当前位置:文档之家› 燃料电池原理及习题解答

燃料电池原理及习题解答

燃料电池原理及习题解答
燃料电池原理及习题解答

燃料电池原理及习题解答

在中学阶段,掌握燃料电池的工作原理和电极反应式的书写是十分重要的。所有的燃料电池的工作原理都是一样的,其电极反应式的书写也同样是有规律可循的。书写燃料电池电极反应式一般分为三步:第一步,先写出燃料电池的总反应方程式;第二步,再写出燃料电池的正极反应式;第三步,在电子守恒的基础上用燃料电池的总反应式减去正极反应式即得到负极反应式。下面对书写燃料电池电极反应式“三步法”具体作一下解释。

1、燃料电池总反应方程式的书写

因为燃料电池发生电化学反应的最终产物与燃料燃烧的产物相同,可根据燃料燃烧反应写出燃料电池的总反应方程式,但要注意燃料的种类。若是氢氧燃料电池,其电池总反应方程式不随电解质的状态和电解质溶液的酸碱性变化而变化,即2H2+O2=2H2O。若燃料是含碳元素的可燃物,其电池总反应方程式就与电解质的状态和电解质溶液的酸碱性有关,如甲烷燃料电池在酸性电解质中生成CO2和H2O,即CH4+2O2=CO2+2H2O;在碱性电解质中生成CO32-离子和H2O,即CH4+2OH-+2O2=CO32-+3H2O。

2、燃料电池正极反应式的书写

因为燃料电池正极反应物一律是氧气,正极都是氧化剂氧气得到电子的还原反应,所以可先写出正极反应式,正极反应的本质都是O2得电子生成O2-离子,故正极反应式的基础都是O2+4e-=2O2-。正极产生O2-离子的存在形式与燃料电池的电解质的状态和电解质溶液的酸碱性有着密切的关系。这是非常重要的一步。现将与电解质有关的五种情况归纳如下。

⑴电解质为酸性电解质溶液(如稀硫酸)

在酸性环境中,O2-离子不能单独存在,可供O2-离子结合的微粒有H+离子和H2O,O2-离子优先结合H+离子生成H2O。这样,在酸性电解质溶液中,正极反应式为O2+4H++4e-=2H2O。

⑵电解质为中性或碱性电解质溶液(如氯化钠溶液或氢氧化钠溶液)

在中性或碱性环境中,O2-离子也不能单独存在,O2-离子只能结合H2O生成OH-离子,故在中性或碱性电解质溶液中,正极反应式为O2+2H2O +4e-=4OH-。

⑶电解质为熔融的碳酸盐(如LiCO3和Na2CO3熔融盐混和物)

在熔融的碳酸盐环境中,O2-离子也不能单独存在,O2-离子可结合CO2生成CO32-离子,则其正极反应式为O2+2CO2 +4e-=2CO32-。

⑷电解质为固体电解质(如固体氧化锆—氧化钇)

该固体电解质在高温下可允许O2-离子在其间通过,故其正极反应式应为O2+4e-=2O2-。

综上所述,燃料电池正极反应式本质都是O2+4e-=2O2-,在不同电解质环境中,其正极反应式的书写形式有所不同。因此在书写正极反应式时,要特别注意所给电解质的状态和电解质溶液的酸碱性。

3、燃料电池负极反应式的书写

燃料电池负极反应物种类比较繁多,可为氢气、水煤气、甲烷、丁烷、甲醇、乙醇等可燃性物质。不同的可燃物有不同的书写方式,要想先写出负极反应式相当困难。一般燃料电池的负极反应式都是采用间接方法书写,即按上述要求先正确写出燃料电池的总反应式和正极反应式,然后在电子守恒的基础上用总反应式减去正极反应式即得负极反应式。

下面主要介绍几种常见的燃料电池。

一、氢氧燃料电池

氢氧燃料电池一般是以惰性金属铂(Pt)或石墨做电极材料,负极通入H2,正极通入 O2,总反应为:2H2 + O2 === 2H2O

电极反应特别要注意电解质,有下列三种情况:

1.电解质是KOH溶液(碱性电解质)

负极发生的反应为:H2 + 2e- === 2H+ ,2H+ + 2OH- === 2H2O,所以:

负极的电极反应式为:H2– 2e- + 2OH- === 2H2O;

正极是O2得到电子,即:O2 + 4e- === 2O2-,O2- 在碱性条件下不能单独存在,只能结合H2O生成OH-即:2O2- + 2H2O === 4OH-,因此,

正极的电极反应式为:O2 + H2O + 4e- === 4OH-。

2.电解质是H2SO4溶液(酸性电解质)

负极的电极反应式为:H2 +2e- === 2H+

正极是O2得到电子,即:O2 + 4e- === 2O2-,O2- 在酸性条件下不能单独存在,只能结合H+生成H2O即:O2- + 2 H+ === H2O,因此

正极的电极反应式为:O2 + 4H+ + 4e- === 2H2O(O2 + 4e- === 2O2-,2O2- + 4H+ === 2H2O)

3. 电解质是NaCl溶液(中性电解质)

负极的电极反应式为:H2 +2e- === 2H+

正极的电极反应式为:O2 + H2O + 4e- === 4OH-

说明:1.碱性溶液反应物、生成物中均无H+

2.酸性溶液反应物、生成物中均无OH-

3.中性溶液反应物中无H+ 和OH-

4.水溶液中不能出现O2-

二、甲醇燃料电池

甲醇燃料电池以铂为两极,用碱或酸作为电解质:

1.碱性电解质(KOH溶液为例)

总反应式:2CH4O + 3O2 +4KOH=== 2K2CO3 + 6H2O

正极的电极反应式为:3O2+12e- + 6H20===12OH-

负极的电极反应式为:CH4O -6e-+8OH- === CO32-+ 6H2O

2. 酸性电解质(H2SO4溶液为例)

总反应: 2CH4O + 3O2 === 2CO2 + 4H2O

正极的电极反应式为:3O2+12e-+12H+ === 6H2O

负极的电极反应式为:2CH4O-12e-+2H2O === 12H++ 2CO2

说明:乙醇燃料电池与甲醇燃料电池原理基本相同

三、甲烷燃料电池

甲烷燃料电池以多孔镍板为两极,电解质溶液为KOH,生成的CO2还要与KOH反应生成K2CO3,所以总反应为:CH4 + 2KOH+ 2O2 === K2CO3 + 3H2O。

负极发生的反应:CH4– 8e- + 8OH- ==CO2 + 6H2O CO2 + 2OH- == CO32- + H2O,所以:负极的电极反应式为:CH4 + 10 OH- + 8e- === CO32- + 7H2O

正极发生的反应有:O2 + 4e- === 2O2-和O2- + H2O === 2OH- 所以:

正极的电极反应式为:O2 + 2H2O + 4e- === 4OH-

说明:掌握了甲烷燃料电池的电极反应式,就掌握了其它气态烃燃料电池的电极反应式

四、铝–空气–海水电池

我国首创以铝–空气–海水电池作为能源的新型海水标志灯,以海水为电解质,靠空气中的氧气使铝不断被氧化而产生电流。只要把灯放入海水中数分钟,就会发出耀眼的白光。

电源负极材料为:铝;电源正极材料为:石墨、铂网等能导电的惰性材料。

负极的电极反应式为:4Al-12e-===4Al3+;

正极的电极反应式为:3O2+6H2O+12e-===12OH-

总反应式为:4Al+3O2+6H2O===4Al(OH)3

说明:铝板要及时更换, 铂做成网状是为了增大与氧气的接触面积.

燃料电池电极反应式的书写应用举例

1、电解质为酸性电解质溶液

例1、科学家预言,燃料电池将是21世纪获得电力的重要途径,美国已计划将甲醇燃料用于军事目的。一种甲醇燃料电池是采用铂或碳化钨作电极催化剂,在稀硫酸电解液中直接加入纯化后的甲醇,同时向一个电极通入空气。

试回答下列问题:

⑴这种电池放电时发生的化学反应方程式是。

⑵此电池的正极发生的电极反应是;负极发生的电极反应是。

⑶电解液中的H+离子向极移动;向外电路释放电子的电极是。

⑷比起直接燃烧燃料产生电力,使用燃料电池有许多优点,其中主要有两点:首先是燃料电池的能量转化率高,其次是。

答案:⑴2CH3OH+3O2=2CO2+4H2O

⑵正极3O2+12H++12e-=6H2O;负极2CH3OH+2H2O-12e-=2CO2↑+12H+

⑶正;负⑷对空气的污染较小

2、电解质为碱性电解质溶液

例2、甲烷燃料电池的电解质溶液为KOH溶液,下列关于甲烷燃料电池的说法不正确的是()

A、负极反应式为CH4+10OH--8e-=CO32-+7H2O

B、正极反应式为O2+2H2O +4e-=4OH-

C、随着不断放电,电解质溶液碱性不变

D、甲烷燃料电池的能量利用率比甲烷燃烧的能量利用率大答案:C。

3、电解质为熔融碳酸盐

例3、某燃料电池以熔融的K2CO3(其中不含O2-和HCO3-)为电解质,以丁烷为燃料,以空气为氧化剂,以具有催化作用和导电性能的稀土金属材料为电极。试回答下列问题:

⑴写出该燃料电池的化学反应方程式。

⑵写出该燃料电池的电极反应式。

⑶为了使该燃料电池长时间稳定运行,电池的电解质组成应保持稳定。为此,必须在通入的空气中加入一种物质,加入的物质是什么,它从哪里来?

解析:由于电解质为熔融的K2CO3,且不含O2-和HCO3-,生成的CO2不会与CO32-反应生成HCO3-的,故该燃料电池的总反应式为: 2C4H10+13O2=8CO2+10H2O。按上述燃料电池正极反应式的书写方法3知,在熔融碳酸盐环境中,其正极反应式为O2+2CO2 +4e-=2CO32-。通入丁烷的一极为负极,其电极反应式可利用总反应式减去正极反应式求得,应为2C4H10+26CO32--

52e-=34CO2+10H2O。从上述电极反应式可看出,要使该电池的电解质组成保持稳定,在通入的空气中应加入CO2,它从负极反应产物中来。

答案:⑴2C4H10+13O2=8CO2+10H2O

⑵正极:O2+2CO2 +4e-=2CO32-,负极:2C4H10+26CO32--52e-=34CO2+10H2O

⑶CO2从负极反应产物中来

4、电解质为固体氧化物

例4、一种新型燃料电池,一极通入空气,另一极通入丁烷气体;电解质是掺杂氧化钇(Y2O3)的氧化锆(ZrO2)晶体,在熔融状态下能传导O2-。下列对该燃料电池说法正确的是

A. 在熔融电解质中,O2-由负极移向正极

B. 电池的总反应是:2C4H10+13O2 = 8CO2+10H2O

C. 通入空气的一极是正极,电极反应为:O2+4e-=2O2-

D. 通入丁烷的一极是正极,电极反应为:C4H10+26e-+13O2-=4CO2+5H2O

解析:本题以丁烷燃料电池为载体综合考查了原电池原理涉及的有关“电子流向、电极反应式、总反应式”等内容,因正极上富集电子,根据电性关系,O2-不可能移向正极,A错。由丁烷的燃烧反应及电解质的特性知该电池的总反应式为2C4H10+13O2 =8CO2+10H2O,B正确。按上述燃料电池正极反应式的书写方法5知,在熔融状态下允许O2-在其间通过,故其正极反应式为O2+4e-=2O2-,C正确。通入丁烷的一极应为负极,D错。故符合题意的是B、C。

燃料电池种类工作原理及结构

燃料电池 燃料电池(FuelC el l)是一种将存在于燃料与氧化剂中的化学能直接转化为电能的发电装置.燃料和空气分别送进燃料电池,电就被奇妙地生产出来。它从外表上看有正负极和电解质等,像一个蓄电池,但实质上它不能“储电”而是一个“发电厂”。 燃料电池含有阳阴两个电极,分别充满电解液,而两个电极间则为具有渗透性的薄膜所构成.氢气由阳极进入供给燃料,氧气(或空气)由阴极进入电池. 电池经由催化剂的作用,使得阳极的氢原子分解成氢质子(pro to n)与电子(electro n),其中质子进入电解液中,被氧“吸引"到薄膜的另一边,电子经由外电路形成电流后,到达阴极。在阴极催化剂之作用下,氢质子、氧及电子,发生反应形成水分子。这正是水的电解反应的逆过程,因此水是燃料电池唯一的排放物. 利用这个原理,燃料电池便可在工作时源源不断地向外部输电,为一种 "发电机"。 阳极反应 - 阴极反应 总反应 伴随着电池反应, 电池向外输出电能。只要保持氢气和氧气的供给,该燃料电池就会连续不断地产生电能。 燃料电池的分类 1 按燃料电池的运行机理分 根据燃料电池的运行机理的不同,可分为酸性燃料电池和碱性燃料电池.例如磷酸燃料电池(PA FC)和液态氢氧化钾燃料电池(LPH FC)。 2按电解质种类分 根据燃料电池中使用电解质种类的不同,可分为酸性、碱性、熔融盐类或固体电解质的燃料电池。即碱性燃料电池(AFC )、磷酸燃料电池(PAFC )、熔融碳酸盐燃料电池(MCF C)、固体氧化物燃料电池(SOF C)和质子交换膜燃料电池(PEMFC )等。在燃料电池中,磷酸燃料电池(PAFC )、质子交换膜燃料电池(PEMFC )可以冷起动和快起动,可以用作为移动电源,适应燃料电池电动汽车(FCEV)使用的要求,更加具有竞争力。 3按燃料类型分 燃料电池的燃料有氢气、甲醇、甲烷、乙烷、甲苯、丁烯、丁烷等有机燃料和汽油、柴油以及天然气等气体燃料,有机燃料和气体燃料必须经过重整器“重整”为氢气后,才能成为燃料电池的燃料。根据燃料电池使用燃料类型的不同,可分为直接型燃料电池、间接型燃料电池和再生型燃料电池。 4按工作温度分 e H H 222+→+O H O e H 222122→+++O H O H 22222=+

燃料电池的原理及发展

燃料电池原理与发展 燃料电池是一种能够持续的通过发生在阳极和阴极的氧化还原反应将化学能转化为电能的能量转换装置。燃料电池与常规电池的区别在于,它工作时需要连续不断地向电池内输入燃料和氧化剂,只要持续供应,燃料电池就会不断提供电能。由于燃料电池能将燃料的化学能直接转换为电能,因此,它没有像普通火力发电厂那样的通过锅炉、汽轮机、发电机的能量形态变化,可避免过程中转换损失,达到市制发电效率。 近20多年来,燃料电池经历了碱式、磷酸、熔融碳酸盐和固体电解质等几种类型的发展阶段。美、日等国已相继建立了一些碳酸燃料电池电厂、熔融碳酸盐燃料电池电厂和质子交换膜燃料电池电厂。燃料电池的结构与普通电池基本相同,有阳极和阴极,通过电解质将这两个电极分开。与普通电池的区别是,燃料电池是开式系统。它要求连续供应化学反应物,以保证连续供电。其工作原理:燃料电池由阳极、阴极和离子导电的电解质构成,其工作原理与普通电化学电池类似,燃料在阳极氧化,氧化剂在阴极还原,电子从阳极通过负载流向阴极构成电回路,产生电流。 介绍一下熔融碳酸盐燃料电池(MCFC)一、MCFC概述 1.1 燃料电池简述燃料电池(FC)是一种将贮存在燃料和氧化剂中的化学能直接转化为电能的发电装置,结构如图1-1所示。它的发电方式与常规的化学电源一样,电极提供电子转移的场所,阳极催化燃料(如氢)的氧化过程,阴极催化氧化剂(如氧)的还原过程,导电离子在将阴阳极分开的电解质内迁移,电子通过外电路作功并构成总的电回路。在电池内这一化学能向电能的转化过程等温进行,即在燃料电池内,可在其操作温度下利用化学反应的自由能。但是,燃料电池的工作方式又与常规的化学电源不同,它的燃料和氧化剂并非贮存在电池内。同汽油发电机相似,它的燃料和氧化剂都贮存在电池之外的贮罐中。当电池工作时,要连续不断地向电池内送入燃料和氧化剂,排出反应产物,同时排出一定的废热,以维持电池温度的恒定。燃料电池本身只决定输出功率的大小,其贮能量则由燃料罐和氧化剂罐的贮量决定。总体上,燃料电池具有以下特点: (l) 不受卡诺循环限制,能量转换效率高。 (2) 燃料电池的输出功率由单电池性能、电极面积和单电池个数决定。

(完整word版)实验报告5燃料电池电堆测试

《燃料电池电堆测试与分析》实验报告 一.实验目的: 1.掌握PEMFC电堆测试台的基本结构和操作方法; 2.通过实测,掌握电堆极化曲线的测试方法,学会绘制极化曲线、功率曲线等图谱; 3.能将燃料电池电堆的实测性能应用于燃料电池系统的构建上;锻炼运用理论分析、解决实际问题的能力和方法。 二.实验原理: 将所需测量的PEMFC电堆与NBT燃料电池测试系统连接,通过控制平台调节燃料电池的氢气和空气流量,设置负载的电流值(也就是燃料电池电堆的电流值),观察记录电压值和功率值得变化,利用所记录的数据画出燃料电池的i-V和i-P曲线。 三.实验仪器设备和器材 四.测试平台开机顺序测试 1.打开气源,检查氢气、空气(外部供应时)的压力是否正常、去离子水的液位是否正常;室内氢气泄露报警系统是否正常;氢气、空气与水的排放口是否连接妥当,氢气管路的出口必须接于室外。注意测试时的人员与设备的安全。 2.给测试平台上电,380V AC。 3.开启电脑,与设备联机。 4.手动设置适当的氢、空、冷却水温度(注意不应超过80℃)、各流体最低流量、电堆片数、活性面积等参数。 5.设定数据保存路径和文件名,开始记录数据。

6.测试极化曲线。根据电堆所需要氢空流量,手动设置电流,测试极化曲线。 7.实验结束。 五.提前制作电堆运行所需氢气和空气的流量表,如下表所示。 已知条件:电堆片数:19片,单电池活性面积250cm2; 阴/阳极化学计量比:3.5/1.5; 常压 六.绘制电堆的极化曲线和功率密度曲线,需要标明必要的测试条件。

七.绘制上述极化曲线上最大功率时的单片电池电压柱状图,并计算电压的 标准偏差。 学生(签名): 实验日期:2015.5.25

氢氧燃料电池性能测试实验报告

氢氧燃料电池性能测试 实验报告 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

氢氧燃料电池性能测 试实验报告 学号: 姓名:冯铖炼 指导老师:索艳格 一、实验目的 1.了解燃料电池工作原理 2.通过记录电池的放电特性,熟悉燃料电池极化特性 3.研究燃料电池功率和放电电流、燃料浓度的关系 4.熟悉电子负载、直流电源的操作 二、工作原理 氢氧燃料电池以氢气作燃料为还原剂,氧气作氧化剂氢氧燃料电池,通过燃料的燃烧反应,将化学能转变为电能的电池,与原电池的工作原理相同。 氢氧燃料电池工作时,向氢电极供应氢气,同时向氧电极供应氧气。氢、氧气在电极上的催化剂作用下,通过电解质生成水。这时在氢电极上有多余的电子而带负电,在氧电极上由于缺少电子而带正电。接通电路后,这一类似于燃烧的反应过程就能连续进行。

工作时向负极供给燃料(氢),向正极供给氧化剂(氧气)。氢在负极上的催化剂的作用下分解成正离子H+和电子e-。氢离子进入电解液中,而电子则沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,氧气同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。 氢氧燃料电池不需要将还原剂和氧化剂全部储藏在电池内的装置氢氧燃料电池的反应物都在电池外部它只是提供一个反应的容器 氢气和氧气都可以由电池外提供燃料电池是一种化学电池,它利用物质发生化学反应时释出的能量,直接将其变换为电能。从这一点看,它和其他化学电池如锌锰干电池、铅蓄电池等是类似的。但是,它工作时需要连续地向其供给反应物质——燃料和氧化剂,这又和其他普通化学电池不大一样。由于它是把燃料通过化学反应释出的能量变为电能输出,所以被称为燃料电池。 具体地说,燃料电池是利用水的电解的逆反应的"发电机"。它由正极、负极和夹在正负极中间的电解质板所组成。最初,电解质板是利用电解质渗入多孔的板而形成,2013年正发展为直接使用固体的电解质。 工作时向负极供给燃料(氢),向正极供给氧化剂(空气,起作用的成分为氧气)。氢在负极分解成正离子H+和电子e-。当氢离子进入电解液中,而电子就沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,空气中的氧同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。此过程水可以得到重复利用,发电原理与可夜间使用的太阳能电池有异曲同工之妙。 燃料电池的电极材料一般为惰性电极,具有很强的催化活性,如铂电极、活性碳电极等。 利用这个原理,燃料电池便可在工作时源源不断地向外部输电,所以也可称它为一种"发电机"。 一般来讲,书写燃料电池的化学反应方程式,需要高度注意电解质的酸碱性。在正、负极上发生的电极反应不是孤立的,它往往与电解质溶液紧密联系。如氢—氧燃料电池有酸式和碱式两种: 若电解质溶液是碱、盐溶液则

燃料电池原理及习题解答

燃料电池原理及习题解答 在中学阶段,掌握燃料电池的工作原理和电极反应式的书写是十分重要的。所有的燃料电池的工作原理都是一样的,其电极反应式的书写也同样是有规律可循的。书写燃料电池电极反应式一般分为三步:第一步,先写出燃料电池的总反应方程式;第二步,再写出燃料电池的正极反应式;第三步,在电子守恒的基础上用燃料电池的总反应式减去正极反应式即得到负极反应式。下面对书写燃料电池电极反应式“三步法”具体作一下解释。 1、燃料电池总反应方程式的书写 因为燃料电池发生电化学反应的最终产物与燃料燃烧的产物相同,可根据燃料燃烧反应写出燃料电池的总反应方程式,但要注意燃料的种类。若是氢氧燃料电池,其电池总反应方程式不随电解质的状态和电解质溶液的酸碱性变化而变化,即2H2+O2=2H2O。若燃料是含碳元素的可燃物,其电池总反应方程式就与电解质的状态和电解质溶液的酸碱性有关,如甲烷燃料电池在酸性电解质中生成CO2和H2O,即CH4+2O2=CO2+2H2O;在碱性电解质中生成CO32-离子和H2O,即CH4+2OH-+2O2=CO32-+3H2O。 2、燃料电池正极反应式的书写 因为燃料电池正极反应物一律是氧气,正极都是氧化剂氧气得到电子的还原反应,所以可先写出正极反应式,正极反应的本质都是O2得电子生成O2-离子,故正极反应式的基础都是O2+4e-=2O2-。正极产生O2-离子的存在形式与燃料电池的电解质的状态和电解质溶液的酸碱性有着密切的关系。这是非常重要的一步。现将与电解质有关的五种情况归纳如下。 ⑴电解质为酸性电解质溶液(如稀硫酸) 在酸性环境中,O2-离子不能单独存在,可供O2-离子结合的微粒有H+离子和H2O,O2-离子优先结合H+离子生成H2O。这样,在酸性电解质溶液中,正极反应式为O2+4H++4e-=2H2O。 ⑵电解质为中性或碱性电解质溶液(如氯化钠溶液或氢氧化钠溶液) 在中性或碱性环境中,O2-离子也不能单独存在,O2-离子只能结合H2O生成OH-离子,故在中性或碱性电解质溶液中,正极反应式为O2+2H2O +4e-=4OH-。 ⑶电解质为熔融的碳酸盐(如LiCO3和Na2CO3熔融盐混和物) 在熔融的碳酸盐环境中,O2-离子也不能单独存在, O2-离子可结合CO2生成CO32-离子,则其正极反应式为O2+2CO2 +4e-=2CO32-。 ⑷电解质为固体电解质(如固体氧化锆—氧化钇) 该固体电解质在高温下可允许O2-离子在其间通过,故其正极反应式应为O2+4e-=2O2-。

燃料电池测试系统购置

高功率燃料电池测试系统技术参数高功率燃料电池测试系统,用于25cm2或50cm2质子交换膜燃料电池单电池性能及耐久性研究。详细的技术文件如下: 一、测试系统的所有部件、数据采集与控制、电脑及显示器在一个主机箱中。 二、测试仪器可靠性要求 无故障运行10000小时 三、电子负载 1、最大功率:≥100W; 2、最大电流:≥120A,精度:±0.3% 所选量程,分辨率:1mA 3、电池电压测量范围:-5V~+5V,精度:±1mV;分辨率:1mV 4、最低保护电压:0.3V。 四、加载控制方式:即可电流控制,又可电压控制。 五、气体供应 1、质量流量控制器: 最大流量:H2≥2NLPM,精度:±1%;Air≥5NLPM,精度:±1%,可按过量系数控制流量。 2、带有干气旁通(Bypass)功能,带有氮气吹扫(Purge)功能 六、背压控制 1、程控自动化阴阳极进出口压力控制,电脑控制自动加背压。 2、压力控制范围:≥300KPa(表压),控制稳定性:±5KPa 3、可以监测(电脑显示)阴极和阳极的进出口压力。 七、温度控制 1、最高电池温度:≥110℃,控制精度:±1℃ 2、最高气体温度:≥90℃,控制精度:±1℃,从加湿器到测试电池间的胶管有加热和保温功能,避免水气凝结。 3、露点温度控制范围:室温—90℃,精度:±1℃ 八、热交换器:有 九、交流阻抗:要求带有交流阻抗测试模块,电压控制模式测EIS,频率扫描范围:高频大于10kHz,低频小于等于0.01mHz,电流最大量程:≥±5A

十、带有恒电位仪,N2和Air自动切换,测试CV、LSV。N2流量计量程越高越好,建议和Air共用流量计。 十一、安全:带有氢气报警器,设有氢气泄露报警和仪器错误报警,在报警情况下自动化关闭电子负载、启动氮气吹扫。带有过电压、电流等保护。 十二、电脑和软件: 1、电脑全自动控制 2、可编程进行程序控制测试, 3、语言:英语或中文 4、数据收集记录:至少可以电脑记录以下参数:运行时间、电池温度、阴阳极气体进出口的温度和湿度、阴阳极加湿温度、阴阳极进出口压力、阴阳极气体流量,电池电流、电压及其标准偏差,所有数据记录设定值和测量值。 十三、保修期 一年。

(完整版)试简述五大类燃料电池的工作原理和各自的特点

三、试简述五大类燃料电池的工作原理和各自的特点 燃料电池按燃料电解质的类型来分类的,可分为碱性燃料电池(AFC)、磷酸燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)、固体氧化物燃料电池(SOFC)和质子交换膜燃料电池(PENFC)五大类。 3.1 碱性燃料电池(AFC) 碱性燃料电池是该技术发展最快的一种电池,主要为空间任务,包括航天飞机提供动力和饮用水。 3.1.1原理 使用的电解质为水溶液或稳定的氢氧化钾基质,且电化学反应也与羟基(OH)从阴极移动到阳极与氢反应生成水和电子略有不同。这些电子是用来为外部电路提供能量,然后才回到阴极与氧和水反应生成更多的羟基离子。 负极反应:2H2 + 4OH-→ 4H2O + 4e- 正极反应:O2 + 2H2O + 4e- → 4OH- 碱性燃料电池的工作温度大约80℃。因此,它们的启动也很快,但其电力密度却比质子交换膜燃料电池的密度低十来倍,在汽车中使用显得相当笨拙。不过,它们是燃料电池中生产成本最低的一种电池,因此可用于小型的固定发电装置。 如同质子交换膜燃料电池一样,碱性燃料电池对能污染催化剂的一氧化碳和其它杂质也非常敏感。此外,其原料不能含有一氧化碳,因为一氧化碳能与氢氧化钾电解质反应生成碳酸钾,降低电池的性能。 3.1.2 特点 低温性能好,温度范围宽,并且可以在较宽温度范围内选择催化剂,但是才用的碱性电解质易受CO2的毒化作用因此必须要严格出去CO2,成本就偏高。 3.2 磷酸燃料电池(PAFC) 磷酸燃料电池(PAFC)是当前商业化发展得最快的一种燃料电池。正如其名字所示,这种电池使用液体磷酸为电解质,通常位于碳化硅基质中。磷酸燃料电池的工作温度要比质子交换膜燃料电池和碱性燃料电池的工作温度略高,位于

燃料电池测试方案

燃料电池测试方案 燃料电池是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。根据燃料和氧化剂种类的不同燃料电池分为多种类型,比如碱性燃料电池,质子交换膜燃料电池,甲醇燃料电池,磷酸燃料电池,熔融碳酸盐燃料电池,固体氧化物燃料电池等,具有环境污染小,比能量高,噪音低,燃料范围广,可靠性高,易于建设等优点,因此其可广泛应用于电动汽车、航天飞机、潜艇、通讯系统、中小规模电站、家用电源,以及其他需要移动电源的场所。中国致力于燃料电池的相关研究数十年,当前国家也将燃料电池行业的发展写入了多个地区的战略规划。 神州技测工程师表示,对于燃料电池的测试,功率不同,测试方法也不同。总体说来,硬件仪器一般包括:气体供给系统、液体供给系统、气体液体混合供给系统、液体供给液压系统、加湿器系统、气体加热线、温度控制监测系统、压力控制监测系统、电子负载系统、辅助输入输出系统、架构模块式系统以及第三方设备等。软件一般包括:对所有接入仪器的设定、控制、安全报警以及数据收

燃料电池的主要应用是在汽车行业中,大概可占到行业应用的70%左右。因此我们可以以汽车中燃料电池为例,简述燃料电池的测试。 燃料电池堆栈的测试中,会使用多种气体相关装置,电力相关装置,监测系统等。

神州技测提供的AMETEK SG系列直流电源可以作为辅助电源,功率范 围:4KW-150KW,电压范围5-1000V,电流范围5–6000 A;提供恒压、恒流和恒功率输出模式;提供独特的“序列”功能,易于生成变化的直流波形;可定义电压斜率;可闻噪音低。 AMETEK PLW系列水冷电子负载产品可以作为电力测试设备使用,检测燃料电池的电力特性。PLW系列产品成熟稳定,可靠性高,有众多典型案例,型号齐全:功率覆盖6kW、9kW、12kW、18kW、24kW、36kW,也可提供36kW - 250kW的其他标准型号;标准额定电压:60V、120V、400V、600V、800V和1000V;外形紧凑,功率密度高(2U,18kW)。 水冷电子负载应用在燃料电池堆栈测试中有众多的优势,比如功率密度高,体积小巧;冷水在电子负载内部流动,对系统的温度环境影响较小,适于实验人员工作,同时也减少了环境温度对测试的影响;噪声小,适于实验人员工作;无需额外建空调房,因此降低成本,减少线损对系统测试的影响;能量被消耗,无需考虑馈电对实验室的影响;故障率低;易于程控。同时,目前的权威燃料电池检测产品,Greenlight系统中,大多使用了此系列产品,有众多的成功案例。 关于升压变压器测试,动力控制单元,驱动电机单元的测试,AMETEK也可以提供相应的电源和电子负载进行测试,如SG系列产品和PLA系列产品等。

燃料电池的基本工作原理及主要用途

简述燃料电池的基本工作原理及主要用途 1.燃料电池的工作原理 燃料电池是一种按电化学原理,即原电池的工作原理,等温地把贮存在燃料和氧化剂中的化学能直接转化为电能的能量转换装置。其单体电池是由电池的正极(即氧化剂发生还原反应的阴极)、负极(即还原剂或燃料发生氧化反应的阳极)和电解质构成,燃料电池与常规电池的不同之处在于,它的燃料和氧化剂不是贮存在电池内,而是贮存在电池外部的贮罐内,不受电池容量的限制,工作时燃料和氧化剂连续不断地输入电池内部,并同时排放出反应产物。 以磷酸型燃料电池为例,其反应式为: 燃料极(阳极) H2→2H++2e- 空气极(阴极) 1/2O2+2H++2e-→H2O 综合反应式H2+1/2O2→H2O 以上反应式表示:燃料电池工作时向负极供给燃料(氢),向正极供给氧化剂(空气),燃料(氢)在阳极被分解成带正电的氢离子(H+)和带负电的电子(e-),氢离子(H+)在电解质中移动与空气极侧提供的O2发生反应,而电子(e-)通过外部的负荷电路返回到空气极侧参与反应,连续的反应促成了电子(e-)连续地流动,形成直流电,这就是燃料电池的发电过程,也是电解反应的逆过程。 2. 燃料电池的应用 2.1能源发电 燃料电池电站的每一套设备都包括了一整套采用天然气发电的电力系统。分为以下几个分单元:①燃料电池组②燃气制备③空气压缩机④水再生利用⑤逆变器⑥测量与控制系统。燃料电池组产生的直流电通过逆变器转换成电力系统所需的交流电。各国工业界人士普遍对于燃料电池在发电站的应用前景看好。 2.2汽车动力 目前,各国的汽车时用量均在不断增加,其排放的尾气已成为城市环境的主要污染源之一,特别是发展中国家,由于环境治理的力度不够,这一问题更加突出。于是人们要求开发新型的清洁、高效的能源来解决这一问题。质子交换膜燃料电池的出现,解决了燃料电池在汽车动力成本和技术方面存在的若干问题,使燃料电池电动车的开发和使用成为可能。这种电池具有室温快速启动、无电解液流失、水易排出、寿命长、比功率与比能量高等特点,适合做汽车动力,是目前世界各国积极开发的运输用燃料电池。 2.3家庭用能源 天然气作为一种洁净的能源已经在家庭中被广泛使用,但其主要被用于炊事和生活热水,以天然气为燃料的燃气电池在家庭中的广泛应用在开辟了天然气在家庭中一种新的用途的同时也将解决目前高峰用电紧张的状况。家庭的一切用电无论是电视机、冰箱、空调等家用电气还是电脑等办公设备都可以通过燃料电池来提供电源,作为家庭使用的分散电源,并可同时提供家庭用热水和采暖,这样可将天然气的能量利用率提高到70%~90%。 2.4其它方面的应用 碱性燃料电池和质子交换膜燃料电池运行时基本没有红外辐射,而且噪音小,用做潜艇动力,可大大提高其隐蔽性;同时由于它们可在常温下启动工作,且能量密度高,还是理想的航天器工作电源。此外,质子交换膜燃料电池还可用作野外便携式电源。 总之,燃料电池的用途将越来越广泛,它将遍布我们身边的每个角落,成为我们生活中不可缺少的能量来源。

燃料电池测试系统的基本理论

燃料电池测试系统的基本理论 随着全球对能源需求的增长及人类对环境要求的提高。各个国家对燃料电池的研究和开发H益增多。燃料电池测试系统不仅存燃料电池系统的研发阶段十分重要,即使是在其投入使用之后对于维持电池的正常工作也是不可或缺的。强大的测试能力能够提供对燃料电池可靠的监控。提供灵活的结构,具备了这种能力,科学界能够很方便地设计他们的系统,以跟踪燃料电池技术进步。以下是对燃料电池测试系统的相关介绍。 1、测试目的 虽然研究、开发、制造和应用部分的总目标各有不同。它们对于燃料电池的检测和躲视项目要求却是相似的。对丁研发部门,测试要求足确定输出能量、使用寿命和电池组的耐用性。在设计验收阶段,主要任务是优化设计以备大规模生产.以及在不降低效率的情况下降低电堆总成本。对丁生产应用.要求燃料电池符合规范要求。而在实际使用中,监测电池的寿命和工作状态是非常重要的。好在这些不同的任务对电池测试系统的要求都差不多。 2、测试系统的主要特点 ①隔离。燃料电池测试系统先要进行各种需要信号调理的测鼍。然后原始信号才能有数据采集系统数字化。大容最电堆具有数百个单电池。从而电压测量要求数白.伏的共模抑制。因此.测试不仅必须具有多个每个通道都能读取l—10V的通道.而

且必须保持电堆的每一个和最后一个电池之间高达数百伏的隔离。 ②数据采集系统必须能够扩展。由于燃料电池测试系统的通道数目可以从100个到1000多个.所以数据采集系统必须能够扩展。并且这些系统也要求可以进行信号的衰减和放大。 ③模块化。对于今天的测试系统,模块化也是必需的。因为测试系统必须能够随着生产及验证技术的变革而变革。 ④标定。任何测试系统都应该进行标定以确保测量有效和准确。 3、测试的主要性能参数 燃料电池测试系统需要精确的监测和控制成百上千次测量.范同从燃料和氧化剂的流量、温度、压力和湿度到燃料电池组的输出电压和电流。测试燃料电池的性能是很重要的,而监测影响性能的变量更为重要,但最重要的足控制这些变量参数,安全运行也是至关重要的。所以监测控制的主要参数有: (1)电压。在有负载的情况下,单电池的输出电压会从开路电压的1V左右降到O.6V左右.知道了每个单电池的电压就可以更近的了解电堆的健康情况。如果哪个单电池显示出不同电压,就表明此电池有问题,或者温度不正常,或者电极被淹。测试单电池或电堆的电压就可以正确操作、测试和设计燃料电池。

燃料电池测试

燃料电池测试设备数量较少,操作并不复杂,但是与普通电池测试区别还是很明显。测试要求也更多。 燃料电池本身的特点: 燃料电池是核心部件为质子交换膜的发电设备,把化学能转化为电能。 单节电芯电压很低,电流很大。电池包节数较多,密封性和一致性要求较高。 电芯内阻较大,功率损耗较大,电压电流范围较广, 电池输出准备及变化时间较长,变化速度慢,不耐负载突变。不能急开急停。 BMS控制板特点: 电池串联数量多,一般在100串以上,需要对BMS的单节监控性能进行验证。电池发热量大,需要对电池进行温度监控与控制,转换效率需要更精准。 对输出端的电压电流采集的调整输入氢气和空气量。 输入输出变化斜率控制。 因为一般是程控进行,所以最好负载也需要程控。 电压电流等参数需要进行校验和校准。 实际使用: 因为燃料电池开始,变化,结束均有一定的滞后性,一般会后接一个动力电池作为缓冲器件然后才用于动力输出。如果燃料电池直接用于冲击性消耗,会对交换膜损害很大,寿命急剧降低。 测试需要设备:除了燃料电池本身的BMS,输入氢气的流量压强传感器,空气的输入及散热,单节一致性监控之外。最重要的就是负载设备。 燃料电池测试,为什么只能使用电子负载? 作为负载,除了电子负之外,电阻和反馈式负载在新能源行业也偶有使用,为什么不能用于燃料电池测试呢? 单节燃料电池测试要求苛刻,要求很低电压达到很大的电流,电流越大,电压越低。比如要求0.6V带载到600A甚至更高。需要负载从1mΩ到1KΩ范围内都要保证足够的精确度。 电池包不允许冲击性消耗,要求全输出范围斜率可调,要求斜率,要求精确度,要求程控,要求带载状态不能阶跃等等。 反馈式负载:反馈式负载就是一台DC-AC转换的开关电源。其消耗方式是高速开关脉冲式。10%量程范围带载能力差,电流杂波大,精确度稍差。变化斜率慢,斜率控制差,完

燃料电池分类及工作原理

一、燃料电池的工作原理 燃料电池是用一种特定的燃料,通过一种质子交换膜(PEMProtonExchangeMembrane)和催化层(CLCatalystLayer)而产生电流的一种装置,这种电池只要外界源源不断地供应燃料(例如氢气或甲醇),就可以提供持续电能。它的工作原理,是利用一种叫质子交换膜的技术,使氢气在覆盖有催化剂的质子交换膜作用下,在阳极将氢气催化分解成为质子,这些质子通过质子交换膜到达阴极,在氢气的分解过程中释放出电子,电子通过负载被引出到阴极,这样就产生了电能。 在阳极经过质子交换膜和催化剂的作用,在阴极质子与氧和电子相结合产生水。也就是说燃料电池内部的氢与空气中的氧进行化学反应,生成水的过程,同时产生了电流,也可以理解为是电解水的逆反应。 燃料电池在阳极除供应氢气外,同时还收集氢质子(H+),释放电子;在阴极通过负载捕获电子产生电能。质子交换膜的功能只是允许质子H+通过,并与阴极中的氧结合产生水。这种水在反应过程中的温度作用下,以水蒸气的形式散发在空气中(对汽车用的大功率燃料电池就要设置水的回收装置)。注意,用氢作燃料电池所生成的是纯净水可以饮用,而用甲醇作燃料生成的水溶液中可能产生甲醛之类有毒物质不能饮用。图1为燃料电池工作原理的示意图。

二、燃料电池的分类 由于人们是从不同角度来研究和开发燃料电池的,所以其种类也繁多,但目前主要有3种。 1 质子交换膜技术 质子交换膜技术(或者称聚合物电解液膜技术)——简称PEMFC (ProtonExchangeMembreneFuelCell)。由于它能提供比传统锂离子电池大约高出5~10倍的能量密度,比甲醇燃料电池也有更高的能量密度,所以,人们都看好质子交换膜技术的氢燃料电池,虽然它还存在着储存及安全等问题,但人们正在克服它,最终有望在3~5年实现可存储在像打火机大小的容器中,充一次氢气发电可供手机使用几天,它将是未来便携式电子产品供电系统的首选。 2 直接甲醇燃料电池 直接甲醇燃料电池——简称DMFC(DirectMethanolFuelCell)。它是以甲醇为燃料,通过与氧结合产生电流的,优点是直接使用甲醇,省去了氢的生产与存储,因为,在汽车上早已使用甲醇溶液作为挡风玻璃的刮洗液了,故不存在安全问题。但甲醇存在泄漏问题,虽然用水稀释可以解决,但是电解效率却大大降低,目前正在解决渗漏问题。 3 直接乙醇燃料电池 直接乙醇燃料电池——简称DEFC(DirectEthanolFuelCell)。为避免甲醇的渗漏问题,而采用乙醇,它也是由两个电极、燃料及电解液组成的。

燃料电池测试系统

燃料电池测试系统 燃料电池测试催化剂测试实验室自动化材料测试 brand innovative solutions by TesSol, Inc. 为客户提供最好的仪器和服务是我门的宗旨 高品质,高精度,仪器服务期长 模块化结构,以太网通信,安装操作简单 模块化结构以及以太网通信,使仪器将来升级/扩展简单,一次投资,长期回报 低阻电子负载,无需放电增强器 FCPower软件用户友好界面,操作简单 软件允许用户用VBScript等编程语言编写脚本,满足自己特殊测试需要 免费软件升级,免费终生客户支持 软件还兼容控制很多第三方设备 Fideris已经为顾客提供了15年优质服务,而且还将一直继续下去 模块化设计 完整的测试系统 模块完美结合成为系统 电子负载模块 温度控制模块 气体液体控制模块 其它模块,如加湿器,背压控制等等 完全客户化设计,为您提供满足您的特殊需要的测试仪器。而且购买后也可以简单做到仪器扩展/升级,避免了仪器资源浪费 TesSol制造并为用户提供Fideris品牌系列的测试仪器。在燃料电池、催化剂、感应片、材料以及很多其它紧密相关的领域,Fideris系列仪器代表了在研究、质量控制、以及产品测试方面最为创新的实验解决方案。Fideris系列仪器包括:一体化测试系统、气体供给系统、液体供给系统、气体液体混合供给系统、液体供给液压系统、压力控制监测系统、温度控制监测系统、压力控制监测系统、电子负载系统、加湿器系统、气体加热线、辅助输入输出系统、架构模块式系统以及第三方设备等。 Fideris系列仪器采用FCpower软件为用户提供方便直观的电脑控制以及数据处理平台。FCpower软件为燃料电池研究者提供了最为灵活、最为强大的燃料电池测试平台。软件包含了对所有接入仪器的设定、控制、安全报警以及数据收集和处理等方面。 Fideris的燃料电池测试系统是专门为燃料电池测试而设计。我们的燃料电池试验站已经在世界范围内应用于燃料电池以及子系统(从小于1瓦到高于10万瓦)测试,包含所有化学材料类型(PEMFC质子交换膜燃料电池、SOFC固态氧化物燃料电池等等)、所有类型(微型、小型、大型)以及多种燃料类型(氢、天然气、柴油、汽油、重整油等等)。

燃料电池电堆测试(费思科技)

燃料电池电堆测试之费思负载应用。 产品规格: 功能规格:FT68048B,0~500V,0~900A,0~48000W 精确度:0.2% 动态指标:频率20KHZ,斜率45A/uS。 输入:110/220电压,50/60HZ频率。频率精确度0.01% 保护:过压,过流,过功率,过温,电压反向。 对外保护:过压,欠压,过流,过功率等保护被测设备。 电压参数:0~500V,分辨率1mV,精确度,0.05% 电流参数:0~900A,分辨率15mA,精确度,0.1% 功率参数:0~48000W,分辨率0.8W,精确度,0.5% 电阻参数:0~28Ω,分辨率16bit,精确度,0.35% 0~440Ω,分辨率16bit,精确度,0.35% 低压带载能力:3V@900A,3V可以达到满载电流。用 来测试燃料电池单节状态。 界面操作:采用键盘加6寸工业显示屏的方式,操作简单, 设定清晰一目了然,支持一键调用测试功能。防止误操作。 通讯接口:USB,RS232,GPIB等。 功能端子:sence端子(补偿线损,精确测量),外部模拟编程(任意波形控制负载以相同波形带载),电压电流监控端子(把实际负载运行的状态以0~10V电压波形表示),外部触发端子(模拟异常瞬时状态测试),级联端子(允许多台负载并联操作,以增大电流和功率) 测试功能: 1、电池内阻测试: 直接测试电池的直流内阻。 分辨率为1uΩ,采用专利技术, 使电池内阻测试的一致性以准 确度大大提高。 2、电池容量测试: 本机进行操作,设定放电电流,截止电压,负载 会自动记录测试时间,容量,电压电流值等参数,配 合软件测试,可以设定定态(恒流,恒压,恒阻,恒 功率)放电,动态(模拟PWM调制手段)放电,序 列(模拟各种用电环境)放电。 3、OCP测试: 自动完成过流保护点测试过程,并且记录最大功 率点及最大电流点。 测试软件:

燃料电池的工作原理

燃料电池的工作原理 作者:佚名来源:不详录入:Admin更新时间:2008-8-18 10:07:07点击数:8 【字体:】 燃料电池的一般结构为:燃料(负极)|电解质(液态或固态)|氧化剂(正极)。在燃料电池中,负极常称为燃料电极或氢电极,正极常称为氧化剂电极、空气电极或氧电极。燃料有气态如氢气、一氧化碳、二氧化碳和碳氢化合物,液态如液氢、甲醇、高价碳氢化合物和液态金属,还有固态如碳等。按电化学强弱,燃料的活性排列次序为:肼>氢>醇>一氧化碳>烃>煤。燃料的化学结构越简单,建造燃料电池时可能出现的问题越少。氧化剂为纯氧、空气和卤素。电解质是离子导电而非电子导电的材料,液态电解质分为碱性和酸性电解液, 固态电解质有质子交换膜和氧化锆隔膜等。在液体电解质中应用微孔膜,0.2mm~0.5mm厚。固体电解质为无孔膜,薄膜厚度约为20μm。 燃料电池的反应为氧化还原反应,电极的作用一方面是传递电子、形成电流;另一方面是在电极表面发生多相催化反应,反应不涉及电极材料本身,这一点与一般化学电池中电极材料参与化学反应很不相同,电极表面起催化剂表面的作用。 在氢氧燃料电池中,氢和氧在各自的电极反应。氧电极进行氧化反应,放出电子,氢电极进行还原反应,吸收电子,总反应为: O2+2H2→2H2O 反应结果是氢和氧发生电化学燃烧,生成水和产生电能。由热力学变量可得到以下理论电动势和理论热效率公式: Eo=-(ΔG/2F)=1.23V η=ΔG/ΔH=83.0% 式中,ΔG和ΔH分别为自由能变化和热焓变化,F是法第常数。

燃料电池工作的中心问题是燃料和氧化剂在电极过程中的反应活性问题。对于气体电极过程,必需采用多孔气体扩散电极和高效电催化剂,提高比表面,增加反应活性,提高电池比功率。 氢在负极氧化是氢原子离解为氢离子和电子的过程,若用有机化合物燃料,首先需要催化裂化或重整,生成富氢气体,必要时还要除去毒化催化剂的有害杂质。这些反应可在电池内部或外部进行,需附加辅助系统。正极中的氧化反应缓慢,燃料电池的活性主要依赖正极。随着温度升高,氧的还原反应有相当的改善。高温反应有利于提高燃料电池反应活性。 对于燃料电池发电系统,核心部件是燃料电池组,它由燃料电池单体堆集而成,单体电池的串联和并联选择,依据满足负载的输出电压和电流,并使总电阻最低,尽量减小电路短路的可能性。其余部件是燃料预处理装置、热量管理装置、电压变换调整装置和自动控制装置。通过燃料预处理,实现燃料的生成和提纯。燃料电池的运行或起动,有的需要加热,工作时放出相当的热量,由热量管理装置合理地加热或除热。燃料电池工作时,在碱性电解液负极或酸性电解液正极处生成水。为了保证电解液浓度稳定,生成的水要及时排除。高温燃料电池生成水会汽化,容易排除,水量管理装置将实现合理的排水。燃料电池与化学电池一样,输出直流电压,通过电压变换成为交流电送到用户或电网。燃料电池发电系统通过自控装置使各个部件协调工作,进行统一控制和管理。

固体氧化物燃料电池综合测试系统研究

固体氧化物燃料电池综合测试系统研究 摘要:本文提出一套容量为200W固体氧化物燃料电池综合测试系统(SOFCITS)的设计方案。该方案详细列出了各部件选型依据,所选型号以及参数说明。该系统功能主要包括:电池封接性能的测试,单电池发电性能的测试以及小型电池堆发电性能测试。由于系统的开放式结构,基于该系统的设计架构,还可以根据具体需要进行扩展以满足测试需求。 1、引言 固体氧化物燃料电池(SOFCs, Solid Oxide Fuel Cells)的研究过程,涉及到 电池组元材料的性能评价、电池封接性能的评价以及电池堆发电性能的评价等等。目前,国内SOFCs的研究,已经由电池材料和电池制备的阶段进入到电池堆的 组装和发电试验阶段。发电试验阶段的测试评价工作赖以进行的平台,就是固体氧化物燃料电池综合测试系统(SOFC-ITS, Solid Oxide Fuel Cell Integrated Test System )。本文给出了一套容量为200W的SOFC-ITS设计方案。该方案不仅适用于小型固体氧化物燃料电池堆的评价测试,也符合中等规模测试系统的设计思路。 2、SOFC-ITS设计 本文给出的SOFC-ITS设计,主要由以下几部分构成: (1)燃料供应单元。主要包括燃料供给和燃料处理。燃料供给涉及到燃料 气压力调节、流量调节和温度调节;燃料处理涉及到燃料气干燥、增湿和预热。 (2)氧化剂供应单元。氧化剂通常为空气,该单元主要包括空气供给和空 气处理。空气供给涉及到压缩机的压力调节、流量调节和温度调节;空气处理,主要是空气过滤和预热。 (3)保护气供应单元。采用N2作保护气,在电池堆启动和关闭过程进行吹扫保护,在热循环过程中对Ni/YSZ阳极抗氧化保护,以及电池堆出现故障停机时进行吹扫保护。 (4)尾气处理单元。尾气处理单元主要是尾气的冷却,冷凝,分离及氧敏 性分析,尾气成分分析及燃料利用率计算。 (5)高温电炉。一台燃料气和氧化剂的预热电炉,工作温度约800℃;两台提供电池反应环境的高温电炉,工作温度约1000℃。三台均为程序控温电炉。 (6)数据采集及电子负载系统。数据采集系统主要是实现对电池电压、电 流的采集,并对电池电阻进行分析。采用美国Arbin公司生产的BT2000系列电池测试设备,它具备数据采集和电子负载的双重功能。

燃料电池汽车动力系统测试平台的设计与验证

2019年 第1期 【摘要】为实现燃料电池汽车(FCV )动力系统及其关键部件的开发和产品化综合测试,设计了FCV 动力系统的分布式 多任务动态测试平台,实现车辆运行环境、道路振动适应性和动态道路阻力的模拟,基于功能特性和冗余需求设计了测试系统的体系结构和功能,采用XiL 技术设计验证过程和测试用例。通过对测试结果的分析,论证了测试平台的有效性和先进性,并验证了FCV 动力总成领域大型多层测试平台的设计方法。 主题词:燃料电池汽车动力系统多任务测试平台主控系统 中图分类号:U467.3 文献标识码:A DOI:10.19620/https://www.doczj.com/doc/1317802325.html,ki.1000-3703.20180853 Design and Verification of Fuel Cell Vehicle Power System Test Platform Chai Hua,Zhang Tong,Chen Juexiao,Gao Haiyu (Tongji University,Shanghai 201804) 【Abstract 】For the development and productization comprehensive test of FCV power system and its key components,a distributed multi-task dynamic test platform for FCV power system was designed,which could simulate vehicle operating environment,road vibration adaptability and dynamic road resistance.Architecture and function of the test system based on the functional characteristics and redundancy requirements were designed.The verification process and test cases were designed using XiL technology.Through analysis of the test results,the effectiveness and advancement of the test platform were demonstrated,and the design method of the large multi-layer test platform in the FCV powertrain was verified. Key words:Fuel cell vehicle,Power system,Multitask,Test platform,Main control system 柴华 章桐 陈觉晓 高海宇 (同济大学,上海201804) 燃料电池汽车动力系统测试平台的设计与验证 汽车技术·Automobile Technology 1前言 新能源汽车已成为汽车工业未来的发展方向,氢燃料电池汽车具有高效率和零排放的特点,因而具有广阔的应用前景[1-3]。在燃料电池汽车的试验过程中,受路面激励、行驶速度、气候和环境等因素影响,燃料电池汽车(Fuel Cell Vehicle ,FCV )动力系统及部件难以稳定运行。实车道路测试时的性能衰减远远快于实验室测试。另外,单个零部件集成到动力系统后,其耐久性变得更差 [4-5] 。 FCV 动力系统是整车的核心,其开发和产业化验证 已成为燃料电池汽车产业发展的瓶颈,而综合测试是发现问题、分析问题、提升技术与产品水平的重要方式。目前,单一部件的测试平台不能满足综合运行环境的模 拟,但实际车辆测试的安全风险和成本都很高。企业迫切需要集零部件与总成测试为一体的综合测试平台来模拟大气环境、道路振动和动态阻力。 国内外许多学者对动力系统部件或总成的外特性进行了研究[6-7]。现有的FCV 动力系统测试平台以动力系统的零部件测试台架为主,例如驱动电机、燃料电池发动机测试台架等。另外,若动力系统某一关键零部件缺失,现有的测试平台无法实现软、硬件的测试。针对现有测试平台的不足,必须引入新的测试方法,以及一个能够模拟大气环境、道路振动和动态阻力,实现整个产品开发过程全部功能测试的平台。本文设计了FCV 动力总成动态性能测试系统[8],该系统基于X 在环(X-in-the-Loop ,XiL )[9-12] 技术,用于FCV 动力总成系统测 试,可实现动力总成系统设计、验证、子系统和系统匹配与集成测试,以及环境适应性和持续时间测试。 2多任务FCV 动力系统测试平台 考虑到集成单部件测试设备时,不同部件的实时性、传输数据量和数据类型、通信方式存在差异,平台应设计为分布式和多通信通道的形式,通过相应的网络将 ·燃料电池汽车技术专题· - -25

氢氧燃料电池性能测试实验分析报告

氢氧燃料电池性能测试实验报告 冯铖炼 实验目的 1. 了解燃料电池工作原理 2. 通过记录电池的放电特性,熟悉燃料电池极化特性 3. 研究燃料电池功率和放电电流、燃料浓度的关系 4. 熟悉电子负载、直流电源的操作 , 匚作原理 氢氧燃料电池以氢气作燃料为还原剂, 氧气作氧化剂氢氧燃料电池,通过燃料的燃烧反应,将 化学能转变为电能的电池,与原电池的工作原理相同。 氢氧燃料电池工作时,向氢电极供应氢气,同时向氧电极供应氧气。氢、 氧气在电极上的催化 剂作用下,通过电解质生成水。这时在氢电极上有多余的电子而带负电, 在氧电极上由于缺少电子 而带正电。接通电路后,这一类似于燃烧的反应过程就能连续进行。 工作时向负极供给燃料(氢),向正极供给氧化剂(氧气)。氢在负极上的催化剂的作用下分 解成正离子H+和电子e-。氢离子进入电解液中,而电子则沿外部电路移向正极。用电的负载就接 在外部电路中。在正极上,氧气同电解液中的氢离子吸收抵达正极上的电子形成水。 这正是水的电 解反应的逆过程。 氢氧燃料电池不需要将还原剂和氧化剂 全部储藏在电池内的装置氢氧燃料电池的反应物都在 电池外部它只是提供一个反应的容器 学号: 1141440057 指导老师: 索艳格 姓名:

氢气和氧气都可以由电池外提供燃料电池是一种化学电池, 它利用物质发生化学反应时释出的能量, 直接将其变换为电能。从这一点看,它和其他化学电池如锌锰干电池、铅蓄电池等是类似的。但是, 于它是把燃料通过化学反应释出的能量变为电能输出,所以被称为燃料电池。 具体地说,燃料电池是利用水的电解的逆反应的"发电机"。它由正极、负极和夹在正负极中间 的电解质板所组成。最初,电解质板是利用电解质渗入多孔的板而形成, 2013年正发展为直接使 用固体的电解质。 工作时向负极供给燃料(氢),向正极供给氧化剂(空气,起作用的成分为氧气),。氢在负极 分解成正离子H+和电子e-。当氢离子进入电解液中,而电子就沿外部电路移向正极。用电的负载 就接在外部电路中。在正极上,空气中的氧同电解液中的氢离子吸收抵达正极上的电子形成水。 这 正是水的电解反应的逆过程。此过程水可以得到重复利用,发电原理与可夜间使用的太阳能电池有 异曲同工之妙。 燃料电池的电极材料一般为惰性电极,具有很强的催化活性,如铂电极、活性碳电极等。 利用这个原理,燃料电池便可在工作时源源不断地向外部输电,-所以也可称它为一种"发电机"。 i 一般来讲,书写燃料电池的化学反应方程式,需要高度注意电解质的酸碱性。 发生的电极反应不是孤立的,它往往与电解质溶液紧密联系。如氢一氧燃料电池有酸式和碱式两种: 'I 若电解质溶液是碱、盐溶液则 负极反应式为:,2H2 + 4OH- - 4e~二4场0 正极反应式为:+ 2H2 O + 4广二4OH ■ 若电解质溶液是酸溶液则 负极反应式为:2H2 _ 4牴 —4H 正极反应式为:°2 + 4广+ 4H*二2H2O 总反应方程式为: 2H2 + 02二2H2 O 在碱溶液中,不可能有H+出现,在酸溶液中,不可能出现 0H —。 实验步骤 ① 连接电子负载,测量开路电压 它工作时需要连续地向其供给反应物质 燃料和氧化剂,这又和其他普通化学电池不大一样。由 在正、负极上

相关主题
文本预览
相关文档 最新文档