会(IEEE)在1920年开始召开国际绝缘介质会议,以后又建立了相应的分会(IEEE Dielectric and Electrical Insulation Society)。美国MIT建立了以Hippel教授为首的绝缘研究室。苏联列宁格勒工学院建立了电气绝缘与电缆技术专业,莫斯科工学院建立了电介质与半导体专业。特别是德国德拜教授在20世纪30年代由于研究了电介质的极化和损耗特性与其分子结构关系获得了诺贝尔奖,奠定了电介质物理学科的基础。随着电器和电子工程的发展,形成了研究电介质极化、损耗、电导、击穿为中心内容的电介质物理学科。 我国电介质领域的发展是在1952年第一个五年计划制定和实行以来,电力工业和相应的电工制造业得到迅速发展,这些校、院、所、首先在我国开展了有关电介质特性的研究和人才的培养,并开出了“电介质物理”、“电介质化学”等关键专业课程,西安交大于上海交大、哈尔滨工大等院校一道为我国培养了数千名绝缘电介质专业人才,促进了我国工程电介质的发展。80年代初中国电工技术学会又建立了工程电介质专业委员会。 近年来,随着电子技术、空间技术、激光技术、计算机技术等新技术的兴起以及基础理论和测试技术的发展,人们创造各种性能的功能陶瓷介质。主要有: (1)、电子功能陶瓷如高温高压绝缘陶瓷、高导热绝缘陶瓷、低热膨胀陶瓷、半导体陶瓷、超导陶瓷、导电陶瓷等。 (2)、化学功能陶瓷如各种传感器、化学泵等。 (3)、电光陶瓷和光学陶瓷如铁电、压电、热电陶瓷、透光陶瓷、光色陶瓷、玻璃光纤等。(电介质物理——邓宏)

关于铁电材料的发展历史和现状(1)

关于铁电材料的发展历史和现状(1) 符春林潘复生蔡苇邓小玲 论文关键词:铁电材料罗息盐磷酸二氢钾钙钛矿 论文摘要:铁电材料是~类重要的功能材料,是近年来高新技术研究的前沿和热点之一符春林潘复生蔡苇邓小玲论文关键词:铁电材料罗息盐磷酸二氢钾钙钛矿 论文摘要:铁电材料是~类重要的功能材料,是近年来高新技术研究的前沿和热点之一。通过罗息盐时期一发现铁电性、KDP时期一铁电热力学理论、钙钛矿时期一铁电软模理论、铁电薄膜及器件时期~小型化四个阶段阐述了铁电材料的发展历史,提出了研究中需要解决的一些问题。 铁电材料是一类重要的功能材料.它具有介电性、压电性、热释电性、铁电性以及电光效应、声光效应、光折变效应和非线性光学效应等重要特性,可用于制作铁电存储器、热释电红外探测器、空间光调制器、光波导、介质移相器、压控滤波器等重要的新型元器件。这些元器件在航空航天、通信、家电、国防等领域具有广泛的应用前景。因此铁电材料成了近年来高新技术研究的前沿和热点之一。 早在远古时期,人们就知道某些物质具有与温度有关的自发电偶极距,因为它们被加热时具有吸引其它轻小物体的能力。1824年Brewster观察到许多矿石具有热释电性。l880

年约·居里和皮·居里发现当对样品施加应力时出现电极化的现象。但是,早期发现的热释电体没有一个是铁电体。在未经处理的铁电单晶中。电畴的极化方向是杂乱的,晶体的净极化为零,热释电响应和压电响应也十分微小,这就是铁电体很晚才被发现的主要原因。直到l920年,法国人Valasek 发现了罗息盐特异的介电性能,才掀开了铁电体的历史。 在铁电发展史上的重要历史事件按年代顺序列于表l 中。 1四个发展阶段 关于铁电的发展历史,大体可以分为以下四个阶段。 1.1罗息盐时期一发现铁电性 1919年,JosephVa1asek在美国明尼苏达州大学读研究生,师从物理学家WFGSwan教授。从事宇宙射线物理理论研究工作而闻名于世的Swan教授建议Valasek研究罗息盐单晶的物理性能。在接下来的两年里,Valasek测量了罗息盐的线性介电响应、非线性介电性能、压电性能、热释电现象等宏观性能。1920年4月23日在华盛顿举办的美国物理学会会议上,铁电性概念诞生了。 Valasek在“PiezoelectricandalliedphenomenainR0chellesalt”报告中指出:电位移D、电场强度E、极化强度尸分别类比于磁学中的、和,.罗息盐中P与E之间存在的回线与磁滞回

压电材料概述

压电材料概述 齐鹏飞 0900501331 中国计量学院材料学院09材料3班,杭州 310018 摘要本文介绍了压电效应的作用机理以及材料产生压电效应的原因,并综合概括了压电材料的发展历程及现今的研究方向。 关键词压电效应;压电材料;发展历程;发展方向 压电材料是受到压力作用时会在两端面间出现电压的晶体材料。由于压电材料的这一性能,以及制作简单、成本低、换能效率高等优点,压电陶瓷被广泛应用于热、光、声、电子学等领域。主要应用有压电换能器、压电发电装置、压电变压器, 医学成像等。 1、压电材料与压电效应 1880年,法国物理学家P. 居里和J.居里兄弟发现,把重物放在石英晶体上,晶体某些表面会产生电荷,电荷量与压力成比例。这一现象被称为压电效应。随即, 居里兄弟又发现了逆压电效应,即在外电场作用下压 电体会产生形变。 压电效应的机理是:具有压电性的晶体对称性较 低,当受到外力作用发生形变时,晶胞中正负离子的 相对位移使正负电荷中心不再重合,导致晶体发生宏 观极化,而晶体表面电荷面密度等于极化强度在表面 法向上的投影,所以压电材料受压力作用形变时两端 面会出现异号电荷。反之,压电材料在电场中发生极化时,会因电荷中心的位移导致材料变形。 材料要产生压电效应,其原子、离子或分子晶体必须具有不对称中心,但是由于材料类型不同,产生压电效应的原因也有所差别。下面以压电陶瓷为例,解释压电效应产生的原因。

压电陶瓷是人工制造的多晶压电材料,与石英单晶产生压电效应有所不同。在无外电场作用时,压电陶瓷内的某些区域中正负电荷重心的不重合,形成电偶极矩,它们具有一致的方向,这些区域称之为电畴。但是各个电畴在压电陶瓷内杂乱分布(图a),由于极化效应被相互抵消,使总极化强度为零,呈电中性,不具有压电特性。如果在压电陶瓷上施加外电场,电畴的方向将发生转动,使之得到极化,当外电场强度达到饱和极化强度时,所有电畴方向将趋于一致(图b)。去掉外电场后,电畴的极化方向基本不变(图c),即剩余极化强度很大,这时才具有压电特性,此时,如果受到外界力的作用,电畴的界限将发生移动,方向将发生偏转,引起剩余极化强度的变化,从而在垂直极化方向的平面上引起极化电荷变化。 2、压电材料的发展与应用 自从1880年,居里兄弟发现了石英晶体存在压电效应后使得压电学成为现代科学与技术的一个新兴领域。材料学及物理学的快速发展使得压电学无论在理论和应用上都取得了长足的进展。第二次世界大战期间,磷酸二氢铵(ADP)、铌酸锂等压电晶体相继被研制出来。1921年,J.Valasek发现了水溶性酒石酸钾钠具有压电性,并在该材料的介电性反常测试中人类历史性地第一次发现材料的铁电性。1941-1949年间,科研人员发现钛酸钡陶瓷具有铁电性能。其铁电性引起了科学界的广泛关注,并为了解释其铁电性提出各种铁电模型,从而促进了诸如LiNb03、LiTa03的各种类型的压、铁电晶体的出现。 1947年s.Robert发现BaTiO3。的强压电效应,这一发现是压电材料发展史上的一次飞跃。1954年美国的Jaffe等发现锆钛酸铅(PZT)陶瓷的具有良好的压电性能,PZT系固溶体在多形相界附近具有良好的压电介电性能,机电耦合系数近于BaTiO3 陶瓷的一倍。在以后的30年间,PZT材料以其较强且稳定的压电性能成为应用最广的压电材料,是压电换能器的主要功能材料.PZT材料的出现使得压电器件从传统的换能器及滤波器扩展到引燃引爆装置、电压变压器及压电发电装置等。近十年来,以PT /PZT为基础,各种新型的功能陶瓷得到快速发展,对其进行性能改进的主要手段主要是在其化学组成上添加含Bi3+、W6+、Nb3+、La3+等高价离子氧化物或者K+、Mg2+、Fe3+等低价离子氧化物,将PZT材料变成相应的“软性材料”或“硬性材料”,其应用领域各不相同。在PZT中入PWN可制成三元系压电陶瓷(P04),国内的压电与声学研究所张福学在PZT中加入PMS制成了PMS三元系压电陶瓷材料等等,这些被改进的PZT材料其综合性能都有显著的提高,可应用于各种不同环境领域。由于以上几种基于PZT/PT研制的压电材料含有大量的铅,制造过程中容易对环境造成污染,国外科研人员开始研制无铅压电陶瓷,如SiBi4TiO等,但由于无铅材料的机电耦合系数远不如含铅压电陶瓷,并且难以制造,故而无铅压电陶瓷的研制工作还很漫长。 1956年B.T.Mattias发现了三硫甘胺晶体的铁电性,为激光和红外技术的广泛应用开打下了坚实地基础。1968年先后发现了硫化锌(ZnS)、氧化锌(ZnO)等压电材料,这些半导体材料的压电性能较弱,有高电压低电流的特性。早期主要应用于压敏电阻领域,近年随着微加工制造技术的发展,该类材料也开始在压电领域崭露头角。1969

铁电材料及其在存储器领域的应用

目录 摘要 (1) Abstract (1) 1 前言 (1) 2 压电材料 (2) 3 储能用铁电介质材料 (3) 3.1 BaTiO3基陶瓷 (3) 3.2 SrTiO3基陶瓷 (4) 3.3 TiO2陶瓷 (4) 3.4 PMN 基陶瓷以铌镁酸铅 (4) 4 有机铁电薄膜材料 (4) 5 铁电阻变材料 (5) 6 多铁性材料 (5) 7 铁电材料的应用 (5) 7.1 铁电存储器(MFSFET) (6) 7.2 铁电存储器的应用 (8) 8 结语 (9) 参考文献 (10)

铁电材料及其在存储器领域的应用 摘要:铁电材料的优秀电学性能孕育了它广阔的应用前景,其电子元件有着集成度高、能耗小、响应速度快等众多优点。而且目前研究者将铁电材料同其它技术相结合,使新诞生的集成铁电材料性能更为优秀。介绍了铁电材料的发展历史和当前的应用概况。 关键词:铁电材料;铁电性;存储器;应用 Application of ferroelectric materials and in the area of memory Abstract:Ferroelectric materials, one of the current research focuses with numbers of physical advantages such as high integration, low energy consumption and fast response, has broad application prospects in many aspects.Being combined with other physical technologies,the properties of ferroelectric materials can be significantly improved.Describes the historical development of ferroelectric materials and current applications. Keywords:ferroelectric materials;Iron electrical;memorizer ;development 1前言 铁电材料,是指具有铁电效应的一类材料,最早的铁电效应是在1920年由法国人Valasek在罗谢尔盐中发现的,这一发现揭开了研究铁电材料的序幕。在1935 年Busch发现了磷酸二氢钾KH2PO4——简称KDP,其相对介电常数高达30,远远高于当时的其它材料。1940年之后,以BaTiO3为代表的具有钙钛矿结构的铁电材料陆续被发现,这是铁电历史上里程碑式的时期。直至20世纪80年代,随着铁电唯象理论和软膜理论的逐渐完善,铁电晶体物理内涵的研究趋于稳定。20世纪80年代中期,薄膜制备技术的突破为制备高质量的铁电薄膜扫清了障碍,并且近年来随着对器件微型化、功能集成化、可靠性等要求的不断提高,传统的铁电块体由于尺寸限制已经不能满足微电子器件的要求。铁电器件在向薄膜尺寸量级过渡的同时又与半导体工艺结合,研究者们迎来了集成铁电体的时代。集成铁电体是凝聚态物理和固体电子学领域的热门课题之一。铁电材料有着

功能材料相关知识点概括

绪论 1、功能材料指具有一种或几种特定功能的材料,具有优良的物理、化学和生物功能,在物件中起着“功能”的作用。力学功能对应于宏观物体的机械运动,其他功能对应于微观物体的运动,习惯上不把结构材料包括在功能材料范畴内。 2、宏观运动和微观运动之间相互联系,在适当条件下可以互相转化。因此,结构材料和功能材料有共同的科学基础,有时很难截然划分。 3、功能材料是指具有优良的物理、化学和生物或其相互转化的功能,用于非承载目的的材料。 4、功能材料按化学成分(化学键)分类,可分为金属、无机非金属、有机高分子和复合功能材料。按物理性质分类,可分为物理(如光、电、磁、声、热和力学功能材料等)、化学、生物、核功能材料和特殊功能材料。 导电材料 1、导电材料按导电机理可分为电子导电材料和离子导电材料两大类,电子导电材料的导电源于电子运动,电子导电材料包括导体、超导体和半导体。离子导电材料的导电主要源于离子的运动。 2、超导体从正常态(电阻态)过渡到超导态(零电阻态)的转变称为正常-超导转变,转变时的温度Tc称为这种超导体的临界温度。 3、除温度外足够的磁场也能破坏超导态。使超导态转变成正常态的最小磁场Hc(T)称为此温度下该超导体的临界磁场。磁场的存在可以使临界温度降低,磁场越大,临界温度也越低。 4、超导体按迈斯纳效应可分为软超导体(第一类超导体)和硬超导体(第二类超导体),硬超导体在超导态和正常态之间有一种混合态存在。 5、半导体的电子结构跟绝缘体相近,只是半导体的禁带宽度要比绝缘体小,电子受热或光等能量容易被激发,同时产生空穴而形成传导。 6、半导体按化学成分可分为元素半导体和化合物半导体。元素半导体包括本征半导体和杂质半导体。 7、半导体按掺杂原子的价电子数可分为施主型(电子型或n型)和受主型(空穴型或P型)。前者掺杂原子的价电子多于纯元素的价电子,后者正好相反。 8、半导体中价带上的电子借助于热、光、电、磁等方式激发到导带叫本征激发。满足本征激发的半导体叫本征半导体,其导电载流子是由本征激发所形成的导带中的电子和价带中的空穴,本征半导体电导率由电子运动和空穴运动两部分所构成。 9、因为本征半导体的载流子密度非常小,需要在高温下工作,故应用不多。实际应用的大多数为掺杂后非本征半导体,也叫杂质半导体。 10、利用将杂质元素掺入纯元素中,把电子从杂质能级(带)激发到导带上或者把电子从价带激发到杂质能级上,从而在价带中产生空穴的激发叫非本征激发或杂质激发。这种半导体叫杂质半导体。 11、根据杂质电离能的大小,分为浅能级杂质和深能级杂质。深能级能产生的载流子很少,而散射却增加,对电导率影响不大或有所降低。 12、化合物半导体最突出的特点是禁带和迁移率范围宽。

铁电液晶技术简单介绍V1.0

V1.02013年6月21日铁电液晶技术简单介绍 V1.02013/6/21

液晶起源 进而发现: 145.5 Δ 完全透明液体

1) Thermotropic (热致液晶) 2) Lyotropic (溶致液晶)因温度的改变而产生相变 因溶于溶剂中浓度比例的改变而产生相变如肥皂泡 以产生相变的原因来区分 a) 长棒状c) 砖状1. Nematics (向列相) 2. Cholesterics (胆甾相) 3. Smectics (近晶相) Thermotropic (热致液晶)分子形状 排列方式 b) 圆盘状 液晶简单分类

国际液晶与国际纯化学和应用化学联盟命名方法判断已知的液晶相有如下:(1)结晶相 Cr 代表结晶相,Cr1,Cr2,Cr3,…代表多种结晶模型。Cr *代表手性结晶相。 (2)软晶体(位置长程有序) B,E,G,H,J,K代替前面所用的SmB cryst ,SmE,SmG 等。B *,E *,G *,H *,J *,K *代表由手性分子组成的软物质相。(3)近晶相 SmA,SmB,SmC,SmI,SmF 代表非手性近晶液晶相。SmA *,SmB *,SmC *,SmI *,SmF * 代表手性近晶液晶相。(4)近晶相SmC *次级相 SmC *α仍然存在争议,但是假设存在于一些样品的SmA *以下的非对称相。SmC *为螺电性手性近晶相C,它经常表现为铁电性。 SmC *1/3和SmC *1/ 4为中间相,经常被误导为压电相SmC *F11和SmC *F12。SmC *A 为反铁电性手性近晶C。(5)其他一些反铁电相SmI *A 代表反铁电近晶I相。 (6)扭曲晶界相(只在手性材料中出现)TGBA * 为扭曲晶界近晶A。 TGBC * 为铁电扭曲晶界近晶C。TGBC *A 为反铁电扭曲近晶C。

铁电陶瓷材料的应用以及生产工艺之一

铁电陶瓷材料的应用以及生产工艺之一 铁电陶瓷材料,是指具有铁电效应的一类功能性陶瓷材料,它是热释电材料的一个分支。 可以制作大容量的电容器、高频用微型电容器、高压电容器、叠层电容器和半导体陶瓷电容器等,可以制作介质放大器和相移器等。利用其热释电性,可以制作红外探测器等。也可用于制造光阀、光调制器、激光防护镜和热电探测器等。广泛应用于航天、军工、新能源产品。 这里介绍的目的,主要是参考它的加工工艺,比如为固体电解质的加工提供参考。另一方面是顺便了解一下这特种陶瓷的用途。 一般性描述: 铁电陶瓷(ferroelectric ceramics)材料,是指具有铁电效应的一类材料,它是热释电材料的一个分支。铁电陶瓷的主要特性为:(1)在一定温度范围内存在自发极化,当高于某一居里温度时,自发极化消失,铁电相变为顺电相;(2)存在电畴;(3)发生极化状态改变时,其介电常数-温度特性发生显著变化,出现峰值,并服从Curie-Weiss定律;(4)极化强度随外加电场强度而变化,形成电滞回线;(5)介电常数随外加电场呈非线性变化;(6)在电场作用下产生电致伸缩或电致应变。其电性能:高的抗电压强度和介电常数。在一定温度范围内(-55~+85℃)介电常数变化率较小。介电常数或介质的电容量随交流电场或直流电场的变化率小。 铁电陶瓷拥有优良的电学性能,在一定温度范围内存在自发极化,当高于某一居里温度时,自发极化消失,铁电相变为顺电相;介电常数随外加电场呈非线性变化。利用铁电陶瓷的高介电常数可制作大容量的陶瓷电容器;利用其压电性可制作各种压电器件;利用其热

释电性可制作红外探测器;通过适当工艺制成的透明铁电陶瓷具有电控光特性,利用它可制作存贮,显示或开关用的电控光特性,其具有很高的应用前景。 铁电陶瓷的特性决定了它的用途。利用其高介电常数,可以制作大容量的电容器、高频用微型电容器、高压电容器、叠层电容器和半导体陶瓷电容器等,电容量可高达0.45μF/cm2。利用其介电常数随外电场呈非线性变化的特性,可以制作介质放大器和相移器等。利用其热释电性,可以制作红外探测器等。利用其压电性可制作各种压电器件。此外,还有一种透明铁电陶瓷,具有电光效应,可用于制造光阀、光调制器、激光防护镜和热电探测器等。 目前,全球铁电元件的年产值己达数百亿美元。铁电材料是一个比较庞大的家族,当前应用的最好的是陶瓷系列,其已广泛应用于军事和工业领域。但是由于铅的有毒性及此类铁电陶瓷材料居里温度低、耐疲劳性能差等原因,应用范围受到了限制。因此开发新一代铁电陶瓷材料己成为凝聚态物理、固体电子学领域最热门的研究课题之一。 细分的品种有⑴层状铁电陶瓷,⑵弛豫型铁电陶瓷,⑶含铅型铁电陶瓷,⑷无铅型铁电陶瓷,⑸反铁电陶瓷材料,⑹可能的新型铁电陶瓷材料。

铁电陶瓷材料的研究现状和应用

铁电陶瓷材料的研究现状和应用 1、层状铁电陶瓷 (1)Bi系 目前,研究较多、并且用于制备铁电陶瓷材料的是钙钛矿结构的锆钛酸铅(简称PZT)系列。此系列的突出优点是剩余极化较大Pr(10~35 μC/cm 2)、热处理温度较低(600℃左右)。但是随着研究的深入,人们发现,在经过累计的极化反转之后PZT系列性能退化,主要表现在出现高的漏电流和较严重的疲劳问题,另外,铅的挥发对人体也有害。因此研究和开发性能优良且无铅的铁电陶瓷具有重要的现实意义。而铋系层状钙钛矿结构材料属于铁电材料类且性能较好又不含铅,因此受到人们的广泛关注。 (2)(Pb,Ba)(Zr,Ti)O3系 (Pb,Ba)(Zr,Ti)O3(简称PBZT)系陶瓷与Pb(Zr,Ti)O3(PZT)同属于ABO3型钙钛矿结构,具有较大的电致伸缩应变,在电子微位移动领域已得到广泛应用。但在使用过程中发现这类铁电陶瓷因其脆性和较低的强度影响了其产品的耐久性和使用寿命,因此改善其机械性能已引起人们的重视。 2、弛豫型铁电陶瓷 弛豫型铁电体(relaxation ferroelectrics,简称RF)是指顺电—铁电转变属于弥散相变的一类铁电材料,它同时具有铁电现象和弛豫现象。与典型铁电体相比,弛豫型铁电体的一个典型特征是复介电常数(ε*(ω) =ε'(ω) ?ε"(ω),ω为角频率)的实部ε'(ω)随温度变化呈现相对宽且变化平缓的峰,其最大ε'(ω)值对应的温度Tm随ω的增加而向高温移动。该特征与结构玻璃(structureglass)化转变、自旋玻璃(spin glass)化转变的特征极为相似。所以,弛豫型铁电体又被称为极性玻璃(polar glass),相应的弛豫铁电相变又被称为极性玻璃化转变。迄今为止,虽然人们对弛豫铁电相变进行了大量的实验测量和理论探索,但是仍然没有被普遍接受的弛豫铁电相变模型,所以对弛豫铁电相变机制的研究一直是该领域研究的热点问题之一。另外,现有的一些弛豫铁电体具有优良的铁电、压电和热释电性能,因而具有广泛而重要的应用。 3、含铅型铁电陶瓷 铌镁酸铅Pb(Mg1.3Nb2.3)O3(简称PMN)铁电陶瓷材料以很高的介电常数、相当大的电致伸缩效应、较低的容温变化率和几乎无滞后的特点,一直受到人们的关注,在多层陶瓷电容器、新型微位移器、执行器和机敏材料器件及新型电致伸缩器件等领域有着巨大的应用前景。

铁电薄膜的发展

论文摘要 Taran V. Harman的理学硕士论文,专业电气与计算机工程,发表于2003年10月10日。 题目:铁电薄膜的进展 摘要批准人:John F. Wager 开始于这篇论文的研究项目的长期目标是研究无铅全透明铁电设备,比如铁电电容或铁电栅场效应晶体管。铁电材料在施加外电场时表现出自发极化,且随电场连续变化,并能被其反转。铁电薄膜可用在非易失性存储设备,比如电容,栅介质或场效应晶体管中。铁电设备通过铁电锆钛酸铅(PZT)的沉积来制造,主要方法有射频溅射,旋涂式的化学溶液沉积(CSD)。铁电PZT电容铁电电容的特点是:测电容和电导时为频率的函数,测极化强度时是外加电场的函数。带Au或Ni不透明顶部电极的铁电PZT电容的介电常数在300到600范围内,与典型的铁电薄膜类似。然而,制造透明顶部接触的电容的所有尝试,包括采用各种类型的透明导体和绝缘缓冲层,最终都在铁电层未完全极化前引发了电注入和电击穿。 版权归Taran V. Harman 2003年10月10日

首先我要谢谢我的丈夫Doug在整个文章撰写过程中的耐心,还有整个家庭:Iris, Toy, and Andre Villoch, and John and Linda Harman,他们一直支持我。 我要感谢我的导师John F. Wager教授,他为研究提供经费支持,并建议将铁电体作为论文项目。我在文章撰写过程中与他进行过多次很有益的讨论。 我要感谢Luke Norris为项目作出的贡献,他是自旋解决方案中的助手兼教育家,并且如朋友般伴随每个项目。我要感谢David Hong,他为项目制备了铪HfO2,并在计算机相关问题上帮助很多。 我要感谢Wager博士研究组的所有成员,他们都与我积极讨论。尤其要感谢Rick Presley 协助生产,感谢Melinda Valencia推荐了个好兽医,感谢Nicci Dehuff让我睡在她的沙发上,感谢Mandy Fluaitt,Kathryn Gardiner, and Jana Stockum的友情。 我还要谢谢Chris Tasker,他维持实验室运转。还有Manfred Dittrich为实验设备制造专门的机械部件。 此项工作受美国国家科学基金No: DMR-0071727和美国陆军研究室合约No: MURI E- 18-667-G3资助。

铁电陶瓷材料

材料工程基础课程铁电陶瓷材料 院系:材料与冶金 专业:金属材料工程 班级:10-材料-1 学号:1061107127 姓名:周联邦 日期:2012-12-3

摘要:本文论述了铁电陶瓷的性质、原理、效应。着重介绍了几种具有代表性的铁电陶瓷材料的研究现状,以及人们在研究过程中产生的新问题。这几种材料主要包括层状铁电陶瓷,弛豫型铁电陶瓷,含铅型铁电陶瓷,无铅型铁电陶瓷,以及反铁电陶瓷材料。最后,对未来的研究与应用前景进行了展望。 关键词:铁电陶瓷;铁电性;性质;效应;钙钛矿;应用;研究 铁电陶瓷是指具有铁电性的陶瓷。材料在一定温度范围内能够自发极化,且自发极化能随外电场取向的性质。 铁电陶瓷特性 铁电陶瓷,主晶相为铁电体的陶瓷材料。 它的主要特性为: (1)在一定温度范围内存在自发极化,当高于某一居里温度时,自发极化消失,铁电相变为顺电相; (2)存在电畴; (3)发生极化状态改变时,其介电常数-温度特性发生显著变化,出现峰值,并服从Curie-Weiss定律; (4)极化强度随外加电场强度而变化,形成电滞回线; (5)介电常数随外加电场呈非线性变化; (6)在电场作用下产生电致伸缩或电致应变。 (7)电性能:高的抗电压强度和介电常数。低的老化率。在一定温度范围内介电常数变化率较小。介电常数或介质的电容量随交流电场或直流电场的变化率小。铁电陶瓷原理 某些电介质可自发极化,在外电场作用下自发极化能重新取向的现象称铁电效应。具有这种性能的陶瓷称铁电陶瓷。铁电陶瓷具有电滞回线和居里温度。在居里温度点,晶体由铁电相转变为非铁电相,其电学、光学、弹性和热学等性质均出现反常现象,如介电常数出现极大值。1941年美国首先制成介电常数高达1100的钛酸钡铁电陶瓷。 主要的铁电陶瓷系统有钛酸钡-锡酸钙和钛酸钡-锆酸钡系高介电常数铁电陶瓷,钛酸钡-锡酸铋系介电常数变化率低的铁电陶瓷,钛酸钡-锆酸钙-铌锆酸铋和钛酸钡-锡酸钡系高压铁电陶瓷以及多钛酸铋及其与钛酸锶等组成的固溶体系低损耗铁电陶瓷等。铁电陶瓷的制造工艺大致相同。例如,钛酸钡系陶瓷用超纯、超细的等摩尔碳酸钡和二氧化钛原料混合均匀,在1150°C左右预烧成钛酸钡。加入少量为改善工艺和电性能所需要的附加剂,如产生阳离子缺位的三价镧、三价铋或五价铌离子附加剂,产生氧离子空位的三价铁、三价钪或三价铝离子,置换钡离子使晶格畸变的二价锶离子以及生成液相、降低烧成温度的氧化镁或二氧化锰等附加剂。经过粉磨或其他方法充分混合,用干压、辊压或挤压等方法成型,再在1350°C左右的氧化气氛中烧成。还可采用热压烧结,高温等静压烧结等方法,以提高产品的质量。 铁电陶瓷材料确定原则 铁电陶瓷配方的确定原则:先移后展,有所侧重;单独考虑,综合调整。 铁电陶瓷的三大效应 展宽效应、移动效应和重叠效应是铁电陶瓷改性的三大效应。 (1)铁电陶瓷居里峰的展宽效应 展宽效应:指铁电陶瓷的ε与温度关系中的峰值扩张得尽可能的宽旷平坦,即不仅使居里峰压低,而且要使峰的肩部上举,从而使材料既具有较小的温度系

材料的铁电性能综述

材料的铁电性能综述 摘要: 回顾了铁电现象的发现及发展,简述了铁电性的机理,描述了铁电材料应用现状与前景,并介绍了几类前景很好的铁电材料。指出目前对于铁电性的还需要进行更多的和更深入全面的研究。 关键词:铁电性,电畴,铁电薄膜,存储器 前言: 铁电材料,是指具有铁电效应的一类材料,它是热释电材料的一个分支。铁电材料及其应用研究已成为凝聚态物理、固体电子学领域最热门的研究课题之一。铁电材料是一类重要的功能材料,是近年来高新技术研究的前沿和热点之一。 在一些电介质晶体中,晶胞的结构使正负电荷重心不重合而出现电偶极矩,产生不等于零的电极化强度,使晶体具有自发极化,晶体的这种性质叫铁电性(ferroelectricity)。 铁电性: 铁电性是某些绝缘体材料中在外加电场的作用下自发极化可以被反转的特性。多数材料的极化是与外加电场线性成正比的,非线性效应是不显著的。这种极化叫做电介质极化。有些称作顺电体的材料,线性的极化效应更加显著。于是与极化曲线斜率相对应的介电常数是以一个外加电场的函数。除了非线性效应以外,铁电材料中还存在自发极化。这种材料称作焦电材料。铁电材料与其不同之处在于它的自发极化可以在外加电场作用下被反转,产生一个电滞归线。一般来说,材料的铁电性只存在于某一相变温度以下,称为居里温度。在这个温度以上,材料变为顺电体。 铁磁体中的原子有固定的磁偶极矩,这些磁矩自发排列起来。自发排列的原因是固体中电子的量子力学效应。铁磁体的居里温度指向顺磁体转变的温度,同理对铁电体,指材料不再是铁电体的温度。对于一块未极化铁电晶体,电畴随机

排列,净极化强度为零。当外加一个电场时,电畴同时向电场方向转动,当电场足够强时,全部电畴沿电场方向排列一致,这时晶体变成一个大电畴,处于极化饱和状态。当扭转电场时,极化反转但不回零,晶体获得一个剩余极化强度PR,当电场被扭转到矫顽场Ec时,剩余极化强度被去除。铁电相是一个相当严格的状态,大多数材料都是顺电状态,顺电相指即使没有固有电偶极子,电场也可诱发极化。而铁电体是有极性的,他们因为晶胞的原子排列而拥有一个固有电偶极矩。晶体有32个群,其中,21种是非中心对称的。在他们之中,20中是压电体,即压力诱发极化。而在这20种之中只有10种在无压力下是有极性的,即热释电体,温度变化导致热膨胀,热膨胀导致极化强度变化。最后,在这当中,当极化强度还可以被电场重新定向时,晶体才是铁电体。 铁电相转变是一种结构变化,它反映出晶体保持自发极化的能力,并由晶体惯用元胞中的离子相对位移引起。铁电相变发生在温度TC,这与铁磁体的居里温度相似。在具体点以上,晶体通常是中心对称的顺电相,居里点以下就不是顺电系相了,而表现出铁电行为。在铁电相,晶体中至少有一组离子处在双势阱中,两个位置能量相等。在TC以上,粒子在双势阱中有足够的动能前后振动并越过分隔势阱的势垒,所以原子时间上的平均位置在势阱的中间。 电畴和铁电极化,铁电行为是由在铁电相时至少有一组离子拥有双势阱引起的。在一个局部区域内,所有离子均位于势阱的同一侧,这个局部区域叫作电畴。如果铁电相变在一个理想晶体中随着温度的一个极小下降而发生(保证整个晶体的热力学平衡)晶体被单畴化。晶体中所有离子热力学耦合并处于双势阱的同一侧,位于任一侧的几率相等。在真实的情况中,晶体中足够远的不同区域独立地形成电畴,而且反向不同。 在公式 公式涉及电位移矢量,电场强度和极化强度,其中既包括外场引起极化,还包括固有极化。 自由电荷满足泊松方程,,所以 在一个理想的铁电晶体中,,这和普通电介质一样。对于一个真实的晶体,在晶体表面为0,和大块晶体在缺陷处测得的值不同。

相关主题
文本预览
相关文档 最新文档