当前位置:文档之家› 傅里叶分析

傅里叶分析

傅里叶分析
傅里叶分析

傅里叶(Fourier)级数的指数形式与傅里叶变换

傅里叶(Fourier )级数的指数形式与傅里叶变换 专题摘要:根据欧拉(Euler )公式,将傅里叶级数三角表示转化为指数表示,进而得到傅里叶积分定理,在此基础上给出傅里叶变换的定义和数学表达式。 在通信与信息系统、交通信息与控制工程、信号与信息处理等学科中,都需要对各种信号与系统进行分析。通过对描述实际对象数学模型的数学分析、求解,对所得结果给以物理解释、赋予其物理意义,是解决实际问题的关键。这种数学分析方法主要针对确定性信号的时域和频域分析,线性时不变系统的描述以及信号通过线性时不变系统的时域分析与变换域分析。所有这些分析方法都离不开傅里叶变换、拉普拉斯变换和离散时间系统的z 变换。而傅里叶变换的理论基础是傅里叶积分定理。傅里叶积分定理的数学表达式就是傅里叶级数的指数形式。 不但傅里叶变换依赖于傅里叶级数,就是纯数学分支的调和分析也来源于函数的傅里叶级数。因此,傅里叶级数无论在理论研究还是在实际应用中都占有非常重要的地位。我们承认满足狄里克莱(Dirichlet )条件下傅里叶级数的收敛性结果,不去讨论和深究傅里叶展式的唯一性问题。 傅里叶级数的指数形式 一个以T 为周期的函数)(t f ,在]2 ,2[T T 上满足狄里克莱条件:1o

)(t f 连续或只有有限个第一类间断点;2o 只有有限个极值点。那么)(t f 在]2 ,2[T T - 上就可以展成傅里叶级数。在连续点处 ∑∞ =++=1 )sin cos (2)(n n n t n b t n a a t f ωω, (1) 其中 T πω2= , ),2,1,0(,cos )(2 22Λ==?-n dt t n t f T a T T n ω, (2) ),3,2,1(,sin )(2 22 Λ==?-n dt t n t f T b T T n ω, (3) 根据欧拉(Euler )公式:θθθsin cos j e j +=,(1)式化为 ∑∞=--?? ????-+++=10222)(n t jn t jn n t jn t jn n j e e b e e a a t f ωωωω ∑∞=-?? ? ???++-+=10222n t jn n n t jn n n e jb a e jb a a ωω, (4) 若令 dt t f T c T T ?-=22 0)(1 Λ,3,2,1,)(1 ]sin )[cos (1 sin )(1cos )(1222 2222 22==-=-=-=????-----n dt e t f T dt t n j t n t f T dt t n t f T j dt t n t f T jb a c T T t jn T T T T T T n n n ωωωωω Λ,3,2,1,)(1 22 ==?--n dt e t f T c T T t jn n ω 综合n n c c c -,,0,可合并成一个式子 Λ,2,1,0,)(1 22 ±±==?--n dt e t f T c T T t jn n ω, (5)

傅里叶分析报告教程(完整版)

傅里叶分析之掐死教程(完整版)更新于2014.06.06 Heinrich · 6 个月前 作者:韩昊知乎:Heinrich 微博:@花生油工人知乎专栏:与时间无关的故事 谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张晶泊老师。 转载的同学请保留上面这句话,谢谢。如果还能保留文章来源就更感激不尽了。 我保证这篇文章和你以前看过的所有文章都不同,这是12年还在果壳的时候写的,但是当时没有来得及写完就出国了……于是拖了两年,嗯,我是拖延症患者…… 这篇文章的核心思想就是: 要让读者在不看任何数学公式的情况下理解傅里叶分析。 傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生

上来就懵圈并从此对它深恶痛绝。老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。 ——————————————以上是定场诗—————————————— 下面进入正题: 抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。这样的例子太多了,也许几年后你都没有再打开这个页面。无论如何,耐下心,读下去。这篇文章要比读课本要轻松、开心得多…… p.s.本文无论是cos还是sin,都统一用“正弦波”(Sine Wave)一词来代表简谐波。 一、什么是频域 从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。这种以时间作为参照来观察动态世界的方法我们称其为时域分析。而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。 先举一个公式上并非很恰当,但意义上再贴切不过的例子: 在你的理解中,一段音乐是什么呢?

傅里叶级数及其应用.

毕业论文 题目:傅里叶级数及其应用作者:姜广辉 指导教师:李博 职称:讲师 院系:理学院数学系 专业:数学与应用数学 班级:10级1班 日期: 2014年5月

傅里叶级数及其应用 摘要:傅里叶级数是数学分析中的一个重要概念,具有较好的几何和代数性质,伴随着科技的进步与发展,涉及了许多数学命题的讨论和应用,傅里叶级数的相关知识已经成为从事科学研究和工程设计等科技人员必备的数学基础.通过对傅里叶、拉格朗日、狄利克雷、黎曼等人在傅里叶级数方面的贡献,介绍了傅里叶级数起源和发展历程.同时文章以在图案设计和铁路客运量预测上的应用说明了傅里叶级数的价值.在图案设计设计方面,运用MATLAB软件,编写傅里叶级数的程序语言,通过自定义函数、编写画图函数程序、对图形多余部分处理、图形线条加粗等步骤,进而得到傅里叶级数的图形.通过对最基本的傅里叶级数的图形的组合、排列可以构成丰富的图案.在铁路客运量预测方面,基于傅里叶级数预测模型,以我国2004—2009年铁路客运量为数据基础,通过将时间序列划分为趋势性和季节性部分,分别采用最小二乘法和傅里叶级数预测法对两者进行拟合,应用MATLAB软件,求出预测模型,并进行预测.通过对预测结果的误差分析,表明:采用傅里叶级数预测法预测我国铁路客运量的效果较好.因此傅里叶级数在一定程度上受到了很多数学家的欢迎. 关键词:傅里叶级数;收敛性;MATLAB软件;图案设计;预测模型

Fourier series and its applications Abstract:Fourier series is a mathematical analysis of an important concept,and has good geometry and algebraic properties,along with the progress and development of technology,involving a lot of discussion and application of mathematical propositions,Fourier series of relevant knowledge has become a mathematical foundation for scientific research and engineering design and other technical personnel necessary. Through Fourier,Lagrange,Dirichlet, Riemann,who contribute in terms of Fourier series,Fourier series introduces the origin and development process,while the article in the graphic design and rail application passenger traffic forecast illustrates the value of the Fourier series. In the design of graphic design,the use of MATLAB software program written in the language of Fourier series,via a custom function,the preparation process of drawing functions,the excess part of the graphics processing,graphics,bold lines and other steps,then get the Fourier series pattern by the combination of the basic pattern of the Fourier series,the arrangement may constitute a rich patterns. Railway passenger traffic forecast,prediction model based on Fourier series to the railway passenger traffic volume of 2004-2009 data base,by the time series into trend and seasonal part,respectively,using the least squares method and fourier Fourier series prediction method for both fitting using MATLAB software,find the prediction model and predict the outcome of the prediction error by analysis showed that:Fourier series prediction method to predict the effect of China's railway passenger volume better. So to some extent,the Fourier series has been welcomed by many mathematicians. Keywords:Fourier series;convergence;MATLAB software;graphic design;prediction model

信号与系统matlab实验傅里叶分析及应用报告答案

实验二傅里叶分析及应用 姓名学号班级 一、实验目的 (一)掌握使用Matlab进行周期信号傅里叶级数展开和频谱分析 1、学会使用Matlab分析傅里叶级数展开,深入理解傅里叶级数的物理含义 2、学会使用Matlab分析周期信号的频谱特性 (二)掌握使用Matlab求解信号的傅里叶变换并分析傅里叶变换的性质 1、学会运用Matlab求连续时间信号的傅里叶变换 2、学会运用Matlab求连续时间信号的频谱图 3、学会运用Matlab分析连续时间信号的傅里叶变换的性质 (三)掌握使用Matlab完成信号抽样并验证抽样定理 1、学会运用MATLAB完成信号抽样以及对抽样信号的频谱进行分析 2、学会运用MATLAB改变抽样时间间隔,观察抽样后信号的频谱变化 3、学会运用MATLAB对抽样后的信号进行重建 二、实验条件 需要一台PC机和一定的matlab编程能力 三、实验内容 2、分别利用Matlab符号运算求解法和数值计算法求下图所示信号的FT,并画出其频谱图(包括幅度谱和相位谱)[注:图中时间单位为:毫秒(ms)]。

符号运算法: Ft= sym('t*(Heaviside(t+2)-Heaviside(t+1))+Heaviside(t+1)-Heaviside(t-1)+(-t)*(Heavi side(t-1)-Heaviside(t-2))'); Fw = fourier(Ft); ezplot(abs(Fw)),grid on; phase = atan(imag(Fw)/real(Fw)); ezplot(phase);grid on; title('|F|'); title('phase'); 3、试用Matlab 命令求ω ωωj 54 -j 310)F(j ++= 的傅里叶反变换,并绘出其时域信号图。

MATLAB实验二傅里叶分析及应用

M A T L A B实验二傅里叶 分析及应用 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

实验二傅里叶分析及应用 一、实验目的 (一)掌握使用Matlab进行周期信号傅里叶级数展开和频谱分析 1、学会使用Matlab分析傅里叶级数展开,深入理解傅里叶级数的物理含义 2、学会使用Matlab分析周期信号的频谱特性 (二)掌握使用Matlab求解信号的傅里叶变换并分析傅里叶变换的性质 1、学会运用Matlab求连续时间信号的傅里叶变换 2、学会运用Matlab求连续时间信号的频谱图 3、学会运用Matlab分析连续时间信号的傅里叶变换的性质 (三)掌握使用Matlab完成信号抽样并验证抽样定理 1、学会运用MATLAB完成信号抽样以及对抽样信号的频谱进行分析 2、学会运用MATLAB改变抽样时间间隔,观察抽样后信号的频谱变化 3、学会运用MATLAB对抽样后的信号进行重建 二、实验条件 Win7系统,MATLAB R2015a 三、实验内容 1、分别利用Matlab符号运算求解法和数值计算法求下图所示信号的FT,并画出其频谱图(包括幅度谱和相位谱)[注:图中时间单位为:毫秒(ms)]。

符号运算法

t (20 π ex p(-3 t) heaviside(t) - 8 π ex p(-5 t) heaviside(t))/(2 π) 数值运算法 2、试用Matlab 命令求ω ωωj 54 -j 310)F(j ++=的傅里叶反变换,并绘出其时域信 号图。 两个单边指数脉冲的叠加 3、已知门函数自身卷积为三角波信号,试用Matlab 命令验证FT 的时域卷积定理 。

傅里叶变换及应用

傅里叶变换在MATLZB里的应用 摘要:在现代数学中,傅里叶变换是一种非常重要的变换,且在数字信号处理中有着广泛的应用。本文首先介绍了傅里叶变换的基本概念、性质及发展情况;其次,详细介绍了分离变数法及积分变换法在解数学物理方程中的应用。傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号,再利用傅立叶反变换将这些频域信号转换成时域信号。应用MATLAB实现信号的谱分析和对信号消噪。 关键词:傅里叶变换;MA TLAB软件;信号消噪 Abstract: In modern mathematics,Fourier transform is a transform is very important ,And has been widely used in digital signal processing.This paper first introduces the basic concepts, properties and development situation of Fourier transform ;Secondly, introduces in detail the method of separation of variables and integral transform method in solving equations in Mathematical Physics.Fourier transformation makes the original time domain signal whose analysis is difficult easy, by transforming it into frequency domain signal that can be transformed into time domain signal by inverse transformation of Fourier. Using Mat lab realizes signal spectral analysis and signal denoising. Key word: Fourier transformation, software of mat lab ,signal denoising 1、傅里叶变换的提出及发展 在自然科学和工程技术中为了把较复杂的运算转化为较简单的运算,人们常常采用所谓变换的方法来达到目的"例如在初等数学中,数量的乘积和商可以通过对数变换化为较简单的加法和减法运算。在工程数学里积分变换能够将分析运算(如微分,积分)转化为代数运算,正是积分变换这一特性,使得它在微分方程和其它方程的求解中成为重要方法之一。 1804年,法国科学家J-.B.-J.傅里叶由于当时工业上处理金属的需要,开始从事热流动的研究"他在题为<<热的解析理论>>一文中,发展了热流动方程,并且指出如何求解"在求解过程中,他提出了任意周期函数都可以用三角级数来表示的想法。他的这种

傅里叶变换和拉普拉斯变换的性质及应用

1.前言 1.1背景 利用变换可简化运算,比如对数变换,极坐标变换等。 类似的,变换也存在于工程,技术领域,它就是积分变换。 积分变换的使用,可以使求解微分方程的过程得到简化, 比如乘积可以转化为卷积。什么是积分变换呢?即为利用 含参变量积分,把一个属于A函数类的函数转化属于B函 数类的一个函数。傅里叶变换和拉普拉斯变换是两种重要 积分变换。分析信号的一种方法是傅立叶变换,傅里叶变换能 够分析信号的成分,也能够利用成分合成信号。可以当做信号 的成分的波形有很多,例如锯齿波,正弦波,方波等等。傅立 叶变换是利用正弦波来作为信号的成分。 拉普拉斯变换最早由法国数学家天文学家 Pierre Simon Laplace (拉普拉斯)(1749-1827)在他的与概率论相关科学研究 中引入,在他的一些基本的关于拉普拉斯变换的结果写在 他的著名作品《概率分析理论》之中。即使在19世纪初, 拉普拉斯变换已经发现,但是关于拉普拉斯变换的相关研 究却一直没什么太大进展,直至一个英国数学家,物理学 家,同时也是一位电气工程师的Oliver Heaviside奥利 弗·亥维赛(1850-1925)在电学相关问题之中引入了算 子运算,而且得到了不少方法与结果,对于解决现实问题 很有好处,这才引起了数学家对算子理论的严格化的兴 趣。之后才创立了现代算子理论。算子理论最初的理论依 据就是拉普拉斯变换的相关理论,拉普拉斯变换相关理论 的继续发展也是得益于算理理论的更进一步发展。这篇文 章就是针对傅里叶变换和拉普拉斯变换的相关定义,相关 性质,以及相关应用做一下简要讨论,并且分析傅里叶变 换和拉普拉斯变换的区别与联系。 1.2预备知识

快速傅里叶变换原理及其应用(快速入门)

快速傅里叶变换的原理及其应用 摘要 快速傅氏变换(FFT),是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。傅里叶变换的理论与方法在“数理方程”、“线性系统分析”、“信号处理、仿真”等很多学科领域都有着广泛应用,由于计算机只能处理有限长度的离散的序列,所以真正在计算机上运算的是一种离散傅里叶变换. 虽然傅里叶运算在各方面计算中有着重要的作用,但是它的计算过于复杂,大量的计算对于系统的运算负担过于庞大,使得一些对于耗电量少,运算速度慢的系统对其敬而远之,然而,快速傅里叶变换的产生,使得傅里叶变换大为简化,在不牺牲耗电量的条件下提高了系统的运算速度,增强了系统的综合能力,提高了运算速度,因此快速傅里叶变换在生产和生活中都有着非常重要的作用,对于学习掌握都有着非常大的意义。 关键词快速傅氏变换;快速算法;简化;广泛应用

Abstract Fast Fourier Transform (FFT), is a discrete fast Fourier transform algorithm, which is based on the Discrete Fourier Transform of odd and even, false, false, and other characteristics of the Discrete Fourier Transform algorithms improvements obtained. Its Fourier transform theory has not found a new, but in the computer system or the application of digital systems Discrete Fourier Transform can be said to be a big step into. Fourier transform theory and methods in the "mathematical equation" and "linear systems analysis" and "signal processing, simulation," and many other areas have a wide range of applications, as the computer can only handle a limited length of the sequence of discrete, so true On the computer's operation is a discrete Fourier transform. Fourier Although all aspects of computing in the calculation has an important role, but its calculation was too complicated, a lot of computing system for calculating the burden is too large for some Less power consumption, the slow speed of operation of its system at arm's length, however, have the fast Fourier transform, Fourier transform greatly simplifying the making, not in power at the expense of the conditions to increase the speed of computing systems, and enhance the system The comprehensive ability to improve the speed of operation, the Fast Fourier Transform in the production and life have a very important role in learning to master all have great significance. Key words Fast Fourier Transform; fast algorithm; simplified; widely used

傅里叶级数通俗解析

傅里叶级数 本文意在阐述傅里叶级数是什么,如何通过数学推导得出,以及傅里叶级数代表的物理含义。 1.完备正交函数集 要讨论傅里叶级数首先得讨论正交函数集。如果n个函数 φ1t,φ2t,…,φn t构成一个函数集,若这些函数在区间t1,t2上满足 φi tφj t t2 t1dt= 0 ,i≠j K i ,i=j(1) 如果是复数集,那么正交条件是 φi tφj?t t2 t1dt= 0 ,i≠j K i ,i=j(2) φj?t为函数φj t的共轭复函数。 有这个定义,我们可以证明出一些函数集是完备正交函数集。比如三角函数集和复指数函数集在一个周期内是完备正交函数集。 先证明三角函数集: 设φn t=cos nωt,φm t=cos mωt,把φn t,φm t代入(1)得 φi tφj t t0+T t0dt=cos nωt cos mωt dt t0+T t0 当n≠m时 =1 2 cos n+mωt+cos n?mωt t0+T t0 dt =1 2sin n+mωt (n+m)ω +sin n?mωt (n?m)ωt t0+T =0 (n,m=1,2,3,…,n≠m) 当n=m时 =1 2 cos2nωt t0+T t0 dt =T 2 再证两个都是正弦的情况 设φn t=sin nωt,φm t=sin mωt,把φn t,φm t代入(1)得 φi tφj t t0+T t0dt=sin nωt sin mωt dt t0+T t0 当n≠m时

=1 2 cos n+mωt?cos n?mωt t0+T t0 dt =1 2sin n+mωt (n+m)ω ?sin n?mωt (n?m)ωt t0+T =0 (n,m=1,2,3,…,n≠m) 当n=m时 =1 2 cos2nωt t0+T t0 dt =T 2 最后证明两个是不同名的三角函数的情况 设φn t=cos nωt,φm t=sin mωt,把φn t,φm t代入(1)得 φi tφj t t0+T t0dt=cos nωt sin mωt dt t0+T t0 =1 2 sin n+mωt?sin n?mωt t0+T t0 dt =1 2 ?cos n+mωt (n+m)ω +cos n?mωt (n?m)ωt t0+T =0 (n,m为任意整数) 因为两个三角函数相乘只有以上三种情况:两个皆为余弦函数相乘;两个皆为正弦函数相乘;一个为正弦函数,另一个为余弦函数相乘;三种情况皆满足正交函数集的定义,所以三角函数集为正交函数集。至于三角函数集的完备性可以从n,m的取值为任意整数可以得出,三角函数集是完备正交函数集。证毕。 由于三角函数集是完备正交函数集,而根据欧拉公式,我们容易联想到复指数函数集是否也是完备正交函数集呢。 接着是复指数函数集的证明 设φn t=?jnωt,φm t=?jmωt,则φj?t=??jmωt把φn t,φj?t代入(2)得 φi tφj?t t0+T t0dt=?jnωt t0+T t0 ??jmωt dt =?j(n?m)ωt t0+T t0 dt 当n≠m时,根据欧拉公式 =cos n?mωt+j sin?(n?m)ωt t0+T t0 dt =sin n?mωt n?mω?j cos?(n?m)ωt n?mωt t0+T =0 (n,m=1,2,3,…,n≠m)

傅里叶分析应用于热传导问题

傅里叶分析应用于热传导问题 (物理系 郭素梅 指导教师 陆立柱) 〔摘要〕 傅里叶分析是一种重要的数学工具,本文综述了用傅里叶分析解决细杆的热传导问题,并进行了讨论。傅里叶分析包括傅里叶级数和傅里叶积分,用傅里叶级数法解决有界细杆的热传导问题,用含参数的傅里叶变换法解决无界细杆的热传导问题,比其它方法更系统,体现出一种数学与物理对应的美感。 〔关键词〕 傅里叶级数 傅里叶积分 傅里叶变换 细杆的热传导问题 引言 1822年,傅里叶在研究热传导问题时,创造了傅里叶分析,随着时代的进步,这一数学工具被广泛地应用于信号分析、匹配滤波、图象处理等方面,掌握这种具有广泛用途和发展前景的工具是十分必要的.热传导是历来研究的热点,尤其是随着计算机电子设备的高集成化发展,机器内发热部件和集成电路元件的发热量随之增加,传统的强制冷方式已不能达到理想效果,因此,热传导设计成了重要问题。万变不离其宗,为了更好地掌握傅里叶分析,为了更好地掌握热传导问题,本文就一维热传导问题对傅里叶分析作了全面详尽的论述。 1. 傅里叶分析 1.1 傅里叶级数 傅里叶级数在应用上有以下优点[1] :能表示不连续的函数、周期函数,能对任意函数作调 和分析。 若函数()f x 以2l 为周期,即 (2)()f x l f x +=[2] (1.1.1) 则可取三角函数族 1, cos x l π,cos 2x l π, … cos n x l π ,… sin x l π,sin 2x l π, … sin n x l π , … (1.1.2) 作为基本函数族,将()f x 展开为级数 [3] ()f x =0a + 1 (n n a ∞ =∑cos n x l π+n b cos n x l π) (1.1.3) 可以证明,函数族(1.1.2)是正交完备的[4] 。根据三角函数族的正交性,可求得(1.1.3)中的展 开系数为

傅里叶分析及应用

实验二傅里叶分析及应用 一、实验目的 (一)掌握使用Matlab进行周期信号傅里叶级数展开和频谱分析 1、学会使用Matlab分析傅里叶级数展开,深入理解傅里叶级数的物理含义 2、学会使用Matlab分析周期信号的频谱特性 (二)掌握使用Matlab求解信号的傅里叶变换并分析傅里叶变换的性质 1、学会运用Matlab求连续时间信号的傅里叶变换 2、学会运用Matlab求连续时间信号的频谱图 3、学会运用Matlab分析连续时间信号的傅里叶变换的性质 (三)掌握使用Matlab完成信号抽样并验证抽样定理 1、学会运用MATLAB完成信号抽样以及对抽样信号的频谱进行分析 2、学会运用MATLAB改变抽样时间间隔,观察抽样后信号的频谱变化 3、学会运用MATLAB对抽样后的信号进行重建 二、实验条件 安装winXP系统的电脑一台、matlab 7.0软件 三、实验内容 1、已知周期三角信号如下图所示[注:图中时间单位为:毫秒(ms)]: (1)试求出该信号的傅里叶级数[自己求或参见课本P112或P394],利用Matlab编程实现其各次谐波[如1、3、5、13、49]的叠加,并验证其收敛性;

解: 命令文件: clear all;close all;clc; t=-10:0.01:10; omega=pi; y=abs(sawtooth(pi*0.5*t,0.5)); plot(t,y),grid on; axis([-10,10,0,3]); n_max=[1,3,5,13,49]; N=length(n_max); for k=1:N n=1:2:n_max(k); b=4./((pi*n).^2); x=b*cos(omega*n'*t); figure; plot(t,y); hold on; x=x+1/2; plot(t,x); hold off; axis([-10,10,0,3]); title(['最大谐波数=',num2str(n_max(k))]); end 图像:

傅里叶级数的三角形式和傅里叶级数的指数形式

周期信号的傅里叶级数分析 连续时间LTI 系统的时域分析: 以冲激函数为基本信号 系统零状态响应为输入信号与系统冲激响应之卷积 傅立叶分析 以正弦函数或复指数函数作为基本信号 系统零状态响应可表示为一组不同频率的正弦函数或复指数函数信号响应的加权和或积分; 周期信号: 定义在区间 (,)-∞∞ ,每隔一定时间 T ,按相同 规律重复变化的信号,如图所示 。它可表示为 f (t )=f ( t +m T ) 其中 m 为正整数, T 称为信号的周期,周期的倒数称为频率。 t ()t f 1 1 -T 2 /T 0 周期信号的特点: (1) 它是一个无穷无尽变化的信号,从理论上也是无始无终的,时 间范围为(,)-∞∞ (2) 如果将周期信号第一个周期内的函数写成 ,则周期信 号 ()f t 可以写成

0()() n f t f t nT ∞ =-∞ = -∑ (3)周期信号在任意一个周期内的积分保持不变,即有 ()()()a T b T T a b f t dt f t dt f t dt ++= =? ? ? 1. 三角形式的傅立叶级数 周期信号 f t () ,周期为1T ,角频率 11122T f π πω= = 该信号可以展开为下式三角形式的傅立叶级数。 []∑∞ =++ =++++++++=1 1 1 011121211110)sin()cos(...)sin()cos(... )2sin()2cos()sin()cos()(n n n n n t n b t n a a t n b t n a t b t a t b t a a t f ωωωωωωωω 式中各正、余弦函数的系数 n n b a , 称为傅立叶系数,函数通过它可以完全表示。 傅立叶系数公式如下

对傅里叶分析的新颖理解

这篇文章的核心思想就是:要让读者在不看任何数学公式的情况下理解傅里叶分析。 傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。 一、嘛叫频域 关键词:从侧面看 从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。这种以时间作为参照来观察动态世界的方法我们称其为时域分析。而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。 先举一个公式上并非很恰当,但意义上再贴切不过的例子:在你的理解中,一段音乐是什么呢? 这是我们对音乐最普遍的理解,一个随着时间变化的震动。但我相信对于乐器小能手们来说,音乐更直观的理解是这样的: 上图是音乐在时域的样子,而下图则是音乐在频域的样子。所以频域这一概念对大家都从不陌生,只是从来没意识到而已。 现在我们可以回过头来重新看看一开始那句痴人说梦般的话:世界是永恒的。 将以上两图简化: 时域: 频域: 在时域,我们观察到钢琴的琴弦一会上一会下的摆动,就如同一支股票的走势;而在频域,只有那一个永恒的音符。 你眼中看似落叶纷飞变化无常的世界,实际只是躺在上帝怀中一份早已谱好的乐章。

傅里叶同学告诉我们,任何周期函数,都可以看作是不同振幅,不同相位正/余弦波的叠加。在第一个例子里我们可以理解为,利用对不同琴键不同力度,不同时间点的敲击,可以组合出任何一首乐曲。 而贯穿时域与频域的方法之一,就是传中说的傅里叶分析。傅里叶分析可分为傅里叶级数(Fourier Serie)和傅里叶变换(Fourier Transformation),我们从简单的开始谈起。 二、傅里叶级数(Fourier Series) 如果说能用余弦曲线波叠加出一个带90度角的矩形波来,你会相信吗?但是看看下图: 第一幅图是一个郁闷的余弦波cos(x) 第二幅图是2个卖萌的余弦波的叠加cos(x)+a cos(3x) 第三幅图是4个发春的余弦波的叠加 第四幅图是10个便秘的余弦波的叠加 随着余弦波数量逐渐的增长,他们最终会叠加成一个标准的矩形,大家从中体会到了什么道理? 随着叠加的递增,所有余弦波中上升的部分逐渐让原本缓慢增加的曲线不断变陡,而所有正弦波中下降的部分又抵消了上升到最高处时继续上升的部分使其变为水平线。一个矩形就这么叠加而成了。但是要多少个余弦波叠加起来才能形成一个标准90度角的矩形波呢?不幸的告诉大家,答案是无穷多个。 不仅仅是矩形,你能想到的任何波形都是可以如此方法用正/余弦波叠加起来的。 这是没有接触过傅里叶分析的人在直觉上的第一个难点,但是一旦接受了这样的设定,游戏就开始有意思起来了。 还是上图的余弦波累加成矩形波,我们换一个角度来看看:

傅里叶分析应用于热传导问题

傅里叶分析应用于热传导问题 (物理系郭素梅指导教师陆立柱) 〔摘要〕傅里叶分析是一种重要的数学工具,本文综述了用傅里叶分析解决细杆的热传导问题,并进行了讨论。傅里叶分析包括傅里叶级数和傅里叶积分,用傅里叶级数法解决有界细杆的热传导问题,用含参数的傅里叶变换法解决无界细杆的热传导问题,比其它方法更系统,体现出一种数学与物理对应的美感。 〔关键词〕傅里叶级数傅里叶积分傅里叶变换细杆的热传导问题 引言 1822年,傅里叶在研究热传导问题时,创造了傅里叶分析,随着时代的进步,这一数学工具被广泛地应用于信号分析、匹配滤波、图象处理等方面,掌握这种具有广泛用途和发展前景的工具是十分必要的.热传导是历来研究的热点,尤其是随着计算机电子设备的高集成化发展,机器内发热部件和集成电路元件的发热量随之增加,传统的强制冷方式已不能达到理想效果,因此,热传导设计成了重要问题。万变不离其宗,为了更好地掌握傅里叶分析,为了更好地掌握热传导问题,本文就一维热传导问题对傅里叶分析作了全面详尽的论述。 1.傅里叶分析 1.1 傅里叶级数 傅里叶级数在应用上有以下优点[1]:能表示不连续的函数、周期函数,能对任意函数作调 和分析。 若函数() f x以2l为周期,即 +=[2] (2)() f x l f x (1.1.1)

则可取三角函数族 1, cos x l π,cos 2x l π, … cos n x l π ,… sin x l π,sin 2x l π, (i) n x l π , … (1.1.2) 作为基本函数族,将()f x 展开为级数[3] ()f x =0 a +1 (n n a ∞ =∑cos n x l π+ n b cos n x l π) (1.1.3) 可以证明,函数族(1.1.2)是正交完备的[4]。根据三角函数族的正交性,可求得(1.1.3)中的展 开系数为 1()cos 1()sin l n l n l n l n a f d l l n b f d l l πξξξδπξξξ--?=??? ?=?? ?? (1.1.4) 其中 2(0)1 (0) n n n δ?=?=? ≠?? (1.1.3)称为周期函数()f x 的傅里叶级数展开式,其中的展开系数 (1.1.4)称为傅里叶系数。关于傅里叶级数的收敛性问题[2],有Dirichlet 定理[4]。 若周期函数是奇函数,则由傅里叶系数计算公式(1.1.4)可见,0a 及诸k a 均等于零,展开式(1.1.3)为 () f x = 1 sin n n n x b l π∞ =∑,

利用Excel进行FFT和Fourier分析的基本步骤

利用Excel进行FFT和Fourier分析的基本步骤 实例:杭州市2000人口分布密度[根据2000年人口普查的街道数据经环带(rings)平均计算得到的结果,数据由冯健博士处理]。下面的变换实质是一种空间自相关的分析过程。 第一步,录入数据 在Excel中录入数据不赘述(见表1)。 表1 原始数据序列表2 补充后的数据序列 第二步,补充数据 由于Fourier变换(FT)一般是借助快速Fourier变换(Fast Fourier Transformation, FFT)算法,而这种算法的技术过程涉及到对称处理,故数据序列的长度必须是2N(N=1,2,3,…,)。如果数据序列长度不是2N,就必须对数据进行补充或者裁减。现在数据长度是26,介于24=16到25=32之间,而26到32更近一些,如果裁减数据,就会损失许多信息。因此,采用补充数据的方式。 补充的方法非常简单,在数据序列后面加0,直到序列长度为32=25为止(表2)。当然,延续到64=26也可以,总之必须是2的整数倍。不过,补充的“虚拟数据”越多,变换结果的误差也就越大。

第三步,Fourier变换的选项设置 沿着工具(Tools)→数据分析(Data Analysis)的路径打开数据分析复选框(图1)。 图1 数据分析(Data Analysis)的路径 在数据分析选项框中选择傅立叶分析(Fourier Analysis)(图2)。 图2 数据分析(Data Analysis) 在Fourier分析对话框中进行如下设置:在输入区域中输入数据序列的单元格范围“$B$1:$B$33”;选中“标志位于第一行(L)”;将输出区域设为“$C$2”或者“$C$2:$C$33”(图3a)。 a

短时傅里叶变换及其谱图分析

西南交通大学峨眉校区 (作业小论文) 工程测试技术课程设计 短时傅里叶变换及其谱图分 姓名:xxxx 学号:2wwwww 班级:wwww 专业:工程机械 2013.03.20

短时傅里叶变换及其谱图分析 摘要:本文讨论了有噪信号的短时傅里叶变换STFT及其谱围.分析和仿真结果表明,受 白噪声污染的信号的STFT可以无偏估计原信号的STFT,而其谱图可以对愿信号的谱图作有偏 估计,估计方差是有限的,且是时间和频率的函数.在短窗的情况下,求得了该方差上限的 近似表示. 关键词:短时傅里叶变换谱图噪声污染信号估计 1.前言 信号的短时傅里叶变换STFT是最早提出的一种时。频二维表示方法,它采用加窗的复正 弦作为基函数,也称为加窗傅里叶变换。由于它采用单一的分析窗处理所有频率分量,在时- 频平面内所有点上的分辨率是相同的,因而适合于准平稳信号的处理。STFT 简单易实现,许 多联合时.频分析的应用都是由它开始的。尽管STFT按定义属于线性变换,但在各种实际应 用中常采用它的能谱分布表示方法,这就是基于短时傅里叶变换的谱图Spectrogram)表示。 谱图定义为STFT的模平方,它是二次型时.频分布,尽管不满足时一频边缘条件,但可以认为 是信号能量在时.频平面上的分布。谱图已经在信号检测,语音处理等方面得到了广泛应用 [1Ⅱ2】。 谱图具有非线性性质,对于多分量信号将产生类似于Wigner分布中的交叉项干扰,从而 引入了模糊,影响信号分析结果。在利用谱图对信号的谱估计中,加性噪声的影响使信号具有 了多分量特性.可能使得估计产生较大偏差。本文就确定性信号受自噪声污染后的STFT及其 谱图的最小方差估计问题进行了分析。文中第二部分做了理论推导,求得了有噪信号的sTFT 及其谱图的均值和方差,第三部分对短窗的情况作了近似分析,最后给出了一例简单的仿真结 果。 2.傅立叶变换的提出

相关主题
文本预览
相关文档 最新文档