当前位置:文档之家› 2018云南省中考数学试卷

2018云南省中考数学试卷

2018云南省中考数学试卷
2018云南省中考数学试卷

2018年云南省中考数学试卷

一、填空题(共6小题,每小题3分,满分18分)

1.(3.00分)﹣1的绝对值是.

2.(3.00分)已知点P(a,b)在反比例函数y=的图象上,则ab=.3.(3.00分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为.

4.(3.00分)分解因式:x2﹣4=.

5.(3.00分)如图,已知AB∥CD,若=,则=.

6.(3.00分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为.

二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)7.(4.00分)函数y=的自变量x的取值范围为()

A.x≤0 B.x≤1 C.x≥0 D.x≥1

8.(4.00分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()

A.三棱柱B.三棱锥C.圆柱D.圆锥

9.(4.00分)一个五边形的内角和为()

A.540°B.450°C.360° D.180°

10.(4.00分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()

A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n

11.(4.00分)下列图形既是轴对称图形,又是中心对称图形的是()A.三角形B.菱形C.角D.平行四边形

12.(4.00分)在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.C.D.

13.(4.00分)2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数学科技文化节?玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个选项错误的是()

A.抽取的学生人数为50人

B.“非常了解”的人数占抽取的学生人数的12%

C.a=72°

D.全校“不了解”的人数估计有428人

14.(4.00分)已知x+=6,则x2+=()

A.38 B.36 C.34 D.32

三、解答题(共9小题,满分70分)

15.(6.00分)计算:﹣2cos45°﹣()﹣1﹣(π﹣1)0

16.(6.00分)如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.

17.(8.00分)某同学参加了学校举行的“五好小公民?红旗飘飘”演讲比赛,7名评委给该同学的打分(单位:分)情况如下表:

评委评委1评委2评委3评委4评委5评委6评委7打分6878578(1)直接写出该同学所得分数的众数与中位数;

(2)计算该同学所得分数的平均数

18.(6.00分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?

19.(7.00分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片

看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.

(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.

(2)求取出的两张卡片上的数字之和为偶数的概率P.

20.(8.00分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.

(1)求b,c的值.

(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点,求公共点的坐标;若没有,请说明情况.

21.(8.00分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A、B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.

甲种原料(单位:千克)乙种原料(单位:

生产成本(单位:元)

千克)

A商品32120

B商品 2.5 3.5200

设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:

(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;

(2)x取何值时,总成本y最小?

22.(9.00分)如图,已知AB是⊙O的直径,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.

(1)求证:CD是⊙O的切线;

(2)若∠D=30°,BD=2,求图中阴影部分的面积.

23.(12.00分)如图,在平行四边形ABCD中,点E是CD的中点,点F是BC边上的点,AF=AD+FC,平行四边形ABCD的面积为S,由A、E、F三点确定的圆的周长为t.

(1)若△ABE的面积为30,直接写出S的值;

(2)求证:AE平分∠DAF;

(3)若AE=BE,AB=4,AD=5,求t的值.

2018年云南省中考数学试卷

参考答案与试题解析

一、填空题(共6小题,每小题3分,满分18分)

1.(3.00分)﹣1的绝对值是1.

【分析】第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.

【解答】解:∵|﹣1|=1,∴﹣1的绝对值是1.

【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.

绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.

2.(3.00分)已知点P(a,b)在反比例函数y=的图象上,则ab=2.【分析】接把点P(a,b)代入反比例函数y=即可得出结论.

【解答】解:∵点P(a,b)在反比例函数y=的图象上,

∴b=,

∴ab=2.

故答案为:2

【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.

3.(3.00分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为 3.451×103.

【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1

时,n是负数.

【解答】解:3451=3.451×103,

故答案为:3.451×103.

【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

4.(3.00分)分解因式:x2﹣4=(x+2)(x﹣2).

【分析】直接利用平方差公式进行因式分解即可.

【解答】解:x2﹣4=(x+2)(x﹣2).

故答案为:(x+2)(x﹣2).

【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.

5.(3.00分)如图,已知AB∥CD,若=,则=.

【分析】利用相似三角形的性质即可解决问题;

【解答】解:∵AB∥CD,

∴△AOB∽△COD,

∴==,

故答案为.

【点评】本题考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.

6.(3.00分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为9或1.

【分析】△ABC中,∠ACB分锐角和钝角两种:

①如图1,∠ACB是锐角时,根据勾股定理计算BD和CD的长可得BC的值;

②如图2,∠ACB是钝角时,同理得:CD=4,BD=5,根据BC=BD﹣CD代入可得结论.

【解答】解:有两种情况:

①如图1,∵AD是△ABC的高,

∴∠ADB=∠ADC=90°,

由勾股定理得:BD===5,

CD===4,

∴BC=BD+CD=5+4=9;

②如图2,同理得:CD=4,BD=5,

∴BC=BD﹣CD=5﹣4=1,

综上所述,BC的长为9或1;

故答案为:9或1.

【点评】本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题.

二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)

7.(4.00分)函数y=的自变量x的取值范围为()

A.x≤0 B.x≤1 C.x≥0 D.x≥1

【分析】根据被开方数大于等于0列式计算即可得解.

【解答】解:∵1﹣x≥0,

∴x≤1,即函数y=的自变量x的取值范围是x≤1,

故选:B.

【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.

8.(4.00分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()

A.三棱柱B.三棱锥C.圆柱D.圆锥

【分析】由三视图及题设条件知,此几何体为一个的圆锥.

【解答】解:此几何体是一个圆锥,

故选:D.

【点评】考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.

9.(4.00分)一个五边形的内角和为()

A.540°B.450°C.360° D.180°

【分析】直接利用多边形的内角和公式进行计算即可.

【解答】解:解:根据正多边形内角和公式:180°×(5﹣2)=540°,

答:一个五边形的内角和是540度,

故选:A.

【点评】此题主要考查了正多边形内角和,关键是掌握内角和的计算公式.

10.(4.00分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()

A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n

【分析】观察字母a的系数、次数的规律即可写出第n个单项式.

【解答】解:a,﹣a2,a3,﹣a4,a5,﹣a6,……,(﹣1)n+1?a n.

故选:C.

【点评】考查了单项式,数字的变化类,注意字母a的系数为奇数时,符号为正;系数字母a的系数为偶数时,符号为负.

11.(4.00分)下列图形既是轴对称图形,又是中心对称图形的是()A.三角形B.菱形C.角D.平行四边形

【分析】根据轴对称图形与中心对称图形的概念求解.

【解答】解:A、三角形不一定是轴对称图形和中心对称图形,故本选项错误;

B、菱形既是轴对称图形又是中心对称图形,故本选项正确;

C、角不一定是轴对称图形和中心对称图形,故本选项错误;

D、平行四边形不一定是轴对称图形和中心对称图形,故本选项错误;

故选:B.

【点评】此题主要考查了中心对称图形与轴对称图形的概念:判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.

12.(4.00分)在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.C.D.

【分析】根据锐角三角函数的定义求出即可.

【解答】解:∵在Rt△ABC中,∠C=90°,AC=1,BC=3,

∴∠A的正切值为==3,

故选:A.

【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键.

13.(4.00分)2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数学科技文化节?玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个选项错误的是()

A.抽取的学生人数为50人

B.“非常了解”的人数占抽取的学生人数的12%

C.a=72°

D.全校“不了解”的人数估计有428人

【分析】利用图中信息一一判断即可解决问题;

【解答】解:抽取的总人数为6+10+16+18=50(人),故A正确,

“非常了解”的人数占抽取的学生人数的=12%,故B正确,

α=360°×=72°,故正确,

全校“不了解”的人数估计有1300×=468(人),故D错误,

故选:D.

【点评】本题考查条形统计图、扇形统计图等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.

14.(4.00分)已知x+=6,则x2+=()

A.38 B.36 C.34 D.32

【分析】把x+=6两边平方,利用完全平方公式化简,即可求出所求.

【解答】解:把x+=6两边平方得:(x+)2=x2++2=36,

则x2+=34,

故选:C.

【点评】此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.

三、解答题(共9小题,满分70分)

15.(6.00分)计算:﹣2cos45°﹣()﹣1﹣(π﹣1)0

【分析】本题涉及零指数幂、负指数幂、锐角三角函数、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.

【解答】解:原式=3﹣2×﹣3﹣1

=2﹣4

【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值、特殊角的锐角三角函数值等知识点.

16.(6.00分)如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.

【分析】根据角平分线的定义得到∠BAC=∠DAC,利用SAS定理判断即可.

【解答】证明:∵AC平分∠BAD,

∴∠BAC=∠DAC,

在△ABC和△ADC中,

∴△ABC≌△ADC.

【点评】本题考查的是全等三角形的判定、角平分线的定义,掌握三角形全等的SAS定理是解题的关键.

17.(8.00分)某同学参加了学校举行的“五好小公民?红旗飘飘”演讲比赛,7名评委给该同学的打分(单位:分)情况如下表:

评委评委1评委2评委3评委4评委5评委6评委7打分6878578(1)直接写出该同学所得分数的众数与中位数;

(2)计算该同学所得分数的平均数

【分析】(1)根据众数与中位数的定义求解即可;

(2)根据平均数的定义求解即可.

【解答】解:(1)从小到大排列此数据为:5,6,7,7,8,8,8,

数据8出现了三次最多为众数,

7处在第4位为中位数;

(2)该同学所得分数的平均数为(5+6+7×2+8×3)÷7=7.

【点评】本题考查了平均数、众数与中位数,用到的知识点是:给定一组数据,

出现次数最多的那个数,称为这组数据的众数.中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷个数.

18.(6.00分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?

【分析】设乙工程队每小时能完成x平方米的绿化面积,则甲工程队每小时能完成2x平方米的绿化面积,根据工作时间=总工作量÷工作效率结合甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,即可得出关于x的分式方程,解之经检验后即可得出结论.

【解答】解:设乙工程队每小时能完成x平方米的绿化面积,则甲工程队每小时能完成2x平方米的绿化面积,

根据题意得:﹣=3,

解得:x=50,

经检验,x=50是分式方程的解.

答:乙工程队每小时能完成50平方米的绿化面积.

【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.

19.(7.00分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.

(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.

(2)求取出的两张卡片上的数字之和为偶数的概率P.

【分析】(1)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果;

(2)由(1)中的树状图,可求得抽取的两张卡片结果中数字之和为偶数的情况,然后利用概率公式求解即可求得答案.

【解答】解:(1)画树状图得:

由树状图知共有6种等可能的结果:(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2);

(2)∵共有6种等可能结果,其中数字之和为偶数的有2种结果,

∴取出的两张卡片上的数字之和为偶数的概率P==.

【点评】此题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.

20.(8.00分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.

(1)求b,c的值.

(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点,求公共点的坐标;若没有,请说明情况.

【分析】(1)把点A、B的坐标分别代入函数解析式求得b、c的值;

(2)利用根的判别式进行判断该函数图象是否与x轴有交点,由题意得到方程﹣x2+x+3=0,通过解该方程求得x的值即为抛物线与x轴交点横坐标.

【解答】解:(1)把A(0,3),B(﹣4,﹣)分别代入y=﹣x2+bx+c,得

解得;

(2)由(1)可得,该抛物线解析式为:y=﹣x2+x+3.

△=()2﹣4×(﹣)×3=>0,

所以二次函数y=﹣x2+bx+c的图象与x轴有公共点.

∵﹣x2+x+3=0的解为:x1=﹣2,x2=8

∴公共点的坐标是(﹣2,0)或(8,0).

【点评】考查了抛物线与x轴的交点,二次函数图象上点的坐标特征.注意抛物线解析式与一元二次方程间的转化关系.

21.(8.00分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A、B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.

甲种原料(单位:千克)乙种原料(单位:

生产成本(单位:元)

千克)

A商品32120

B商品 2.5 3.5200

设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:

(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;

(2)x取何值时,总成本y最小?

【分析】(1)根据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组进而得出答案;

(2)利用一次函数增减性进而得出答案.

【解答】解:(1)由题意可得:y=120x+200(100﹣x)=﹣80x+20000,

解得:24≤x≤86;

(2)∵y=﹣80x+20000,

∴y随x的增大而减小,

∴x=86时,y最小,

则y=﹣80×86+20000=13120(元).

【点评】此题主要考查了一次函数的应用以及不等式的应用,正确利用表格获得正确信息是解题关键.

22.(9.00分)如图,已知AB是⊙O的直径,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.

(1)求证:CD是⊙O的切线;

(2)若∠D=30°,BD=2,求图中阴影部分的面积.

【分析】(1)连接OC,易证∠BCD=∠OCA,由于AB是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切线

(2)设⊙O的半径为r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分别计算△OAC的面积以及扇形OAC的面积即可求出影响部分面积

【解答】解:(1)连接OC,

∵OA=OC,

∴∠BAC=∠OCA,

∵∠BCD=∠BAC,

∴∠BCD=∠OCA,

∵AB是直径,

∴∠ACB=90°,

∴∠OCA+OCB=∠BCD+∠OCB=90°

∴∠OCD=90°

∵OC是半径,

∴CD是⊙O的切线

(2)设⊙O的半径为r,

∴AB=2r,

∵∠D=30°,∠OCD=90°,

∴OD=2r,∠COB=60°

∴r+2=2r,

∴r=2,∠AOC=120°

∴BC=2,

∴由勾股定理可知:AC=2

=×2×1=

易求S

△AOC

S扇形OAC==

∴阴影部分面积为﹣

【点评】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,需要学生灵活运用所学知识.

23.(12.00分)如图,在平行四边形ABCD中,点E是CD的中点,点F是BC边上的点,AF=AD+FC,平行四边形ABCD的面积为S,由A、E、F三点确定的圆的周长为t.

(1)若△ABE的面积为30,直接写出S的值;

(2)求证:AE平分∠DAF;

(3)若AE=BE,AB=4,AD=5,求t的值.

=×AB×EG=30得AB?EG=60,即可得【分析】(1)作EG⊥AB于点G,由S

△ABE

出答案;

(2)延长AE交BC延长线于点H,先证△ADE≌△HCE得AD=HC、AE=HE及AD+FC=HC+FC,结合AF=AD+FC得∠FAE=∠CHE,根据∠DAE=∠CHE即可得证;(3)先证∠ABF=90°得出AF2=AB2+BF2=16+(5﹣FC)2=(FC+CH)2=(FC+5)2,据此求得FC的长,从而得出AF的长度,再由AE=HE、AF=FH知FE⊥AH,即AF 是△AEF的外接圆直径,从而得出答案.

【解答】解:(1)如图,作EG⊥AB于点G,

则S

=×AB×EG=30,则AB?EG=60,

△ABE

∴平行四边形ABCD的面积为60;

(2)延长AE交BC延长线于点H,

∵四边形ABCD是平行四边形,

∴AD∥BC,

∴∠ADE=∠HCE,∠DAE=∠CHE,

∵E为CD的中点,

∴CE=ED,

∴△ADE≌△HCE,

∴AD=HC、AE=HE,

∴AD+FC=HC+FC,

由AF=AD+FC和FH=HC+FC得AF=FH,

∴∠FAE=∠CHE,

又∵∠DAE=∠CHE,

∴∠DAE=∠FAE,

∴AE平分∠DAF;

(3)连接EF,

∵AE=BE、AE=HE,

∴AE=BE=HE,

∴∠BAE=∠ABE,∠HBE=∠BHE,

∵∠DAE=∠CHE,

∴∠BAE+∠DAE=∠ABE+∠HBE,即∠DAB=∠CBA,

由四边形ABCD是平行四边形得∠DAB+∠CBA=180°,

∴∠CBA=90°,

∴AF2=AB2+BF2=16+(5﹣FC)2=(FC+CH)2=(FC+5)2,

解得:FC=,

∴AF=FC+CH=,

∵AE=HE、AF=FH,

∴FE⊥AH,

∴AF是△AEF的外接圆直径,

∴△AEF的外接圆的周长t=π.

【点评】本题主要考查圆的综合问题,解题的关键是掌握平行四边形的性质、矩形的判定与性质、全等三角形的判定与性质及等腰三角形的性质、勾股定理等知识点.

昆明市2018年中考数学试卷(解析版)

2018年云南省昆明市中考数学试卷 一、填空题(每小题3分,满分18分) 1.(3.00分)在实数﹣3,0,1中,最大的数是. 2.(3.00分)共享单车进入昆明市已两年,为市民的低碳出行带来了方便,据报道,昆明市共享单车投放量已达到240000辆,数字240000用科学记数法表示为. 3.(3.00分)如图,过直线AB上一点O作射线OC,∠BOC=29°18′,则∠AOC 的度数为. 4.(3.00分)若m+=3,则m2+=. 5.(3.00分)如图,点A的坐标为(4,2).将点A绕坐标原点O旋转90°后,再向左平移1个单位长度得到点A′,则过点A′的正比例函数的解析式为. 6.(3.00分)如图,正六边形ABCDEF的边长为1,以点A为圆心,AB的长为半径,作扇形ABF,则图中阴影部分的面积为(结果保留根号和π).

二、选择题(每小题4分,满分32分,在每小题给出的四个选项中,只有一项是正确的) 7.(4.00分)下列几何体的左视图为长方形的是() A. B.C.D. 8.(4.00分)关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是() A.m<3 B.m>3 C.m≤3 D.m≥3 9.(4.00分)黄金分割数是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算﹣1的值() A.在1.1和1.2之间B.在1.2和1.3之间 C.在1.3和1.4之间D.在1.4和1.5之间 10.(4.00分)下列判断正确的是() A.甲乙两组学生身高的平均数均为1.58,方差分别为S甲2=2.3,S乙2=1.8,则甲组学生的身高较整齐 B.为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4000 C.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表: 则这30个参赛队决赛成绩的中位数是9.7 D.有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件 11.(4.00分)在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO 的度数为()

最新-2018年数学中考试题分类汇编(应用题) 精品

(2018年安徽省)某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价油价上涨,这个月进口石油的费用反而比上个月增加了14%。求这个月的石油价格相对上个月的增长率。 20.(2018年芜湖市)在抗震救灾活动中,某厂接到一份订单,要求生产7200顶帐篷支援四川灾区,后来由于情况紧急,接收到上级指示,要求生产总量比原计划增加20%,且必须提前4天完成生产任务,该厂迅速加派人员组织生产,实际每天比原计划每天多生产720顶,请问该厂实际每天生产多少顶帐篷? 河北 周建杰 分类 (2018年泰州市)15.一种药品经过两次降价,药价从原来每盒60元降至现在的48.6元,则平均每次降价的百分率是 . (2018年泰州市)24.如图某堤坝的横截面是梯形ABCD ,背水坡AD 的坡度i (即 tan )为1︰1.2,坝高为5米,现为了提高堤坝的防洪抗洪能力,市防汛指挥部决定加固堤坝,要求坝顶CD 加宽1米,形成新的背水坡EF ,其坡度为1︰1.4,已知堤坝总长度为4000米. (1)求完成该工程需要多少土方?(4分) (2)该工程由甲、乙两个工程队同时合作完成.按原计划需要20天.准备开工前接到上级 通知,汛期可能提前,要求两个工程队提高工作效率,甲队工作效率提高30%,乙队工作效率提高40%,结果提前5天完成.问这两个工程队原计划每天各完成多少土方? (5分) (2018年南京市)25.(7分)某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m 宽的空地,其它三侧内墙各保留1m 宽的通道.当矩 2 (2018年遵义市)26.(12分)某超市销售有甲、乙两种商品.甲商品每件进价10元,售 第24题图 (第25题)

2018年云南省中考数学试卷及答案解析-推荐

2018年云南省中考数学试卷 一、填空题(共6小题,每小题3分,满分18分) 1.(3.00分)﹣1的绝对值是. 2.(3.00分)已知点P(a,b)在反比例函数y=的图象上,则ab= . 3.(3.00分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为. 4.(3.00分)分解因式:x2﹣4= . 5.(3.00分)如图,已知AB∥CD,若=,则= . 6.(3.00分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为. 二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项) 7.(4.00分)函数y=的自变量x的取值范围为() A.x≤0 B.x≤1 C.x≥0 D.x≥1 8.(4.00分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()

A.三棱柱B.三棱锥C.圆柱D.圆锥 9.(4.00分)一个五边形的内角和为() A.540°B.450°C.360°D.180° 10.(4.00分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是() A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n 11.(4.00分)下列图形既是轴对称图形,又是中心对称图形的是() A.三角形B.菱形C.角D.平行四边形 12.(4.00分)在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为() A.3 B.C.D. 13.(4.00分)2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数学科技文化节?玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个选项错误的是() A.抽取的学生人数为50人 B.“非常了解”的人数占抽取的学生人数的12% C.a=72° D.全校“不了解”的人数估计有428人 14.(4.00分)已知x+=6,则x2+=() A.38 B.36 C.34 D.32

2020年中考数学第22题应用题复习专题(有答案)

武汉市中考数学第22题复习专题 1. 我市从 2018年 1月 1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A、B两种型号的电动自行车共30辆,其中每辆B 型电动自行车比每辆 A型电动自行车多500元.用 5万元购进的 A型电动自行车与用 6万元购进的 B型电动自行车数量一样. (1)求 A、B 两种型号电动自行车的进货单价; (2)若 A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为 3500 元,设该商店计划购进 A型电动自行车 m辆,两种型号的电动自行车全部销售后可获利润 y元.写出y与 m之间的函数关系式,并写出商店能获得最大利润的进货方案; (3)由于市场浮动,A型电动自行车的进货价格下调a(100<a<300)元,此时商店能获得最大利润为14400,求a值. 2. 为迎接军运会,武汉市政府启动了梁子湖水质提升方案,其中治理所需的部分原料450吨由某公司存放于甲、乙两个仓库,如果运出甲仓库所存原料的30%,乙仓库所存原料的20%,那么乙仓库剩余的原料与甲仓库剩余的原料一样多. (1)求甲、乙两仓库各存放原料多少吨? (2)现公司将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a元/吨(10≤a≤30),从乙仓库到工厂的运价不变.设从甲仓库运m吨原料到工厂,求出总运费w关于m的函数解析式(不要求写出m的取值范围); (3)若在(2)的条件下,请根据函数的性质说明:随着m的增大,w的变化情况. 3.某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市

云南省2018年中考数学试卷(解析版)

2018年云南省中考数学试卷含答案【精品】 一、填空题(共6小题,每小题3分,满分18分) 1. ﹣1的绝对值是_____. 【答案】1 【解析】【分析】根据绝对值的意义“数轴上表示数a的点到原点的距离就是a的绝对值,记作|a|”进行求解即可得. 【详解】∵数轴上表示数-1的点到原点的距离是1,即|﹣1|=1, ∴﹣1的绝对值是1, 故答案为:1. 【点睛】本题考查了绝对值的定义与性质,熟练掌握绝对值的定义是解题的关键. 绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2. 已知点P(a,b)在反比例函数y=的图象上,则ab=_____. 【答案】2 【解析】【分析】接把点P(a,b)代入反比例函数y=即可得出结论. 【详解】∵点P(a,b)在反比例函数y=的图象上, ∴b=, ∴ab=2, 故答案为:2. 【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键. 3. 某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为_____. 【答案】3.451×103 【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n是负数. 【详解】3451的小数点向左移动3位得到3.451,

所以,3451用科学记数法表示为:3.451×103, 故答案为:3.451×103. 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中 1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 4. 分解因式:x2﹣4=_____. 【答案】(x+2)(x﹣2) 【解析】【分析】直接利用平方差公式进行因式分解即可. 【详解】x2﹣4 =x2-22 =(x+2)(x﹣2), 故答案为:(x+2)(x﹣2). 【点睛】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反. 5. 如图,已知AB∥CD,若,则=_____. 【答案】 【解析】【分析】利用相似三角形的性质即可解决问题; 【详解】∵AB∥CD, ∴△AOB∽△COD, ∴, 故答案为:.

2018年陕西省中考数学考点题对题---21题一次函数的实际应用题

2018年陕西省中考数学考点题对题-第21一次函数及 实际应用题 【中考目标】 1.会求一次函数表达式,能根据题意列出一元次方程或一元一次不等式并求解; 2.能明确图象中点、线的具体意义,能从图象的变化中获取有用信息; 3.能根据一次函数的性质解决最值问题. 【精讲精练】 类型一 文字型 1. 张强要去外省旅游,特申请使用了某电信公司的手机漫游来电畅听业务,这个公司的漫游来电畅听业务规定:用户每月交月租费16元,可免费接听来电,而打出电话每分钟收费元 .设张强月手机的通话费(包括月租费和打出电话的费用)为y 元,打出电话时间为x 分钟. ; (1)求出y 与x 之间的函数关系式; (2)如果张强在外省旅游的当月的通话费(包括月租费和打出电话的费用)为42元,请你求出张强这个月打出电话时间为多少分钟 2. (2016三明10分)小李是某服装厂的一名工人,负责加工A ,B 两种型号服装,他每月的工作时间为22天,月收入由底薪和计件工资两部分组成,其中底薪900元,加工A 型服装1件可得20元,加工B 型服装1件可得12元.已知小李每天可加工A 型服装4件或B 型服装8件,设他每月加工A 型服装的时间为x 天,月收入为y 元. ) (1)求y 与x 的函数关系式; (2)根据服装厂要求,小李每月加工A 型服装数量应不少于B 型服装数量的3 5,那么他的月收入最高能达到多少元

3. (2016攀枝花8分)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元. 】 (1)求每吨水的政府补贴优惠价和市场价分别是多少 (2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式; (3)小明家5月份用水26吨,则他家应交水费多少元 【 4. (2017原创)电话手表上市以来,深受家长和孩子的青睐.经销商王某从市场获得如下信 息:A品牌电话手表:进价700元/块,售价900元/块;B品牌电话手表:进价100元/块,售价160元/块.他计划用4万元资金一次性购进这两种电话手表共100块.(1)设王某购进A品牌电话手表x块,这两种品牌电话手表全部销售完后获得利润为w 元,试写出w与x之间的函数关系式,并求出自变量x的取值范围; (2)王某计划全部销售完后获得的利润不少于万元,该经销商有哪几种进货方案选择哪 种进货方案,可获利最大最大利润是多少 《

2018年云南省昆明市中考数学试卷及解析

2018年云南省昆明市中考数学试卷 (全卷三个大题,共23个小题,共6页;满分120分,考试时间120分钟) 一、填空题(每小题3分,满分18分) 1.在实数–3,0,1中,最大的数是_____1___. 2.共享单车进入昆明市已两年,为市民的低碳出行带来了方便,据报道,昆明市共享单车 投放量已达到240000辆,数字240000用科学记数法表示为__2.4×105______. 3.如图,过直线AB 上一点O 作射线OC,∠BOC =29°18',则∠AOC 的度数为__150°72'______. 4.若m + m 1=3 ,则m 2+21 m =____7____. 5.如图,点A 的坐标为(4,2),将点A 绕坐标原点O 能转90°后,再向左平移1个单位 长度得到点A',则过点A' 的正比例函数的解析式为__y=x 3 4 - 或 y=–4x ______. 6.如图,正六边形 ABCDEF 的边长为1,以点A 为圆心,AB 的长为半径,作扇形ABF, 则图中阴影部分的面积为__ 3 323π -______(结果保留根号和π). 二、选择题(每小題4分,满分32分) 7.下列几何体的左视图为长方形形的是( C ) 8.关于x 的一元二次方程x 2–23x +m =0有两个不相等的实数根,则实数m 的取值范围是( A ) A .m <3 B .m >3 C .m ≤3 D .m ≥3 9.黄金分割数 2 1 5-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你 估算15-的值( B ) O B A C (第3题图) 29°18' O x y A (第5题图) A B C D E F (第6题图)

2018年云南省初中学业水平考试数学试题(一)

2018年云南省初中学业水平考试数学试题(一) (全卷三个大题,共23个小题,共8页;满分120分,考试用 时120分钟) 注意事项: 1. 本卷为试题卷,考生必须在答题卡上解题作答.答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效. 2. 考试结束后,请将试题卷和答题卡一并交回. 一、填空题(本大题共6个小题,每小题3分,共18分) 1. -14的倒数是________. 2. 云南,简称云或滇,位于中国西南边陲,是人类文明重要发祥地之一,有“彩云之南”、“七彩云南”之称,面积约394000平方千米,居全国第八,394000用科学记数法表示为____________. 3. 不等式组?????x -2<03x +5>0 的解集是______________. 4. 如图,直线a ∥b ,直线c 与直线a 、b 分别交于A 、B 两点,AC ⊥b 于点C ,若∠1=43°,则∠2=________.

第4题图 5. 若(x-1)2=2,则代数式2x2-4x+5的值为________. 6. 如图,BD、CE是△ABC的角平分线,它们相交于点O,若∠A=64°,则∠BOC=________. 第6题图 二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,共32分) 7. 下列实数中最小的数是() A. -2 B. - 5 C. 1 3 D. - 1 3 8. 下列计算正确的是() A. 3-1=-3 B. 5-2= 3

C. a6÷a2=a4 D. (-1 2) 0=0 9. 下面四个立体图形中,主视图与左视图不同的是() 10. 某校九年级数学模拟测试中,六名学生的数学成绩如下表所示,下列关于这组数据描述正确的是() A. 众数是110 B. 方差是16 C. 平均数是109.5 D. 中位数是109 11. 关于x的一元二次方程x2-2x-4=0的根的情况是() A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 没有实数根 D. 无法确定 12. 一个扇形的圆心角为60°,它所对的弧长为2π

2018年云南省曲靖市中考数学试卷含答案解析版

2018年云南省曲靖市中考数学试卷 一、选择题(共8题,每题4分) 1.(4分)(2018?曲靖)﹣2的绝对值是() A.2 B.﹣2 C.D. 2.(4分)(2018?曲靖)如图所示的支架(一种小零件)的两个台阶的高度和宽度相等,则它的左视图为() A.B.C.D. 3.(4分)(2018?曲靖)下列计算正确的是() A.a2?a=a2B.a6÷a2=a3 C.a2b﹣2ba2=﹣a2b D.(﹣)3=﹣ 4.(4分)(2018?曲靖)截止2018年5月末,中国人民银行公布的数据显示,我国外汇的储备规模约为 3.11×104亿元美元,则 3.11×104亿表示的原数为() A.2311000亿B.31100亿C.3110亿D.311亿 5.(4分)(2018?曲靖)若一个正多边形的内角和为720°,则这个正多边形的每一个内角是() A.60°B.90°C.108° D.120° 6.(4分)(2018?曲靖)下列二次根式中能与2合并的是()A.B.C. D. 7.(4分)(2018?曲靖)如图,在平面直角坐标系中,将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,若反比例函数y=的图象经过点

A的对应点A′,则k的值为() A.6 B.﹣3 C.3 D.6 8.(4分)(2018?曲靖)如图,在正方形ABCD中,连接AC,以点A为圆心,适当长为半径画弧,交AB、AC于点M,N,分别以M,N为圆心,大于MN长的一半为半径画弧,两弧交于点H,连结AH并延长交BC于点E,再分别以A、E 为圆心,以大于AE长的一半为半径画弧,两弧交于点P,Q,作直线PQ,分别交CD,AC,AB于点F,G,L,交CB的延长线于点K,连接GE,下列结论:① ∠LKB=22.5°,②GE∥AB,③tan∠CGF=,④S △CGE :S △CAB =1:4.其中正确的是 () A.①②③B.②③④C.①③④D.①②④ 二、填空题(共6题,每题3分) 9.(3分)(2018?曲靖)如果水位升高2m时,水位的变化记为+2m,那么水位下降3m时,水位的变化情况是. 10.(3分)(2018?曲靖)如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE=°.

中考数学专题练习--应用题

A M 45 ° 30 ° B 北 第4题 中考应用题附参考答案 1.(2010年广西桂林适应训练)某同学在A 、B 两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元. (1)求该同学看中的随身听和书包单价各是多少元? (2)某一天该同学上街,恰好赶上商家促销,超市A 所有商品打八折销售,超市B 全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),该同学只带了400元钱,他能否在这两家超市都可以买下看中的这两样商品?若两家都可以选择,在哪一家购买更省钱? 2.(2010年黑龙江一模)某车间要生产220件产品,做完100件后改进了操作方法,每天多加工10件,最后总共用4天完成了任务.求改进操作方法后,每天生产多少件产品? 设改进操作方法后每天生产x 件产品,则改进前每天生产(10)x -件产品. 3.(2010广东省中考拟)A,B 两地相距18km ,甲工程队要在A ,B 两地间铺设一条输送天然气管道,乙工程队要在A ,B 两地间铺设一条输油管道,已知甲工程队每周比乙工程队少铺设1km ,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙工程队每周各铺设多少管道? 4.(2010年广东省中考拟)如图,是一个实际问题抽象的几何模型,已知A 、B 之间的距离为300m ,求点M 到直线AB 的距离(精确到整数).并能设计一种测量方案? (参考数据:7.13≈,4.12≈)

5.(2010年湖南模拟)某花木园,计划在园中栽96棵桂花树,开工后每天比原计划多栽2棵,?结果提前4天完成任务,问原计划每天栽多少棵桂花树. 6.(2010年厦门湖里模拟)某果品基地用汽车装运A、B、C三种不同品牌的水果到外地销售, 按规定每辆汽车只能装同种水果,且必须装满,其中A、B、C三种水果的重量及利润按下表提供信息: 水果品牌 A B C 每辆汽车载重量(吨)2.2 2.1 2 每吨水果可获利润(百元) 6 8 5 (1)若用7辆汽车装运A、C两种水果共15吨到甲地销售,如何安排汽车装运A、C两种水果? (2)计划用20辆汽车装运A、B、C三种不同水果共42吨到乙地销售(每种水果不少于2车),请你设计一种装运方案,可使果品基地获得最大利润,并求出最大利润. 7.(2010年杭州月考)某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表: A型利润B型利润 甲店200 170 乙店160 150 (1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围; (2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来; (3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型 ,型产产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A B 品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?

2018昆明中考数学卷(word版)

2018年昆明市初中学业水平考试 数学 试题卷 一、填空题(每小题3分,满分18分) 1、在实数-3.0,1中,最大的数是 . 2、共享单车进入昆明市已两年,为市民的低碳出行带来了方便,据报道,昆明市共享单车投放量已达到240000辆,数字240000用科学计数法表示为 . 3,、如图,过直线AB 上一点O 作射线OC ,∠BOC=29°18′,则∠AOC 的度数为 . 4、若13m m + =,则221 m m += . 5、如图,点A 的坐标为(4,2),将点A 绕坐标原点O 旋转90°后,再向左平移1个单位长 度得到点A ′,则过点A A B O (第3题) (第5题) (第6题) 6如图,正六边形ABCDEF 的边长为1,以点A 为圆心, AB 为半径,作扇形ABF ,则图中阴影部分的面积为 (结果保留根号和π) 二、选择题(每小题4分,满分32分) 7、下列几何体的左视图为长方形的是( ) 8、关于x 的一元二次方程20x m -+=有两个不相等的实数根,则实数m 的取值 范围是( ) A 、m <3 B 、m >3 C 、m ≤3 D 、m ≥3 91-的值( ) A 、在1.1和1.2之间 B 、在1.2和1.3之间 C 、在1.3和1.4之间 D 、在1.4和1.5之间

10、下列判断正确的是( ) A 、甲乙两组学生身高的平均数均为1.58,方差分别为2=2.3S 甲,2=1.8S 乙,则甲组学生的身高较整齐 B 、为了了解某县七年级4000名学生的其中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4000 D 、有13名童心出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件 11、在△AOC 中,OB 交AC 于点D ,量角器的摆放如图所示,则∠CDO 的度数为( ) A 、90° B 、95° C 、100° D 、120° 12、下列运算正确的是( ) A 、2 1=93?? - ??? B 、020181- C 、3 2 326(0)a a a a -?=≠ D =13、甲、乙两船从相距300km 的A ,B 两地同时出发相向而行,甲船从A 地顺流航行180km 时与从B 地逆流航行的乙船相遇,水流的速度为6km/h ,若甲、乙两船在静水中的速度均为x km/h ,则求两船在静水中的速度可列方程为( ) A 、 18012066x x =+- B 、180120 66x x =-+ C 、1801206x x =+ D 、180120 6 x x =- 14、如图,点A 在双曲线(0)k y x x =>上,过点A 作AB ⊥X 轴, 垂足为点B ,分别以点O 和点A 为圆心,大于1 2 OA 的长为半径作 弧,两弧相交于点D ,E 两点,作直线DE 交x 轴于点C ,交y 轴于点F (0,2),连接AC ,若AC=1,则K 的值为( ) A 、2 B 、 32 25 C D

(完整版)2018年云南省中考数学试卷及答案.doc

机密★ 2018 年云南省学业水平考试试题 卷数学 一、填空(共 6 小,每小 3 分,分 18 分) 1.(3 分) 1 的是. 2.(3 分)已知点 P(a,b)在反比例函数 y= 的象上, ab= . 3.(3 分)某地主“不忘初心,牢使命”的告会,参加会的人3451 人,将3451 用科学数法表示. 4.(3 分)分解因式: x 2 4= . 5.(3 分)如,已知 AB∥ CD,若= ,= . 6.(3 分)在△ ABC中,AB= ,AC=5,若 BC上的高等于 3, BC 的. 二、(共8 小,每小 4 分,分 32 分 . 每小只有一个正 确) 7.(4 分)函数 y= 的自量 x 的取范() A. x≤ 0 B .x≤1 C. x≥ 0 D .x≥1 8.(4 分)下列形是某几何体的三(其中主也称正,左也称),个几何体是() A.三棱柱 B .三棱 C.柱 D . 9.(4 分)一个五形的内角和() A.540° B .450° C.360° D .180° 10.(4 分)按一定律排列的式:a, a2,a3, a4, a5, 6 个式是() a ,??,第 n A. a n B . a n C.( 1)n+1a n D .( 1)n a n 11.(4 分)下列形既是称形,又是中心称形的是 () A.三角形 B. 菱形 C.角 D .平行四形 12.(4 分)在 Rt△ ABC中,∠ C=90°, AC=1,BC=3,∠ A 的正切() A. 3 B . C. D . 13.(4 分) 2017 年 12 月 8 日,以“ [ 数字工匠 ] 玉汝于成, [ 数字工坊 ] 溪达四海” 主的 2017 一一路数学科技文化?玉溪第 10 届全国三数字化新大(称“全国 3D 大”)决在玉溪幕.某学校了解学生次大的了解程度,在全校 1300 名学生中随机抽取部分学生行了一次卷,并根据收集到的信息行了,制了下 面两幅.下列四个的是()

2018中考数学专题复习应用题经典例题

2018(上)NS数理推演拓展12 专题复习(三)应用题复习 姓名___________班级___________ 1.已知A、B两地相距80km ,甲、乙两人沿同一公路从A地出发到B地,甲骑摩托车,乙骑电动车,图中直线DE,OC分别表示甲、乙离开A地的路程s (km )与时间t (h )的函数关系的图象。根据图象解答下列问题。 (1)甲比乙晚出发几个小时?乙的速度是多少? (2)乙到达终点B地用了多长时间? (3)在乙出发后几小时,两人相遇? 2.某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。根据经验估计,每多种一棵树,平均每棵果树就会少结5个橙子,假设果园多种x棵橙子树。 (1)直接写出平均每棵树结的橙子数y(个)与x之间的关系式。 (2)果园多种多少棵橙子树时,可以使橙子的总产量最大?最大为多少。 3.某宾馆有30个房间供游客住宿,当每个房间的房价为每天120元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于210元.设每个房间的房价增加x元(x为10的正整数倍). (1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;(2)设宾馆一天的利润为w元,求w与x的函数关系式; (3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?

4.把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚度忽略不计). (1)如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方形盒子. ①要使折成的长方形盒子的底面积为484cm2,那么剪掉的正方形的边长为多少? ②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由. (2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方形盒子,若折成的一个长方形盒子的表面积为550cm2,求此时长方形盒子的长、宽、高(只需求出符合要求的一种情况). 5.某商店经销某玩具每个进价60元,每个玩具不低于80元出售,玩具的销售单价m(元/个)与销售数量n(个)之间的函数关系如图. (1)试求表示线段AB的函数的解析式,并求出当销售数量n=20时的单价m的值; (2)写出该店当一次销售n(n>10)个时,所获利润w(元)与n(个)之间的函数关系式:(3)店长小明经过一段时间的销售发现:卖27个赚的钱反而比卖30个赚的钱多,你能用数学知识解释这一现象吗?为了不出现这种现象,在其他条件不变的情况下,店长应把最低价每个80元至少提高到________ 元?

(完整版)2018中考数学应用题专题复习

2017年中考数学应用题专题复习 1、整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%.根据相关信息解决下列问题: (1)降价前,甲乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元? (2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%、对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案? 2、由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元. (1)今年甲型号手机每台售价为多少元? (2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案? (3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a 元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a 应取何值? 3、为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元. (1)甲、乙两个工程队单独完成各需多少天? (2)请你设计一种符合要求的施工方案,并求出所需的工程费用. 4、某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%. (1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾? (2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗? (3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗? 5、我国西南五省市的部分地区发生严重旱灾,为鼓励节约用水,某市自来水公司采取分段收费标准,右图反映的是每月收取水费y (元)与用水量x (吨)之间的函数关系. (1)小明家五月份用水8吨,应交水费______元; (2)按上述分段收费标准,小明家三、四月份分

2018年宜昌市近五届中考数学应用题压轴题22题汇编及答案

2018年宜昌市近五届中考数学应用题(22题)汇编及答案 (本大题一般2小问,共10分)上传校勘:柯老师 【2013/22】 [背景资料] 一棉花种植区的农民研制出采摘棉花的单人便携式采棉机(如图),采摘效率高,能耗低,绿色环保,经测试,一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,购买一台采棉机需900元,雇人采摘棉花,按每采摘1公斤棉花a元的标准支付雇工工钱,雇工每天工作8小时. [问题解决] (1)一个雇工手工采摘棉花,一天能采摘多少公斤? (2)一个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,求a的值; (3)在(2)的前提下,种植棉花的专业户张家和王家均雇人采摘棉花,王家雇佣的人数是张家的2倍,张家雇人手工采摘,王家所雇的人中有的人自带彩棉机采摘,的人手工采摘,两家采摘完毕,采摘的天数刚好一样,张家付给雇工工钱总额为14400元,王家这次采摘棉花的总重量是多少?

【2014/22】文化宜昌?全民阅读”活动中,某中学社团“精一读书社”对全校学生的人数及纸质图书阅读量(单位:本)进行了调查,2012年全校有1000名学生,2013年全校学生人数比2012年增加10%,2014年全校学生人数比2013年增加100人. (1)求2014年全校学生人数; (2)2013年全校学生人均阅读量比2012年多1本,阅读总量比2012年增加1700本。 (注:阅读总量=人均阅读量×人数) ①求2012年全校学生人均阅读量; ②2012年读书社人均阅读量是全校学生人均阅读量的2.5倍,如果2013年、2014年这两年读书社人均阅读量都比前一年增长一个相同的百分数a,2014年全校学生人均阅读量比2012年增加的百分数也是a,那么2014年读书社全部80名成员的阅读总量将达到全校学生阅读总量的25%,求a的值.

2017-2018年昆明市初中学业水平考试数学试卷及答案

昆明市2017-2018年初中学业水平考试 数学试卷分析 (全卷三个大题,共23小题,共6页;满分100分,考试时间120 分钟) 一、选择题(每小题3分,满分24分,在每小题给出的四个选项中,只有一项是正确的) 1、2 1的相反数是( ) A. 2 1 B. 2 1- C. 2 D. 2- 考 点: 相反数.1052629 分 析: 根据相反数的定义,即只有符号不同的两个数互为相反 数,进行求解. 解 答: 解:2 1的相反数是﹣2 1. 故选B . 点 评: 此题考查了相反数的概念.求一个数的相反数,只需在 它的前面加“﹣”号. 2、左下图是由3个完全相同的小正方体组成的立体图形,它的主视图是( )

D C B A 正面 考点: 简单组合体的三视图. 分 析: 根据主视图是从正面看到的识图分析解答. 解 答: 解:从正面看,是第1行有1个正方形,第2行有 2个并排的正方形. 故选B . 点 评: 本题考查了三视图的知识,主视图是从物体的正面 看得到的视图. 3、已知1x 、2x 是一元二次方程0142=+-x x 的两个根,则21x x ?等于( ) A. 4- B. 1- C. 1 D. 4 考 点: 一元二次方程根与系数的关系. 分 析: 根据一元二次方程两根之积与系数关系分析解答. 解 答: 解:由题可知:1,4,1=-==c b a ,∴11 121===?a c x x 故选C . 点 本题考查一元二次方程)0(02≠=++a c bx ax 根与系

评: 数的关系. 4、下列运算正确的是( ) A. 532)(a a = B. 222)(b a b a -=- C. 3553=- D. 3273-=- 考 点: 幂的乘方;完全平方公式;合并同类项;二次根式的加减法; 立方根. 分 析: A 、幂的乘方:mn n m a a =)(; B 、利用完全平方公式展开得到结果,即可做出判断; C 、利用二次根式的化简公式化简,合并得到结果,即可做出判断. D 、利用立方根的定义化简得到结果,即可做出判断; 解 答: 解:A 、632)(a a =,错误; B 、 2222)(b ab a b a +-=- ,错误; C 、52553=-,错误; D 、3273-=-,正确. 故选D 点 评: 此题考查了幂的乘方,完全平方公式,合并同类项,二次根式 的化简,立方根,熟练掌握公式及法则是解本题的关键. 5、如图,在△ABC 中,∠A=50°,∠ABC=70°,BD 平分∠ABC ,则∠BDC 的度数是( ) A. 85° B. 80° D C B A

(完整word版)2019年中考初中数学应用题经典练习题

2019年4月13日初中数学试卷(初三-应用题) 一、综合题(共8题;共85分) 1. ( 10分) (2015?深圳)下表为深圳市居民每月用水收费标准,(单位:元/m3). 用水量单价 x≤22 a 剩余部分a+1.1 (1)某用户用水10立方米,共交水费23元,求a的值; (2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米? 2. ( 10分) 春平中学要为学校科技活动小组提供实验器材,计划购买A型,B型两种型号的放大镜,若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元. (1)求每个A型放大镜和每个B型放大镜各多少元? (2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜? 3. ( 10分) 某商场计划购进、两种型号的手机,已知每部型号手机的进价比每部型号手机的多500元,每部型号手机的售价是2500元,每部型号手机的售价是2100元. (1)若商场用50000元共购进型号手机10部,型号手机20部.求、两种型号的手机每部进价各是多少元? (2)为了满足市场需求,商场决定用不超过7.5万元采购、两种型号的手机共40部,且型号手机的数量不少于型号手机数量的2倍.①该商场有哪几种进货方式? ②该商场选择哪种进货方式,获得的利润最大?

4. ( 10分) 某童装店在服装销售中发现:进货价每件元,销售价每件元的某童装每天可售出件.为了迎接“六一儿童节”,童装店决定采取适当的促销措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价元,那么每天就可多售出件. (1)如果童装店想每天销售这种童装盈利元,同时又要使顾客得到更多的实惠,那么每件童装应降价多少元? (2)每件童装降价多少元时,童装店每天可获得最大利润?最大利润是多少元? 5. ( 10分) 空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米. (1)已知a=20,矩形菜园的一边靠墙,另 三边一共用了100米木栏,且围成的矩形菜 园面积为450平方米. 如图1,求所利用旧墙AD的长; (2)已知0<α<50,且空地足够大,如图 2.请你合理利用旧墙及所给木栏设计一个方 案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值. 6. ( 10分) 某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程. (1)若二号施工队单独施工,完成整个工程需要多少天? (2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?

2018年云南省昆明市中考数学试卷(含答案与解析)

数学试卷 第1页(共38页) 数学试卷 第2页(共38页) 绝密★启用前 昆明市2018年初中学业水平考试 数 学 (本试卷满分120分,考试时间120分钟) 一、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上) 1.在实数-3,0,1中,最大的数是 . 2.共享单车进入昆明市已两年,为市民的低碳出行带来了方便.据报道,昆明市共享单车投放量已达到240 000辆,数字240 000用科学记数法表示为 . 3.如图,过直线AB 上一点O 作射线OC ,2918BOC ∠=?',则AOC ∠的度数为 . 4.若1=3m m + ,则221 m m += . 5.如图,点A 的坐标为()4,2。将点A 绕坐标原点O 旋转90° 后,再向左平移1个单位长度得到点A ',则过点A '的正比例函数的解析式为 . 6.如图,正六边形ABCDEF 的边长为1,以点A 为圆心,AB 的 长为半径,做扇形ABF ,则图中阴影部分的面积为 (结果保留根号和π). 二、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有 一项是符合题目要求的) 7.下列几何体的左视图为长方形的是 ( ) A . B . C . D . 8.关于x 的一元二次方程2 =0x m -+有两个不相等的实数根,则实数m 的取值范 围是 ( ) A .m <3 B .m >3 C .3m ≤ D .3m ≥ 9. .请 1的值 ( ) A .在1.1和1.2之间 B .在1.2和1.3之间 C .在1.3和1.4之间 D .在1.4和1.5之间 10.下列判断正确的是 ( ) A .甲乙两组学生身高的平均数均为1.58,方差分别为2s =2.3甲,2s =1.8乙,则甲组学生 的身高较整齐 B .为了了解某县七年级4 000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4 000 C . 则这30个参赛队决赛成绩的中位数是9.7 D .有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件 11.在△AOC 中,OB 交AC 于点D ,量角器的摆放如图所示,则CDO ∠的度数为 ( ) 毕业学校_____________ 姓名______________ __ 考生号________________ ________________ ___________ -------------在 --------------------此-------------------- 卷-------------------- 上-------------------- 答-------------------- 题-------------------- 无-------------------- 效----------------

相关主题
文本预览
相关文档 最新文档